Application of the Tree-of-Thoughts Framework
to LLM-Enabled Domain Modeling

Jonathan Silval [0000700017884472601]’ an Mal [0000700017852078190]’ Jordi

Cabot1:2[0000-0003-2418-2489] Pjerre Kelsen!, and Henderik A.
b b
Proper3(0000-0002—7318~2496]

! University of Luxembourg, Esch-sur-Alzette, Luxembourg
{jonathan.silva, qin.ma, jordi.cabot, pierre.kelsen}@uni.lu
2 Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
{jordi.cabot}@list.lu
3 TU Wien, Vienna, Austria
{henderik.proper}@tuwien.ac.at

Abstract. Domain modeling is typically an iterative process where mod-
eling experts interact with domain experts to complete and refine the
model. Recently, we have seen several attempts to assist, or even re-
place, the modeler with a Large Language Model (LLM). Several LLM
prompting strategies have been attempted, but with limited success.

In this paper, we advocate for the adoption of a Tree-of-Thoughts (ToT)
strategy to overcome the limitations of current approaches based on sim-
pler prompting strategies. With a ToT strategy, we can decompose the
modeling process into several sub-steps using for each step a specialized
set of generators and evaluators prompts to optimize the quality of the
LLM output. As part of our adaptation, we provide a Domain-Specific
Language (DSL) to facilitate the formalization of the ToT process for do-
main modeling. Our approach is implemented as part of an open source
tool available on GitHub.

Keywords: Domain Modeling - Large Language Models- Tree of thoughts.

1 Introduction

Domain modeling is the process of creating conceptual models of a specific do-
main to serve a particular purpose. This process typically involves a collaborative
effort [I2] between domain experts, who provide insights and knowledge about
the domain, and modeling experts, who are skilled in abstracting the relevant
aspects of the domain and expressing such an abstraction using a modeling no-
tation, which can be either textual or graphical. Executing the domain modeling
process is cognitively demanding due to many factors [16]. This includes the in-
herent complexity of the problem domain, the involvement and coordination of
various stakeholders, and the need for the modeling abstraction to be constrained
by the modeling purpose [I3]. Further evidence of this cognitive demand is pro-
vided by Feltus et al. [I0], where they suggested that modeling experts should



2 Silva, Jonathan et al.

simultaneously manage at least four conceptions in their mind to successfully
create a domain model. These are: (1) a comprehensive understanding of the
domain, (2) a clear conception of the modeling purpose, (3) an abstraction of
the domain that aligns with the modeling purpose, and (4) a conception of the
domain model as an artifact that represents the abstracted domain in terms of
a modeling language.

Manifold modeling languages exist, including both General-Purpose Model-
ing Language (GPML) and Domain-Specific Modeling Languages (DSML), to
capture different aspects of a domain [2]. For example, in the context of Model-
Driven Software Engineering (MDSE), an Entity Relationship (ER) model [7]
or an UML class diagram [I] can be used to capture the static data and infor-
mation structure of the system, while an UML sequence diagram to illustrate
the dynamic behavior of the system. To enable structural modeling of systems,
both ER and UML class diagram provide a similar set of key modeling elements.
These include entity types (or classes in UML terminology), inheritance relation
between entity types, and relationship types (equivalent of UML associations).
Furthermore, entity types (classes) can have attributes (properties), and both
attributes and relationships may be constrained by cardinality specifications.
Beyond ER, UML class diagram also supports more sophisticated modeling el-
ements as first-class citizens, such as defining containment as a special kind of
association to represent the whole-part relationships, and the use of association
classes to further specify properties uniquely associated to relationships.

Research to facilitate the domain modeling process and consequently alleviate
the cognitive demand associated to it has been proposed in different approaches,
focusing on different modeling activities during the process, such as creating
domain models from textual requirements, completing partially created models,
and repairing inconsistencies in models [2]. For example, an approach to support
human modelers is to implement Natural Language Processing (NLP) techniques
to process textual requirements. These techniques have existed for a long time,
and recent research has used heuristic rules to identify model elements [3], and
Machine Learning models to classify them [14].

The recent advancements in generative Al such as Large Language Models
(LLMs) has triggered a new trend in research towards supporting domain model-
ing, by leveraging the language processing capabilities of LLMs to create domain
models. Both the domain description and the modeling purpose, articulated in
natural language, are provided as input to an LLM, referred to as “prompts”.
The LLM then generates outputs, also in natural language, which define the
elements of the domain models in a specified notation [II]. Among others, two
factors play a crucial role in the success of LLMs for the domain modeling task:
the inherent trained capability of the LLM and the choice of prompting tech-
niques, i.e., how the prompts are designed. A range of prompting techniques
have been tested with two LLMs: GPT-3.5 and GPT-4 [RIT1/5]6], spanning from
the simplest input-output (IO) prompting (aka. zero-shot prompting), to 10
prompting enhanced with in-context learning [4] (aka. few-shot prompting), and
finally to Chain-of-Thought (CoT) prompting [I5]. Despite their promising per-



Application of ToT Framework to LLM-Enabled Domain Modeling 3

formance in recognizing classes and relationships, these prompting techniques all
have shown limitations in (1) correctly classifying relationships [6], (2) identifying
complex modeling constructs such as association classes [§], and (3) leveraging
best modeling practices (i.e., applying design patterns) [6].

Meanwhile, a new prompting technique: the Tree-of-Thoughts (ToT) frame-
work, has been proposed [I7]. This technique guides LLMs to solve a problem
by explicitly decomposing it into a series of intermediate steps and considering
multiple reasoning paths at each step, thus forming a tree of thoughts. LLMs
are then instructed to explore the tree and heuristically evaluate intermediate
thoughts towards the final solution. The ToT framework outperforms all existing
prompting techniques in solving complex reasoning-based problems, a category
to which our domain modeling problem belongs.

In this paper, we investigate the potential of this new prompting technique
for domain modeling. More specifically:

— We propose a way to decompose domain modeling tasks using UML class
diagram modeling as an example;

— We recommend our choice of the strategies for generator prompts and the
evaluator prompts, as well as the search algorithm, among the options offered
by the ToT framework;

— We develop a domain-specific language (DSL) to facilitate the configuration
of the ToT framework for domain modeling tasks, and to automate their
execution with LLMs;

— We validate our work by conducting experiments with GPT-4.

The rest of the paper is organized as follows. In Section [2] we review related
work. Then, in Section [3] we review the ToT framework and design consider-
ations. Next, in Section ] we will present our approach to designing the ToT
with domain modeling tasks. In Section [5| we propose the implementation of a
DSL to configure the ToT framework for domain modeling. Then, in Section [6}
we present experiments to validate our implementation. Section [7]reports on the
experiments conducted using the ToT framework for domain modeling. Before
concluding, Section [§] provides information about the support to our DSL.

2 SOTA: LLM-Enabled Domain Modeling

The LLMs have the ability to recognize the task requested by the context pro-
vided in the prompt, this is known as In-context learning [4]. The 10 prompting
technique uses this ability combining task instructions and examples. The zero-
shot prompting is an IO prompting that relies on the ability developed by the
LLM during the training to recognize the task [4]. The performance of LLMs can
improve using another variant of IO prompting named Few-shot, this technique
combines the task instructions with examples of the problem and the desired
solution [4]. Another prompting technique is Chain-of-Thought (CoT); it is used
in challenging tasks for LLMs, such as complex arithmetic problems, by adding
examples that include intermediate reasoning steps [15].



4 Silva, Jonathan et al.

Research conducted in [8], [II], and [5] evaluated the potential to create do-
main models from textual descriptions using IO prompting. Camara et al. used
zero-shot prompting to create UML class diagrams with few syntactic errors,
however, the worst results were found when the model required abstractions, such
as using inheritance instead of attributes or creating association classes [§]. Fill
et al. used GPT-4 to create domain models for Entity Relationship diagrams for
conceptual modeling, BPMN diagrams for business processes, and Heraklit mod-
els for embedded systems by providing one example of the desired output[II].
Another research experimented with the Few-shot technique using between 2
and 4 examples for the recommendation of concepts for different domain con-
texts, and to assist with static and dynamic domain modeling [5]. Additionally,
Chen et al. compared the performance of suggested model elementes compared
to a reference solution using the Few-shot technique with one or two examples
to generate domain models, and concluded that adding two examples does not
improve the performance in comparison with one example [6]. These experiments
also used the CoT prompting with one example that illustrates the intermedi-
ate reasoning steps where the domain description was divided into sentences,
and for each sentence the model elements are recognized. These experiments
compared 10 prompting with CoT prompting, and surprisingly, the use of the
intermediate reasoning steps in CoT showed no improvement in performance to
recommend model elements [6]. Using prompt techniques has shown that the
recommendation of domain model elements has some limitations because LLMs
struggle to classify relationships [6], to recommend complex constructs such as
association classes [§], and using more examples in the prompts does not increase
the performance of the elements suggested [6].

3 Background: Tree-of-Thoughts Framework

The Tree of Thoughts (ToT) is “a paradigm that allows LMs to explore multiple
reasoning paths over thoughts” [I7]. The thoughts are used as intermediate steps
towards a problem solution. The tree representation is given because in each
intermediate step there are alternative thoughts as shown in Fig. [I] that are
evaluated to select the most promising to continue with the problem solution.
To implement the framework, first the LLM acts as a Thought generator to
create a set of thoughts that correspond to a partial solution of the problem.
Then, the LLM is used as State evaluator to self-evaluate the thoughts and
choose the most promising option to solve the problem [I7]. The following four
questions are to be analyzed in the problem to apply the ToT framework:

(1) How to decompose the intermediate process into thought steps: The thought
decomposition requires us to design the intermediate thought steps. These should
be promising and diverse, in order to evaluate the best prospects to achieve a
solution. Some recommendations for the thoughts are that it is not too ‘small’
(e.g. a word or sentence) that cause it lack of diversity, and it is not too ‘big’
(e.g. a book) that makes it difficult to evaluate the coherence [I7].



Application of ToT Framework to LLM-Enabled Domain Modeling 5

Thought 2 Thought 3

Thought 1

[Thougth .T] [Thought 1.2]  [Thought 1.3] [Thought 2.T] Thought 2.2 Thought 2.3

Fig. 1: Representation of ToT approach, the green boxes are the intermediate
thoughts used for the problem solution. The number of thoughts is k=3 and
the number of promising thoughts to explore is b=2. The red boxes indicate the
thoughts not explored.

(2) How to generate potential thoughts from each state: There are two possible
strategies to generate the intermediate thoughts, and the best option will depend
on the problem to be resolved.

— Sample: The same prompt creates diverse outputs, and each one can be
used independent thoughts. This strategy is preferred when the thought is a
paragraph, and the samples are diverse [17].

— Propose: The prompt proposes multiple thoughts in the same output, and
we require to avoid duplicated thoughts in the same context. This is used
when the thought is constrained to word or phrase. For example, in the
Crosswords game, we require with one prompt multiple words, and each
word is a thought towards a solution [17].

(3) How to heuristically evaluate states: The evaluation of states determines
which thoughts are the best prospects to continue with the solution of the prob-
lem. For evaluation, two strategies are suggested:

— Value: The LLM prompt evaluates the thought with a scalar value (e.g., 1-5)
or classification (e.g., complete / partial / incomplete) [I7]. It is suggested
when the valuation helps to decide the best choice.

— Vote: The prompt compares the different thought options and votes for the
best promising one. This strategy is preferred to use when comparing partial
solutions [17].

(4) What search algorithm to use: The search algorithm is used to explore promis-
ing thoughts identified by the state evaluator. The algorithms used in the exper-
iments in [I7] are as follows:

— Breadth-first search (BFS): In every step of the algorithm, the b most promis-
ing thoughts in each tree level are maintained to continue exploring in the
next level. The number of k& generated thoughts is reduced to b most promis-
ing thoughts, as shown in Fig. [I} Both & and b are configurable parameters
in the algorithm defined in [17].



6 Silva, Jonathan et al.

— Depth-first search (DFS): In this algorithm, the most promising thought
among the &k thoughts proposed is explored until either a final result of
the problem is achieved, or we reach an intermediate state that is deemed
impossible to achieve a solution by the state evaluator E In the latter case,
the state is pruned and the algorithm backtracks to the parent state to
explore the next most promising thought.

4 A ToT Framework Setup for Domain Modeling

In this section, we review our approach to implement the Tree of Thoughts
for task decomposition in domain modeling, selection of thought generator and
evaluator strategies, and search algorithm. We illustrate this section with an
example to create UML class diagrams.

4.1 Domain Modeling Task Decomposition

Figure [2| represents the tree structure identified to create a UML class diagram
with five modeling tasks: (1) identifying classes and attributes, (2) identifying
associations among classes, (3) refining associations to containments, (4) identi-
fying inheritance, and (5) refining associations to association classes.

Proposals to create UML class diagrams from natural language texts use two
steps as implemented in [3] and [I4]. The selection of model elements is applied
sentence by sentence in the domain descriptions and starts with class identi-
fication, then continues with relationship classification. Our proposal will use
these two intuitive steps to separate classes from relationships; however, we will
preserve the entire domain description as input for ToT because previous exper-
iments using CoT with sentence decomposition [6] did not show improvements
in performance for suggestion of model elements.

Furthermore, in the rule-based NLP approach [3], relationships are classified
using different extraction rules per relationship type. Moreover, the performance
of LLMs on the relationship identification task is the worst compared to class
identification [6]. For those reasons, our approach starts with the identification of
classes and attributes, then uses this intermediate thought to identify and clas-
sify the relationships for those classes. We propose to divide it into three tasks:
association, containment, and inheritance. We identify that recognition of rela-
tionships performed by human modelers follows this intuitive approach starting
by recognizing associations and then classifying containment or inheritance.

The thought decomposition will be completed by the identification of the
association classes. As reviewed in the previous section, the association class is
an abstraction in the UML class diagram where GPT does not produce good
results [§]. The UML specification states that this abstraction is a class and an
association. For that reason, we choose to separate it in a step after these two
thoughts are completed.

! The state evaluator evaluates the progress made towards solving the problem, serving
as a heuristic for the search algorithm to determine which states to keep exploring
and in which order [I7].



Application of ToT Framework to LLM-Enabled Domain Modeling 7

Input:

/Domain description\
]
]
L 12 U Classes [attributes] ... ~ Classes [attributes]...  Classes [attributes] ... |
eve 1 Associations ... Associations ... Associations ... 1

| Classes [attributes] ...  Classes [attributes] ...  Classes [attributes] ...

Level 3 : Associations ... Associations ... Associations ... :
e e Contain.. _ _ ____ Contain.._ ______Containu ___
T Classes [attributes] ..  Classes [attributes] ..  Classes [attributes] .. !

Level 4! Associations ... Associations .. Associations ... 1
: Contain ... Contain ... Contain ... :

1

1 Inheritance ... Inheritance ... Inheritance ...

| Classes [attributes] ...  Classes [attributes] ... Classes [attributes] ... :
! Associations ... Associations ... Associations ... |
Level 5 : Contain ... Contain ... Contain ... !
: Inheritance ... Inheritance ... Inheritance ... :
1 Association Classes ... Association Classes ... _Association Classes ... !

Fig.2: Representation of the thought decomposition in the tree of thoughts.
The root node represents the domain description as the input to generate the
thoughts. The thoughts are alternatives of model elements. The blue boxes rep-
resent all the thoughts in the same level, and the best thought selected is used
to continue with the model creation.

4.2 Generator Strategy

After defining the task decomposition, we evaluated the generator strategy. The
purpose of the generator prompt is to create diverse and promising thoughts. As
discussed earlier, two strategies are possible: the sample strategy is used when
the problem space is rich (e.g. the LLM provides diverse responses for the same
prompt); and the propose strategy is better when the problem space is more
constrained (e.g. the thought is a word or a line) [I7]. We choose the sample
strategy for the generator prompt because we have experimented that diverse
model elements are suggested even with the same prompt. The reason for this
behavior is that LLMs are not deterministic and different domain models are
generated for the same prompt [§]. Our proposal is to generate k=3 thoughts
per tree level as shown in Fig. 2] so that the evaluator has a sufficient variety of
options to select from.

4.3 Evaluator Strategy

In the case of the evaluator prompt, our purpose is to assess the proposed mod-
eling elements and choose the best options to continue with the domain model
creation. In this scenario, we discarded the value strategy because it requires
to score each individual thought with a scalar value, which is difficult to obtain
objectively even for human modelers [6]. Therefore, the vote strategy [I7] is se-
lected, where we ask the LLM to act as a domain modeler expert and select the



8 Silva, Jonathan et al.

best proposal among the generated options. The LLM votes 5 times, and the
option with the highest number of votes is maintained at each level. Having a
higher number of votes (i.e., 5) compared to the number of thoughts (i.e., 3)
reduces the chance of ties.

4.4 Search Algorithm

To complete the definition of the ToT framework, we evaluated the BFS and
DFS algorithms. The BFS algorithm self-evaluates the thoughts and maintains
the b most promising ones at each level. Then, it continues the exploration with
the best thoughts identified. In the case of DFS, the most promising thought is
explored until a final solution is achieved. When such a solution is not possible
to achieve, the algorithm backtracks to the next most promising thought [17].
In our proposal, we select the BFS algorithm with b = 1. Namely, for each level,
we always select the best proposal and continue with it for the creation of the
domain model afterwards, as shown in Fig. 2l BFS allows us to build upon the
best previous thoughts without the need to backtrack.

5 A DSL to Configure ToT Framework Setups

The decomposition of the modeling tasks defined in Section [] is an example
that modelers could modify based on the purpose, size, and complexity of their
modeling process. Using a DSL for complex techniques is advised [11] because it
simplifies running experiments without the need to modify the ToT underlying
code. The role of the DSL is to facilitate the configuration and automate the
execution of the ToT, based on the task decomposition identified by the modeler.

5.1 DSL Abstract Syntax

Figure[3] presents the metamodel of the DSL, comprising two packages: the prob-
lem space package that contains concepts pertinent to the domain modeling
problem, and the solution space package mainly to setup the ToT configuration
as a solution to the domain modeling problem.

The problem space is characterized by the modeling problem with a descrip-
tion of the domain being modeled and a purpose of modeling, e.g., to create a
UML class diagram. The modeling problem is then decomposed into a sequence
of tasks, each of which is identified by a name and a task description. Moreover,
each task contains one or more assessment criteria against which model elements
proposed by the task should be evaluated. Finally, one also needs to specify the
modeling notation to use for representing the final domain model.

The ToT configuration is set up using concepts from the solution space.
Basically, one instantiates a tree by specifying the number of levels, the number of
samples (thoughts) to create at each level, and the number of vote to cast at each
level to select a winning thought. The problem space specification informs such
a tree configuration. For example, the levels of the tree should be in accordance



Application

Problem Space

of ToT Framework to LLM-Enabled Domain Modeling 9

Solution Space

Generated

1

ModelingProblem
[} domain: String
1 (5} purpose: String

i

+input * 1

+child_thought

Tree

5 levels: Integer

+/thoughts

+output_solution

(54, number_samples: Integer
(53 number_votes: Integer

1

. | 0.1
1. ol1
Thought

4+ votes: Integer ;.

.

Task +next_level
)  Stri
S name: String 0-1 - 1 ModelElement
[=; description: String +thoughts|

Level

0.1 - 1
* (53 id: Integer
1.

1 - -
‘ GeneratorPrompt
1

+selected_thought

Assessment DomainModel

[ criterion: String [=; value: String [53, model: String

rompt
(5 value: String 1
Notation +input_domain_elements | *
1] [53 name: String 1 NotationPrompt 1

[=;, description: String 1 53 value: String

Fig.3: DSL to facilitate the configuration and automate the execution of the
ToT framework for domain modeling tasks.

with the tasks, whereby the task description constitutes an integral input for
designing the generator prompt of the level, and the assessment criteria are to
be incorporated in the evaluator prompt. Moreover, both the domain description
and the modeling purpose are repeated throughout all the generator prompts.
A part of the solution space concepts, grouped in the generated sub-package,
are generated during the ToT execution (instead of instantiated by the user).
These include the thoughts, i.e. intermediate (partial) domain models, created
by the LLM, and the selected winning thought of each level as evaluated by the
LLM. Moreover, all prompts, including those for generating the thoughts, for

Generator prompt {m: ModelingProblem, t: Task}
You are a domain modeling expert for {m.purpose} that creates a
[:{e] 514 Sl domain model from a given description: {m.domain} which choice is the best model
RN Your task is to generate a list of {t.name}: {t.description} You always pay extra attention at the following criteria: {a.criterion}
To generate a new proposal, you apply changes to the proposal below: | The domain description is:{m.domain}
{t.level.selected_thought} Choices: {t.level.thoughts}

Evaluator prompt {m: ModelingProblem, a: Assesment}:
You are a domain modeling expert for {m.purpose} and decides

You are a domain modeling expert for UML class diagram that
creates a domain model from a given description:
A Person has aname ...

You are a domain modelling expert for UML class diagram and
decides which choice is the best model.
You always pay extra attention at the following criteria:
1. The association classes proposed include attributes.
Your task is to generate a list of Association classes:
As a reference, an Association Class connects a set of Classes
but also defines a set of Features that belong to the connection
PROMPTS itself and not to any of the associated Classes.

The domain description is:
A Person has aname ...

LEVELS Choice 1:
To generate a new proposal, you apply some changes to the Classes:
proposal below:
Classes: Choice 2:
1. Class: Person Classes:
- Attributes: name
Choice 3:
Associations: Classes:

Fig. 4: Templates of generator and evaluator prompts, and example prompts for
fifth level of the ToT.



10 Silva, Jonathan et al.

evaluating the thoughts, and for transforming the final thought into the model-
ing notation of choice, are also generated following predefined templates. More
specifically, the generator prompt of a level incorporates the description of the
task tackled by the level and the winning thought of the previous level, the eval-
uator prompt enumerates the assessment criteria specified for the corresponding
task, and the notation prompt refers to the named notation and its description.

For example, Fig. [4] shows the prompt templates (in the first row) and the
corresponding generated prompts for the task to identify association classes, the
fifth level of the tree presented in Fig. [2} The prompts are available on GitHukﬂ

5.2 DSL Concrete Syntax

We provide the concrete syntax designed with the grammar of TextX [J] for
the metamodel defined in Section [5.1] The grammar shown in Listing [T.1] allows
customization of the ToT for modeling tasks.

Model: tree=Tree problem=Problem tasks=Task+ notation=Notation;
Tree: "tree:

"levels:" levels=INT

"number_samples:" number_samples=INT

"number_votes:" number_votes=INT;
Problem: "problem:"

"domain:" domain=STRING "purpose:" purpose=STRING;
Task: "task:"

"level:" level=INT "name:" name=STRING

"description:" description=STRING "assessments:" assessments=STRING+;
Notation: "notation:"

"name:" name=STRING "description:" description=STRING;

Listing 1.1: Grammar for the concrete syntax definition

We illustrate the concrete syntax using the example ToT configuration pre-
sented in Fig. 2] As can be seen in Listing [[.2] the tree consists of 5 levels.
For each level, the generator prompt is executed 3 times to create 3 sample
thoughts, and the evaluator prompt is executed 5 times to vote for the most
promising thought. The next step is to describe the modeling problem by spec-
ifying the purpose of the modeling process and the textual description of the
domain. The latter can be provided by either a string or through a path to a
text file that contains the domain description. In our example, the description
is given by a text file.

After that, intermediate modeling tasks are specified, with the level at which
a task is, the task name, and the task description that defines the modeling
knowledge relevant to the task, for example, what an association class is. Fur-
thermore, each task requires at least one criterion to evaluate its thoughts. For
example, the fifth level concerns the creation of association classes. The classes
proposed by the LLM will be evaluated against one criteria: “The association
classes proposed include attributes.”.

2 https://github.com/BESSER-PEARL/dsl-tot-dm/blob/main/dsl/prompts.py



https://github.com/BESSER-PEARL/dsl-tot-dm/blob/main/dsl/prompts.py

Application of ToT Framework to LLM-Enabled Domain Modeling 11

tree:
levels: 5
number_samples: 3
number_votes: 5

problem:
domain: "./domain/exercisel.txt"
purpose: "UML class diagram"
task:
level: 1

name: "Classes"

task:
level: 2
name: "Association"

task:
level: 3
name: "Containment"

task:
level: 4
name: "Inheritance"

task:
level: 5
name: "Association classes"
description: "As a reference, an Association Class connects a set of
Classes but also defines a set of Features that belong to the
connection itself and not to any of the associated Classes."
assessments:
"The association classes proposed include attributes."
notation:
name: "Plantuml code"
description: "Create the PlantUML ... association classes use the
format: (<Source_Class> , <Target_Class>) .. <Association_Class>"

Listing 1.2: Concrete syntax for Tree, Problem, Tasks, and notation

Listing describes that the first task is to identify classes. Then, the tasks
from level 2 to 4 are to identify the relationships divided into three tasks: Asso-
ciation, containment, and inheritance. In level 5, the task is specified for asso-
ciation classes. Our purpose using this approach is to influence the association
class identification with two key thoughts: 1) the prompt has information about
classes and associations identified in the upper level and 2) by adding modeling
knowledge with the description of association classes.

The last step is to specify the modeling notation (e.g., PlantUML), in which
the thoughts created in the tree should be represented. We describe the syntactic
representation of association classes in PlantUML in the description.



12 Silva, Jonathan et al.
6 Validation

In this section, our aim is to experiment with the ToT prompting technique to
create UML class diagrams that include association classes, which LLMs struggle
to recommend. The use of the DSL, based on our own experience, has helped
reduce the complexity of setting up the ToT configuration and automating the
testing process to a great extent.

6.1 Experiment Setup

Our experiment dataset is composed of five domain descriptions and five corre-
sponding reference solution domain models expressed as UML class diagrams.
They are collected from various sources: the Theaters and Robots domains used
by Camara et al. [§], the Person and Resources domains from a university mod-
eling course, and the e-Commerce and Courses proposed by us. The reference
models contain 35 classes, 40 attributes, 24 relationships (including both asso-
ciation, containment, and inheritance), and 9 association classes in total.

To run the experiments, we use GPT-4 as the example LLM, which is the
model with the best results for the creation of domain models according to [6].
We use the five-level ToT configuration presented in Section [4] in our experi-
ments, namely to identify classes and attributes, associations, containment rela-
tionships, inheritance relationships, and association classes.

6.2 Evaluation Criteria

For the evaluation of the models, we compare the output in PlantUML nota-
tion and consider a correct prediction if the element of the suggested model is
semantic equivalent to the reference model, including elements with different
names. An example of similarity is shown in Fig. [fb] the association class and
attributes names are different from the reference model; however, it is equiva-
lent because the source class, target class, association class and attributes have
the same meaning in the domain model. In contrast, in Fig. the association
class is incorrect because the class session is used as the target class and has a
different meaning in the domain model compared to the reference model.

@startuml @startuml @startuml
class Session{ class Play_Session_Participant { class Act {
int timeBegin +Session start time - role: string
int timeEnd +Session end time }
} }
(Play, Participant) .. Session (Play , Participant) .. (Participant, Session) .. Act
cee Play_Session_Participant
@enduml @enduml @enduml
(a) Reference solution (b) Equivalent (c¢) Not equivalent

Fig. 5: Comparison of association classes in PlantUML syntax



Application of ToT Framework to LLM-Enabled Domain Modeling 13

The criteria for the evaluation of classes and attributes are similar; we con-
sider a correct prediction the use of equivalent names. For attributes, we are
not evaluating the data types. In the case of relationships, the correct prediction
should match the lower and upper cardinality; if the lower cardinality is not
specified in the reference model, we consider only the upper cardinality.

To evaluate the experiments, we used precision, recall, and the F1 score.
For precision, we consider equivalent predictions as true positives (TP), and not
equivalent predictions as false positives (FP). The formula for precision is:

= (1)
TP + FP
For recall, we use the TP and the elements not predicted as false negatives (FN).
The calculation is performed using the following formula:

TP
Recall = TP EN (2)

Finally, we use the Fl-score formula below:

Precision =

Precision x Recall
F1=2 3
x Precision + Recall (3)

6.3 Experiment Results

Our aim with these experiments is to compare the performance of the ToT frame-
work to recommend model elements with the reference solutions. Table [1l shows
that the performance is better to suggest classes and association classes between
all the model elements. For attributes and relationships, the performance of the
recommendations decreases. Although we have specific intermediate steps for as-
sociation, containment, and inheritance, the result for relationships is the worst
among all the model elements. The issue with relationship recommendation is
a well-known issue that was reviewed in the previous sections. Finally, the at-
tribute elements are not an intermediate step and are suggested with the classes,
which appears to cause lower performance using ToT.

Table 1: Result of the performance of ToT for UML class model elements

Precision Recall F1l-score
Class 0.829 0.971 0.895
Attribute 0.545 0.900 0.679
Relationship 0,227 0,417 0,294
Association Class 0.875 0.778 0.824

The results reported in Table [[|show that ToT has the best performance for
recommendation of classes and association classes with 0.895 and 0.824 for the
F1 score, respectively. The precision and recall performance in these elements are
very similar, and no major gap is identified. However, when comparing the per-
formance of the attribute element recommendation, there is a major difference



14 Silva, Jonathan et al.

(© Person | 0.1
ame: String isChildof
o identifier: String

© name: St
/Q
1

© user
\
T
(© Ancestor
o degree: int

Grants_Access

(©Accesspermissions| (@) Person

T view name
edit identifier

o password: String

0.
Parent_Child

© Access

" | o cankdit: boolean

(©Resource

o name: String !
©7 Xumu @
(a) Reference solution (b) ToT with 5 levels

Fig. 6: Person and Resource domain model used in the experiments

between precision and recall, specifically with a low precision score of 0.545 com-
pared to the recall of 0.9. This result indicates that various suggested attributes
are not included in the reference model. In Fig. [6a] we have an example of a
model that contains two association classes: access and ancestor. These classes
are correctly recommended at the fifth level and are included in the model shown
in Fig. [b] We found that both elements were suggested for the 3 thoughts at
that level, but with slight name differences, such as genealogy.

Regarding relationship recommendations, the performance of the F1 score is
lower compared to the other model elements with 0.294. The performance for
both precision and recall are the lowest compared with the other model elements.
Similarly to attributes, the lower precision indicates that the relationships rec-
ommended are not part of the reference model, and the lower recall indicates
that various relationships are not recommended. The reference solution in Fig. [6a]
has a containment relationship between the folder and resource classes; however,
the ToT suggests two associations, as shown in Fig. [6b] We found that in the
third level of the ToT, duplicated relationships are suggested between Resource
and Folder for all the thoughts, which cause the error in the final model.

6.4 Threats to Validity

Equivalent model elements for association classes. It is possible to represent
association classes in a syntactically distinct but semantically equivalent way
replacing them with one class and two associations for the source and target
classes. We are not considering these equivalent representations in the evaluation
of our experiments.

LLMs are not deterministic. LLMs are generative models that produce different
results with similar prompts. Because it is not deterministic, we can generate
different thoughts using the same generator prompt; however, this also affects



Application of ToT Framework to LLM-Enabled Domain Modeling 15

the evaluator votes that can choose two different thoughts as the best option
with the same prompt.

Reference models in the dataset. Due to the lack of data with domain description
and reference models, we have used exercises from different sources: previous
papers, a university modeling course, and created by us.

7 Discussion

Performance. Our experiments show that using ToT enables GPT-4 to cre-
ate complex modeling constructs (e.g., association classes) as part of the final
domain models. ToT performs the best at identifying classes and association
classes, compared to identifying other model elements. Our conjecture is that
the intermediate results of preceding steps, namely identification of the best
fit classes and associations, provide insights that extends beyond the domain
description, which ToT was able to leverage towards recommending suitable as-
sociation classes. This result is encouraging to explore more configurations in
future research for task decomposition for other modeling processes, such as
behavioral diagrams.

To address the performance of ToT to recommend attributes, we envision that
extending the task decomposition with an additional level dedicated to attribute
generation and evaluation would help. Regarding the relationships, we confirm
that GPT-4 recommendations are not reliable and ToT technique alone can not
resolve this issue. As a consequence, a combination of ToT with other prompt
techniques, such as using few-shots at the levels regarding relationship generation
would be the next target of investigation, especially for identifying associations
and containment relationships where LLMs do not differentiate properly.

Generator Prompts. We have reviewed the diversity of the thoughts created
by the generator prompt, and observed that fewer diversity exists for thoughts
related to inheritance in comparison with association and containment. For those
model elements that have less diverse thoughts, we recommend using the Few-
shot or CoT prompting techniques for the recommendation of model elements.

Evaluator Prompts. The number of votes selected was 5 to avoid ties while
evaluating thoughts; however, we have observed that ties occur for some thoughts
in association classes that have two different proposals. This result indicates that
in certain domains the result of the evaluator prompt does not recognize the
difference between two different thoughts, and the assistance of a human expert
will be useful to choose the best option. For future research, we suggest including
human modeling experts in the evaluator role to select the best thoughts.

Costs. Use of the ToT framework involves a higher cost because more prompts
are used compared to other techniques. We suggest to experiment with this
framework for complex modeling tasks where other prompting techniques do
not achieve good results. Moreover, the DSL is an open source tool that can be
extended to experiment with open-source LLMs to reduce such cost.



16 Silva, Jonathan et al.

8 Tool Support

We implemented an open-source DSL tool on GitHukEl It allows the definition of
ToT configurations for domain modeling and the execution of them to generate
and evaluate thoughts, as detailed in Section [} The dataset and results of the
experiments are included in the same repository. Additionally, the repository
includes additional examples that use ToT configurations with other modeling
languages, such as Entity-Relationship and UML activity diagrams.

The DSL is defined in Python using TextX [9]. The Python template shown
below is used for the code generation that instantiates the classes from our DSL,
these classes use the ToT framework library [I7] to execute the generator and
evaluator strategy with the BFS algorithm. To use the DSL, it is required a
subscription to OpenAl API or Azure OpenAl API; however, it is possible to
extend the DSL to use it with other LLMs.

def run():

problem = ModelingProblem(levels = {{tree.levels}}, purpose = "{{
problem.purpose}}", description = """{{ problem.domain }}""")

tree = Tree(number_levels = {{tree.levels}}, generator_samples = {{
tree.number_samples}}, evaluator_votes %= {{tree.number_votes}})

output = tree.execute(logName)

Listing 1.3: Python template used for code generation

9 Conclusion and Further Work

Creating domain models is a complex task that demands domain experts and
modelers a profound understanding of the domain to conceptualize the elements
that will be included in the model. The creation of domain models with prompt-
ing strategies has limitations, and we support the idea of decomposing the pro-
cess into tasks and use the ToT framework to improve the recommendation of
model elements. Furthermore, we propose the use of a DSL that orchestrate and
executes the prompts needed to generate and evaluate model elements in various
thoughts. Using GPT-4, our ToT approach obtained better results for class and
association classes; however, for attributes and relationships, some recommen-
dations are not accurate for the domain (low precision).

The potential of our ToT approach resides in its design to generate model rec-
ommendations by recommending alternatives of model elements in intermediate
thoughts and self-evaluate them with specific criteria. As future work, we plan
to combine the prompting techniques for domain modeling, e.g. using Few-shot
examples for the generator prompts. Moreover, to facilitate the use of the DSL,
we will add configuration templates to represent different modeling processes
that modelers can use as basis to define their own configurations.

3 https://github.com/BESSER-PEARL/ds1-tot-dm



https://github.com/BESSER-PEARL/dsl-tot-dm

Application of ToT Framework to LLM-Enabled Domain Modeling 17

References

10.

UML specifications. https://www.omg.org/spec/UML/2.5/PDF/| (2015), [Online;
accessed 3-May-2024]

Almonte, L., Guerra, E., Cantador, 1., De Lara, J.: Recommender systems in model-
driven engineering: A systematic mapping review. Software and Systems Model-
ing 21(1), 249-280 (Feb 2022). https://doi.org/10.1007/s10270-021-00905-x,
https://link.springer.com/10.1007/s10270-021-00905-x

Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Extracting domain models
from natural-language requirements: approach and industrial evaluation. In: Pro-
ceedings of the ACM/IEEE 19th International Conference on Model Driven En-
gineering Languages and Systems. pp. 250-260. ACM, Saint-malo France (Oct
2016). https://doi.org/10.1145/2976767.2976769, https://dl.acm.org/doi/
10.1145/2976767.2976769

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are
few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H.
(eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 1877-1901.
Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper . pdf

Chaaben, M.B., Burgueno, L., Sahraoui, H.: Towards using Few-Shot Prompt
Learning for Automating Model Completion. In: 2023 IEEE/ACM 45th In-
ternational Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER). pp. 7-12. IEEE, Melbourne, Australia (May 2023).
https://doi.org/10.1109/ICSE-NIER58687.2023.00008, https://ieeexplore.
ieee.org/document/10173909/

Chen, K., Yang, Y., Chen, B., Herndndez Loépez, J.A., Mussbacher, G., Varro,
D.: Automated Domain Modeling with Large Language Models: A Compara-
tive Study. In: 2023 ACM /IEEE 26th International Conference on Model Driven
Engineering Languages and Systems (MODELS). pp. 162-172. IEEE, Vasteras,
Sweden (Oct 2023). https://doi.org/10.1109/MODELS58315.2023.00037, https:
//ieeexplore.ieee.org/document/10344012/

Chen, P.P.S.: The entity-relationship model—toward a unified view of data. ACM
Trans. Database Syst. 1(1), 9-36 (1976). https://doi.org/10.1145/320434.
320440

Céamara, J., Troya, J., Burgueno, L., Vallecillo, A.: On the assessment of
generative Al in modeling tasks: an experience report with ChatGPT and
UML. Software and Systems Modeling 22(3), 781-793 (Jun 2023). https://
doi.org/10.1007/s10270-023-01105-5, https://link.springer.com/10.1007/
s10270-023-01105-5

Dejanovié, 1., Vaderna, R., Milosavljevi¢, G., Vukovi¢, : Textx: A python tool for
domain-specific languages implementation. Knowledge-Based Systems 115, 1-
4 (2017). https://doi.org/https://doi.org/10.1016/j.knosys.2016.10.023,
https://www.sciencedirect.com/science/article/pii/S0950705116304178
Feltus, C., Ma, Q., Proper, H.A., Kelsen, P.: Towards AI Assisted Do-
main Modeling. In: Reinhartz-Berger, I., Sadiq, S. (eds.) Advances in Con-
ceptual Modeling, vol. 13012, pp. 75-89. Springer International Publishing,


https://www.omg.org/spec/UML/2.5/PDF/
https://doi.org/10.1007/s10270-021-00905-x
https://doi.org/10.1007/s10270-021-00905-x
https://link.springer.com/10.1007/s10270-021-00905-x
https://doi.org/10.1145/2976767.2976769
https://doi.org/10.1145/2976767.2976769
https://dl.acm.org/doi/10.1145/2976767.2976769
https://dl.acm.org/doi/10.1145/2976767.2976769
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/ICSE-NIER58687.2023.00008
https://doi.org/10.1109/ICSE-NIER58687.2023.00008
https://ieeexplore.ieee.org/document/10173909/
https://ieeexplore.ieee.org/document/10173909/
https://doi.org/10.1109/MODELS58315.2023.00037
https://doi.org/10.1109/MODELS58315.2023.00037
https://ieeexplore.ieee.org/document/10344012/
https://ieeexplore.ieee.org/document/10344012/
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/320434.320440
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.1007/s10270-023-01105-5
https://link.springer.com/10.1007/s10270-023-01105-5
https://link.springer.com/10.1007/s10270-023-01105-5
https://doi.org/https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/https://doi.org/10.1016/j.knosys.2016.10.023
https://www.sciencedirect.com/science/article/pii/S0950705116304178

18

11.

12.

13.

14.

15.

16.

17.

Silva, Jonathan et al.

Cham (2021). https://doi.org/10.1007/978-3-030-88358-4_7, https://link.
springer.com/10.1007/978-3-030-88358-4_7,, series Title: Lecture Notes in
Computer Science

Fill, H.G., Fettke, P., Kopke, J.: Conceptual Modeling and Large Language
Models: Impressions From First Experiments With ChatGPT. Enterprise Mod-
elling and Information Systems Architectures (EMISAJ) pp. 3:1-15 Pages
(Apr 2023). https://doi.org/10.18417/EMISA.18.3, https://emisa-journal.
org/emisa/article/view/318| artwork Size: 3:1-15 Pages Publisher: Enterprise
Modelling and Information Systems Architectures (EMISAJ)

Frederiks, P.J.M., van der Weide, T.P.: Information modeling: The process and the
required competencies of its participants. Data & Knowledge Engineering 58(1),
4-20 (July 2006). https://doi.org/10.1016/j.datak.2005.05.007

Mussbacher, G., Combemale, B., Kienzle, J., Abrahéo, S., Ali, H., Bencomo, N.,
Bur, M., Burgueiio, L., Engels, G., Jeanjean, P., Jézéquel, J.M., Kiithn, T., Mosser,
S., Sahraoui, H., Syriani, E., Varré, D., Weyssow, M.: Opportunities in intelligent
modeling assistance. Software and Systems Modeling 19(5), 1045-1053 (Sep 2020).
https://doi.org/10.1007/s10270-020-00814-5, https://link.springer.com/
10.1007/s10270-020-00814-5

Saini, R., Mussbacher, G., Guo, J.L.C., Kienzle, J.: DoMoBOT: a bot for auto-
mated and interactive domain modelling. In: Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Sys-
tems: Companion Proceedings. pp. 1-10. ACM, Virtual Event Canada (Oct
2020). https://doi.org/10.1145/3417990.3421385, https://dl.acm.org/doi/
10.1145/3417990.3421385

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b., Xia, F., Chi, E., Le, Q.V.,
Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models.
In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.)
Advances in Neural Information Processing Systems. vol. 35, pp. 24824-24837.
Curran Associates, Inc. (2022), https://proceedings.neurips.cc/paper_files/
paper/2022/file/9d5609613524ecf4f15af0f7b31abcad-Paper-Conference. pdf
Wilmont, I., Hengeveld, S., Barendsen, E., Hoppenbrouwers, S.: Cognitive mech-
anisms of conceptual modelling. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.)
Conceptual Modeling. pp. 74-87. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41924-9_7

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T., Cao, Y., Narasimhan, K.: Tree
of thoughts: Deliberate problem solving with large language models. In: Oh, A.,
Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. (eds.) Advances
in Neural Information Processing Systems. vol. 36, pp. 11809-11822. Curran Asso-
ciates, Inc. (2023), https://proceedings.neurips.cc/paper_files/paper/2023/
file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf


https://doi.org/10.1007/978-3-030-88358-4_7
https://doi.org/10.1007/978-3-030-88358-4_7
https://link.springer.com/10.1007/978-3-030-88358-4_7
https://link.springer.com/10.1007/978-3-030-88358-4_7
https://doi.org/10.18417/EMISA.18.3
https://doi.org/10.18417/EMISA.18.3
https://emisa-journal.org/emisa/article/view/318
https://emisa-journal.org/emisa/article/view/318
https://doi.org/10.1016/j.datak.2005.05.007
https://doi.org/10.1016/j.datak.2005.05.007
https://doi.org/10.1007/s10270-020-00814-5
https://doi.org/10.1007/s10270-020-00814-5
https://link.springer.com/10.1007/s10270-020-00814-5
https://link.springer.com/10.1007/s10270-020-00814-5
https://doi.org/10.1145/3417990.3421385
https://doi.org/10.1145/3417990.3421385
https://dl.acm.org/doi/10.1145/3417990.3421385
https://dl.acm.org/doi/10.1145/3417990.3421385
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.1007/978-3-642-41924-9_7
https://doi.org/10.1007/978-3-642-41924-9_7
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf

	Application of the Tree-of-Thoughts Framework to LLM-Enabled Domain Modeling 

