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ABSTRACT

Complex distributed systems increasingly involve physical com-

ponents as part of cyber-physical systems or Internet of things

initiatives. Communication with such subsystems is typically asyn-

chronous. Several initiatives likeWeb of Things or AsyncAPI have

emerged to standardize and facilitate the de�nition of such asyn-

chronous communications. However, these initiatives do not cover

standards to specify the quality of service or de�ne service level

agreements (SLAs) for these asynchronous interactions. To address

this issue, this paper proposes both a comprehensive quality model

for asynchronous services based on the ISO/IEC 25010 standard,

and a domain speci�c language to specify SLAs for asynchronous

services based on theWS-Agreement standard. To facilitate its adop-

tion, our proposed solution has been expressed also as an extension

for the AsyncAPI speci�cation. Finally, we provide a tool support

to de�ne these SLAs by extending an existing toolkit.
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1 INTRODUCTION

Physical components are becoming more pervasive and are often

equipped with sensors and actuators that allow them to interact

with their environment and with each other in what is called the

Internet of things (IoT). Systems mixing this kind of components are

called cyber-physical systems (CPS). CPS are the key element of

modern industrial environments, known as Industry 4.0 [21], which

are becoming widespread in several sectors, enabling smart cities,

smart homes, and smart transportation [17].
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These physical components communicatewith each other through

the set of services they expose. These services are typically asyn-

chronous—e.g., a service may continuously provide context infor-

mation obtained from the physical sensors of the underlying com-

ponent. All these asynchronous communications have led to an

architectural style known as event-driven service-oriented architec-

ture [11]. In these architectures, the constituent services commu-

nicate through the noti�cation of events following the publish-

subscribe pattern: a service producer publishes some event into

a service broker, which sends it to all the service consumers sub-

scribed to that type of events. In this manner, the interaction be-

tween producers and consumers is highly decoupled, which fa-

cilitates its scalability, reduces dependencies, and improves fault

tolerance [11].

Event-driven service-oriented architectures have surged in popu-

larity because of its adequacy in the context of CPS. According to

a 2021 industry survey conducted by Solace, 85% of organizations

recognize the business value and are striving for event-driven SOA

architectures [28]. However, a subsequent survey conducted by the

same organization in 2022 found that the biggest technical chal-

lenge for adopting this architecture is its integration with existing

applications [29].

Several initiatives have emerged to facilitate the integration of

this type of IoT services. For instance, the Web of Things (WoT)

proposal aims to reuse and extend standard web technologies to

apply them to the IoT domain [26]. In the same direction, speci-

�cations like AsyncAPI—which is independent of the underlying

technology and protocol, and as such, can describe services using

web-based technologies like WebSocket—have emerged to provide

machine-readable de�nitions of APIs of asynchronous services [5].

Although these initiatives provide a common framework that

enables the de�nition, discoverability, and interoperability of IoT-

based services, they do not provide standards to de�ne the quality

of service (QoS) that is expected or required from them. For example,

latency, availability, or throughput are key QoS metrics that need to

be guaranteed in order to ensure a proper operation of the system.

Although several approaches have been proposed to de�ne and

specify the QoS in the �elds of WoT and IoT, they are limited in the

number and type of metrics they address. Moreover, the required

QoS is usually formalized in the form of a service level agreement

(SLA). SLAs are contracts that establish the QoS agreed between ser-

vice providers and service consumers [24]. Several formal machine-

readable languages have been proposed for specifying SLAs. The

primary objective behind making them machine-readable is so that

they can be processed by a computer and, for instance, automati-

cally derive and instantiate monitors to measure the compliance of

the conditions stablished in the SLA. Although some proposals for
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SLAs for WoT and IoT exists, they have some limitations in their

expressivity and lack alignment with current standards, such as

WS-Agreement or the AsyncAPI speci�cation (see Section 2 for an

in-depth discussion).

To cover this gap, this paper proposes (i) a quality model that

comprises and structures several quality dimensions for asynchro-

nous services based on the ISO/IEC 25010 standard; (ii) a domain

speci�c language (DSL) to specify SLAs for asynchronous services

considering these dimensions, adapting the WS-Agreement stan-

dard and integrating it with the AsyncAPI speci�cation; and (iii) a

tool that supports the proposed language and quality model.

We argue that these contributions are a �rst step towards sup-

porting automatic techniques that rely on machine-readable QoS in

an IoT or asynchronous context, such as the automatic generation

of monitors, SLA assessment, or the discoverability of WoT based

on QoS.

The rest of the paper is organized as follows: Section 2 discusses

the related work. Section 3 explores the quality of service for asyn-

chronous services and introduces our proposed quality model. Sec-

tion 4 details our proposed domain speci�c language to specify SLAs

for asynchronous services. Section 5 describes the tool support we

have developed. Finally, Section 6 concludes the paper.

2 RELATED WORK

Several languages have been proposed in the literature to spec-

ify SLAs for traditional synchronous web services. Some of the

most well known are WSLA [16], SLAng [18], SLA* [15] and WS-

Agreement [4], with the latter being the established standard en-

dorsed by the Open Grid Forum. In comparison, SLA languages for

IoT-based asynchronous services is rather limited. We have ana-

lyzed some of the most relevant SLA proposals in the literature for

asynchronous services along with the characteristics of the most

well known synchronous ones. In this analysis we have examined

various general and technical characteristics of the SLA languages.

The general characteristics that we have examined comprise the

type of service, metrics supported, the level of the de�ned syntax

model, and whether the proposal is derived from a standard. The

technical characteristics that we have examined comprise if the SLA

supports preconditions, complex conditions, di�erent scopes and

whether the proposal has tool support. Table 1 provides a summary

of such analysis that we describe in detail below.

Type of service: The proposals analysed cover both synchro-

nous and asynchronous services. Regarding the synchronous ones,

some SLA languages are aligned to a particular web service speci�-

cation: SLA4OAI [9] is aligned with the OpenAPI speci�cation used

in RESTful services, and WSLA [16] and SLAng [18] are aligned

with the Web Service Description Language (WSDL), which is usu-

ally used for SOAP-based web services. Other proposals are generic

and are not aligned with any particular language describing the web

service speci�cation [4, 15]. However, due to this generalizability,

they do not provide a fully concrete syntax model. Regarding the

asynchronous services, none of the proposals analysed are aligned

with the AsyncAPI speci�cation.

Metrics:Most of the proposals—both synchronous and asynchro-

nous—o�er support for an extensible set of custom metrics [3, 4, 9,

15, 16, 20]. However, it is worth noting that these metrics are often

presented as illustrative examples without a standardized structure

or clear de�nitions. Furthermore, a few proposals for asynchronous

services are limited to just a few metrics related to availability and

latency without providing extensibility capabilities [8, 23]. It is

noteworthy that only SLAng [18] introduces a quality model that

systematically organizes the metrics employed in the SLA. However,

it is important to note that the quality model presented in SLAng

has been de�ned without considering any standard as a reference.

Syntax model: Some proposals provide SLAs as simple exam-

ples without any formalism [8, 23]. Some of the proposals provide

only an abstract representation, such those presenting a UML meta-

model [20], or an abstract set of mathematical rules [15] without

a concrete syntax specifying the grammar of the SLA. Only a few

proposals provide a complete DSL consisting of an abstract and a

concrete syntax for the language [3, 9, 16, 18]. And from these, only

Alqahtani et al. [3] has been designed for asynchronous services.

It is also important to remark that WS-Agreement [4] provides a

concrete syntax, but only partially, as many elements have been not

de�ned on purpose in favour of generalizability, leading to multiple

WS-Agreement complaint (sub)languages.

Derived from a standard: Several of the proposals of SLA

languages for synchronous services have become or are based on

some standard: WSLA, developed by IBM, was one of the �rst

languages considered a de-facto standard due to its popularity

in the early 2000s. This was the case, until the irruption of WS-

Agreement, which was endorsed by the OSGi group, and emerged

as the new standard for synchronous services. Some of the SLA

language proposals for synchronous services have been derived

from one or both of these two languages [9, 15]. However, regarding

asynchronous services, almost none of the proposals derive from a

standard (including the standards established in the synchronous

services domain). Only Li et al. [20] is based on the WS-Agreement

standard and has been adapted for asynchronous services.

Support for preconditions: Some SLA languages for synchro-

nous services provide support to de�ne preconditions in their guar-

antee terms (i.e. a precondition that must be met for a guarantee to

be enforced), either completely [4, 15] or partially (e.g. limited to the

periods of time when the guarantee should be enforced) [16]. How-

ever, in the context of asynchronous services, only WIoT-SLA [20]

provides such support.

Support for complex conditions: Some proposals for syn-

crhonous services support the de�nition of complex boolean ex-

pressions in the objectives to be met (e.g. a combination of nested

AND/OR operators) [4, 15, 16]. However, none of the SLAs for

asynchronous services provide this type of support, limiting the

expressivity of the guarantees to simple conditions consisting of a

metric, an operand and a value.

Support for di�erent scopes: An objective may apply to a

speci�c scope of a service, such as a service method in synchronous

services or a channel in asynchronous ones. Although a few propos-

als do not support the de�nition of scopes in their SLA languages,

most of them do [3, 4, 9, 15, 16, 20].

Tool support: With the exception of Mustafa et al. [23], all

proposals have tool support for their proposed SLA language.

To conclude, although some solutions exists de�ning SLA lan-

guages for asynchronous services, their capabilities are not as pow-

erful as those proposed for synchronous ones. To cover this gap,
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Table 1: Analysis of the related work

General characteristics Technical characteristics

Proposal
Type of

service
Metrics

Syntax

model

Derived

from

standard

Support

for precon-

ditions

Support for

complex

conditions

Support for

di�erent

scopes

Tool

support

WSLA [16]
Synchronous

(WSDL)

Extensible,

custom
Concrete Yes* Partially Yes Yes Yes

SLAng [18]
Synchronous

(WSDL)

Extensible,

based on

quality

model

Concrete No No No No Yes

SLA* [15]
Synchronous

(generic)

Extensible,

custom
Abstract Yes Yes Yes Yes Yes

WS-

Agreement [4]

Synchronous

(generic)

Extensible,

custom

Concrete

(Partially)
Yes* Yes Yes Yes Yes

SLA4OAI [9]
Synchronous

(OpenAPI)

Extensible,

custom
Concrete Yes No No Yes Yes

WIoT-

SLA [20]
Asynchronous

Extensible,

custom
Abstract Yes Yes No Yes Yes

Ezzedine

et al. [8]
Asynchronous

Limited,

custom

Not

formalized
No No No No Yes

Alqahtani

et al. [3]
Asynchronous

Extensible,

custom
Concrete No No No Yes Yes

Mustafa

et al. [23]
Asynchronous

Limited,

custom

Not

formalized
No No No No No

AsyncSLA
Asynchronous

(AsyncAPI)

Extensible,

based on

quality

model

Concrete Yes Yes Yes Yes Yes

we propose an SLA language for asynchronous services aligned

with the AsyncAPI speci�cation and comprising an extensible set

of metrics based on a quality model; with an abstract and concrete

syntax model, derived from the WS-Agreement standard, including

support for preconditions, complex conditions, multiple scopes, and

tool support.

3 QUALITY OF SERVICE FOR

ASYNCHRONOUS SERVICES

QoS is de�ned by the ISO/IEC 13236:1998 standard as “A set of

qualities related to the provision of a service as perceived by a

service-user” [13]. These qualities comprise many dimensions of

the service—e.g., performance, security, reliability, etc. In this regard,

the �rst question when proposing a QoS approach for asynchronous

systems is: what are the quality dimensions we should be concerned

about and what metrics can be used to measure them? For instance,

time performance may be evaluated with the response time in

synchronous services (i.e., the time it takes for the service client to

receive the response since the request was sent). However, in the

�eld of asynchronous services, the asynchronous interaction of the

services requires other metrics to measure performance (e.g., the

time it takes from the packet generation by the source node to the

packet reception by the destination node).

To address this question, quality models have been proposed as

the engineering artifacts to structure the concepts and de�nitions

of the quality dimensions of a software system [12]. There exist

many proposals of general-purpose quality models for software

systems. They di�er on the terminology that they use, the set of

quality attributes they de�ne, and the structure of the quality model.

The most widely adopted one is the ISO/IEC 25010 standard [12],

which classi�es software quality into a structured set of high-level

characteristics—functional suitability, performance e�ciency, com-

patibility, usability, reliability, security, maintainability and porta-

bility—which are then decomposed into 31 sub-characteristics (see

Figure 1). However, the ISO/IEC 25010 standard is not speci�cally

tailored to the services domain. For instance, the sub-characteristic

Installability is usually not applicable to web services because they

are executed remotely at the server side. On the other hand, the

ISO/IEC 25010 standard does not provide quantitative or qualitative

measurable metrics to evaluate those dimensions.
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Installability

Replaceability

 
Figure 1: ISO/IEC 25010 proposal of quality model for software products 

Figure 1: ISO/IEC 25010 quality model for software systems

While many quality models tailored for web services have been

proposed [25], to the best of our knowledge, no comprehensive

quality model speci�c for asynchronous services has been de�ned

yet. As a result, most works involving QoS for asynchronous ser-

vices usually use quality dimensions without a formal structure, as

discussed in the related work.

To cover this gap, we propose a quality model for asynchro-

nous services. To build this quality model, we gathered a variety

of existing quality metrics and their de�nitions as proposed in the

literature, both from services in general (i.e. they apply to both syn-

chronous and asynchronous services) and asynchronous services

in particular. Instead of building this quality model from scratch,

we extended the quality model derived from a systematic study of

quality models for services, which was developed as part of one

of the authors’ previous work [25]. This earlier study identi�ed

several quality metrics for services and categorized them to the

subcharacteristics of the ISO/IEC 25010 standard.

In this work, we have identi�ed the quality metrics that are ap-

plicable to asynchronous services from the quality model presented

in [25] and, when needed, updated their de�nitions according to

the results we found in the literature for asynchronous services,

resulting in a quality model for asynchronous services aligned with

the ISO/IEC 25010 standard.

For each metric, we provide its de�nition and a reference to the

work that inspired it—if not, it is based on our expertise in the topic.

We also group these metrics based on the most appropriate quality

subcharacteristic from ISO/IEC 25010. Table 2 shows the core met-

rics we identi�ed, mapped to its corresponding sub-characteristics

of the ISO/IEC 25010 standard.

It is worth tomention, that the presentedmetrics are independent

from the monitoring process, although their measurements might

be a�ected by the monitoring infrastructure in place. For instance,

latency is de�ned as the time it takes from the packet generation

by the source node to the packet reception by the destination node.

If the monitors are instrumented in both the service producer and

service consumer, the latency measured is end-to-end. However,

the monitors might be instrumented between the service producer

and the service broker, measuring therefore the latency between

these two entities. It is also worth noting that other type of metrics

do not require to instrument both sides of the communication and

can be measured by instrumenting just one side (e.g. Payload size).

Finally, some metrics are rather static and do not require runtime

monitoring (e.g. versioning).

4 A DOMAIN SPECIFIC LANGUAGE FOR SLAS

OF ASYNCHRONOUS SERVICES

We propose a domain speci�c language (DSL) to de�ne SLAs for

asynchronous services, named AsyncSLA, by tailoring the structure

and key concepts of theWS-Agreement standard, as this will help

in the adoption and recognition of the SLA to all people familiar

with this speci�cation.

In addition to addressing the quality dimensions for asynchro-

nous services outlined in the previous section, we have also speci-

�ed our DSL to support the inherent characteristics of asynchro-

nous services, that are distinct from the synchronous ones. These

characteristics are:

• Interactions are initiated by the service provider: In contrast to

synchronous services where the service client initiates the

interaction—i.e., the service client sends a request to the ser-

vice provider to obtain a response—in asynchronous services,

it is the service producer who initiates the interaction—i.e.,

the service producer sends the information related to an

event to the subscribed service consumers.

• One-way interaction with service consumers: Although the

service consumer can acknowledge the reception of the in-

formation, there is no response that the service producer

expects from its subscribed consumers.

• Channel-based communication: Instead of service methods

or operations that are o�ered by synchronous services, asyn-

chronous services are composed of channels, where the ser-

vice producer publishes the information related to an event
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Table 2: List of metrics mapped to ISO/IEC 25010 quality model

Quality Metric Parent from ISO/IEC 25010 De�nition

Probability of correctness Functional suitability (correctness)
The probability that the content of the message accurately represents the corresponding

real world situation [1]

Precision Functional suitability (correctness)
How exactly the provided information in the message mirrors the reality. Precision is

speci�ed with bounds [1].

Up-to-dateness Functional suitability (correctness) How old is the information upon its receipt [1]

Latency Performance (time behaviour)
The total time from the packet generation by the source node to the packet reception

by the destination node [6]

Round Trip Time Performance (time behaviour) The time from the packet generation by the source node to the reception of the ACK [27]

Jitter Performance (time behaviour) Variation of Latency [1]

Throughput Performance (time behaviour) The amount of error-free bits transmitted in a given period of time [19]

Message frequency Performance (time behaviour)
The amount of messages transmitted in a given period of time. It is the inverse of Time

period

Time period Performance (time behaviour)
The amount of time elapsed between two messages. It is the inverse of message fre-

quency

Memory used Performance (resource utilization) The amount of memory used by the service

CPU used Performance (resource utilization) The amount of CPU used by the service

Bandwith Performance (resource utilization) The amount of bandwith used by the service

Payload size Performance (resource utilization) The size of the payload enclosed in the message sent by the service

Max. subscribers Performance (capacity) The maximum amount of subscribers the service is capable of handling

Max. throughput Performance (capacity) The maximum throughput the service is capable of providing

Load balancing Performance (capacity) To what extent the service has load balancing capabilities

CPU capacity Performance (capacity) The maximum CPU the service is capable of using

Memory Capacity Performance (capacity) The maximum memory the service is capable ofusing

Documentation Usability (recognizability)
The extent to which a web service interface contains an adequate level of documenta-

tion [2]

Discoverability Usability (recognizability)
The ease and accuracy of consumers’ search for an individual service, based on the

description of the service [14]

Expected failures Reliability (maturity) Expected number of failures over a time interval [7]

Type Consistency Reliability (maturity) The data �ow is consistent with respect to de�nition of data types [1]

Time to Fail Reliability (maturity) Time the service runs before failing [7]

Availability Reliability (availability) The probability that a service is available at any given time [1]

Uptime Reliability (availability)
The duration for which the service has been operational continuously without fail-

ure [22]

Packet loss Reliability (availability) Ratio of the number of undelivered packets to sent ones [7]

Disaster resiliance Reliability (fault tolerance) How well the service resists natural and human-made disasters [22]

Exception Handling Reliability (fault tolerance)
Internal activities that are performed in the case of failures during the execution of the

service. [1]

Time to Repair Reliability (recoverability) Time needed to repair and restore service after a failure [7]

Failover Reliability (recoverability) Whether the service employs failover resources, and how quickly [22]-

Versioning Maintainability (Modi�ability) Whether the service implements versioning strategies to ensure backward compatibility

so that the service consumers subscribed to that channel can

receive it.

• Broadcast communication: When an asynchronous service

publishes a message, this is received by all the subscribed ser-

vice consumers in the channel, leading to a 1–N relationship



SAC ’24, April 8–12, 2024, Avila, Spain Marc Oriol, Abel Gómez, and Jordi Cabot

for a given event (i.e. one event has one service producer

and N service consumers receiving it).

Fig. 2 depicts the metamodel—i.e., the modeling primitives and

their relationships—of our DSL for asynchronous services SLAs,

following theWS-Agreement structure. It is worth noting that the

�gure does not depict it as a conceptual model, but as an implemen-

tation model using the Ecore metamodeling language of the Eclipse

Modeling Framework (EMF) [30]. We present this model for brevity,

since we also cover the concrete notation of our DSL in Section 5.

SLA is the top-level class for the de�nition of an SLA, and it is

composed of several GuaranteeTerms. A GuaranteeTerm is a WS-

Agreement element that de�nes the terms that the service must

meet regarding the QoS. It includes a set of scopes, a set of qualifying

conditions and a set of service level objectives (SLO). While these

components are inherent to the WS-Agreement standard, we’ve

tailored them to suit asynchronous services. The Scope de�nes the

scope where the GuaranteeTerm applies to. In our DSL, it includes

an identifying name, and relates to the service Channel that is used

as a scope—which is akin to the service methods in synchronous

services. This granularity enables tailored QoS conditions for di�er-

ent service channels within the asynchronous service. For instance,

one channel providing information related to critical events may

impose stricter QoS conditions compared to another less critical

channel. The QualifyingCondition de�nes the preconditions, ex-

pressed as a boolean expression (BooleanExpression), that must be

met for a condition to be enforced. In its turn, the SLO de�nes the

QoS condition that must be assessed—when the QualiyingCondition

is met. An SLO is speci�ed as a boolean expression of the condition

that must be assessed for the goal to be ful�lled.

In our DSL, boolean expressions support the combination of

OrExpressions and AndExpressions in a tree-structure form, leading

to one or more ComparisonExpressions. A ComparisonExpression is

an expression composed of a QoSMetric, an Operator, and a value.

Based on our �ndings in di�erent SLAs, we opted for a lightweight

but powerful enough grammar to de�ne boolean expressions, rather

than using a more complex but cumbersome language—e.g., OCL.

QoSMetric de�nes the metric involved in the SLA/SLO evalua-

tion. It has an identifying name, a description, a QoSMetricType, a

QoSMetricUnit, and a groupedByMessage �ag. The attribute QoSMet-

ricType is used to link the de�ned metric to the type of metrics from

the quality model. In this way, the SLA can be seamlessly integrated

with any prede�ned quality model, allowing �exibility in linking

the de�ned metric to speci�c metric types through the QoSMetric-

Type attribute. The groupedByMessage �ag determines whether the

QoSMetric is calculated as the average result for the metric across

all clients subscribed to a speci�c event when set to ’true,’ or if

distinct QoS metrics are calculated for each individual client when

set to ’false.’ For instance, if two clients are subscribed to the same

channel and this attribute is set to ’false,’ two values (one per client)

would be produced. Conversely, if it’s set to ’true,’ a single value

(the average of both clients’ metrics) would be generated.

Finally, DerivedQoSMetric de�nes a derived QoS metric, i.e., the

result of aggreating values—e.g., average, max, min—in an interval.

Thus, it includes a window, a windowUnit, and an aggregationFunc-

tion.

5 A TOOL TO SPECIFY SLAS FOR

ASYNCHRONOUS SERVICES

To show the feasibility of our approach, we have implemented a

tool prototype that supports the de�nition of SLAs for asynchro-

nous services using our AsyncSLA proposal.

To implement this tool, we have �rst de�ned a concrete syn-

tax matching the metamodel described in the previous section. In

particular, the concrete syntax is de�ned as an extension of the

AsyncAPI speci�cation as we believe this will facilitate its adoption.

AsyncAPI is an initiative that, similar to what OpenAPI represents

for the REST world, aims at providing a single source of truth in the

de�nition of asynchronous and message-based services. AsyncAPI

Listing 1: Excerpt of an example of SLA integrated with the

AsyncAPI speci�cation

{

"asyncapi": "2.0.0",

...

"channels": {

"smartylighting /.../ lighting/measured": {...}

}

"components": {

...

"x-qosMetrics": [

{

"name" : "availabilityPerEvent",

"description" : "Availability per each event",

"groupedByEvent" : true ,

"metricType" : "availability",

"unit" : "null"

},

{

"name" : "individualLatency",

"description" : "Latency for each message and client",

"groupedByEvent" : false ,

"metricType" : "latency",

"unit" : "milliseconds",

},

{

"name" : "medianLatency",

"description" : "Median latency in 1h for each client",

"groupedByEvent" : false ,

"metricType" : "latency",

"unit" : "milliseconds",

"derivedQoSMetricDefinition" : {

"aggregationFunction": "MEDIAN",

"window" : "60",

"windowUnit" : "minutes"

}

}]

},

"x-sla": {

"guaranteeTerm" : {

"scopes" : {

"scope1" : "smartylighting /.../ lighting/measured"

},

"slos" : {

"slo1" : {

"qosMetric" : "AvailabilityPerEvent",

"operator" : ">",

"value" : "0.9"

},

"slo2" : {

"qosMetric" : "individualLatency",

"operator" : "<",

"value" : "3000"

},

"slo3" : {

"qosMetric" : "medianLatency",

"operator" : "<",

"value" : "2000"

}

}

}

}

}
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Figure 2: Metamodel of the proposed SLA

descriptions are expected to be both human and machine readable.

To achieve this goal, �les de�ning a message-driven API are repre-

sented as JSON objects and conform to the JSON standards. Such

�les allow describing, among other things, the message brokers of

an architecture, the topics—i.e., channels—of interest, or the formats

of the messages associated with each of the topics.

As part of our previouswork, we developed theAsyncAPI Toolkit1,

an Eclipse-based tool that supports the development of AsyncAPI

speci�cations and automatically generate code using model-driven

engineering techniques. The AsyncAPI Toolkit de�nes both the con-

crete and abstract syntax for AsyncAPI speci�cations using Xtext2.

We have now extended the AsyncAPI Toolkit to seamlessly in-

tegrate both AsyncAPI and the AsyncSLA speci�cations. This in-

tegration starts at the metamodel level, where we have linked the

AsyncAPI metamodel presented in our previous work [10] with the

AsyncSLA metamodel presented in Section 4. In the integration,

we have fused the common elements such as Channel, and we have

added the SLA object as a �eld of the root AsyncAPI object.

We have also de�ned a concrete syntax for the SLA-related

elements—i.e., those that do not already belong to the AsyncAPI

speci�cation—in JSON. We indicate that such additions do not con-

form the o�cial AsyncAPI speci�cation by pre�xing them with an

x-. An example of an SLA using our concrete syntax integrated in

the AsyncAPI speci�cation is shown in Listing 1.

This example shows an SLA that de�nes 3 metrics:

• availabilityPerEvent is ametric of type availability. By setting

the �ag groupedByEvent to true, it measures to what extent

the service producer is available to all subscribed consumers.

For instance, if a service channel has 3 subscribed consumers

1https://github.com/SOM-Research/asyncapi-toolkit
2https://www.eclipse.org/Xtext/

and a message from a service producer is only received by

two of these consumers, availabilityPerEvent would be 0.66;

• individualLatency is a metric of type latency and measures

the latency for each message received by each client in mil-

liseconds.

• medianLatency is a derived metric of type latency and com-

putes the median latency of the messages received within

one hour per each client.

For simplicity, the provided SLA de�nes just one guaranteeTerm

with one scope (i.e. the part of the system to which the SLOs apply).

In this guaranteeTerm, 3 SLOs comprising the previously de�ned

metrics are de�ned using simple boolean expressions.

This concrete syntax has been implemented using the Xtext

Framework. One of the key advantages of using Xtext is that it is

capable of automatically providing all the necessary tooling to sup-

port the development of documents following the de�ned syntax.

As a result, the extended AsyncAPI Toolkit provides a content-

assisted editor and parser to de�ne SLAs along with the AsyncAPI

speci�cation. Figure 3 provides a screenshot of the tool.

TheAsyncAPI Toolkit with SLA support is now o�cially available

on GitHub (see footnote 1).

6 CONCLUSIONS

In this work we have presented a framework to specify service-

level agreement documents for asynchronous services. Among its

di�erent assets, we have proposed (i) a quality model aligned with

the ISO/IEC 25010 standard that de�nes several quality metrics

for asynchronous services; (ii) a metamodel and concrete syntax to

de�ne SLAs for such services, named AsyncSLA, and aligned with

theWS-Agreement and AsyncAPI speci�cations, that enables the

https://github.com/SOM-Research/asyncapi-toolkit
https://www.eclipse.org/Xtext/
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Figure 3: Screenshot of the extended AsyncAPI Toolkit with

content-assisted editor to de�ne SLAs

de�nition of conditions of the previously identi�ed quality metrics;

and (iii) a toolkit to support this new DSL.

As future work, we plan to extend and validate our quality model

and to implement additional features in the AsyncAPI Toolkit for

the automation of SLA related activities, such as the automatic

generation of monitors from the SLA. We also plan to analyze how

to better integrate our proposed DSL to existing WoT standards

and validate it through its deployment in a real-world company,

serving as a comprehensive case study.
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