
Highlights

Applying model-driven engineering to the domain of chatbots: the
Xatkit experience

Gwendal Daniel, Jordi Cabot

• Model-driven engineering can be successfully applied to new domains
such as AI-based software

• Model-driven tools are suitable for prototype creation but have limita-
tions when it comes to developing industrial-strength solutions

• Commercial success of model-driven based approaches depends on nu-
merous factors beyond technical ones



Applying model-driven engineering to the domain of

chatbots: the Xatkit experience

Gwendal Daniela, Jordi Cabotb

aUniversitat Oberta de Catalunya (UOC), Avinguda Carl Friedrich Gauss,
5, Castelldefels, 08860, Spain

bLuxembourg Institute of Science and Technology, 5, Avenue des
Hauts-Fourneaux, Esch-sur-Alzette, 4362, Luxembourg

Abstract

Chatbots are becoming a common component of many types of software
systems. But they are typically developed as a side feature using ad-hoc
tools and custom integrations. Moreover, current frameworks are efficient
only when designing simple chatbot applications while they still require ad-
vanced technical knowledge to define complex interactions and are difficult
to evolve along with the company needs. In addition, the deployment of a
chatbot application usually requires a deep understanding of the targeted
platforms, especially back-end connections, increasing the development and
maintenance costs.

In this paper, we discuss our experiences building, evolving and distribut-
ing the Xatkit framework. Xatkit is a model-based framework built around
a Domain-Specific Language to define chatbots (and voicebots and bots in
general) in a platform-independent way. Xatkit also comes with a runtime
engine that automatically deploys the chatbot application and manages the
defined conversation logic over the platforms of choice.

Xatkit has significantly evolved since its initial release. This paper focuses
on describing the evolution and the reasons (technical and non-technical) that
triggered them. We believe our lessons learned can be useful to any other
initiative trying to build a successful industrial-level chatbot platform, and
in general, any type of model-based solution.

1. Introduction

The specification and the implementation of the User Interface (UI) of a
system is a key aspect in many software development projects. Often, this

Preprint submitted to SCP October 17, 2023



UI takes the form of a Graphical User Interface (GUIs) that encompasses a
number of visual components [1] to offer rich interactions between the user
and the system. But nowadays, a new generation of UIs which integrate more
interaction modalities (such as chat, voice and gesture) is gaining popularity.
Moreover, many of these new UIs are becoming complex software artifacts
themselves, for instance, through AI-enhanced software components that en-
able even more natural interactions, including the possibility to use Natural
Language Processing (NLP) via chatbots or voicebots. These NLP-based in-
terfaces are commonly referred to as Conversational User Interfaces (CUIs).

There is no doubt that CUIs are becoming more and more popular every
day. The most relevant example is the rise of bots [2], or the recent release
of a ChatGPT1, a novel AI-based chatbot which attracted significant public
attraction. Indeed, chatbots and other types of CUIs have proven useful in
various contexts to automate tasks and improve the user experience, such
as automated customer services [3], education [4], e-commerce [5] and even
software development [6].

This widespread interest and demand for chatbot, and in general CUI,
applications has emphasized the need to be able to quickly build complex
chatbot applications. This means that chatbots should go beyond simply an-
swering predefined text in response to user requests. Instead, any non-trivial
chatbot requires accessing an orchestration [7] of internal and external ser-
vices to perform the requested user actions (e.g. to check and query the data
to be served back to the user or to actually execute some processes/actions
in response). As such, chatbots are becoming complex software artifacts
that require a more methodical development approach to be developed with
the proper quality standards and expertise in a variety of technical domains,
ranging from natural language processing to an in-depth understanding of the
APIs of the targeted instant messaging platforms and third-party services to
be integrated.

So far, chatbot development platforms have mainly addressed the first
challenge, typically by relying on external intent recognition providers, which
are natural language (NL) processing frameworks providing user-friendly in-
terfaces to define conversation assets. As a trade-off, chatbot applications are
tightly coupled to their intent recognition providers, hampering their main-
tainability, reusability and evolution. Typically, once the chatbot designer

1https://openai.com/blog/chatgpt

2



chooses a specific chatbot development platform, she ends up in a vendor
lock-in scenario, especially with the NL engine coupled with the platform.
Similarly, current chatbot platforms lack proper abstraction mechanisms to
easily integrate and communicate with other external platforms the company
may need to interact with.

We believe the right way to tackle all these issues is by raising the level of
abstraction at what chatbots (and any other types of bots) are defined. To
this purpose, we created Xatkit [8], a novel model-based chatbot development
framework providing domain-specific languages for the platform-independent
definition of chatbots plus a runtime engine able to execute such bot defini-
tions. Indeed, Xatkit embeds a dedicated chatbot-specific modeling language
to specify user intentions, computable actions and callable services, combin-
ing them in rich conversation flows. Conversations can either be started by a
user awakening Xatkit or by an external event that prompts a reaction from
Xatkit (e.g. alerting a user that some event of interest fired on an external
service the bot is subscribed to).

The resulting chatbot definition2 is independent of the intent recognition
provider (which can be configured as part of the available Xatkit options).
Moreover, it frees the designer from the technical complexities of dealing
with messaging and backend platforms, as Xatkit can be deployed through
the Xatkit runtime component on them without performing any additional
steps.

This paper follows up on the original Xatkit presentation and discusses
the evolution of the platform and all the lessons learned after the application
of our model-based chatbot infrastructure on industrial strength projects.
We believe many of these reflections would be interesting for the model-based
engineering community at large, especially for practitioners and researchers
who are developing a professional MDE product, even if they are not target-
ing the chatbot domain.

The rest of the paper is structured as follows. The next section intro-
duces some preliminary concepts. Then, Section 3 recaps the initial Xatkit
model-based components, while Section 5 describes the key technical evolu-
tion departing from that original version based on we experience we gained
building non-trivial chatbots. Section 6 follows up with additional evolutions

2In this text, we do not distinguish between bots, chatbots, and voicebots, since Xatkit
supports all of them via its set of supported platforms

3



focused on aligning better Xatkit to the commercial needs we detected. Fi-
nally, Section 7 comments on the related work and Section 8 concludes the
work.

2. Preliminary concepts

Bots are classified into different types depending on the channel employed
to communicate with the user. For instance, in chatbots the user interac-
tion is through textual messages, in voicebots it is through speech, while
in gesturebots it is through interactive images. Note that in all cases, bots
are the mechanism to implement a conversation, it just changes the medium
where this conversation takes place. As such, bots always follow the common
working pattern depicted in Figure 1.

As you can see in the figure, the conversation capabilities of a bot are
usually designed as a set of intents3, where each intent represents a possible
user’s goal when interacting with the bot. The bot then waits for its CUI
front-end to detect a match of the user’s input text (called utterance) with
one of the intents the bot implements. The matching phase may rely on
external Intent Recognition Providers (e.g. DialogFlow, Amazon Lex, IBM
Watson, ...). When there is a match, the bot back-end executes a set of
actions implementing the required behavior. These actions may represent
simple responses such as sending a message back to the user, as well as
advanced features required by complex chatbots like database querying or
external service calling. Finally, we define a conversation path as a particular
sequence of received user intentions and associated actions (including non-
messaging actions) that can be executed by the chatbot application.

As an example, we show in Figure 2 a bot that gives the weather forecast
for any city in the world. Following the working schema sketched in Figure
1, this weather bot defines several intents, such as asking for the weather
forecast. When a user writes (considering a chatbot) or says (considering
a voicebot) “What is the weather today in Barcelona?” or “What is the
forecast for today in Barcelona?”, the intent asking for the weather forecast
is matched and “Barcelona” is recognized as a city parameter (also called
“entity”) to be used when building the response. Then, the bot calls an

3We will comment more on open-domain bots, relying on a pretrained language model
to have general conversations, in later sections

4



Figure 1: Common Bot working pattern.

external service (in this case, the REST API of OpenWeather4) to look up
this information and give it back to the user.

Figure 2: Screenshot of our example chatbot

4https://openweathermap.org

5



3. Xatkit: a model-driven engineering (MDE) solution for chatbots

These new types of UIs are hard to specify [9], test, verify and debug
[10], and require a different and specialized skill set [11]. Therefore, we
believe they could benefit from applying a model-based approach to reduce
the complexity of all elements, and the respective technology stacks, involved
in their creation.

This is why we started Xatkit in 2018. The following subsections cover the
key points of the initial Xatkit components (see [8, 12] for a deeper explana-
tion) while we cover later on how Xatkit has evolved as part of the maturity
process (technical and commercial) Xatkit has undergone more recently.

Xatkit is an open-source tool freely available on GitHub5.

3.1. Xatkit architecture

Figure 3 presents an overview of our MDE-based chatbot approach and its
main components. At design time, the chatbot designer specifies the chatbot
under construction using two domain-specific languages (DSLs) that are part
of Xatkit Modeling Infrastructure:

• Intent Package to describe the user intentions using training sen-
tences, contextual information extraction, and matching conditions.

• Execution Package to bind user intentions to response actions as
part of the chatbot behavior definition.

The actions in the Execution part of the bot often involve a set of or-
chestrated calls to services provided by the available Platforms. Platforms
are defined by a Platform designer via a separate Platform Package and,
once available, are enabled for all existing bots. Platforms are organized in a
taxonomy so the chatbot designer can choose generic actions (e.g. a textual
reply, something available in all chat-based platforms) or more specific ones
(e.g. attaching a file to a message, only available in some specific platforms
like Slack). The resulting platform definition hides all the technical details
of the communication with the platforms.

These models are complemented with a Deployment Configuration file
that specifies the Intent Recognition Provider to use (e.g Google’s DialogFlow [13]
or IBM Watson Assistant [14]), platform specific configuration parameters

5https://github.com/xatkit-bot-platform

6

https://github.com/xatkit-bot-platform


Figure 3: Xatkit Framework Overview

(e.g. OAuth credentials), as well as custom execution properties, which for
instance can introduce some limited variability in the bot behavior. Note that
in the Xatkit infrastructure, all the intent recognition providers implement
a common interface that allows switching from one to another transparently
through configuration properties. Support for new providers can be easily
achieved by implementing this common interface.

These assets constitute the input of the Xatkit Runtime component
that starts by deploying the created chatbot. This implies registering the user
intents to the selected Intent Recognition Provider(which involves translating
the intents in the bot definition into the primitives/mechanisms available in
that specific provider), connecting to the Instant Messaging Platforms, and
starting the External Services specified in the execution model. Then, when
a user input is received, the runtime forwards it to the Intent Recognition
Provider, gets back the recognized intent and performs the required action
associated to that intent based on the chatbot execution model.

This infrastructure provides three main benefits:

• The Xatkit Modeling Language packages decouple the different dimen-
sions of a chatbot definition, facilitating the reuse of each dimension
across several chatbots.

• Each sublanguage is totally independent of the concrete deployment

7



and intent recognition platforms, easing the maintenance and evolution
of the chatbot.

• The Runtime architecture can be easily extended to support new plat-
form connections and computable actions. This aspect, coupled with
the high modularity of the language, fosters new contributions and
extensions of the framework.

The next subsection focuses on the intent definition and execution sub-
languages as the key model-based components of the infrastructure and those
that have been evolving the most over time, as we will explain in sections 5
and 6. For more details on the infrastructure for the runtime execution and
deployment, we refer the readers to [8].

3.2. Xatkit modeling languages

In the following, we introduce the Xatkit Modeling Language, composed
of a set of interrelated chatbot Domain-Specific Languages (DSL) that pro-
vides primitives to design the user intentions and the corresponding execution
logic.

The Xatkit language is defined through two main components [15]: (i)
an abstract syntax (metamodel) defining the language concepts and their re-
lationships (generalizing the primitives provided by the major intent recog-
nition platforms [13, 14, 16]), and (ii) a concrete syntax in the form of a
textual notation to write chatbot descriptions conforming to the abstract
syntax. In the following we use the abstract syntax to describe the DSL
packages and primitives, and the textual to show, via examples based on our
running example, how those concepts can be used to create bots.

To decouple the definition of the user intentions the chatbot should recog-
nize from the actions the chatbot should execute in response to those intents,
our language is split up into two different sublanguages: the Intent and the
Execution packages.

3.2.1. Intent Package

Figure 4 presents the metamodel of the Intent Package, that defines a
top-level IntentLibrary class containing a collection of IntentDefinitions. An
IntentDefinition is a named entity representing a user intention. It contains
a set of Training Sentences, which are input examples used to detect the
user intention underlying a textual message. Training Sentences are split

8



into TrainingSentenceParts representing input text fragments — typically
words — to match.

Each IntentDefinition defines a set of outContexts, that are named con-
tainers used to persist information along the conversation and customize in-
tent recognition. A Context embeds a set of ContextParameters which define
a mapping from TrainingSentenceParts to specific EntityDefinitions, specify-
ing which parts of the TrainingSentences contain information to extract and
store. EntityDefinitions can be either BaseEntityDefinitions, i.e. generic en-
tities that are provided for all the intent recognition platforms such as city
or date, or MappingEntityDefinitions that represent user-designed entities
represented by a value and a list of synonyms.

IntentDefinitions can also reference inContexts that are used to specify
matching conditions. An IntentDefinition can only be matched if its refer-
enced inContexts have been previously set, i.e. if another IntentDefinition
defining them as its outContexts has been matched, and if these Contexts are
active with respect to their lifespans. Finally, the follow association defines
IntentDefinition matching precedence, and can be coupled with inContext
conditions to finely describe complex conversation paths.

Figure 4: Intent Package Metamodel

Listing 1 shows a (partial) instance of the Intent Package from theWeather

9



Bot running example introduced in Section 2.
The model defines the IntentLibrary Example, that contains one Intent-

Definitions called HowIsTheWeather that does not depend on any other in-
tent, and it simply includes a couple of training sentences specifying alter-
native inputs used to ask for the weather. It also defines an output context
Weather to collect the context parameter cityName for which the user is
asking the weather information. The parameter uses the city BaseEntity-
Definition for their value extraction that will match with any recognized city
name. Alternatively, if we wanted to restrict the match to a specific number
of cities supported by the bot we could have created our own MappingEnti-
tyDefinition with just the cities of interest.

Listing 1: Example Intents for the WeatherBot

1 l ibrary Example
2
3 intent HowIsTheWeather {
4 inputs {
5 ”How i s the weather today in XXX?”
6 ”What i s the f o r e c a s t f o r today in XXX?”
7 }
8 creates context Weather {
9 sets parameter ”cityName” from fragment ”XXX” ( entity c i t y )

10 }
11 }

3.2.2. Execution Package

The Execution Package (Figure 5) is an event-based language that rep-
resents the chatbot execution logic.

An ExecutionModel imports Platforms6 and IntentLibraries, and spec-
ifies the ProviderDefinitions used to receive user inputs and events. The
ExecutionRule class is the cornerstone of the language, which defines the
mapping between received IntentDefinitions/EventDefinitions and Actions
to compute.

The Action class represents the reification of a Platform ActionDefinition
with concrete ParameterValues bound to its Parameter definitions. These
Actions are part of the definition of the Platform. The value of a Parameter-
Value is represented as an Expression instance. Xatkit Execution language

6The complete definition of the platform package as well as a taxonomy of concrete
platforms implementing it has been detailed in our previous work [8]

10



Figure 5: Execution Package Metamodel

currently supports Literals, Unary and Binary Operations, as well as Vari-
ableAccesses that are read-only operations used to access ContextParameters.

An Action can also define an optional returnVariable that represents the
result of its computation, and can be accessed from other Actions through
VariableAccess Expressions, allowing to propagate information between com-
puted actions.

Listing 2 shows an excerpt of the Execution model from our running
example. It imports the Weather and the, predefined, Core IntentLibrary
and the Rest and React Platforms. The Rest one will be used to process
the request via an API call to the OpenWeatherMap API, the latter to get the
input text from the user from the chatbot widget embedded on a webpage.
With the API response information, it builds a response, sends it back to the
user via the React platform and gets back to the Init state waiting for the
next question.

11



Listing 2: Chatbot Execution Language Example

1
2 import library ”WeatherBot/ s r c /WeatherBot . i n t en t ” as WeatherBotLib
3 import library ”CoreLibrary ”
4 import platform ”RestPlatform”
5 import platform ”ReactPlatform”
6
7 use provider ReactPlatform . React IntentProv ider
8
9 I n i t {

10 Next {
11 intent == HowIsTheWeather −−> HandleHowIsTheWeather
12 }
13 }
14
15 HandleHowIsTheWeather {
16 Body {
17 va l c i t y = context . get ( ”Weather” ) . get ( ”cityName” ) as String

18 va l queryParamters = newHashMap
19 queryParamters . put ( ”q” , c i t y )
20 va l r e sponse = RestPlatform . GetJsonRequest ( ” http :// api . openweathermap .

org /data /2 .5/ weather ” , queryParamters , emptyMap, emptyMap)
21 i f ( r e sponse . s t a tu s === 200) {
22
23 // Proce s s ing o f the JSON of the response and ex t r a c t i n g a

temp value (among othe r s )
24 ReactPlatform . Reply ( ”The cur rent temperature i s ”+temp}
25
26 }
27 }
28 Next {
29 −−> I n i t
30 }
31 }

4. Xatkit as a commercial open-source solution

Xatkit follows a commercial open-source model where the platform is re-
leased as an open source while the company built around the platform pursues
a commercial exploitation based on the development and commercialization
of bots for specific domains and markets.

4.1. Xatkit as an open-source platform

Xatkit was initially released as an open-source project in 2018. Since
then, it has grown to become a fully-fledged GitHub organization with around
2000 commits and over 80 different repositories (counting the private ones)
covering the core of the framework but also all the connectors with external
platforms such as messaging applications (e.g. Slack), NLU engines (e.g.

12



DialogFlow) and logging and monitoring components (e.g. to store bots log
data on different types of databases).

As part of this growth, several other people have contributed to the de-
velopment of the platform, including bachelor and master students. For
instance:

• A voice connector to Alexa was built by a master student from Politec-
nico di Milano (Italy)7

• A bachelor student from the Technical University of Catalonia (Spain)
worked on the preprocessors to detect toxic texts in a conversation8

while another one from this same university took care of implementing
a monitoring component on top of InfluxDB9

• Two master students from Universidad de la República (Uruguay) con-
tributed the Xatkit Twitter platform

• The Facebook connector was developed by a team of three master stu-
dents from the University of Tartu (Estonia)

• There are currently two master students from HVL (Norway) working
on the automatic derivation of bots from API definitions

There was even a high school student that used Xatkit to build an anti-
bullying bot. Students would use the bot to answer questions anonymously
about their friends and their feelings and the bot would then be able to
signal there was a potential bullying situation in the class 10. Some of these
contributions became part of the “official” components / repositories, while
others remained under the lab brand to highlight that they can be used but
are not maintained by Xatkit.

Xatkit has also been used by other researchers in their work. For instance,
[17] proposes a Xatkit bot to help in the definition of smart contracts, while
[18] creates a Xatkit bot for educational purposes.

7https://www.politesi.polimi.it/handle/10589/152764
8https://upcommons.upc.edu/handle/2117/351418
9https://upcommons.upc.edu/handle/2117/329235

10The bot made the news in the Spanish newspapers and the author even wrote a book,
titled Yo también soy diferente: Un libro contra el bullying where she explains her own
experience

13

https://www.politesi.polimi.it/handle/10589/152764
https://upcommons.upc.edu/handle/2117/351418
https://upcommons.upc.edu/handle/2117/329235


We believe all these contributions and adoptions by external people show
that Xatkit is a platform easy to extend and use, as even students from
different backgrounds and countries and with no prior experience with Xatkit
or chatbot development were able to contribute to the platform even under
time constraints (most works had to be completed in one semester while the
students were also taking other courses).

Note that, separately, we also conducted a usability study on Xatkit
that we describe in detail here [8]. In short, the study showed that Xatkit
was evaluated very positively in a number of categories, ranging from the
overall experience with Xatkit, the usability of Xatkit’s modeling language,
the power of the platform abstraction mechanism, the benefits of defining
chatbots at a higher-abstraction level and how this helps to the portability
between messaging platforms.

4.2. Xatkit as a company and its first deployed bots in real systems
In 2020, we incorporated the Xatkit company, including as shareholders

the two authors of this article together with two research institutions we were
affiliated with. While the company itself closed down in 2022 due to both
main founders leaving Spain to pursue other career opportunities incompat-
ible with their role as main shareholders in the company, we are still open
to commercial opportunities as part of development contracts with our new
affiliations.

Already in 2019, Xatkit got seed funding (80K euros) from the Catalan
Government to mature the technology and perform a market analysis of the
chatbot domain. As part of this market analysis, we conducted over 30 inter-
views with companies from different sectors (education, pharma, ecommerce,
...). Based on this, we decided Xatkit could be a viable company and even
participated and won a local startup competition (the ”spinUOC”11).

We then worked and deployed several commercial bots for internal and
external clients. Among them:

• A bot to evaluate the financial health of startups based on a set of
standard questions about their finances and projections.

• A FAQ-like bot for Barcelona Activa able to answer questions around
the courses Barcelona Activa offers. The bot had to be able to under-
stand questions in both Catalan and Spanish.

11https://hubbik.uoc.edu/en/programmes/spinuoc-2023

14

https://hubbik.uoc.edu/en/programmes/spinuoc-2023


• An eCommerce bot that would automatically read and understand the
catalog of products of an eCommerce site (in particular, an eCommerce
site built with WooCommerce, the most popular eCommerce extension
for WordPress sites) and answer questions about them. We mention
again this specific bot in Section 6.

besides other short-term prototypes and experiments (e.g. our project to
use chatbots to let citizens talk with open data sources[19]) that were not
finally deployed in production systems.

All these industrial experiences (including all the feedback from the open-
source users) are the foundation of the Xatkit evolution we describe in what
follows.

5. Technical-driven evolution

The next subsections highlight a few technical evolutions and trade-offs
we had to perform after the initial release, once we started using Xatkit to
build more than “toy bots” and we began to realize some limitations on our
initial design decisions. Such initial decisions were mostly driven by our pre-
vious experience with other existing modeling frameworks and our knowledge
on how they were internally built. In this sense, we are confident some of
these evolutions and reflections could be useful recommendations for future
MDE tool builders as informed recommendations that could influence their
own design trade-offs. Still, these recommendations are based on our own
experience, so we do not claim they are universal nor they are immediately
generalizable to any other MDE development or commercialization scenario.

5.1. Moving to an Internal DSL to avoid reinventing the wheel

While a pure stand-alone MDE infrastructure provided us a powerful
toolkit to implement a first version of Xatkit, we quickly realized that the
MDE toolkits and language workbenches we used were lacking seamless inte-
gration capabilities with more traditional software development techniques,
languages and libraries.

As a consequence, evolving all the modeling artifacts required to improve
the expressiveness of our DSL (e.g. adding new primitives to better support
a new use case) was quite complex and time-consuming. And we had the
feeling we were starting to reinvent the wheel. Indeed, once you start adding
conditionals, iterators and other basic language constructs to your DSL when

15



you could get them for free in other languages, it is time to rethink your
choices. This is not obviously the case for some DSLs that can stick to core
domain-specific concepts with no need to include operational concepts that
overlap with those already present in other languages. But it is the case of
chatbots and many other DSLs that need to cover behavioral aspects.

Moreover, our high-level external DSL was not a relevant selling point for
our customers (see Section 6), so we decided to switch to an internal DSL
based on Java. The switch to a Java DSL made our development process way
more efficient: we removed some simpler (and insufficient) abstractions ini-
tially designed to cover simple chatbots, and we redefined the chatbot behav-
ioral language as a Java-based state machine framework expressive enough
to handle all our use cases. The revamped engine was still based on state-of-
the-art modelling tools (e.g. EMF), but the level of abstraction was a better
fit for our skill set, both as chatbot developers but also Java developers.

The Internal DSL was implemented as Fluent Interface12 to facilitate
as much as possible the bot definition process. For instance, the use of a
Fluent Interface facilitates concentrating all the bot definition in a single
place, isolating as much as possible chatbot specification from other parts of
the Java program while, at the same time, enabling the call to Java libraries
when needed. As an example, the following listings show the same Weather
bot specified in Section 3 with our current internal DSL proposal.

Listing 3: Example Intents for the WeatherBot (Internal DSL version)

1
2 va l howIsTheWeather = intent ( ”HowIsTheWeather” )
3 . t r a i n ingSen t ence ( ”How i s the weather today in CITY?” )
4 . t r a i n ingSen t ence ( ”What i s the f o r e c a s t f o r today in CITY?” )
5 .parameter ( ”cityName” ) . fromFragment ( ”CITY” ) . entity ( c i t y ( ) ) ;

Listing 4: Example for the WeatherBot execution (Internal DSL version)

1
2 i n i t
3 . next ( )
4 . when( i n t e n t I s ( howIsTheWeather ) ) . moveTo( printWeather ) ;
5
6 printWeather
7 . body ( context −> {
8 String cityName = (String ) context . g e t In t en t ( ) . getValue ( ”cityName” ) ;
9 Map<S t r i n g , Object> queryParameters = new HashMap<>();

10 queryParameters . put ( ”q” , cityName ) ;

12https://en.wikipedia.org/wiki/Fluent_interface

16

https://en.wikipedia.org/wiki/Fluent_interface


11 ApiResponse<JsonElement> re sponse =
12 re s tP la t f o rm . getJsonRequest ( c on t ex t , ” http :// api ” +
13 ” . openweathermap . org /data /2 .5/ weather ” , queryParameters , . . . ) ;
14 i f ( r e sponse . ge tSta tus ( ) == 200) {
15 // Proce s s ing o f the JSON response
16 reactP lat fo rm . r ep ly ( c on t ex t ,
17 MessageFormat . format ( ”The cur rent temperature i s {0} , temp ) ) ;
18 }
19 })
20 . next ( )
21 .moveTo( await ingInput ) ;

The listings resemble those we had presented before but now we can fully
leverage the power and libraries of Java, e.g. when calling the external API
without the need to create ourselves the extension to our DSL required to
call and process REST API calls.

5.2. Try to get your DSL primitives right as soon as possible

As commented above, evolving your DSL is expensive. Not only when
you radically move from an external to an internal one but also when you
evolve it to add or modify the core metamodel primitives of the language
(e.g. if you are building your infrastructure on top of EMF, you will need to
update the Ecore model, regenerate the artifacts,...).

An example is our evolution from tree-based bots to graph-based ones
(implemented via a state machine) as the tree-based approach was simpler
but we soon realized it was too limited. We have also been adding quite a
few attributes to our metamodel classes that we did not think about at the
beginning13.

And there are more evolutions that we would like to perform but that we
do not dare to address as they affect a larger number of classes. For instance,
we would like to have a better support for uncertainty modeling [20, 21] as
chatbot behavior is full of uncertainty (in the matching, in the recognition
of the parameters, regarding the quality of the response) and we would like
to offer to chatbot designers better ways to specify with more detail how the

13And here we ended up cheating a little bit as we were doing some of these modifications
directly in the EMF generated classes instead of doing it the proper way, i.e. updating the
Ecore model and regenerating the classes every time. While this is not the right way to do
it, we opted to follow a more pragmatic approach to partially reduce the cost of evolving
the DSL

17



bot should behave depending on all these uncertainties14. This could even
enable some future self-learning strategies based on the user tolerance to the
bot confidence levels.

Our recommendation here is to spend some time trying to build a variety
of examples before setting too much into the abstract syntax for your DSL
to minimize as much as possible the need for an immediate evolution. It will
need to evolve, for sure, but try at least to start with a solid and validated
base.

5.3. Balancing a model-based perspective with optimized hand coded compo-
nents

The CUI landscape is a vibrant ecosystem providing a continuous stream
of new technologies, tools, and approaches to improve conversational agents.
We designed Xatkit as an extensible framework to integrate these new solu-
tions as fast as possible with a limited effort.

Notably, Xatkit processors are independent libraries that can be plugged
into a bot to extend its capabilities. Xatkit’s execution engine provides hooks
to integrate these processors at various places in the bot life-cycle. Pre-
processors adapt the user input, for example, by filtering out some words we
don’t want to send to the NLP engine. Post-processors compute additional
information on top of the NLP engine’s result, for example sentiment analysis
or emoji interpretation. These processors are based on embedded libraries
like StanfordNLP[22], or remote APIs like Hugging Face15.

As everything in Xatkit, all processors follow unified interfaces that enable
a plug and play approach depending on the needs of a specific project. In
the project configuration properties, you can define the type of processor you
need and the concrete implementation you would like to use.

While we always keep this platform-independent perspective to be able
to reuse existing solutions, we also had to develop our own NLP components
completely tailored to what we needed on some projects. The most recent
example is the Xatkit NLU Server16, a custom NLP engine that can be fully
configured for specific domains.

14Right now we just have a confidence level for the intent match as the only condition
that can be evaluated as part of a bot state transition

15https://huggingface.co/
16https://github.com/xatkit-bot-platform/xatkit-nlu-server

18

https://github.com/xatkit-bot-platform/xatkit-nlu-server


The goal here is to find the balance between just staying at the modeling
level and then simply deploying your solution on top of existing components
or getting “your hands dirty” and building some components yourself on top
of which deploy your bots.

Both options are not contradictory as long as the bot language still re-
mains independent of the low-level solution, even your own, so that clients
are free to choose to deploy your bot on top of other third-party solutions.
Make sure you avoid the temptation to take the easy route and hard-code
your own integration directly to the modeling framework (faster to imple-
ment as then you do not need to respect all interfaces external components
need to follow, but it would break the platform independent philosophy).
For instance, to develop our own NLP Server we implemented the same con-
nectors and interfaces we did when integrating DialogFlow or nlp.js even if
it would have been faster to skip these decoupling layers and build a direct
integration able to directly access the internal runtime components. Thanks
to this, now you can switch any existing bot to use our NLP Server if needed
just by changing the configuration properties.

6. Commercial-driven evolution

This section covers additional evolutions and reflections that were more
driven by our ”exposure” to clients interested in adding a chatbot to their
businesses. By clients, we mean both non-paying users and paying ones
even though, as a company, we were targeting the latter. We use the term
commercial to refer to both, evolution required to align better with client
requirements and evolution required to evolve the product to reach an indus-
trial strength quality level.

6.1. Platform independence is not always a selling point

The concept of platform-independence is at the core of many of the MDE
tools and often highlighted as one of the key benefits of following a model-
driven approach. However, it turns out that this was not really an important
selling point for any of the clients we discussed with. In our opinion, platform-
independence becomes more relevant once a domain reaches a certain level of
maturity and companies have more technical options to choose from, and they
have already experimented with some of them, potentially already having
suffered as well the pain of migrating from one to another.

19



When pitching Xatkit, we were always emphasizing the benefits of mod-
eling bots and then choosing where to deploy them. And that this would
also facilitate their migration from one platform or NLP provider to another.

But our clients were never genuinely interested in this17, they just wanted
a solution for today, and whether this solution would be easier to migrate in
5-years time was not really an important aspect of their decision. It turned
out that being able to adapt the look and feel of the chatbot widget to match
the corporate color palette was much more important for them.

MDE helped us for sure to adapt to the current technology stack and
infrastructure each client wanted (one wanted to use DialogFlow while the
other was more into a complete on-premises solution due to data protection
constraints and therefore was more interested in using nlp.js as local engine).
MDE was a good paradigm to build bots faster ourselves but, in our experi-
ence, clients do not need/want to know how we build their solution as this is
the pain point we are having today. Possibly, a reason was also that for most
of them, ours was one of the first chatbots they requested and therefore they
lack the experience to foresee future requirements.

6.2. Build your model-based solution with scalability in mind

It is often said that premature optimization is the root of all evil but for
small teams building a model-based infrastructure, initial decisions can be
very costly to change afterward.

In our case, we started with a Java, Eclipse/EMF and Xtext stack as
this was our “natural” option. We have already discussed how part of this
stack changed but we could not afford to entirely start from scratch. And
while Java is a great language, most of the NLP and ML developments are
first released in Python and therefore, probably building Xatkit in Python
(instead of having to wrap Python APIs and libraries) would have been a
wise choice18.

Another challenge was linked to the release of the eCommerce bot aimed
at helping visitors to browse and ask questions about the catalog of an online
shop. Xatkit was designed to be a single-bot application but deploying and
maintaining a separate bot for every single shop was not scalable. We ended

17Not MDE related, but we had the same experience when highlighting that Xatkit was
open source, this was not an important factor either for them

18Note that it is also easy to create DSLs in Python, similar to what we do with Xtext
in Java, thanks to frameworks such as textX [23]

20



up developing an ad hoc solution for the eCommerce bot where the bot relied
on a specialized Xatkit runtime that could be deployed as a kind of multi-
tenant [24] generic ecommerce bot. This multi-tenant bot, or metabot, was
able to determine which shop the request was coming from, and depending
on that, it would instantiate the right bot state machine for the shop to
properly answer the question.

If we had to develop more bots like this one, targeting a number of clients
in the same domain, we will need to think how to be able to better model the
individual bots and their interrelationships within a multi-tenant perspective.

6.3. Stop looking for the “right” concrete syntax

A critical decision when designing a DSL is the choice of the concrete
syntax. But we often fail to remember that the same DSL could be linked
to many different concrete syntaxes, each with their own trade-offs (e.g. in
terms of expressiveness and usability).

We quickly realized that each user profile required a different syntax.
More MDE minded people would be happy with the Eclipse environment
required in our initial external DSL editor but our initial tests showed that
most end users thought the Eclipse-based editor was too complicated. Even
installing and using Eclipse itself was seen as too difficult.

Once we realized that, we dropped the idea of going for a common syntax
aimed at being a good compromise among all the user profiles (us, tech-
nical end-users, non-technical users, ...) and decided to, on the one hand,
create the “right” syntax for us (see Section 3.2.1) and then experimented
with other syntaxes more oriented towards non-technical users. This even
included an Excel-based syntax where users could simply use Excel to define
their bots. Obviously, using our Excel template (see Figure 6) is very user-
friendly, but it is limited to simple chatbots mostly covering FAQ-like and
Question/Answering bots with limited conversation capabilities19.

Even more, we also found out that, often, our clients had no interest in
defining the bot themselves, they just wanted to hand us out the documenta-
tion (website, support emails and tickets, manuals,..) to create the bot and
have us built the bot for them.

19Nothing prevented us from creating a more powerful Excel-based interface that could
be used to create very generic bots but we felt that Excel was not the right interface for
that, and we opted to use Excel as interface for non-tech people focused on simple bots
while redirecting tech users to the DSL for more generic and powerful bots

21



Figure 6: Excel as a concrete syntax for creating chatbots

When creating a model-based solution, it is important to be clear about
who will be the user profile/s we are targeting. For Xatkit, we were the main
users ourselves and therefore we could adapt the MDE tooling to our own
needs. Ask yourself whether you are selling a model-based tool or a service
that you internally develop with your own model-based infrastructure. The
right notation in both cases may be very different.

6.4. Modeling interactions with Large Language Models (LLMs)

Instead of building your own intent-based chatbot where you define the
full list of intents/questions the chatbot should be able to match, you could
use a generative chatbot based on large language models (LLMs) to have
more open conversations with your website visitors. However, it is well-known
such chatbots tend to “hallucinate” and invent facts, which, we believe, is
something too risky for a public-facing chatbot, making them a far from ideal
option as the core solution [25].

Nevertheless, clients do want this type of chatbots as this is all they hear
about on the tech news. As a compromise, and as, indeed, they are partially
useful, we have experimented with LLMs as default fallback. That is, when
the bot does not understand the user request, it will resort to a LLM to try to
provide the answer while alerting the user that the answer could be wrong.
Figure 7 shows the schema we have developed for an open data bot used
by citizens to query data sources published by the public administration.
When the bot fails to match the question with a predefined intent, it tries
to automatically translate it to a SQL expression using LLMs and attempts
to execute such SQL on the data with the caveat that we cannot be certain
that the generated SQL actually embeds the right semantics of the original
question.

22



Figure 7: LLMs as default fallback

This solution was directly coded but given the increasing popularity of
LLMs and the growing ecosystem of solutions/libraries/vendors providing
them, there is for sure the need to start modeling the capabilities and inter-
actions of any type of software, and in particular, chatbots, with generative
AI components so that we can more easily deploy our bots on top of the
hottest LLM at the time.

7. Related Work

It is well accepted in the MDE community that the adoption and success
of MDE initiatives is a sociotechnical problem [26, 27, 28, 29, 30, 31, 32] and
that the cost of adopting an MDE solution (or a DSL) pays off in the mid-
term [33]. This paper represents an additional contribution to the discussion
with two key distinctions: 1 - it covers the application of MDE on a new
domain (chatbots) which has not been covered by previous works and 2 -
it does it from a unique perspective, that of two researchers attempting the
transition from a pure MDE research prototype to a commercial solution and
explaining themselves the story.

Beyond Xatkit, it is worth noting there are other proposals for com-
bining modeling (to some extent) with chatbot development. Among such

23



initiatives, we see an ongoing trend on adding low-code/no-code [34] front-
ends to concrete chatbot platform. Some examples are: Tock20, Engati21

or FlowXO22. With a more research perspective, we have CONGA (Chat-
bOt modelliNg lanGuAge) [35] providing a unifying DSL for specifying some
types of chatbots that can then be implemented on top of a couple of chat-
bot platforms (and even migrated from one to the other); and Baudat et al.
[36] proposing wcs-OCaml, a new multi-tier chatbot generator library de-
signed for use with the reactive language ReactiveML. Other works, such as
VoiceFlow23 focus on voicebots, providing a graphical DSL to create voice-
based conversation flows that can be deployed on Google home or Alexa.

Some well-known low-code platforms like Mendix24, GeneXus25 or Out-
Systems26 started to include chatbots as part of their system specification.
But this support is rather limited and mostly consisting in either simple chat-
bot templates or in helping you to connect your application with an external
AI component defined with a separate tool (e.g. one of the above).

As far as we know, Xatkit remains the most flexible solution with its
modular architecture and runtime configuration options to be able to easily
configure and deploy the modeled bot on different platforms. Nevertheless,
we hope our experiences and lessons learned are helpful to other modeling
initiatives around the chatbot domain. And, in general, to any domain that
readers would like to approach with a modeling perspective.

As, often, chatbots are not the only UI of the system, it is also worth
studying the interactions between a chatbot interface and other UIs, as part
of a multiexperience user interface, something we started exploring here [37],
focusing specially on the combination of our chatbot metamodel with the
metamodel of other GUIs, in particular the IFML [38, 39]. On top of this,
it is also interesting to see how the chatbots themselves are more and more
capable of embedding graphical elements so the interweaving of chatbot in-
terface models with interface models coming from other types of models, e.g.
[40] or [41] is definitely worth considering. A clear chatbot metamodel such

20https://doc.tock.ai/tock/
21https://www.engati.com
22https://flowxo.com
23https://www.voiceflow.com/
24https://www.mendix.com/
25https://www.genexus.com/en/
26https://www.outsystems.com/

24

https://www.voiceflow.com/
https://www.mendix.com/
https://www.genexus.com/en/
https://www.outsystems.com/


as the one presented here will facilitate these further integrations.

8. Conclusions

We have presented Xatkit, a model-driven chatbot development frame-
work, and its evolution to better adapt to the requirements for bot devel-
opment projects in real scenarios. We believe our experience is useful for
practitioners and researchers who are developing an industrial-strength pro-
fessional MDE product, but who may have little or no experience with the
challenges of the professional/commercial product development.

On the technical side, there are still plenty of technical challenges to
overcome, from a sublanguage to define policies to combine different NLP
providers to a smoother integration of LLMs for automatic translation or
default fallback support to the automatic generation of parts of the bot itself
from available (un)structured documentation. All these topics are in our
agenda for further work as part of a more complete proposal of a development
process for chatbots that encompasses better techniques for the elicitation,
testing [42] and evolution of bots and their combination and integration with
other types of user interfaces, possibly as part of multi-experience interaction
experience[37]. Clearly, a model-driven approach will still be the key to
continue to advance Xatkit as it has been proven a key enabler of the Xatkit
features and benefits so far.

Nevertheless, we also tried to make clear in our lessons learned that each
of these new technical enhancements will need to be analyzed not only from
a purely technical point of view but from a broader perspective to make sure
we are aligned with the needs of future bot stakeholders and users.

References

[1] J. J. Garrett, Elements of user experience, the: user-centered design for
the web and beyond, Pearson Education, 2010.

[2] L. C. Klopfenstein, S. Delpriori, S. Malatini, A. Bogliolo, The rise of
bots: A survey of conversational interfaces, patterns, and paradigms, in:
Proceedings of the 2017 Conference on Designing Interactive Systems,
DIS, ACM, 2017, pp. 555–565.

[3] A. Xu, Z. Liu, Y. Guo, V. Sinha, R. Akkiraju, A new Chatbot for
Customer Service on Social Media, in: Proc. of the 35th CHI Conference,
ACM, 2017, pp. 3506–3510.

25



[4] A. Kerlyl, P. Hall, S. Bull, Bringing Chatbots into Education: Towards
Natural Language Negotiation of Open Learner Models, in: Applications
and Innovations in Intelligent Systems XIV, Springer, 2007, pp. 179–192.

[5] N. Thomas, An E-business Chatbot using AIML and LSA, in: Proc. of
the 5th ICACCI Conference, IEEE, 2016, pp. 2740–2742.

[6] E. Shihab, S. Wagner, M. A. Gerosa, M. S. Wessel, J. Cabot, The present
and future of bots in software engineering, IEEE Softw. 39 (5) (2022)
28–31. doi:10.1109/MS.2022.3176864.
URL https://doi.org/10.1109/MS.2022.3176864

[7] M. Brambilla, M. Dosmi, P. Fraternali, Model-driven engineering of ser-
vice orchestrations, in: 2009 IEEE Congress on Services, Part I, SER-
VICES I 2009, Los Angeles, CA, USA, July 6-10, 2009, 2009, pp. 562–
569.

[8] G. Daniel, J. Cabot, L. Deruelle, M. Derras, Xatkit: A multimodal
low-code chatbot development framework, IEEE Access 8 (2020) 15332–
15346.

[9] M. Rahimi, J. L. C. Guo, S. Kokaly, M. Chechik, Toward requirements
specification for machine-learned components, in: 27th IEEE Interna-
tional Requirements Engineering Conference Workshops, RE, IEEE,
2019, pp. 241–244.

[10] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss,
P. Tonella, Testing machine learning based systems: a systematic map-
ping, Empir. Softw. Eng. 25 (6) (2020) 5193–5254.

[11] M. Kim, T. Zimmermann, R. DeLine, A. Begel, Data scientists in soft-
ware teams: State of the art and challenges, IEEE Trans. Software Eng.
44 (11) (2018) 1024–1038.

[12] G. Daniel, J. Cabot, L. Deruelle, M. Derras, Multi-platform chatbot
modeling and deployment with the jarvis framework, in: P. Giorgini,
B. Weber (Eds.), Advanced Information Systems Engineering - 31st In-
ternational Conference, CAiSE 2019, Vol. 11483 of Lecture Notes in
Computer Science, Springer, 2019, pp. 177–193.

26

https://doi.org/10.1109/MS.2022.3176864
https://doi.org/10.1109/MS.2022.3176864
https://doi.org/10.1109/MS.2022.3176864
https://doi.org/10.1109/MS.2022.3176864


[13] Google, DialogFlow Website, url: https://dialogflow.com/.
URL https://dialogflow.com/

[14] IBM, Watson Assistant Website, url: https://www.ibm.com/watson/
ai-assistant/.
URL https://www.ibm.com/watson/ai-assistant/

[15] A. Kleppe, Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels, Pearson Education, 2008.

[16] Amazon, Amazon Lex Website, url: https://aws.amazon.com/lex/.
URL https://aws.amazon.com/lex/

[17] I. Qasse, S. Mishra, M. Hamdaqa, icontractbot: A chatbot for smart
contracts’ specification and code generation, in: 2021 IEEE/ACM Third
International Workshop on Bots in Software Engineering (BotSE), 2021,
pp. 35–38. doi:10.1109/BotSE52550.2021.00015.

[18] A. Tarek, M. El Hajji, E.-S. Youssef, H. Fadili, Towards highly adaptive
edu-chatbot, Procedia Computer Science 198 (2022) 397–403.

[19] M. Gomez, J. Cabot, R. Clarisó, Towards the automatic generation of
conversational interfaces to facilitate the exploration of tabular data
(2023). arXiv:2305.11326.

[20] M. F. Bertoa, L. Burgueño, N. Moreno, A. Vallecillo, Incorporating mea-
surement uncertainty into OCL/UML primitive datatypes, Softw. Syst.
Model. 19 (5) (2020) 1163–1189. doi:10.1007/s10270-019-00741-0.
URL https://doi.org/10.1007/s10270-019-00741-0

[21] M. Zhang, T. Yue, S. Ali, B. Selic, O. Okariz, R. Norgren, K. Intxausti,
Specifying uncertainty in use case models, J. Syst. Softw. 144 (2018)
573–603. doi:10.1016/j.jss.2018.06.075.
URL https://doi.org/10.1016/j.jss.2018.06.075

[22] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, D. Mc-
Closky, The stanford corenlp natural language processing toolkit, in:
Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations, 2014, pp. 55–60.

27

https://dialogflow.com/
https://dialogflow.com/
https://dialogflow.com/
https://www.ibm.com/watson/ai-assistant/
https://www.ibm.com/watson/ai-assistant/
https://www.ibm.com/watson/ai-assistant/
https://www.ibm.com/watson/ai-assistant/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://doi.org/10.1109/BotSE52550.2021.00015
http://arxiv.org/abs/2305.11326
https://doi.org/10.1007/s10270-019-00741-0
https://doi.org/10.1007/s10270-019-00741-0
https://doi.org/10.1007/s10270-019-00741-0
https://doi.org/10.1007/s10270-019-00741-0
https://doi.org/10.1016/j.jss.2018.06.075
https://doi.org/10.1016/j.jss.2018.06.075
https://doi.org/10.1016/j.jss.2018.06.075


[23] I. Dejanović, R. Vaderna, G. Milosavljević, v. Vuković, TextX: A Python
tool for Domain-Specific Languages implementation, Knowledge-Based
Systems 115 (2017) 1–4. doi:10.1016/j.knosys.2016.10.023.
URL http://www.sciencedirect.com/science/article/pii/

S0950705116304178

[24] F. Chong, G. Carraro, R. Wolter, Multi-tenant data architecture, MSDN
Library, Microsoft Corporation (2006) 14–30.

[25] R. Shwartz-Ziv, A. Armon, Tabular data: Deep learning is not all you
need, Information Fusion 81 (2022) 84–90.

[26] A. Vallecillo, On the industrial adoption of model driven engineering.
is your company ready for mde?, International Journal of Information
Systems and Software Engineering for Big Companies 1 (1) (2015) 52–
68.

[27] J. E. Hutchinson, J. Whittle, M. Rouncefield, Model-driven engineering
practices in industry: Social, organizational and managerial factors that
lead to success or failure, Sci. Comput. Program. 89 (2014) 144–161.
URL https://doi.org/10.1016/j.scico.2013.03.017

[28] T. Gorschek, E. D. Tempero, L. Angelis, On the use of software design
models in software development practice: An empirical investigation, J.
Syst. Softw. 95 (2014) 176–193.
URL https://doi.org/10.1016/j.jss.2014.03.082

[29] M.-J. Escalona, N. P. de Koch, G. Rossi, A quantitative swot-tows anal-
ysis for the adoption of model-based software engineering, Journal of
Object Technology 21 (4) (2022).

[30] F. D. Giraldo, S. Espana, O. Pastor, W. J. Giraldo, Considerations
about quality in model-driven engineering: Current state and challenges,
Software Quality Journal 26 (2018) 685–750.

[31] A. Bucchiarone, J. Cabot, R. F. Paige, A. Pierantonio, Grand chal-
lenges in model-driven engineering: an analysis of the state of the
research, Softw. Syst. Model. 19 (1) (2020) 5–13. doi:10.1007/

s10270-019-00773-6.
URL https://doi.org/10.1007/s10270-019-00773-6

28

http://www.sciencedirect.com/science/article/pii/S0950705116304178
http://www.sciencedirect.com/science/article/pii/S0950705116304178
https://doi.org/10.1016/j.knosys.2016.10.023
http://www.sciencedirect.com/science/article/pii/S0950705116304178
http://www.sciencedirect.com/science/article/pii/S0950705116304178
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1016/j.jss.2014.03.082
https://doi.org/10.1016/j.jss.2014.03.082
https://doi.org/10.1016/j.jss.2014.03.082
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6


[32] M. Mernik, J. Heering, A. M. Sloane, When and how to develop domain-
specific languages, ACM computing surveys (CSUR) 37 (4) (2005) 316–
344.

[33] O. Dı́az, F. M. Villoria, Generating blogs out of product catalogues: An
mde approach, Journal of Systems and Software 83 (10) (2010) 1970–
1982.

[34] J. Cabot, Positioning of the low-code movement within the field of
model-driven engineering, in: MODELS ’20: ACM/IEEE 23rd Interna-
tional Conference on Model Driven Engineering Languages and Systems,
ACM, 2020, pp. 76:1–76:3.

[35] S. Pérez-Soler, E. Guerra, J. de Lara, Model-driven chatbot develop-
ment, in: 39th Int. Conf. on Conceptual Modeling, ER, Vol. 12400 of
LNCS, Springer, 2020, pp. 207–222.

[36] G. Baudart, M. Hirzel, L. Mandel, A. Shinnar, J. Siméon, Reactive chat-
bot programming, in: Proceedings of the 5th ACM SIGPLAN Interna-
tional Workshop on Reactive and Event-Based Languages and Systems,
REBLS@SPLASH, ACM, 2018, pp. 21–30.

[37] E. Planas, G. Daniel, M. Brambilla, J. Cabot, Towards a model-
driven approach for multiexperience ai-based user interfaces, Softw.
Syst. Model. 20 (4) (2021) 997–1009.

[38] R. Acerbis, A. Bongio, M. Brambilla, S. Butti, Model-driven develop-
ment based on omg’s IFML with webratio web and mobile platform, in:
P. Cimiano, F. Frasincar, G. Houben, D. Schwabe (Eds.), 15th Interna-
tional Conference, ICWE 2015, Vol. 9114 of Lecture Notes in Computer
Science, Springer, 2015, pp. 605–608.

[39] M. Hamdani, W. H. Butt, M. W. Anwar, F. Azam, A systematic liter-
ature review on interaction flow modeling language (ifml), in: Proceed-
ings of the 2018 2nd International Conference on Management Engineer-
ing, Software Engineering and Service Sciences, 2018, pp. 134–138.

[40] E. Dı́az, J. I. Panach, S. Rueda, D. Distante, A family of experiments to
generate graphical user interfaces from bpmn models with stereotypes,
Journal of Systems and Software 173 (2021) 110883.

29



[41] N. Mezhoudi, J. Vanderdonckt, Toward a task-driven intelligent GUI
adaptation by mixed-initiative, Int. J. Hum. Comput. Interact. 37 (5)
(2021) 445–458. doi:10.1080/10447318.2020.1824742.
URL https://doi.org/10.1080/10447318.2020.1824742

[42] J. Cabot, L. Burgueño, R. Clarisó, G. Daniel, J. Perianez-Pascual,
R. Rodŕıguez-Echeverŕıa, Testing challenges for nlp-intensive bots, in:
3rd IEEE/ACM International Workshop on Bots in Software Engi-
neering, BotSE@ICSE 2021, IEEE, 2021, pp. 31–34. doi:10.1109/

BotSE52550.2021.00014.

30

https://doi.org/10.1080/10447318.2020.1824742
https://doi.org/10.1080/10447318.2020.1824742
https://doi.org/10.1080/10447318.2020.1824742
https://doi.org/10.1080/10447318.2020.1824742
https://doi.org/10.1109/BotSE52550.2021.00014
https://doi.org/10.1109/BotSE52550.2021.00014

	Introduction
	Preliminary concepts
	Xatkit: a model-driven engineering (MDE) solution for chatbots
	Xatkit architecture
	Xatkit modeling languages
	Intent Package
	Execution Package


	Xatkit as a commercial open-source solution
	Xatkit as an open-source platform
	Xatkit as a company and its first deployed bots in real systems

	Technical-driven evolution
	Moving to an Internal DSL to avoid reinventing the wheel
	Try to get your DSL primitives right as soon as possible
	Balancing a model-based perspective with optimized hand coded components

	Commercial-driven evolution
	Platform independence is not always a selling point
	Build your model-based solution with scalability in mind
	Stop looking for the ``right'' concrete syntax
	Modeling interactions with Large Language Models (LLMs)

	Related Work
	Conclusions

