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Abstract. There is a growing need for better development methods and
tools to keep up with the increasing complexity of new software systems.
New types of user interfaces, the need for intelligent components, sus-
tainability concerns, ... bring new challenges that we need to handle. In
the last years, model-driven engineering has been key to improving the
quality and productivity of software development, but models themselves
are becoming increasingly complex to specify and manage. In this paper,
we present the concept of low-modeling as a solution to enhance current
model-driven engineering techniques and get them ready for this new
generation of software systems.
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1 Introduction

Current software development projects face a growing demand for advanced
features. Including support for new types of user interfaces (augmented reality,
virtual reality, chat and voice interfaces,...), intelligent behaviour to be able to
classify/predict/recommend information based on user’s input or the need to
face new security and sustainability concerns, among many other new types of
requirements.

To tame this complexity, software engineers typically choose to work at a
higher abstraction level [2] where technical details can be ignored, at least dur-
ing the initial development phases. Low-code platforms are the latest incarnation
of this trend, promising to accelerate software delivery by dramatically reducing
the amount of hand-coding required. Low-code can be seen as a continuation
or specific style of other model-based3 approaches [4], where high-level software
specifications are used to (semi)automatically generate the running software sys-
tem.

Nevertheless, even software models are becoming more and more complex due
to the increasing complexity of the underlying systems being modeled. Beyond
“classical” data and behavioural aspects we now need to come up with new mod-
els to define the new types of UIs or all the smart features of the software. Note

3 Here we are referring to software models (e.g., state machine diagrams), not Machine
Learning models.



2 J. Cabot

that AI elements are hard to specify [14], architect, test and verify [15] and low-
code systems have so far paid little attention to the modeling and development
of smart systems.

In this sense, we argue for the need of low-modeling techniques that accelerate
the modeling process from which then the system will be generated.

The next sections define the concept of low-modeling (Section 2) and describe
a number of low-modeling strategies (Section 3). We then illustrate the benefits
of low-modeling through a specific case study (Section 4) and provide a very
brief introduction of an ongoing low-modeling platform project (Section 5).

2 Low modeling definition

The Forrester Report [16] states that low-code application platforms acceler-
ate app delivery by dramatically reducing the amount of hand-coding required.
Similarly, we define low-modeling as the set of strategies that accelerate the mod-

eling of a software system by dramatically reducing the amount of hand-modeling

required.
Often, a low-modeling platform will also follow a low-code approach to gen-

erate the final software code from the (semi)automatically generated models.
Low-modeling can also improve the adoption of modeling in companies and

organizations. It is well accepted that the adoption challenge is a complex so-
ciotechnical problem [10]. And it is aggravated when considering that software
is now being developed by multidisciplinary teams, e.g to deal with the speci-
fication and development of the intelligent components embedded in most new
systems. In this sense, the goal of low-modeling is not only to increase the pro-
ductivity of developer teams, but also to contribute to the democratization of
software development by enabling all types of professionals to participate in the
development process and even build their own applications beyond what low-
code, no-code and template-based approaches offer.

3 Low modeling strategies

This section gives a short overview of several strategies that could be employed
to put in place a low-modeling strategy. Similarly to low-code approaches where
code is semi-automatically generated from “earlier” sources (i.e. models in that
case), in a low-modeling approach we will see how models are generated also from
other input sources, such as existing knowledge or (un)structured documents.

Note that many of the techniques employed to do so are not new but they
will need to be adapted and extended to cover the new types of models required
to specify today’s systems (e.g. its smart capabilities or new types of interfaces
as exemplified in the next section).

The list does not aim to be exhaustive. And any modeling strategy will
probably employ a combination of techniques, where the right combination and
specific type of low-modeling approach will depend on the specific needs of the
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system-to-be and the resources already available in the organization (e.g. existing
information, how standard is the domain we are modeling, how simple/complex
are their features, ...).

According to the low-modeling definition, the goal of these techniques is to
create initial versions of models (or more complete versions of existing ones) to
be then validated and refined by modeling experts. The goal is NOT to replace
the need for modeling but to let modelers focus on the more creative and key
aspects of the modeling activity instead of wasting time on boilerplate modeling.

3.1 Heuristic-based model generation

Convention over configuration is a software design paradigm used by software
frameworks that attempts to decrease the number of decisions that a developer
using the framework is required to make without necessarily losing flexibility
and don’t repeat yourself (DRY) principles 4. We could use this principle at the
modeling level to reduce the number of modeling decisions a designer has to
make (hence, being more low-modeling).

In particular, convention over configuration and the use of heuristics can help
us to create basic models for parts of the system from other existing models. A
good example is the automatic generation of behavioural models [1] or user in-
terface models [18] from static models. The key idea is that any data model
will require a number of basic CRUD (create/read/update/delete) operations to
visualize and manipulate the data specified in the model. This operations can
be deduced from an analysis of the static model elements and relationships by
systematically applying a number of heuristics. This is similar to the scaffolding
features offered by most web programming frameworks. Obviously, this gener-
ated behaviuor must then be refined and new behaviours, that go beyond the
CRUD core elements, added to complete the model. Still, this represents a minor
percentage of the total model size and creation time (the Pareto rule also applies
here).

Fig. 1: CRUD-driven operation generation, taken from [1].

4 https://en.wikipedia.org/wiki/Convention_over_configuration

https://en.wikipedia.org/wiki/Convention_over_configuration
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3.2 Knowledge-based model enrichment

For many domains, there is plenty of structured knowledge already available.
From simple thesaurus to general ontologies like Cyc [11]. This knowledge can be
used to enrich a partial model with alternative concepts related to those already
present in the model (e.g. based on the distance, in the ontology hierarchy,
between the existing models and potentially new ones). For some domains, more
specific ontologies, targeting the knowledge of that particular domain, could
exist and produce better results. An even more extreme approach can involve
the derivation of the target model by pruning all the superfluous concepts (for
the system at hand) from an initial ontology [7].

Knowledge can also come from previous models created as part of previous
modeling projects in the same domain. Either by the same company or by others
but contributed to a common model repository [8,17]. As before, these previous
models could be compared with the current one to suggest ways to enrich it.

Regardless of the specific method, the key idea is to reuse existing knowledge,
already formalized by other individuals or whole communities, to speed up the
creation of new models for the same domain. And not only that, this knowledge-
reuse can also improve the overall quality. Differences between the model and
the existing knowledge-bases could suggest errors in the model. These potential
errors would then need to be revised by the expert so conclude whether the
error is true or it is just that for this specific system we are deviating from more
common specifications.

3.3 ML-based model inference

The last group of techniques deal with the variety of ML techniques and applica-
tions that could help to infer models [3] from unstructured sources. This ranges
from the automatic derivation of models from the textual analysis of documents
to the creation of modeling assistants (similar to what GitHub copilot offers to
programmers) thanks to the use of Generative AI techniques [6].

As all the other domains where AI is applied, these techniques end up being
the most powerful ones (as they can extract models from completely unstruc-
tured sources and with the least human intervention) but at the same time the
ones that pose the highest risk as there are no guarantees in the quality of the
result. They may be the fastest way to get some results but they are also the
most time-consuming during the review phase.

Note that the quality of the results largely depends on the datasets used
during the ML training. It is then worth mentioning initiatives targeting the
creation and curation of proper model datasets for machine learning, such as [12].

4 Case Study : low modeling of conversational interfaces

As an example of how these low-modeling strategies could be combined to accel-
erate the development of smart components and systems, we illustrate their role
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in a specific scenario: the automatic development of chatbots to talk to (open)
data sources.

In real-world applications, the most common data type is tabular data. With
the rise of digital technologies and the exponential growth of data, the number
of tabular data sources is constantly increasing and is expected to continue to
do so in the future. In particular, tabular data is also the underlying mechanism
used by all kinds of public administrations to publish public data sets, known as
open data. Indeed, a quick search in any of the public administration open data
and transparency portals reveals the large number of data sources published5

and the popularity of CSV and other similar tabular data formats to publish
those. Despite its importance, there is a lack of methods and tools that facilitate
the exploration of tabular data by non-technical users.

Conversational User Interfaces (CUI), embedded in chatbots and voicebots,
have been proven useful in many contexts to automate tasks and improve the user
experience, such as automated customer services, education and e-commerce.
We believe they could also play a major role in the exploitation of tabular data
sources. Until now, such chatbots for tabular data were either manually created
(an option that it is not scalable) or completely relying on pure English-to-SQL
translational approaches (with limited coverage and with a risk of generating
wrong answers). We have been working on a new, fully automated, approach
where bots are automatically derived based on an analysis of the tabular data
description and contents.

The low-level technical details of the solution are described in [9] but in this
section we expand on the key role of low-modeling in the generation of such bots.

4.1 From tabular data to data models

We aim to generate CUIs to interrogate tabular data sources. Tabular data is
structured into rows, each of which contains information about some observation.
Each row contains the same number of cells (they could be empty), which provide
values of properties of the observation described by the row. In tabular data, cells
within the same column provide values for the same property of the observations
described by each row [20].

A static analysis of the tabular data columns and contents, enables us to
infer enough information to fill a simple data model as the one in Figure 2. From
the structure of the dataset we will gather the list of columns/fields (with their
names). From the analysis of the dataset content, we will infer the data type of
each field (numeric, textual, date-time,...) and its diversity (number of different
values present in that specific column). Based on a predefined (but configurable)
diversity threshold, we automatically classify as categorical those fields under
the threshold.

We can enrich this data model with additional information, e.g. adding syn-
onyms based on thesaurus to improve the bot comprehension capabilities and
the use of ontologies to detect semantic relationships between the fields.

5 Just the EU portal https://data.europa.eu/ registers over 1.5M

https://data.europa.eu/
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Fig. 2: DataSchema metamodel.
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4.2 From data models to conversational models

Chatbots conversation capabilities are designed as a set of intents, where each
intent represents a possible user goal when interacting with the bot. The bot
then tries to match any user utterance (i.e., user’s input question) to one of its
intents. As part of the match, one or more parameters (also called entities in
bot terminology) in the utterance can also be recognized, in a process known
as named entity recognition (NER). When there is a match, the bot back-end
executes the required behaviour.

We have then defined a set of heuristics [9] that are iteratively applied to the
data model to generate a conversation model compliant with the conversation
metamodel partially depicted in Figure 3.

Fig. 3: Intent package metamodel from [13]

4.3 From conversational models to the actual chatbot

This last step is straightforward as it just involves a model-to-text transformation
to go from an initial tabular data source to an actual running chatbot via a
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couple of intermediate models in a fully automated way thanks to the use of a
combination of low-modeling strategies.

Note that even if an initial working version of the models is automatically
generated, all models are explicit and can be manually refined at every step if
needed.

5 BESSER: a low-code low-modeling platform

We will continue exploring these ideas as part of the BESSER platform, a low-
code and low-modeling platform to speed up the definition of high quality smart
software. BESSER is a 5-years project. As part of the project results, we are
developing an open-source platform implementing the project results, available
in our GitHub organization 6.

BESSER will extend the low-code architecture depicted in Figure 4 with
low-modeling components able to generate (partial) versions of all the models
for smart software from (un)structured data sources using a variety of static
analysis, knowledge engineering and ML-based model inference techniques such
as those mentioned in the previous sections.

Note how these inference techniques will need to target each type of model
separately (the traditional models, the smart front-end ones such as the conver-
sational models we have just seen, the smart back-end ones, etc) but also the
interaction between them to ensure they behave in a consistent way.

6 Conclusions and further work

This paper has introduced the concept of low-modeling and given examples of
different types of low-modeling strategies that could be used to improve the
development of complex systems, such as smart software systems, following a
model-driven approach. This is just a first step in this direction, as the commu-
nity is still proposing new types of languages and models to cover all aspects
required to precisely define such smart systems. New low-modeling strategies
will be needed to accelerate the development of these new kinds of models.

Beyond this challenge, we also believe that modeling languages themselves
will need to be more flexible and integrate as first-class elements, new modeling
concerns. For instance, we believe uncertainty modeling [19] should be consid-
ered a first-level concern. Not only AI systems are full of uncertainty per se (at
all levels, at the data level, at the ML model level,...) but the result of most
low-modeling strategies comes with its own level of confidence. Moreover, low-
modeling strategies may generate partial models that may need to dynamically
evolve if the environment changes. Finally, low-modeling will need to go beyond
the inference of the key data and behavioural elements of the system being mod-
eled and become able to also suggest initial models for other system aspects such
as the security concerns or even the ethical constraints.

6 https://github.com/besser-pearl

https://github.com/besser-pearl
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Fig. 4: The low-code architecture proposed in [5]
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