
Model-Driven Prompt Engineering

Robert Clarisó

Universitat Oberta de Catalunya (UOC)

Barcelona, Spain

rclariso@uoc.edu

Jordi Cabot

Luxembourg Institute of Science and Technology (LIST)

Esch-sur-Alzette, Luxembourg

jordi.cabot@list.lu

Abstract—Generative artificial intelligence (AI) systems are
capable of synthesizing complex content such as text, source code
or images according to the instructions described in a natural
language prompt. The quality of the output depends on crafting
a suitable prompt. This has given rise to prompt engineering,
the process of designing natural language prompts to best take
advantage of the capabilities of generative AI systems.

Through experimentation, the creative and research commu-
nities have created guidelines and strategies for creating good
prompts. However, even for the same task, these best practices
vary depending on the particular system receiving the prompt.
Moreover, some systems offer additional features using a custom
platform-specific syntax, e.g., assigning a degree of relevance to
specific concepts within the prompt.

In this paper, we propose applying model-driven engineering
to support the prompt engineering process. Using a domain-
specific language (DSL), we define platform-independent prompts
that can later be adapted to provide good quality outputs in a
target AI system. The DSL also facilitates managing prompts
by providing mechanisms for prompt versioning and prompt
chaining. Tool support is available thanks to a Langium-based
Visual Studio Code plugin.

Index Terms—prompt engineering, model-driven engineering,
domain-specific language, generative AI, large language models

I. INTRODUCTION

Generative artificial intelligence (AI) is currently attracting

a lot of attention as a potentially disruptive technology [1]–

[3]. Generative AI aims to automatically construct complex

artifacts that comply with a set of input requirements. The

format of the produced output varies: natural language text

(ChatGPT, Bard, Bing Chat, Claude), source code snippets

(Copilot, Ghostwriter, Tabnine), music (MuseNet, MusicLM),

images (DALL-E, Midjourney, Stable Diffusion), etc. Regard-

ing the input, many generative AI systems are based on a

prompt, a natural language description of the goals of the

generated artifact [4], [5]. More recent systems also accept

multi-modal inputs, e.g., an image in addition to a prompt.

In these systems, the extra inputs may provide additional

information or be used as seeds or examples to guide the

generation process. Nevertheless, the textual prompt continues

to be the core input mechanism.

Several reasons motivate the growing interest in generative

AI. First, the availability of large datasets and computing

power to train generative systems enables them to be increas-

ingly more effective. Furthermore, using natural language as

Work partially funded by the Spanish government (PID2020-114615RB-
I00/AEI/10.13039/501100011033, project LOCOSS) and the Luxembourg
National Research Fund (FNR) PEARL program, grant agreement 16544475.

the input format improves usability and is flexible enough to

support numerous application scenarios.

Nevertheless, a shortcoming of generative AI systems is that

the quality of the output depends on the structure of the input

prompt [6]–[12]. As a result, the AI community has proposed

a set of strategies, best practices, guidelines and supporting

tools for creating good prompts. The process that involves

crafting, evaluating and fine-tuning prompts is called prompt

engineering.

A challenge of prompt engineering is the fact that it is essen-

tially a platform-specific process. Prompts that perform well in

a particular system may under-perform in other systems [13],

[14], or even in different versions of the same system. For

instance, the release of version 2 of the Stable Diffusion

open-source text-to-image system caused user complaints that

prompts previously considered as “good” were producing

worse results [15]. Two changes motivating the performance

gap were different training datasets and the replacement of

a component of the AI system (the encoder). These types of

changes are expected each time a new version is released.

Moreover, some advanced aspects of prompting such as

negative information, assigning weights to prompt fragments

or setting platform-specific flags have a different degree of

support and use a different syntax in each generative AI

system.

To address these challenges, we propose to apply model-

driven engineering (MDE) principles and techniques to prompt

engineering. Our goals are: (a) facilitating the definition of

good prompts for different generative AI systems; (b) facil-

itating the migration of a prompt from one platform to an-

other without losing effectiveness; and (c) enabling knowledge

management of prompt-related tasks (such as documentation,

traceability or versioning). In particular, we offer the following

contributions:

• We propose Impromptu, a domain-specific language

(DSL) for defining prompts in a platform-independent

way. The DSL supports modular prompt definition and

is able to describe different tasks (such as text-to-text or

text-to-image) as well as multi-modal inputs.

• We use code generation to produce fine-tuned versions of

the prompt for specific platforms. We provide an example

for two text-to-image generative AI systems: Midjourney

and Stable Diffusion.

• We characterize further potential contributions and long-

term vision of MDE in the context of prompt engineering.

https://orcid.org/0000-0001-9639-0186
rclariso@uoc.edu
https://orcid.org/0000-0003-2418-2489
jordi.cabot@list.lu

Naturally, this DSL and toolkit are not intended for prompts

that will be used just once and then thrown away, e.g., in a

trial-and-error manner. Instead, the contributions of this paper

are intended for recurring prompts, e.g., prompts that are

valuable for a particular organization because they are used

as part of a business or engineering process.

The remainder of the paper is organized as follows. Sec-

tion II discusses related work on prompt engineering and

tool support. Then, Section III presents our DSL for prompt

engineering and the toolkit that implements it. Section IV

discusses the generation of platform-specific prompts. Sec-

tion V analyzes how MDE can contribute to the field of

prompt engineering. In Section VI, we draw the conclusions

and identify future avenues of research.

II. RELATED WORK

The massive impact of the input prompt on the output of a

generative AI system has triggered the creation of a myriad of

prompting tools, guides, and strategies to help craft the right

prompt for the task at hand. In this Section, we summarize

these different initiatives and compare them with our proposal.

A. General prompting strategies

Prompts can be used to ask generative AI systems to solve

tasks even when we provide few examples (few-shot) or even

none (zero-shot) [4], [8], [16]. Given a task, there are several

strategies to craft a suitable prompt:

• Experimentation: Starting from an initial prompt, iter-

atively refine it after inspecting the output artifact. The

goal is to craft a prompt that produces outputs that are

more suitable for our problem. As a community effort,

generative AI users have created several guidelines for

creating good prompts for typical tasks, e.g., [17]–[20].

• Preset/Recipe library: Reuse a predefined prompt tem-

plate for a particular task which has been previously

defined in a library, repository or collection of prompts.

• Reverse engineering: Infer suitable prompt contents

from a target example.

• Prompt optimization: Given an initial prompt, feed it to

another generative AI model that automatically suggests

edits that are likely to improve the quality of its output.

It is also possible to do this optimization manually by

applying known heuristics and best practices. For exam-

ple, a reasoning task may achieve a better result if we

request the list of intermediate arguments and deductions

(a chain-of-thought [9]).

• Batch prompting [21]: Group several queries into a

single prompt to reduce the costs (computational, envi-

ronmental, and economic) of invoking a generative AI.

• Prompt chaining [22]: Decompose a prompt for a

complex task into a sequence of intermediate subtasks,

creating a prompt to perform each step separately to

achieve a greater precision.

Table I describes, for each of the key strategies above, the

expected input, the number of interactions with the generative

AI system and the human role in the process. Note that

even though in some strategies the prompt engineer receives

assistance, his/her role is still critical in the proposal and

validation of prompts. In the following Sections, we discuss

the tool support available to prompt engineers.

B. Specific prompting strategies and tools

Most current approaches to create or manage prompts are

specialized in a given task or, a type of output artifact.

We have, for instance, prompting tools focusing on text-

to-text generation. Among them, we would like to high-

light PromptIDE [23], PromptArray [24], PromptSource [25],

Promptable [26], PromptMaker [27] or Promptify [28]. Ad-

ditional discussion on prompts for natural language tasks is

provided in [5].

Others are more oriented to text-to-image generation, such

as PromptBuilder [29], PromptGen [30], PromptMakr [31],

PromptMaker [32], or DiffusionBee [33], even covering the

creation of 3D CAD images [34]. A more complete discussion

of prompts for image generation is provided in [20] and [35].

While each of these tools offers its own prompting interface,

most are rather simple and basically consist of a free writing

area to indicate the prompt and a visualization of the prompt

execution. A few also execute prompts on the generative

AI system and log the results for visualization or analysis.

Nevertheless, there is no advanced support for the writing of

the prompt itself via some type of prompt language or similar,

nor a way to document and version a prompt. We discuss a

few exceptions in the next subsection.

C. Prompt builders

Some tools aim to assist the prompt engineer when writing

the prompts, mostly to offer a taxonomy of a fixed set of

prompt dimensions you can choose from when building your

prompt. Examples are PromptGen [30], Eye for AI [36] or

PromptSource [25], while works such as [37] or [38] are more

focused on describing possible taxonomies and catalogs to

be integrated in future prompt builders. PromptIDE [23] goes

one step further and allows users to experiment with prompt

variations and iteratively optimize prompts. Note that, each of

these tools focuses on a specific type of output and often even

on a specific generative AI system.

Other tools focus on the connection of prompt dimensions

(e.g., as you can do in PromptArray offering a reduced set

of boolean operators to mix partial prompts) or the chaining

of prompts (e.g., PromptChainer [39], with a visual language

for chains, or LangChain [40], a Python library, focus on

text-to-text prompts). The LlamaIndex library [41] also helps

users connect prompts with external data sources that can be

referenced as part of the prompt pipeline. Similarly, [42] mixes

scripting with prompt descriptions for a more “programming-

like” experience. As before, these tools are available for a

limited set of languages and AI systems.

Finally, PromptPerfect [43] and Promptist [44] explore the

idea of optimizing user prompts for specific platforms though

this optimization is automatic and therefore opaque to the

TABLE I
A CATALOG OF PROMPTING STRATEGIES.

Strategy Input(s) Number of calls to AI system Human role

Experimentation Prompt sketch Several (one per iteration) Full control
Preset library Prompt template + instantiation One Create templates + Search suitable template
Reverse engineering An example One (+ call to validator) Identify example + Validate suggested prompt
Prompt optimization Prompt sketch One (+ call to optimizer) Propose sketch + Validate optimizations
Batch prompting Set of prompts One (Optionally) Propose initial prompts
Prompt chaining Prompt sketch Several (one per subtask) Full control

prompt designer. The automatic generation of prompts is also

subject of investigation [11], [45] so far with limited results.

Impromptu aims to gather the best ideas of these approaches

to provide the first platform-independent prompt DSL together

with the infrastructure to assist in the creation of prompts

and their versioning and automatic transformation to specific

concrete target platforms providing, this way, an integrated

end-to-end platform for prompt engineering.

III. A DSL FOR PROMPT ENGINEERING

In this Section, we motivate the need for a prompt DSL

and present the Impromptu DSL for describing prompts and

prompt chains in a platform-independent way.

A. Why a DSL?

First, we discuss the suitability of creating a DSL for

prompt engineering. Generative AI systems operate on natural

language, a formalism which is sufficiently expressive and

flexible to describe any type of task or scenario. Then, why is

it necessary to use a DSL when it is possible to use natural

language? Several reasons motivate this decision:

Prompt templates: For the sake of generality, it may be

desirable to define a prompt as a template, where fragments of

the prompt are parameters to be instantiated in each particular

call with a different piece of information or command. For

instance, in a question answering prompt, we may have the

input question and the desired length of the response as

parameters. Thus, the definition of the prompt should allow

defining such parameters.

Hyperparameters: The call to a generative AI system

requires setting suitable values for hyperparameters, like the

temperature, which controls the randomness of the output

(random outputs may exhibit more errors but also more

creativity). It is useful to record information about suitable

values for these hyperparameters together with the prompt.

Multi-modal inputs: Recent generative AI systems [46]–

[48] support additional inputs beyond textual prompts, such

as images. It is necessary to describe these additional inputs

and their role in the definition of the task.

Modularity: A company may desire that several prompts

reuse a set of instructions to specify the tone, mood or

target audience of the output, specify fallback actions (e.g.,

provide a help message), or specify certain limitations on the

output (e.g., forbidden actions or topics). Rather than manually

replicating and appending these snippets each time, it would

be desirable to define these snippets independently and import

them where it is necessary.

Chaining: Complex tasks may not be solvable by means of

a single prompt. In this scenario, it is necessary to indicate the

relationship between different prompts in a chain, e.g., when

a given prompt uses the result from a previous one.

Documentation and meta-data: A complex prompt is the

result of a careful design and extensive experimentation.

Nevertheless, this knowledge is lost when we view a prompt

simply a string of text. It is necessary to keep track of relevant

meta-data, such as its author, versions, and comments.

Cost-effectiveness: Generative AI tools are efficient enough

to enable iterative refinement: a user proposes a prompt and,

if the outcome is not adequate according to some criteria, the

user modifies the previous prompt to address the identified

shortcoming. The process continues until a satisfactory output

is achieved. In this scenario, intermediate prompts would

be simply discarded. Similarly, many prompts may be one-

offs, that will never be reused. In these scenarios, there is

limited benefit in putting the effort to describe them using a

DSL. Instead, Impromptu is targeted towards complex prompts

that aim to be re-used. We are considering the prompts that

empower an intelligent application or service relying on a

generative AI system as its back-end. These are the types of

prompts where it makes sense to optimize the effectiveness,

minimize cost and enable platform-independence.

Flexibility: Natural language is capable of describing any

type of task or scenario. Instead, a DSL introduces a structure

which may limit the freedom provided by natural language.

However, a DSL is better suited to expressing concepts and

adapting them to different platforms. For example, thanks to

an MDE framework like Impromptu, it is possible to specify

that we want to generate an image with the highest possible

quality and then have transformations that generate the most

suitable quality term for each text-to-image system.

B. Abstract syntax

Figure 1 presents the core concepts of the Impromptu meta-

model.

Assets: The central notion being described is the asset,

which can be either prompt, a composer or a prompt chain.

Assets can be annotated with useful information such as

language, description and authors. To keep track of different

versions of an asset, it is possible to provide a version name,

date of creation and last update and identify prior versions

of the same prompt. Moreover, assets can be given labels to

facilitate organizing and searching catalogs of prompts.

Each asset has as a single output that can be of a different

type, e.g., text or image. Moreover, assets may have several

inputs, which can either be textual parameters (parts of a

prompt whose value is provided by the user or computed by

a previous prompt in a chain) or multi-modal inputs (such as

an image) that provide additional information to be used.

Finally, it is possible to specify suitable values for the

hyperparameters of AI systems that should be used when

generating an output for the asset. Hyperparameters are defined

as strings, as some of them can be of type string, e.g., stop

sequences. However, it is necessary to validate that numeric

hyperparameters such as temperature have numeric values.

Prompts: Prompts are defined as a sequence of snippets.

One snippet is identified as the prefix (suffix) and is prepended

(appended) to the rest of the prompt, while the rest form the

core of the prompt.

A snippet can contain a textual literal, a reference to one

of the prompt’s parameters or to another asset to be reused

(allowing for modular definitions of prompts). Moreover, a

snippet can also include a property about the output (called

trait) chosen from a predefined catalog. Figure 2 presents

the traits that are independent of the format of the prompt’s

output. Some sample traits are including certain elements,

emulating the style of a given author or satisfying specific

size constraints. There are also format-dependent traits, such

as the language register (such as formal or vulgar) for textual

outputs or the art form (such as photography or drawing) for

image outputs.

Each component of a prompt, such as snippets or inputs, can

be given a weight that indicates its relevance. Some generative

AI systems can use these weights to steer the execution of the

prompt (see Fig. 3 in Section IV for an example).

Composers: A composer is a utility that concatenates sev-

eral snippets without performing any additional processing.

This is useful to collate the output of different text-to-text

prompts into a single string.

Prompt chains: A prompt chain is a sequence of prompts

that computes a result step by step. Each step corresponds to

the execution of an asset. Just like a prompt, a chain has inputs

that can be parameters or non-textual data. The inputs of each

step of the chain are either set to a constant value, a parameter

of the chain or the output of a preceding step. Finally, the last

step in the sequence computes the result, i.e., the output of

the chain.

C. Concrete syntax

We have defined a textual syntax to encode specifications

written in the Impromptu DSL. The complete grammar is

available in [49]. The following is a snippet of this grammar

in Langium [50] format: the definition of hyperparameters.

Langium automatically generates an instance of the metamodel

(the parse tree) when parsing an input.

Fig. 1. Core of the Impromptu meta-model.

Fig. 2. Format-independent predefined traits.

HyperParameters:

hyper+=HyperParam (’,’ hyper+=HyperParam)*;

HyperParam:

’hyper’ ’(’ name=STRING ’,’ value=STRING ’)’;

We will present its complete syntax using an example:

the creation of a prompt chain to generate an English test.

The exam will consist of three blocks: a set of grammar

questions, an AI-generated image and a set of questions about

the image. These blocks, the image and all the questions, will

be generated by different AI services. The chain will have two

parameters: the animal appearing in the image to be generated

and the level of competency in English to be assessed.

First, we will define a prompt to be reused as a suffix for

several prompts. This prompt provides instructions regarding

the tone and difficulty of the questions. It includes a single

parameter: the level of competency in English of the questions.

composer Exam.DetailedInstructions

(@level "English level")

"Questions should be clear and avoid

controversial topics such as

politics or religion.",

"The difficulty should be adequate

for students with an English level of ",

@level, "."

Next, we write a prompt to generate the grammar questions:

prompt Exam.GrammarQuestions

(@level "English level"): text

core = "Propose 5 grammar questions

for an English exam",

"Use British English at all times"

weight high

suffix = Exam.DetailedInstructions(@level)

The following prompts generate an image of an animal and

a set of questions about that image:

prompt GenerateImage(

@animal "Name of an animal"): image

core = "Image of ",

@animal,

" in its natural habitat"

traits = quality(high),

art_form(photography)

prompt ImageQuestions(

$image "Image",

@animal "Animal appearing in the image",

@level "English level)": text

core = "Propose 5 questions for an English

course regarding the picture of",

@animal

suffix = Exam.DetailedInstructions(@level)

composer CompleteExam(

@grammar "Grammar questions",

@questions "Questions about the image")

"Answer the following questions:\n",

@grammar, "(50%)\n",

@questions, "(50%)\n"

Finally we define the complete chain as follows:

chain GenerateExam(

@level "English level",

@animal "Animal in the image"): text

@q1 = GrammarQuestions(@level)

$img = GenerateImage(@animal)

@q2 = ImageQuestions($img, @animal, @level)

result = CompleteExam(@q1,@q2)

For a B1 (intermediate) level of English, we show a snippet

of ChatGPT’s output to the GrammarQuestions prompt:

Choose the correct form of the verb to complete

the sentence: "He ____ to London last week."

Select the appropriate word to complete the

sentence: "I have ____ interesting book to read."

D. Implementation

As a prototype, we have implemented an editor for the

Impromptu DSL as a Visual Studio Code extension [49].The

implementation is written in TypeScript and is based on

Langium [50], an open-source language engineering tool

which supports the Language Server Protocol. Thanks to

Langium, the editor offers built-in syntax-highlighting, syntax

checking and autocomplete suggestions. These suggestions are

a useful way to help a user create a prompt, e.g., by suggesting

a list of candidate predefined traits.

In addition to a graphical user interface (GUI), Im-

promptu also offers a simple command-line interface (CLI)

that makes it possible to generate tool-specific prompts within

automated workflows.

IV. PROMPT CUSTOMIZATION

Platform-independent prompts facilitate prompt migration:

changing the generative AI system that is consuming prompts.

In order to illustrate the capabilities of the Impromptu frame-

work, we have implemented generators that transform the

platform-independent prompt into the specific prompt for

two particular text-to-image generative AI systems: Midjour-

ney [51] and Stable Diffusion (SD). In particular, we are tar-

geting the AUTOMATIC1111 webui for Stable Diffusion [52].

First, we highlight the following differences between the

syntax of prompts in these two systems:

• Attention: SD can increase the attention devoted to

specific concepts using (concept) to increase attention

or [concept] to decrease it. These modifiers can be

stacked multiplicatively, e.g., ((concept)) to further

increase the weight of a concept. Alternatively, it can

assign a weight explicitly using (concept:weight),

where weight is a real. Meanwhile, Midjourney as-

signs weights to individual concepts using the syntax

concept::weight, where weight is an integer (Mid-

journey versions 1-3) or real (Midjourney version 4).

• Negative information: SD specifies concepts that should

be avoided in the image as a separate negative prompt.

Meanwhile, Midjourney embeds negative information in

the same prompt, either using a negative weight or using

the --no flag preceding a concept.

• Combinations: SD allows describing an intermediate

concept between two other concepts (keyword blending)

using the syntax [concept1:concept2 :N], where

N is a value between 0 and 1 (the larger it is, the

more weight is given to the second concept). Midjourney

does not offer such feature. Instead, Midjourney’s syntax

{concept1, ..., conceptN} has a different se-

mantics, a permutation prompt: it generates one separate

prompt per alternative. Thus, combinations need to be

composer GenerateGryphoon(): image

Mixture("eagle", "lion")

prompt Mixture(@animal1, @animal2): image

core = audience("children") weight high,

medium(drawing),

between(@animal1, @animal2),

no("violent"), no("scary")

(a)

Positive prompt:

drawing of [eagle:lion :0.5], (for children)

Negative prompt:

violent, scary

(b)

drawing of a combination of eagle and lion,

for children::2, --no violent, --no scary

(c)

Fig. 3. Example of platform customization: (a) Impromptu platform-
independent prompt, (b) Generated prompt for Stable Diffusion, (c) Generated
prompt for Midjourney.

described explicitly using a textual description rather than

a custom keyword.

Figure 3 shows the process for building a prompt that

generates an illustration for a children’s book for each system

thanks to Impromptu. The illustration should include a fantastic

animal combining features from two animals. Fig. 3(a) shows a

potential Impromptu prompt, from which our tool can generate

platform-specific prompts for SD (Fig. 3(b)) and Midjourney

(Fig. 3(c)). Notice that, in the case of SD, the generated prompt

has two separate components: the positive prompt and the

negative one, with concepts to be avoided.

V. CONTRIBUTIONS OF MDE TO PROMPT ENGINEERING

The previous Sections have illustrated the use of a DSL

to support modular prompt definition, prompt migration and

prompt documentation. Beyond these features, the use of an

MDE-based prompt engineering platform like ours can con-

tribute to several aspects of the prompt engineering process.

Platform selection: When prompts are specified in a

platform-independent way, it is possible to implement strate-

gies for selecting the most suitable generative AI system for a

given prompt automatically. The criteria used in this decision

may include:

• Cost of the AI service.

• Length of the prompt (for services with a prompt limit).

• Support for constructs used in the prompt (e.g., Midjour-

ney does not currently support combination prompts).

• Performance information of different generative AI sys-

tems for a particular type of task.

• Available interfaces of the AI service (e.g., API or graph-

ical user interface).

Code generation and run-time management: In addition to

generating textual prompts, it is possible to generate the code

that invokes the generative AI system to capture the response.

Obviously, this is only possible for systems offering an API.

When code generation is feasible, it is also possible to keep

a log of the outputs of generative AI systems, recording the

prompts, parameters and outputs. This can be used to keep

track of the quality of a given prompt over time.

Prompt optimization: As discussed in the related work

(Section II), tools like PromptPerfect or Promptist aim to apply

platform-dependent optimizations to improve the quality of

prompts. Rather than working with the optimized prompts,

it would be possible to integrate these optimizations in the

prompt generation process.

Platform comparison: Different generative AI systems may

produce outputs of different quality for the same prompt. It

may be interesting to generate and process prompts in different

platforms, either to offer all outputs as alternatives to the user

or to compare their performance by automatic means.

Prompt quality and security analysis: In addition to gener-

ating code, it would be possible to generate validation artifacts,

such as prompt-driven tests, to automatically assess whether

the output of a generative AI tool for a given prompt fulfills

the input specification. Resuming our prompt for a children’s

book, after generating an image we could generate another

prompt for a multi-modal AI service asking whether the

generated image is indeed suitable for children.

For prompts with parameters, an area of particular interest

is checking whether the prompt is susceptible to prompt injec-

tion, i.e., crafting malicious inputs to achieve goals contrary

to the interests of the prompt creators, such as revealing the

content of the prompt in the output.

Multi-lingual prompt generation: Given that the prompt

generation process is under our control, we can generate the

platform-specific prompts in languages other than English,

provided that the user either (a) specifies literals in that

language or (b) uses only predefined traits. While this feature

has right now limited practical application as most generative

AI systems are trained on datasets where English is the

predominant language (and thus the performance is better

when they receive prompts written in English), we see a trend

towards releasing localized generative AI systems trained on

other languages.

VI. CONCLUSIONS AND FUTURE WORK

Prompt engineering is an emerging discipline that studies

prompting strategies and their impact on the efficiency of

generative AI systems. In this paper, we have discussed the

benefits of applying MDE techniques to this field.

In particular, we have introduced a DSL called Im-

promptu for the definition of platform-independent prompts.

This DSL enables features such as modular prompts, prompt

customization for specific platforms and prompt documenta-

tion. Moreover, it is expressive enough to describe different

types of tasks, like text-to-text or text-to-image.

As future work, we plan to expand the MDE capabilities of

Impromptu to start supporting the key applications discussed

in the previous section, starting from code generation.

REFERENCES

[1] A. Mullen, N. Greene, B. Stewart, M. Halpern, and S. Barot, “Top
strategic technology trends for 2022: Generative AI,” 2021, Gartner
report.

[2] J. Wiles. (2023) Beyond ChatGPT: The future of generative AI
for enterprises. [Online]. Available: https://www.gartner.com/en/articles/
beyond-chatgpt-the-future-of-generative-ai-for-enterprises

[3] M. O’Grady and M. Gualtieri, “Global AI software forecast,” 2022,
Forrester report.

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” arXiv preprint

arXiv:2005.14165, 2020.

[5] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” arXiv preprint arXiv:2107.13586, 2021.

[6] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren,
Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen, “A survey of
large language models,” arXiv preprint arXiv:2303.18223, 2023.

[7] J. Ye, X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui, Z. Zhou,
C. Gong, Y. Shen, J. Zhou, S. Chen, T. Gui, Q. Zhang, and X. Huang, “A
comprehensive capability analysis of GPT-3 and GPT-3.5 series models,”
arXiv preprint arXiv:2303.10420, 2023.

[8] L. Reynolds and K. McDonell, “Prompt programming for large
language models: Beyond the few-shot paradigm,” in Extended

Abstracts of the 2021 CHI Conference on Human Factors in

Computing Systems, ser. CHI EA ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411763.3451760

[9] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” arXiv preprint arXiv:2201.11903, 2022.

[10] Inspired Cognition, “Prompt Gym,” 2023. [Online]. Available: https:
//github.com/inspired-cognition/critique-apps/tree/main/prompt-gym

[11] S. Witteveen and M. Andrews, “Investigating prompt engineering in
diffusion models,” arXiv preprint arXiv:2211.15462, 2022.

[12] T. Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh, “Calibrate
before use: Improving few-shot performance of language models,” arXiv

preprint arXiv:2102.09690, 2021.

[13] V. Petsiuk, A. E. Siemenn, S. Surbehera, Z. Chin, K. Tyser, G. Hunter,
A. Raghavan, Y. Hicke, B. A. Plummer, O. Kerret, T. Buonas-
sisi, K. Saenko, A. Solar-Lezama, and I. Drori, “Human evaluation
of text-to-image models on a multi-task benchmark,” arXiv preprint

arXiv:2211.12112, 2022.

[14] A. Borji, “Generated faces in the wild: Quantitative comparison
of Stable Diffusion, Midjourney and DALL-E 2,” arXiv preprint

arXiv:2210.00586, 2022.

[15] A. Romero, “Stable Diffusion 2 is not what users expected – or wanted,”
2022. [Online]. Available: https://thealgorithmicbridge.substack.com/p/
stable-diffusion-2-is-not-what-users

[16] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa,
“Large language models are zero-shot reasoners,” arXiv preprint

arXiv:2205.11916, 2022.

[17] DAIR.AI, “Prompt engineering guide,” 2023. [Online]. Available:
https://www.promptingguide.ai/

[18] OpenAI, “Best practices for prompt engineering with OpenAI
api,” 2023. [Online]. Available: https://help.openai.com/en/articles/
6654000-best-practices-for-prompt-engineering-with-openai-api

[19] Dallery.Gallery, “DALL-E 2 prompt book,” 2022. [Online]. Available:
https://dallery.gallery/the-dalle-2-prompt-book/

[20] V. Liu and L. B. Chilton, “Design guidelines for prompt engineering
text-to-image generative models,” in CHI Conference on Human Factors

in Computing Systems. New York, NY, USA: ACM, 2022, pp. 1–23.

[21] Z. Cheng, J. Kasai, and T. Yu, “Batch prompting: Efficient inference with
large language model APIs,” arXiv preprint arXiv:2301.08721, 2023.

[22] T. Wu, M. Terry, and C. J. Cai, “AI chains: Transparent and
controllable human-AI interaction by chaining large language model
prompts,” in Proceedings of the 2022 CHI Conference on Human

Factors in Computing Systems, ser. CHI ’22. New York, NY, USA:

Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3491102.3517582

[23] H. Strobelt, A. Webson, V. Sanh, B. Hoover, J. Beyer, H. Pfister, and
A. M. Rush, “Interactive and visual prompt engineering for ad-hoc
task adaptation with large language models,” IEEE Transactions on

Visualization and Computer Graphics, vol. 29, no. 1, pp. 1146–1156,
2022.

[24] “PromptArray: A prompting language for neural text generators,” 2023.
[Online]. Available: https://github.com/jeffbinder/promptarray

[25] S. H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel, N. V. Nayak,
A. Sharma, T. Kim, M. S. Bari, T. Fevry, Z. Alyafeai, M. Dey, A. Santilli,
Z. Sun, S. Ben-David, C. Xu, G. Chhablani, H. Wang, J. A. Fries,
M. S. Al-shaibani, S. Sharma, U. Thakker, K. Almubarak, X. Tang,
X. Tang, M. T.-J. Jiang, and A. M. Rush, “PromptSource: An integrated
development environment and repository for natural language prompts,”
arXiv preprint arXiv:2202.01279, 2022.

[26] “Promptable: Workspace for prompt engineering,” 2023. [Online].
Available: https://promptable.ai/

[27] E. Jiang, K. Olson, E. Toh, A. Molina, A. Donsbach, M. Terry,
and C. J. Cai, “PromptMaker: Prompt-based prototyping with large
language models,” in Extended Abstracts of the 2022 CHI Conference

on Human Factors in Computing Systems, ser. CHI EA ’22. New
York, NY, USA: Association for Computing Machinery, 2022. [Online].
Available: https://doi.org/10.1145/3491101.3503564

[28] “Promptify,” 2023. [Online]. Available: https://github.com/promptslab/
Promptify

[29] “PromptBuilder: AI text prompt generator,” 2023. [Online]. Available:
https://aitextpromptgenerator.com/builder

[30] “PromptGen: A tool for AI art generation,” 2023. [Online]. Available:
https://promptgen.vercel.app/

[31] “Promptmakr,” 2023. [Online]. Available: https://promptmakr.com/

[32] “PromptMaker,” 2023. [Online]. Available: https://promptmaker.com/

[33] “DiffusionBee,” 2023. [Online]. Available: https://diffusionbee.com/

[34] V. Liu, J. Vermeulen, G. Fitzmaurice, and J. Matejka, “3DALL-E:
Integrating text-to-image AI in 3D design workflows,” arXiv preprint

arXiv:2210.11603, 2022.

[35] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt for vision-
language models,” International Journal of Computer Vision, vol. 130,
no. 9, pp. 2337–2348, 2022.

[36] “Eye for AI: text-to-image tools and templates,” 2023. [Online].
Available: https://eyeforai.xyz/

[37] J. Oppenlaender, “A taxonomy of prompt modifiers for text-to-image
generation,” arXiv preprint arXiv:2204.13988, 2022.

[38] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. El-
nashar, J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern cat-
alog to enhance prompt engineering with ChatGPT,” arXiv preprint

arXiv:2302.11382, 2023.

[39] T. Wu, E. Jiang, A. Donsbach, J. Gray, A. Molina, M. Terry, and
C. J. Cai, “PromptChainer: Chaining large language model prompts
through visual programming,” in Extended Abstracts of the 2022 CHI

Conference on Human Factors in Computing Systems, ser. CHI EA
’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3491101.3519729

[40] “LangChain,” 2023. [Online]. Available: https://python.langchain.com/

[41] J. Liu, “LlamaIndex,” 11 2022. [Online]. Available: https://github.com/
jerryjliu/llama index

[42] L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting is program-
ming: A query language for large language models,” arXiv preprint

arXiv:2212.06094, 2022.

[43] “PromptPerfect,” 2023. [Online]. Available: https://promptperfect.jina.ai/

[44] “Promptist,” 2023. [Online]. Available: https://huggingface.co/spaces/
microsoft/Promptist

[45] T. Shin, Y. Razeghi, R. L. Logan, E. Wallace, and S. Singh, “Auto-
Prompt: Eliciting knowledge from language models with automatically
generated prompts,” arXiv preprint arXiv:2010.15980, 2020.

[46] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter,
A. Wahid, J. Tompson, Q. Vuong, T. Yu, W. Huang, Y. Chebotar,
P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke, K. Hausman,
M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence,
“PaLM-E: An embodied multimodal language model,” arXiv preprint

arXiv:2303.03378, 2023.

[47] S. Huang, L. Dong, W. Wang, Y. Hao, S. Singhal, S. Ma, T. Lv, L. Cui,
O. K. Mohammed, B. Patra, Q. Liu, K. Aggarwal, Z. Chi, J. Bjorck,
V. Chaudhary, S. Som, X. Song, and F. Wei, “Language is not all

https://www.gartner.com/en/articles/beyond-chatgpt-the-future-of-generative-ai-for-enterprises
https://www.gartner.com/en/articles/beyond-chatgpt-the-future-of-generative-ai-for-enterprises
https://doi.org/10.1145/3411763.3451760
https://github.com/inspired-cognition/critique-apps/tree/main/prompt-gym
https://github.com/inspired-cognition/critique-apps/tree/main/prompt-gym
https://thealgorithmicbridge.substack.com/p/stable-diffusion-2-is-not-what-users
https://thealgorithmicbridge.substack.com/p/stable-diffusion-2-is-not-what-users
https://www.promptingguide.ai/
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://dallery.gallery/the-dalle-2-prompt-book/
https://doi.org/10.1145/3491102.3517582
https://github.com/jeffbinder/promptarray
https://promptable.ai/
https://doi.org/10.1145/3491101.3503564
https://github.com/promptslab/Promptify
https://github.com/promptslab/Promptify
https://aitextpromptgenerator.com/builder
https://promptgen.vercel.app/
https://promptmakr.com/
https://promptmaker.com/
https://diffusionbee.com/
https://eyeforai.xyz/
https://doi.org/10.1145/3491101.3519729
https://python.langchain.com/
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://promptperfect.jina.ai/
https://huggingface.co/spaces/microsoft/Promptist
https://huggingface.co/spaces/microsoft/Promptist

you need: Aligning perception with language models,” arXiv preprint

arXiv:2302.14045, 2023.
[48] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc,

A. Mensch, K. Millican, M. Reynolds, R. Ring, E. Rutherford, S. Cabi,
T. Han, Z. Gong, S. Samangooei, M. Monteiro, J. Menick, S. Borgeaud,
A. Brock, A. Nematzadeh, S. Sharifzadeh, M. Binkowski, R. Barreira,
O. Vinyals, A. Zisserman, and K. Simonyan, “Flamingo: a visual lan-
guage model for few-shot learning,” arXiv preprint arXiv:2204.14198,
2022.

[49] R. Clarisó and J. Cabot, “Impromptu DSL and toolkit:
GitHub repository,” 2023. [Online]. Available: https://github.com/
SOM-Research/Impromptu

[50] “Langium,” 2023. [Online]. Available: https://langium.org/
[51] “Midjourney,” 2023. [Online]. Available: https://www.midjourney.com/
[52] “AUTOMATIC1111 Stable Diffusion Web UI,” 2023. [Online].

Available: https://github.com/AUTOMATIC1111/stable-diffusion-webui

https://github.com/SOM-Research/Impromptu
https://github.com/SOM-Research/Impromptu
https://langium.org/
https://www.midjourney.com/
https://github.com/AUTOMATIC1111/stable-diffusion-webui

	Introduction
	Related work
	General prompting strategies
	Specific prompting strategies and tools
	Prompt builders

	A DSL for prompt engineering
	Why a DSL?
	Abstract syntax
	Concrete syntax
	Implementation

	Prompt customization
	Contributions of MDE to prompt engineering
	Conclusions and Future Work
	References

