
Towards the Optical Character Recognition of DSLs
Jorge Perianez-Pascual∗

jpery@unex.es
Quercus SEG, Universidad de Extremadura

Cáceres, Spain

Roberto Rodriguez-Echeverria∗
rre@unex.es

Quercus SEG, Universidad de Extremadura
Cáceres, Spain

Loli Burgueño†
lburguenoc@uoc.edu

Open University of Catalonia
Barcelona, Spain

Jordi Cabot‡
jordi.cabot@icrea.cat

ICREA – UOC
Barcelona, Spain

Abstract
OCR engines aim to identify and extract text strings from
documents or images. While current efforts focus mostly in
mainstream languages, there is little support for program-
ming or domain-specific languages (DSLs). In this paper, we
present our vision about the current state of OCR recognition
for DSLs and its challenges. We discuss some strategies to
improve the OCR quality applied to DSL textual expressions
by leveraging DSL specifications and domain data. To better
support our ideas we present the preliminary results of an
empirical study and outline a research roadmap.

CCS Concepts: • Software and its engineering → Do-
main specific languages; • Applied computing → Op-
tical character recognition.

Keywords: optical character recognition, domain-specific
languages, text recognition

ACM Reference Format:
Jorge Perianez-Pascual, Roberto Rodriguez-Echeverria, Loli Bur-
gueño, and Jordi Cabot. 2020. Towards the Optical Character Recog-
nition of DSLs. In Proceedings of the 13th ACM SIGPLAN Inter-
national Conference on Software Language Engineering (SLE ’20),
November 16–17, 2020, Virtual, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3426425.3426937

1 Introduction
Optical Character Recognition (OCR) aims to identify and
extract text strings from images (scanned documents, pic-
tures of handwritten text, video frames, etc.). OCR is still a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’20, November 16–17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8176-5/20/11. . . $15.00
https://doi.org/10.1145/3426425.3426937

very active research area [18] that benefits from advances in
computer vision, neural networks, machine translation, etc.
Current efforts focus mostly on mainstream natural lan-

guages for which there is ample available data to be used for
training, predefined language models and public dictionaries
that help achieve high levels of accuracy in the OCR process.
Instead, specific OCR support decreases considerably when
targeting programming languages—although some works to
extract source code from programming video tutorials have
appeared lately [14, 24, 26]—and even more when address-
ing Domain-Specific Languages (DSLs) where, due to their
own nature and unlike general-purpose languages (GPL),
we do not count on predefined dictionaries or pretrained
recognition algorithms. For instance, unlike GPLs, we can-
not assume that code repositories like GitHub have enough
good examples of any DSL we can think of to train a OCR
model for the language from scratch.
Nevertheless, good OCR support for DSLs could bring

significant benefits and open the door to interesting appli-
cations in the field of DSLs. For instance, one could parse
old manuals of legacy DSLs (or even conference proceedings
from past or related SLE conferences) to automatically ex-
tract examples, which could be later used as test data for new
parsers or to train any machine learning-based algorithms.
In these cases, numerous examples are needed, and common
solutions such as the generation of synthetic [21] data may
not be optimal. When possible, our approach would be an
additional source of data. From a teaching perspective, such
OCR for DSLs could help in processing student assignments
for automatic assessment1. Additionally, DSLs are currently
also documented by means of video tutorials, as in the case
of general programming languages. Furthermore, there is the
specific case of graphical DSLs, whose graphical notation is
complemented with textual languages. In those cases, the tex-
tual DSL expressions often appear as annotations next to the
referenced graphical elements. Those annotated diagrams
are usually stored, published, or shared as images. OCL [6] is
an example of a textual language that complements UML [23]
models. While complex OCL expressions are better defined

1There are still many courses where tests are completed with pen and paper

https://doi.org/10.1145/3426425.3426937
https://doi.org/10.1145/3426425.3426937

SLE ’20, November 16–17, 2020, Virtual, USA Perianez-Pascual et al.

in separate files, short ones are usually depicted as notes in
UML class diagram (or other UML diagrams).

In the same way that Language Workbenches [9] offer fea-
tures such as the generation of parsers and autocompletion
from a DSL definition, we believe that they should also offer
OCR support. For instance, they could automatically gener-
ate a tailor-made OCR configuration or post-processing for
any given language.
In this paper, we provide our vision about what are the

main challenges of OCR support for textual DSLs and dis-
cuss several alternatives to improve recognition quality by
leveraging the DSL specification and available domain data.
The rest of the paper is structured as follows. Section 2

presents the main challenges that motivate our work. Sec-
tion 3 discusses the main quality improvement strategies and
Section 4 an empirical study to assess our ideas. In Section 5,
related works are briefly summarized. Section 6 presents a
research roadmap and, finally, Section 7 concludes our work.

2 Challenges in OCR support for DSLs
Unlike the recognition of natural language (NL), DSL snippet
recognition presents additional challenges. First, since DSL
snippets need to be eventually processed by a language IDE,
error-free recognition is essential. For instance, missing a “.”
character at the end of a sentence written in English does not
prevent the reader from understanding its meaning or make
a text processor fail, but missing a “.” in a piece of code will
make the language parser not be able to build the expression
abstract-syntax tree (AST). Second, when the recognition
of a sequence of characters that forms a word has a low-
accuracy, pre-trained OCRs try to return the closest word in
their dictionary. While pre-trained OCRs have been trained
for Natural Language (NL), whose vocabulary is closed (e.g.,
English dictionary), the quality of their results decreases
when used to recognize DSL expressions, since DSLs possess
specific lexicons and grammars. Furthermore, punctuation
signs are applied in a very different way in a DSL compared
to NL (e.g., “.” characters are used as separators between
two words in addition to whitespaces hence OCR models
for NL tend to insert a whitespace after each “.” recognized).
For this reason, which is also supported by our own expe-
rience, most of the recognized DSL snippets present some
kind of syntax error, which prevents their proper load into
language IDEs. Regarding the way an OCR works, assuming
the original DSL snippet was correct, the types of syntax
errors can be reduced to the following two: (1) not found
symbol, e.g., the OCR changed, merged or split one of the
symbols; and (2) punctuation or operator missing or appear-
ing in an unexpected position, e.g., missed ")" or expected
""".
Although the easiest way to address these issues might

be to (re)train an OCR engine with DSL images of code,
usually the amount of data needed is much larger than the

data available. For instance, Tesseract, which is one of the
most popular OCR engines, has been trained with 400,000-
800,000 rendered lines of NL text2. While this amount of data
could be collected from GitHub repositories for well-known
GPLs such as Java or Python, we believe this is hardly (if not
impossible) achievable for most DSLs.
For DSL recognition, as an alternative method, we pro-

pose to use the knowledge we have about the specificity
of the DSL. We distinguish five fundamental groups: (1)
DSL Punctuation (punctuation signs and operators), (2) DSL
lexicon (i.e. keywords, functions, types), (3) domain names
(when applicable3 – e.g., a domain name is a table name in a
database schema or a class name in a metamodel), (4) user-
defined names (e.g., variables), and (5) literal values (e.g.,
’John Smith’). While the former 3 groups depend on the DSL
and can be captured in a dictionary (i.e., they can be derived
from language grammar and additional existing artifacts),
the last 2 contain information that may vary from snippet to
snippet. We propose to use the available knowledge about
the DSL to improve the OCR quality for the first 3 groups.
Note that we use the term domain names to mean different
information sources, which could appear in different applica-
tion domains, e.g., the names of a database schema for SQL,
the names of a metamodel for OCL or the names of an API
definition for a programming language.
Finally, an additional challenge appears when proposing

any method for OCR quality improvement: OCR indepen-
dence. Any method should be seamlessly applicable to dif-
ferent OCR engines without introducing any overhead.

3 Towards a better OCR support for DSLs
The most basic workflow for OCR recognition of DSLs has
only two steps: (1) give an image containing a piece of DSL
code to an OCR system, and (2) load the result into a language
IDE. As this presents the problems previously discussed, two
different approaches enable the improvement of the recogni-
tion quality by leveraging the knowledge aforementioned:
(1) defining different custom languages as extensions of a
base language to better fit the DSL (this would only be ap-
plicable to groups 1–3 of Section 2); and (2) repairing the
OCR output by means of a post-processing algorithm (which
applied to groups 1–4). In the following, we further present
both strategies.

3.1 Custom languages
OCR engines usually provide pre-trained models for specific
languages (e.g., English). They provide mechanisms, called
custom languages, to retrain the OCR model, which fully
replaces the pre-trained model with a standard/default dic-
tionary. The default configuration is often optimized for the

2https://github.com/tesseract-ocr/tesseract/issues/654
3Note that not all DSLs support domain names

https://github.com/tesseract-ocr/tesseract/issues/654

Towards the Optical Character Recognition of DSLs SLE ’20, November 16–17, 2020, Virtual, USA

English language (D: Default), which should not be prob-
lematic given that most DSLs’ syntax are written in English
and its domain names are usually in English, too. However,
in order to improve the OCR output quality for DSLs, accord-
ing to the aforementioned groups 1–3, we propose to define
the following custom languages:

3.1.1 DP: Default + Punctuation. The punctuation signs
of the English language (default) are modified to be consis-
tent with the DSL. All punctuation signs of the English lan-
guage not present in the DSL grammar are removed from
the custom language and all punctuation signs of the DSL
not present in the English language are added. Additionally,
if a DSL operator is composed by a sequence of punctuation
signs (e.g., “!=”), we propose to include them, too.

3.1.2 DPL: Default + Punctuation + Language. We ex-
tend the previous custom language by including all the lexical
information of the DSL language such as keywords, func-
tions and types (e.g., “Integer”, “this”, “self”, “substr”, etc.).

3.1.3 DPLD: Default + Punctuation + Language + Do-
main. This language is an extension of the previous one,
which additionally includes the known domain names. Since
different expressions or snippets written in the same DSL
may have different domain name sets, e.g. SQL queries are
written for different data schemes (each schema containing
different table names, attribute names, etc.), it is necessary
to generate a specific custom language DPLD for each pair
(DSL, domain) and retrain the model accordingly. Note that
this may cause some performance overhead (see Section 4.3
for more details).

3.2 Post-processing
Although custom languages may introduce some improve-
ments, they also pose some limitations.

The improvements of custom languages are highly depen-
dant on the OCR engine and its prioritisation mechanisms.
For instance, if an OCR does not prioritize DSL-specific key-
words over similar English words, the quality of the result
will be unsatisfactory. The situation is even worse if, apart
from not improving the quality, the performance decreases,
as in the case of DLPD.

Once a custom language is defined, it does not imply that
it can be used in different OCR systems since each OCR
engine usually defines its own specificmethod to load custom
languages.

DSL snippets with an intensive use of user-defined names
(e.g. "p1" or "maxVal") will easily become error-prone since
these names cannot be anticipated, and thus, are not part of
the custom languages’ dictionaries.

We propose to address all these limitations by means of a
generic and OCR-agnostic post-processing algorithm.

As previously stated, in DSL recognition, the type of syn-
tax errors can be reduced to two: (1) missing symbols, and

(2) punctuation errors. In the literature, we may find a great
number of approaches to deal with the automatic repairing
of syntax errors for different kinds of parsers [17, 19], which
can been applied to particular programming languages. Some
of these approaches could also be successfully applied herein
to solve those syntax errors introduced by the recognition
process, but they would be DSL-specific solutions. Given
that our goal is to count on a generic and OCR-agnostic al-
gorithm, in this paper, we explore a preliminary solution to
solve the former type of error (missing symbol) by means of
a name-repairing algorithm, which is inspired by the work
on correction of spelling errors in [8].

First of all, we need to define a dictionary containing all the
names of the DSL lexicon and the domain (groups 2–3). Once
the dictionary is defined, our proposed algorithm iterates
along the sequence of tokens of the recognized expression to
compare each token with the symbols in the dictionary. If the
algorithm detects that one is missing, the algorithm replaces
it by the closest word in the dictionary. This “closeness” is
measured using a normalized edit distance.

Additionally, the algorithm can include user-defined names
into its dictionary. In such case, the automatic extraction
of these names from DSL expressions requires knowledge
about the DSL grammar to locate where they are defined
and used. Let us assume that an expression defines a variable
named "p1". This variable can present different recognition
errors, such as "pl" or "pi". The post-processing algorithm
locates the places where variables are defined and used and
adds to its dictionary the recognized name of the variable
declaration. Then, when recognizing variable usage, if the
recognized variables do not match with a defined variable
(i.e., which are part of the dictionary), it tries to repair all
of the usages with the name that is in the dictionary. Note
that we are not considering herein how to deal with merged
and split words—e.g., the string "b|a" may be recognized as
"bla"—which may need specific repairing techniques.
Finally, the second type of syntax error, i.e. punctuation

errors, usually requires syntax knowledge for a full repairing.
Here, we make a difference between a deep or a light knowl-
edge of the DSL syntax, because each option clearly entails
different levels of success as well as effort. In the first case,
approaches for automatic syntax error repairing are helpful
but they come with the need of a DSL-specific configuration,
which makes them effective but more time-consuming. In
the second case, we understand light knowledge as knowing
only the punctuation rules of the DSL syntax. With such
information, an algorithm is able to review the faulty rec-
ognized expressions to detect violations of rules, e.g. ": :"
instead of ":", and define appropriate heuristics to find and
repair them. Although less effective than the previous ap-
proach, it can still fix a good number of errors in a more
efficient manner.

SLE ’20, November 16–17, 2020, Virtual, USA Perianez-Pascual et al.

Figure 1. Collection of fonts considered.

4 Empirical Study
To get a first evaluation of the aforementioned ideas about
OCR support for DSLs, we conducted an empirical studywith
OCL [6] as a particular case of DSL, and Tesseract4, which
is one of the most popular and accurate OCR systems and
broadly used in programming languages transcription [15].

4.1 Dataset of OCL expressions
4.1.1 Data extraction and curation. OCL is a declara-
tive language to write constraints that apply to a metamodel.
Due to the problem of data shortage that most DSLs suffer,
we could not obtain an appropriate dataset of repository of
images with OCL expressions. Therefore, we synthesized our
own dataset as follows. We took the dataset from [22], which
contains 4,774 OCL expressions from 504 EMF5 metamodels
coming from 245 systematically selected GitHub reposito-
ries. This dataset contained faulty or invalid metamodels
and/or OCL expressions. In order to filter them out and keep
only those that were correct, we transformed the EMF meta-
models into USE-compliant metamodels using the ATL [12]
transformation from [4], and we loaded and validated the
metamodels and OCL expressions with the USE tool [10].
After curating the original dataset, we finally obtained 325
valid OCL expressions. These expressions contain an average
number of 174 ± 274 characters.

4.1.2 Automatic image generation. For each of those
325 expressions within our dataset, we automatically gen-
erated 10 images using the 10 fonts that Figure 1 shows,
resulting in a final dataset with 3,250 (325x10) images.

4.2 Research Questions and Method
With this empirical study, we plan to answer the following
research questions:

RQ1:Which is the best strategy to improve recognition
quality for OCL?
To answer this question, we defined the custom languages
presented in Section 3.1 for the particular case of OCL and
the metamodels of our dataset6. We configured Tesseract
to use these custom languages and for each of them, we
recognized the content of our 3,250 images. Furthermore,
we created a prototype implementation of our proposed
name-repairing algorithm (R). For each strategy (DP, DPL,
DPLD, R), we counted the number of correctly recognized
4https://tesseract-ocr.github.io/tessdoc/tesseract-4
5https://www.eclipse.org/modeling/emf/
6We created a tool to automate the extraction the domain names from each
metamodel

Figure 2. Number of expressions correctly recognized

expressions and compared them w.r.t. our baseline model
(Default configuration). We assume that an expression is
correct if it can be loaded in USE78.
RQ2: How long do the different strategies take to extract

OCL expressions from images?
To answer this question, for each strategy, we computed
the running time of the OCR engine during the recognition
process. For (R), the times we report include the recognition
time of (D) and the time the post-processing algorithm takes.
Our experiments were executed in a machine with an AMD
Ryzen 9 3900X 12-core 3.80GHz processor, 32GB of RAM
and Ubuntu 20.04.

4.3 Results
This section answers our research questions. All the results
of our executions are available in our Git repository9

4.3.1 Recognition quality. Figure 2 presents for each strat-
egy (D, DP, DPL, DPLD and R), the number of recognized
OCL expressions for each font (F1–F10). Table 1 shows for
each font and strategy the percentage of expressions rec-
ognized and the improvement w.r.t. the baseline model (in
brackets). It also shows in the last two rows, for each strat-
egy and in a font-agnostic way, the average percentage and
standard deviation of recognized expressions.
Our experiments show that the default configuration of

Tesseract produces a significant percentage of correct expres-
sions for computer fonts, over 60%, while the use of custom
languages entail only small improvements: 4% is the higher
improvement, obtained in the DPLD case. These results could
have been slightly improved by forcing Tesseract to prior-
itize DSL symbols over English words, but unfortunately,
the parameters for such configuration are not operative in
its current version10. The best results were obtained with
our prototypical name-repairing algorithm. Note that, on

7Alternatively, we could have used the Normalized Levenshtein Distance
(NLD) between the original expression and its recognized version tomeasure
the quality of the recognition, but we believe that the number of loaded
expressions in USE provides a more pragmatical view of our results.
8In future experiments we plan to study not only the number correct ex-
pressions but also the correctness within a wrongly recognised expression,
i.e., once an expression is marked as incorrect, study how serious the prob-
lem was. We can do this, for instance, studying the number of incorrectly
recognised characters/words within an expression
9https://github.com/JPery/img2DSL
10https://github.com/tesseract-ocr/tesseract/issues/2391#issuecomment-
540228564

https://tesseract-ocr.github.io/tessdoc/tesseract-4
https://www.eclipse.org/modeling/emf/
https://github.com/JPery/img2DSL

Towards the Optical Character Recognition of DSLs SLE ’20, November 16–17, 2020, Virtual, USA

D DP DPL DPLD R
F1 69.54 70.15 (0.62) 70.46 (0.92) 70.46 (0.92) 89.23 (19.69)
F2 72.62 72.92 (0.31) 72.92 (0.31) 69.85 (-2.77) 88.00 (15.38)
F3 65.23 65.54 (0.31) 65.85 (0.62) 66.77 (1.54) 72.62 (7.38)
F4 59.69 60.00 (0.31) 62.77 (3.08) 60.92 (1.23) 71.69 (12.00)
F5 61.85 63.38 (1.54) 64.92 (3.08) 64.62 (2.77) 75.08 (13.23)
F6 39.38 40.31 (0.92) 42.46 (3.08) 39.08 (-0.31) 50.46 (11.08)
F7 59.69 60.00 (0.31) 58.46 (-1.23) 60.92 (1.23) 83.08 (23.38)
F8 62.77 64.62 (1.85) 64.92 (2.15) 66.77 (4.00) 80.92 (18.15)
F9 27.69 28.62 (0.92) 30.46 (2.77) 29.85 (2.15) 39.69 (12.00)
F10 20.31 20.62 (0.31) 22.77 (2.46) 24.00 (3.69) 44.31 (24.00)
Avg. 53.88 54.62 (0.74) 55.60 (1.72) 55.32 (1.45) 69.51 (15.63)
Std. 18.13 18.16 (0.57) 17.45 (1.49) 17.47 (1.97) 18.19 (5.52)

Table 1. % of expressions recognized and % of improvement
w.r.t. D (baseline model)

Figure 3. Performance

average, it performs 15.63% better than the baseline model,
which entails a significant improvement. Finally, we have
observed that all strategies work better for computer-like
fonts (F1–F8) than for hand-written fonts (F9–F10). Even in
this case, our algorithm obtains the best improvement (24%)
for the Handlee font (F10).

4.3.2 Performance (time). Figure 3 shows the average
time and standard deviation that we have obtained per font
and per strategy.

The performance of D, DP andDPL is, on average, very rea-
sonable (around 0.5 sec), although their standard deviation is
significant (around 0.5 sec). This is because the time needed
to process an image highly depends on the number of charac-
ters it contains, and our dataset is composed by images with
expressions of all sizes. Regarding DPLD, the necessity of
defining dynamically the custom language according to the
metamodel of each OCL expression implies a slight overhead
(+0.1 sec). Finally, R (which is the time of default OCR con-
figuration plus the time of repairing algorithm) also entails a
small overhead, which in most cases is below the overhead of
DLPD. We analyzed the particular cases of fonts F6 and F9 to
conclude that the repairing algorithm takes longer because
the OCR outputs expressions with more punctuation errors
than it does for the other fonts. This makes our algorithm to
have to repair many punctuation errors, for which it is not
particularly optimized.

To conclude, all the strategies present reasonable execu-
tion times, therefore time performance may not hinder the
inclusion of OCR support in language workbenches.

5 Related Work
5.1 Extracting Source Code from Videos
Programming screencasts have been used as repositories
to extract source code from video and several authors ap-
proached this problem by applying OCR techniques. Khormi
et al. [15] presented an empirical study to evaluate which
OCR engine performs best in source code extraction. Pon-
zanelli et al. [24] proposed an approach that first identifies
fragments including source code and then applies Tesseract
on each frame to find and extract code. A similar approach
is presented in [14], which briefly comments on two general
heuristics to repair OCR errors (no language-based). Yadid
et al. [26], in addition to applying Tesseract, proposed the
definition of statistical language models for applying correc-
tions at lexical (token model) and syntactical level (line and
fragment model).

All these works only consider general-purpose languages,
such as Java or Python, with large bodies of code publicly
available. In our work, we focus on DSLs—whose available
body of code is significantly smaller—and look for alterna-
tives to improve OCR quality by leveraging the available
information, i.e. DSL specification and domain data.

5.2 Graphical DSL recognition
Although we may find numerous approaches in the litera-
ture for on-line or off-line diagram recognition in the last
two decades [16], few of them propose a method to properly
extract the text or DSL code, e.g. OCL expressions, embedded
into them [2, 13, 20]. Basically, once the text fragments are
identified, they are just processed by means of an OCR en-
gine. Therefore, specific OCR support in diagram recognition
might also become a use case of the ideas herein proposed.

5.3 Syntax error repairing
With that kind of parsers they can provide engineers with
additional features, such as refactoring or code completion. A
plethora of works have been published about syntax error re-
pairing algorithms for LR or LL parsers, as for example [5, 7].
Furthermore, the use of statistical languages models for code
was suggested by [11], which have been successfully applied
in [26]. More recently, Mesbah et a. [19] proposed a Neu-
ral Machine Translation network [1] for learning how to
repair compilation errors. Medeiros et al. [25] presented an
approach to automatically annotate a Parsing Expressions
Grammars with labels, and to build their corresponding re-
covery expressions.
In this work, we have built a simple but effective name-

repairing algorithm to correct spelling errors, inspired by [8],

SLE ’20, November 16–17, 2020, Virtual, USA Perianez-Pascual et al.

which produced a significant improvement in the OCR qual-
ity, and which shows that this is line of work that deserves
to be explored. In the future, we plan to apply syntax-based
repairing technique and study their effectiveness in this con-
text which, as of today, is unknown.

6 Research roadmap
Throughout the development of this work, we have identified
several areas for further research.
Integration of OCR support in language workbenches.
Although our preliminary results are promising, so OCR en-
gines with the help of repairing algorithms seem to perform
reasonably in time and quality, there are still some open
issues w.r.t. its integration in language workbenches. All of
these issues can be summarized as the necessity of defining
a systematic process to automatically derive OCR support
for any DSL given its specification and domain data.
OCR output repairing for DSLs. When applying an OCR
engine to extract DSL code from an image, we may face
two main errors in its output: spelling errors (e.g. a name
or a keyword is misspelled) or punctuation errors (e.g. a
punctuation sign is missing). As commented in Section 5,
there is a plethora of approaches to deal with syntax and
compilation errors. However, they have not been broadly
studied in the context of OCR support for DSLs. In particular,
the definition of statistical languages models for languages
without large bodies of code, as DSLs, may play a significant
role in this matter. Furthermore, it might be also interesting
to evaluate general NL model languages such as GPT-3 [3].
Graphical DSL recognition. Text recognition in diagrams
has not been yet properly studied, as aforementioned. One
of the main challenges is to identify the mission of each
block, i.e., shape, color, a code snippets, NL annotations,
etc. A proper text recognition will help towards this goal as
well more mature techniques able to identify general shapes
(not library-predefined). Finally, these graphical DSLs could
come either from computer sources or could be hand-written
drawings. Special support for both of them is needed.

7 Conclusions
This work outlines different strategies that can be applied to
improve the recognition quality of OCR engines for DSL ex-
pressions. Bymeans of an empirical studywith OCL, we have
studied how these strategies help improve the OCR quality
and the overhead that they introduce. The results show that
current OCR engines empowered with a repairing strategy
have potential to be integrated in language workbenches. We
have identified and described a research roadmap showing
aspects that promisingly deserve further study.

Acknowledgements. This work was partially funded by
the Spanish Research Project TIN2016-75944-R.

References
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural

Machine Translation by Jointly Learning to Align and Translate. In 3rd
International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua
Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.0473

[2] Martin Bresler, Truyen Van Phan, Daniel Prusa, Masaki Nakagawa,
and Vaclav Hlavac. 2014. Recognition System for On-Line Sketched
Diagrams. In Proceedings of International Conference on Frontiers in
Handwriting Recognition, ICFHR, Vol. 2014-Decem. Institute of Electri-
cal and Electronics Engineers Inc., 563–568. https://doi.org/10.1109/
ICFHR.2014.100

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot
Learners. (may 2020). arXiv:2005.14165 https://arxiv.org/abs/2005.
14165

[4] Loli Burgueño, Manuel Wimmer, Javier Troya, and Antonio Vallecillo.
2013. TractsTool: Testing Model Transformations based on Contracts.
In Proc. of the MODELS’13 Invited Talks, Demonstration Session, Poster
Session, and ACM Student Research Competition co-located with MOD-
ELS’13 (CEUR Workshop Proceedings), Vol. 1115. CEUR-WS.org, 76–80.

[5] Michael G. Burke and Gerald A. Fisher. 1987. A Practical Method for
LR and LL Syntactic Error Diagnosis and Recovery. ACM Transactions
on Programming Languages and Systems (TOPLAS) 9, 2 (1987), 164–197.
https://doi.org/10.1145/22719.22720

[6] Jordi Cabot and Martin Gogolla. 2012. Object Constraint Language
(OCL): A Definitive Guide. In Formal Methods for Model-Driven En-
gineering - 12th International School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems, SFM 2012,
Bertinoro, Italy, June 18-23, 2012. Advanced Lectures. 58–90. https:
//doi.org/10.1007/978-3-642-30982-3_3

[7] Rafael Corchuelo, José A. Pérez, Antonio Ruiz, and Miguel Toro.
2002. Repairing syntax errors in LR parsers. ACM Transactions on
Programming Languages and Systems 24, 6 (2002), 698–710. https:
//doi.org/10.1145/586088.586092

[8] Fred J. Damerau. 1964. A technique for computer detection and
correction of spelling errors. Commun. ACM 7, 3 (1964), 171–176.
https://doi.org/10.1145/363958.363994

[9] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J. Molina, Mar-
tin Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler,
Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist,
Guido Wachsmuth, and Jimi van der Woning. 2015. Evaluating
and comparing language workbenches: Existing results and bench-
marks for the future. Comput. Lang. Syst. Struct. 44 (2015), 24–47.
https://doi.org/10.1016/j.cl.2015.08.007

[10] Martin Gogolla, Fabian Büttner, and Mark Richters. 2007. USE: A
UML-Based Specification Environment for Validating UML and OCL.
Sci. Comp. Prog. 69 (2007), 27–34.

[11] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premku-
mar Devanbu. 2012. On the naturalness of software. Proceedings
- International Conference on Software Engineering (2012), 837–847.
https://doi.org/10.1109/ICSE.2012.6227135

[12] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008.
ATL: A model transformation tool. Science of Computer Programming
72, 1-2 (2008), 31–39.

http://arxiv.org/abs/1409.0473
https://doi.org/10.1109/ICFHR.2014.100
https://doi.org/10.1109/ICFHR.2014.100
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/22719.22720
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1145/586088.586092
https://doi.org/10.1145/586088.586092
https://doi.org/10.1145/363958.363994
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1109/ICSE.2012.6227135

Towards the Optical Character Recognition of DSLs SLE ’20, November 16–17, 2020, Virtual, USA

[13] Bilal Karasneh and Michel R.V. Chaudron. 2013. Img2UML: A Sys-
tem for Extracting UML Models from Images. In 2013 39th Euromicro
Conference on Software Engineering and Advanced Applications. IEEE,
134–137. https://doi.org/10.1109/SEAA.2013.45

[14] Kandarp Khandwala and Philip J. Guo. 2018. Codemotion: Expanding
the Design Space of Learner Interactions with Computer Programming
Tutorial Videos. In Proceedings of the Fifth Annual ACM Conference on
Learning at Scale. ACM, New York, NY, USA, 1–10. https://doi.org/10.
1145/3231644.3231652

[15] Abdulkarim Khormi, Mohammad Alahmadi, and Sonia Haiduc. 2020. A
Study on the Accuracy of OCR Engines for Source Code Transcription
from Programming Screencasts. InMSR 2020 Technical Papers (Preprint).
https://doi.org/10.1145/3379597.3387468

[16] Edward Lank, Jeb S. Thorley, and Sean Jy-Shyang Chen. 2000. An
interactive system for recognizing hand drawn UML diagrams. In
Proceedings of CASCON 2000, Toronto, Canada. 7. http://dl.acm.org/
citation.cfm?id=782034.782041

[17] Sérgio Medeiros and Fabio Mascarenhas. 2018. Syntax error recovery
in parsing expression grammars. Proceedings of the ACM Symposium
on Applied Computing (2018), 1195–1202. https://doi.org/10.1145/
3167132.3167261

[18] Jamshed Memon, Maira Sami, and Rizwan Ahmed Khan. 2020. Hand-
written Optical Character Recognition (OCR): A Comprehensive Sys-
tematic Literature Review (SLR). arXiv:cs.CV/2001.00139

[19] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Ed-
ward Aftandilian. 2019. DeepDelta: Learning to repair compila-
tion errors. ESEC/FSE 2019 - Proceedings of the 2019 27th ACM
Joint Meeting European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (2019), 925–936.

https://doi.org/10.1145/3338906.3340455
[20] Valentín Moreno, Gonzalo Génova, Manuela Alejandres, and Anabel

Fraga. 2016. Automatic classification of web images as UML diagrams.
In Proceedings of the 4th Spanish Conference on Information Retrieval -
CERI ’16, Vol. 14-16-June. ACM Press, New York, New York, USA, 1–8.
https://doi.org/10.1145/2934732.2934739

[21] Sergey I. Nikolenko. 2019. Synthetic Data for Deep Learning.
arXiv:cs.LG/1909.11512

[22] Jeroen Noten, Josh G. M. Mengerink, and Alexander Serebrenik. 2017.
A Data Set of OCL Expressions on GitHub. In Proceedings of the 14th
International Conference on Mining Software Repositories (MSR ’17).
IEEE Press, 531–534. https://doi.org/10.1109/MSR.2017.52

[23] Object Management Group. 2015. Unified Modeling Language (UML)
Specification. Version 2.5. OMG document formal/2015-03-01.

[24] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Rocco Oliveto, Mas-
similiano DI Penta, Sonia Haiduc, Barbara Russo, and Michele Lanza.
2019. Automatic Identification and Classification of Software Devel-
opment Video Tutorial Fragments. IEEE Transactions on Software
Engineering 45, 5 (may 2019), 464–488. https://doi.org/10.1109/TSE.
2017.2779479

[25] Sérgio Queiroz deMedeiros, Gilney de Azevedo Alvez Junior, and Fabio
Mascarenhas. 2020. Automatic syntax error reporting and recovery in
parsing expression grammars. Science of Computer Programming 187
(2020), 102373. https://doi.org/10.1016/j.scico.2019.102373

[26] Shir Yadid and Eran Yahav. 2016. Extracting code from programming
tutorial videos. In Proceedings of the 2016 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software - Onward! 2016. ACM Press, New York, New York, USA, 98–
111. https://doi.org/10.1145/2986012.2986021

https://doi.org/10.1109/SEAA.2013.45
https://doi.org/10.1145/3231644.3231652
https://doi.org/10.1145/3231644.3231652
https://doi.org/10.1145/3379597.3387468
http://dl.acm.org/citation.cfm?id=782034.782041
http://dl.acm.org/citation.cfm?id=782034.782041
https://doi.org/10.1145/3167132.3167261
https://doi.org/10.1145/3167132.3167261
https://arxiv.org/abs/cs.CV/2001.00139
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1145/2934732.2934739
https://arxiv.org/abs/cs.LG/1909.11512
https://doi.org/10.1109/MSR.2017.52
https://doi.org/10.1109/TSE.2017.2779479
https://doi.org/10.1109/TSE.2017.2779479
https://doi.org/10.1016/j.scico.2019.102373
https://doi.org/10.1145/2986012.2986021

	Abstract
	1 Introduction
	2 Challenges in OCR support for DSLs
	3 Towards a better OCR support for DSLs
	3.1 Custom languages
	3.2 Post-processing

	4 Empirical Study
	4.1 Dataset of OCL expressions
	4.2 Research Questions and Method
	4.3 Results

	5 Related Work
	5.1 Extracting Source Code from Videos
	5.2 Graphical DSL recognition
	5.3 Syntax error repairing

	6 Research roadmap
	7 Conclusions
	References

