
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Positioning of the low-code movement within the field of
model-driven engineering

Jordi Cabot
ICREA
UOC
Spain

jordi.cabot@icrea.cat

ABSTRACT
Low-code is being promoted as the key infrastructure for the digital
transformation of our society. But is there something fundamen-
tally new behind the low-code movement? How does it relate to
other concepts like Model-Driven Engineering or Model-Driven
development? And what are the implications for researchers in the
modeling community?. This position paper tries to shed some light
on these issues.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; Software prototyping; Unified Modeling Language (UML);
Specification languages.

KEYWORDS
Software Modeling,low-code, no-code, model-driven
ACM Reference Format:
Jordi Cabot. 2020. Positioning of the low-code movement within the field of
model-driven engineering. In ACM/IEEE 23rd International Conference on
Model Driven Engineering Languages and Systems (MODELS ’20 Companion),
October 18–23, 2020, Virtual Event, Canada. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3417990.3420210

1 INTRODUCTION
Low-code application platforms accelerate app delivery by dramat-
ically reducing the amount of hand-coding required 1

This is clearly not the first time the software engineering com-
munity attempts to reduce manual coding by combining visual
development techniques (what we would call “models”) and code
generation. In fact, as Grady Booch says, the entire history of soft-
ware engineering is about raising the level of abstraction. Low-
code can be traced back to the model-driven engineering.
But model-driven engineering itself can be traced back to CASE
(Computer-Aided Software Engineering) tools. Already in 1991, in
1Definition taken from this Forrester report [6], attributed as the origin of the term
low-code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8135-2/20/10. . . $15.00
https://doi.org/10.1145/3417990.3420210

the 1st edition of the well-known CAiSE conference, we could find
papers stating concepts like: "Given the final model, the complete
computerized information system can be automatically generated"[3]
or "we arrive at a specification from which executable code can be
automatically generated"[5].

At the same time, the impact of low-code in the business world
is also evident nowadays, including some bold projections2 but also
actual factual numbers regarding recent investments in low-code
tools, the commercial success of some of them or just the fact that
all the largest software companies are making sure they have some
kind of offering in this domain 3.

The rest of the paper will discuss in more detail these two, ap-
parently contradictory, statements. Next section aims to clarify the
relationship between low-code and other related modeling terms.
Section 3 looks for the reasons behind the low-code popularity.
Finally, Section 4 wraps up the paper by reflecting on whether the
low-code movement is in the end good or bad for the modeling
community.

2 LOW-CODE VS MODEL-DRIVEN VS
MODEL-BASED VS NO-CODE

We do not have universal definitions for all the model-*. The MBE-
BOOK [2] does a great job in clarifying specific terms but does
not cover more methodological aspects, moreover low-code/no-
code concepts are not part of it). Therefore, my own (informal)
definitions are the following:

• Model-driven Engineering (MDE): any software engineering
process where models have a fundamental role and drive the
engineering tasks.

• Model-driven development (MDD): MDE applied to forward
engineering, i.e. model-driven for software development.

• MDA is the OMG’s particular vision of MDD and thus relies
on the use of OMG standards.

• Model-based engineering/development: Softer version of the
previous respective concepts. In a MBE process, software
models play an important role although they are not neces-
sarily the key artifacts of the engineering/development (i.e.
they do NOT “drive” the process).

An example of the MBE vs MDE difference would be a develop-
ment process where, in the analysis phase, designers specify the
platform-independent models of the system but then these mod-
els are directly handed out to the programmers to manually write
2A couple of examples. According to Gartner, by 2024, low-code application develop-
ment will be responsible for more than 65% of application development activity. And
Forrester expects the low-code market to represent $21B in spending by 2022.
3https://modeling-languages.com/big-five-bet-modeling-low-code/

1

https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1145/3417990.3420210
https://modeling-languages.com/big-five-bet-modeling-low-code/

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada J Cabot

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the code (no automatic code-generation involved and no explicit
definition of any platform-specific model). In this process, models
still play an important role but are not the basis of the development
process.

Based on the above definitions, I see low-code as a synonym
of model-driven development. If anything, we could see low-
code as a more restrictive view of MDD where we target only a
concrete type of software applications: data-intensive web/mobile
apps. As suggested in an online discussion around these topics4,
low-code can also be regarded as a fixed-language solution as the
language itself behind the low-code tool is typically not exposed
and cannot be changed, while in a MDD solution you do have the
flexibility to define/adapt the language to be used.

Note that the term no-code is sometimes used as a slight variation
of low-code. In fact, we can often see tools defining themselves as
no-code/low-code tools. Nevertheless, to me, the key characteristic
of a no-code approach is that app designers should write zero
code to create and deploy the application. This limits a lot what
you can actually do with no-code tools. We are basically looking
at template-based frameworks or creation of workflows mixing
predefined connectors to external applications where the designers,
at most, decide when and how certain actions should be triggered.

Another way to compare these different paradigms is by looking
at how much manual code you are expected to write. In MBE, you
may have to write all the code. Instead, in MDD and low-code, most
of the code should be generated but you still may need to customize
and complete the generated code5. In no-code you should write
zero code.

Obviously, more research is needed to evaluate the low-code
tools in the market and better characterize them in less coarse-
grained categories than those presented here. In fact, right now,
there is basically no research around the low-code movement6,
something that I am sure this workshop will start to change.

3 LOW-CODE IS TRENDING
As shown in the Figure 1, interest in low-code is as its peak, even if,
as depicted in Figure 2, this peak is much smaller than the attention
model-driven was getting on its prime.

But, if, technically speaking, low-code does not really bring
anything new to the table, why this popularity?.

First of all, I think low-code conveys a much clearer message
than model-driven/model-based. “Model” is a much ambiguous
word and therefore the concept of model-driven is more difficult to
explain than low-code (everybody has a clear view of what code is,
and low-code becomes self-explanatory).

Secondly, we know modeling scares developers away. Instead,
low-code sounds more familiar. It is the same they already do (cod-
ing) but less of it.

Moreover, the application scenarios for low-code are also clearer.
Instead of selling that you can do anything with MDD (which
ends up generating mistrust), low-code looks more credible by

4https://modeling-languages.com/low-code-vs-model-driven/
5Most MDD tools include some kind of black box modeling primitive where you can
write any custom code that should be added during the generation process
6A quick search only reveals some papers about tools that classify themselves as
low-code but not about low-code itself as the object of study

targeting specific types of applications, those that are most needed
in industry.

Low-code is also typically a one-shot modeling approach, mean-
ing that you have models and the generated code, no complex
chains of refinement, no model transformations, no nothing.

And on average, low-code tools are nicer than our traditional
heavy modeling tools. For instance, most are web-based and do not
depend on EMF.

All in all, I haven’t seen any notation, concept, model type or
generation technique in a low-code tool that I couldn’t find similarly
in the model-driven world. But for sure, these same techniques are
presented, configured, adapted and “sold” differently, which in the
end makes a big difference in how low-code novelty and usefulness
are perceived. And the success of aMDE project often depends more
on social and managerial aspects than on purely technical ones [4].
This does not come for free (lack of interoperability, vendor lock-in,
expensive business models,..) but this does not seem to deter the
community at the moment.

4 LOW-CODE AS AN OPPORTUNITY
As pointed out before, I do not believe there is any fundamental
technical contribution in low-code trend. It is more a synonym
(or a subset) of the techniques we are already working on. In fact,
we could take almost any of the open challenges in model-driven
engineering [1] and just change “model-driven” by “low-code” to
get, for free, a research roadmap for low-code development (e.g. we
need better ways to integrate AI in low-code tools or we should
strive as a community to build a shared repository of low-code
examples for future research).

But I do not see this as being negative. More the opposite. Clearly,
low-code is attracting lots of attention, including from people that
were never part of the modeling world. In this sense, low-code
is lowering the barrier to enter the modeling technical space. As
such, to me, low-code is a huge opportunity to bring modeling
(and our modeling expertise) to new domains and communities. If
we can get more funding/exposure/users/feedback by rebranding
ourselves as low-code experts, I am all for it. This is exactly the
approach that many well-known so-called low-code companies
have taken7. Let’s also take this opportunity to better understand
the factors that make modeling-like techniques resonate in the
broad software community and learn from it. The lack of a strong
open source community around the low-code movement could also
be a opportunity for us as we have plenty of experience in building
opens source modeling tools and discussing the trade-offs of doing
so.

And while we do that, let’s keep an eye on the market trends to
come. Some low-code vendors are shifting (yet again) their market-
ing efforts. It may not be long before we all start chanting: Low-code
is dead, long live multi-experience development8

Acknowledgements. Thanks to Manuel Wimmer for our very
interesting discussions on this topic.

7Feel free to play with the Internet Wayback Machine and see how their websites
mutate from visual modeling, agile development, CASE tools and similar keywords to
low-code in the last years
8Multiexperience refers to the various permutations of interactive modalities
(e.g., touch, voice and gesture) apps must offer now https://www.gartner.com/en/
information-technology/glossary/multiexperience-development-platforms-mxdp

2

https://modeling-languages.com/low-code-vs-model-driven/
https://www.gartner.com/en/information-technology/glossary/multiexperience-development-platforms-mxdp
https://www.gartner.com/en/information-technology/glossary/multiexperience-development-platforms-mxdp

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Positioning of the low-code movement within the field of model-driven engineering MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Google Trends graphic showing the search interest for the low-code term

Figure 2: Google Trends graphic showing the relative search popularity of model-driven (red) vs low-code (blue). Interest over
time represents search interest relative to the highest point on the chart to get a sense of the relative search size of both terms.

REFERENCES
[1] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio. 2020.

Grand challenges in model-driven engineering: an analysis of the state of the
research. Software and Systems Modeling 19, 1 (2020), 5–13. https://doi.org/10.
1007/s10270-019-00773-6

[2] Loli Burgueño, Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers,
SébastienMosser, Richard F. Paige, Alfonso Pierantonio, Arend Rensink, Rick Salay,
Gabriele Taentzer, Antonio Vallecillo, and Manuel Wimmer. 2019. Contents for
a Model-Based Software Engineering Body of Knowledge. Software and Systems
Modeling 18, 6 (2019), 3193–3205.

[3] Jon Atle Gulla, Odd Ivar Lindland, and Geir Willumsen. 1991. PPP: A Integrated
CASE Environment. In Advanced Information Systems Engineering, CAiSE’91,

Trondheim, Norway, May 13-15, 1991, Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 498). Springer, 194–221. https://doi.org/10.1007/3-540-54059-8_86

[4] John Edward Hutchinson, Jon Whittle, and Mark Rouncefield. 2014. Model-driven
engineering practices in industry: Social, organizational and managerial factors
that lead to success or failure. Sci. Comput. Program. 89 (2014), 144–161. https:
//doi.org/10.1016/j.scico.2013.03.017

[5] John Krogstie, Peter McBrien, Richard Owens, and Anne Helga Seltveit. 1991.
Information Systems Development Using a Combination of Process and Rule Based
Approaches. In Advanced Information Systems Engineering, CAiSE’91, Trondheim,
Norway, May 13-15, 1991, Proceedings (Lecture Notes in Computer Science, Vol. 498).
Springer, 319–335. https://doi.org/10.1007/3-540-54059-8_92

[6] Clay Richardson and John R Rymer. 2014. New Development Platforms Emerge
For Customer-Facing Applications. Forrester: Cambridge, MA, USA (2014).

3

https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/3-540-54059-8_86
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1007/3-540-54059-8_92

	Abstract
	1 Introduction
	2 Low-code vs model-driven vs model-based vs no-code
	3 Low-code is trending
	4 Low-code as an opportunity
	References

