
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221223988

Automatic Generation of Workflow-Extended Domain

Models

Conference Paper · September 2007

DOI: 10.1007/978-3-540-75209-7_26 · Source: DBLP

CITATIONS

15
READS

194

3 authors:

Some of the authors of this publication are also working on these related projects:

Haptic Web Applications View project

Pragmatic Model verification for UML and OCL and other types of models View project

Marco Brambilla

Politecnico di Milano

290 PUBLICATIONS   3,962 CITATIONS   

SEE PROFILE

Jordi Cabot

Catalan Institution for Research and Advanced Studies

307 PUBLICATIONS   4,498 CITATIONS   

SEE PROFILE

Sara Comai

Politecnico di Milano

150 PUBLICATIONS   2,238 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Marco Brambilla on 02 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221223988_Automatic_Generation_of_Workflow-Extended_Domain_Models?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221223988_Automatic_Generation_of_Workflow-Extended_Domain_Models?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Haptic-Web-Applications?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Pragmatic-Model-verification-for-UML-and-OCL-and-other-types-of-models?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco_Brambilla?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco_Brambilla?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Politecnico_di_Milano?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco_Brambilla?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jordi_Cabot?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jordi_Cabot?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Catalan_Institution_for_Research_and_Advanced_Studies?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jordi_Cabot?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara_Comai?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara_Comai?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Politecnico_di_Milano?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara_Comai?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco_Brambilla?enrichId=rgreq-992aa821f2bfe98962649487f1d982c9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIyMzk4ODtBUzoxMDM1MTE0MzM5NDEwMDBAMTQwMTY5MDQ1NzM3OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 375–389, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Automatic Generation of  
Workflow-Extended Domain Models 

Marco Brambilla1, Jordi Cabot2, and Sara Comai1  

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano 
Piazza L. Da Vinci, 32. I20133 Milano, Italy  

{mbrambil, comai}@elet.polimi.it 
2 Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya  

Rbla. del Poblenou, 156 E08018 Barcelona, Spain  
jcabot@uoc.edu 

Abstract. The specification of business processes is becoming a more and more 
critical aspect for organizations. Such processes are specified as workflow 
models expressing the logical precedence among the different business activi-
ties (i.e. the units of work). Up to now, workflow models have been commonly 
managed through specific subsystems, called workflow management systems. 
In this paper we advocate for the integration of the workflow specification in 
the system domain model. This workflow-extended domain model is automati-
cally derived from the initial workflow specification. Then, model-driven  
development methods may depart from the extended domain model to auto-
matically generate an implementation of the system enforcing the business 
processes in any final technology platform, thus avoiding the need of basing the 
implementation on a dedicated workflow engine.  

1   Introduction 

Software development processes for complex business applications usually require 
the definition of a workflow model to express logical precedence and process con-
straints among the different business activities (i.e. the units of work).  

Currently, workflow models are usually implemented with the help of dedicated 
workflow management systems (e.g., [15], [21]) which are heavy-weight applications 
focused on the control aspects of the workflow enactment. Alternatively, some ap-
proaches focus on the implementation of the workflow model in a specific technology 
platform, as  relational databases (generally in the form of triggers [2]), web applications 
(by means of hypertextual links and buttons properly placed in Web pages, thus restrict-
ing the user navigation [5]) or web services (through transformation into BPEL4WS 
[18]). These adhoc approaches are hardly generalizable to other technologies. 

In this paper we adopt a formalized model-driven development process for work-
flow-based applications and advocate for the automatic integration of the workflow 
model within the (platform-independent) domain model. Given a domain model d and 
a workflow model w, it is possible to automatically derive a full fledged domain 
model d’ enriched with the types needed to record the required workflow information 



376 M. Brambilla, J. Cabot, and S. Comai 

in w (mainly its activities and the enactment of these activities in the different work-
flow executions) and with a set of process constraints over such types to control the 
correct workflow execution. We refer to this resulting model as the workflow-
extended domain model. We will represent it using UML class diagrams annotated 
with OCL constraints to represent the process constraints. The whole process is 
sketched in Fig. 1.1. Note that, if necessary, several workflow models can be inte-
grated within the same domain model. This approach has been implemented in a pro-
totype tool. 

The main characteristic of a workflow-extended domain model is that it automati-
cally ensures a consistent behavior of all enterprise applications with respect to the 
business process specification. As long as the applications properly update the work-
flow information in the extended model, the generated process constraints enforce 
that the different tasks are done according to the initial workflow model.  

Another advantage of a workflow-extended domain model is that it is platform-
independent. Indeed, our workflow-extended model can benefit from any method or 
tool designed for managing a generic domain model, no matter the target technology 
platform or the purpose of the tool, spawning from direct application execution, to 
verification/validation analysis, to metrics measurement and to automatic code-
generation in any final technology platform. Those methods do not need to be ex-
tended to cope with our workflow-extended models, since our workflow-extended 
domain model is a completely standard UML model.  

Moreover, our workflow-extended models enable the definition of more expressive 
business constraints, including timing conditions [8] or involving both workflow and 
domain information. These constraints are generally not allowed by workflow defini-
tion languages.  

The rest of the paper is structured as follows: in Section 2 the basic workflow con-
cepts and our case study are illustrated. In Sections 3 and 4 we provide the definition 
of the workflow-extended domain model and of the OCL process constraints, respec-
tively. Section 5 sketches possible implementation strategies for this extended model. 
Section 6 compares our approach with related work and in Section 7 we draw our 
conclusions, provide some details about our tool support and discuss future work.  

 

Fig. 1.1. MDD process for workflow-based applications  



 Automatic Generation of Workflow-Extended Domain Models 377 

2   Basic Workflow Concepts 

Several visual notations and languages have been proposed to specify workflow mod-
els, with different expressive power, syntax, and semantics. Without loss of general-
ity, in our work we have adopted the Workflow Management Coalition terminology 
and the BPMN [20] OMG standard notation1. 

The workflow model is hence based on the concepts of Process (the descrip-
tion of the business process), Case (a process instance, that is, a particular work-
flow execution), Activity (the elementary unit of work composing a process), 
Activity instance (an instantiation of an activity within a case), Actor (a user role 
intervening in the process), Event (some punctual situation that happens in a 
case), and Constraint (logical precedence among activities and rules enabling 
activities execution). Processes can be internally structured using a variety of 
constructs: sequences of activities; gateways implementing AND, OR, XOR 
splits, respectively realizing splits into independent, alternative and exclusive 
threads; gateways implementing joins, i.e., convergence point of two or more 
activity flows; conditional flows between two activities; loops among activities or 
repetitions of single activities. Each construct may involve several constraints 
over the activities. 

Our approach covers a large subset of the full expressive power of BPMN; we do 
not cope with the concepts of nested subprocesses (which can be easily tackled by 
flattening the process representation), transactions (which can exploit implementation 
features), and a few combinations of primitive constructs, such as the direct concate-
nation of several gateways (which can be handled by introducing fake activities be-
tween them).  

In the sequel, we will exemplify the proposed approach on a case study consisting 
of a workflow implementing a simplified purchase process, as illustrated in Fig. 2.1.  

According to the BPMN semantics, the depicted diagram specifies a process in-
volving two actors (represented by the two swimlanes): a customer and a seller. The 
customer starts the workflow by asking for a quotation about a set of products (Ask 
Quotation activity). The seller provides the quotation (Provide Quotation activity) 
and the customer may decide (exclusive choice) to modify the request (and hence the 
quotation request and response are repeated) or to accept it (then the order is submit-
ted and the seller takes care of it). For simplicity, it is not modeled what happens if 
they do never reach an agreement. The order management requires two parallel activi-
ties to be performed: the choice of the shipment options and the internal management 
of each order line. The latter is represented by the multi-instance activity called Proc-
ess OrderLine: a different instance is started for each order line included in the order. 
Once all order lines have been processed and the shipment has been decided (i.e., 
after the AND merge synchronization), the order is shipped and the customer pays the 
corresponding amount. 
                                                           
1 The results of our approach when using Activity Diagrams would have been quite similar. See 

[23] for a correspondence between BPMN and Activity Diagrams. 



378 M. Brambilla, J. Cabot, and S. Comai 

 

Fig. 2.1. Example of a workflow schema 

3   Extending Domain Models with Workflow Information 

Given an initial domain model, the workflow-extended domain model of the work-
flow-based application is obtained by extending the domain model with some addi-
tional elements derived from the workflow specification. This extension can be  
regarded as a kind of model weaving between the workflow and domain models [13].  
We will focus on the case of a single workflow; however, our extensions to the do-
main model suffice when considering different workflows on the same domain. 

Clearly, the workflow-extended domain model is more complex than the original 
domain model. However, we believe that this increased complexity is compensated by 
the fact that it may be automatically generated (with our method) and processed (with, 
for instance, code-generation tools) and thus, the designer does not need to manipu-
late it. Moreover, the size of the extension is constant regardless the size of the do-
main model and linear with respect to the number of activities in the workflow.  

The workflow-extended model contains the minimum set of concepts required to 
manage the workflow and to easily specify the needed process constraints. However, 
richer schemas with further relationship types and/or attributes could be defined, 
according to the requirements of the specific workflow application (for example, we 
could have used a more complex pattern for the specification of the role-user relation-
ship [6]). Similarly, simpler extensions could be used instead but then, as a trade-off, 
the process constraints would become much more complex. 

To illustrate the process we will use the workflow model of Fig. 2.1 and we will 
assume that the initial domain model is the one shown in the bottom part of Fig. 3.1, 
consisting in the types Product, Quotation, QuotationLine, and Order (note that when 
accepted by the customer, a Quotation generates an Order and then, its quotation lines 
are referred to as order lines). 



 Automatic Generation of Workflow-Extended Domain Models 379 

The workflow-extended domain model must include at least: (i) the original do-
main model, (ii) user-related information, (iii) workflow-related information, (iv) a set 
of possible relationships between the domain schema, the workflow information and 
the user information, and (v) a set of process constraints guaranteeing a consistent 
state of the whole model with respect to the workflow definition (see the next sec-
tion). Due to lack of space, the extensions required for Event management are only 
provided in [3]. 

More formally, we define a workflow-extended domain model as follows. Given 
an initial domain model with entity types (i.e. classes) E={e1,…,en}, representing the 
knowledge about the domain, and a workflow model w with activities A={a1,…,am}, 
the workflow-extended domain model  is obtained in the following way: 

i) Domain subschema: All entity types in E and their relationships (i.e. associations) 
remain unchanged in the workflow-extended model (bottom part of Fig. 3.1).   

ii) User subschema: User-related information is added to the extended model by 
means of two entity types (see the top-left part of Fig. 3.1): entity type User repre-
sents individual workflow actors; entity type Role represents groups of users, hav-
ing access to the same set of tasks. A user may belong to different roles. 

iii) Workflow subschema: Workflow-related information (top-right part of Fig. 3.1) 
includes several fixed types (i.e. independent of the particular workflow model): 
- Entity type Process represents the supported workflows. As an example, an in-

stance of the Process type would be our Purchase workflow. Other instances 
would represent additional workflows over the same domain subschema. 

- Entity type Case denotes an instance of a process, which has a name, a start 
time, an end time and a status, which can be: ready, active, cancelled, aborted, 
or completed [20]. Every execution of a process results in a new instance of 
this type. This new instance is related with the appropriate process instance. 

- Entity type ActivityType represents the different activities that compose a proc-
ess. Activity types are assigned to roles, which are responsible of executing 
them. In our case study, AskQuotation, ProvideQuotation, etc. would be in-
stances of ActivityType. 

- Entity type Activity denotes the occurrence of a particular activity within a 
Case, described by the start time, the end time, and the current status, which 
can be: ready, active, cancelled, aborted, or completed. Only one user can exe-
cute a particular activity instance, and this is recorded by the relationship type 
Performs. The Precedes relationship keeps track of the execution order be-
tween activities.  

and a set of workflow-dependent subtypes: 
- For each activity a ∈ A, a new subtype sa is added to the entity type Activity 

(ActivityType is a powertype for this set of generalization relationships). The 
name of the subtype is the name of a (e.g., in Fig. 3.1 we introduced Proces-
sOrderLine, AskQuotation, ShipOrder, and so on). These subtypes record the 
information about the specific activities executed during a workflow case. For 
instance, the action of asking a quotation for the purchase X in a case C of a 
workflow W would be recorded in the system as an instance of the AskQuota-
tion subtype related with the corresponding instance “C” in the Case type (in 
its turn related with the “W” instance in the Process type) 



380 M. Brambilla, J. Cabot, and S. Comai 

iv) Relationships between workflow subschema and domain subschema: each subtype 
sa is related with a (possibly empty) set of entity types Ea ⊆ E.  These new rela-
tionship types are useful to record the objects modified/managed during the execu-
tion of a certain activity. Also, they are required to evaluate conditions appearing 
in some process constraints. In the case study (see Fig. 3.1), a set of relationship 
types are established: Quotations are associated to the activities Ask Quotation and 
Provide Quotation; QuotationLines are associated to the ProcessOrderLine activ-
ity; and Orders are associated to the activities Submit Order, Choose Shipment, 
Process OrderLine, Ship Order, and Pay Order.  When necessary, these associa-
tions between the domain and the workflow subschemata may be automatically 
generated if the workflow specification includes auxiliary primitives for describ-
ing the data flow between activities and/or when the designer defines some pat-
tern-matching among the names of the activities and of the entity types. Other-
wise, they must be manually specified.  

 

W
orkflow

 subschem
a

U
ser subschem

a

D
om

ain  
subschem

a 

 

Fig. 3.1. Workflow-extended domain model  

4   Translation of Process Constraints  

The structure of a workflow model implies a set of constraints regarding the execution 
order of the different activities, the number of possible instances of each activity in a 
given case, the conditions that must be satisfied in order to start a new activity, and so 
forth. These constraints are usually referred to as process constraints. The behavior of 



 Automatic Generation of Workflow-Extended Domain Models 381 

all enterprise applications must always satisfy these constraints. Thus, the generation 
of the workflow-extended model must consider all process constraints.  

Process constraints are translated as constraints over the population of the sa1,…,sam 

subtypes of Activity (see previous section). The generated constraints guarantee that 
any update event over the population of one of these subtypes (for instance, the crea-
tion of a new activity instance or the modification of its status) will be consistent with 
the process constraints defined in the workflow model.  

We specify process constraints by means of invariants written in the OCL lan-
guage. Invariants in OCL are defined in the context of a specific type, the context 
type. The actual OCL expression stating the constraint condition is called the body of 
the constraint. The body is always a boolean expression and must be satisfied by all 
instances of the context type, that is, the evaluation of the body expression over every 
instance of the context type must return a true value. Constraints are defined to re-
strict only the execution of the workflow they are created for. Therefore, no interfer-
ences among different workflows occur, even if they are defined over an overlapping 
subset of the domain model. 

The complexity of the constraints is of relative importance since all of them are 
automatically generated from the workflow model, and thus, they do not need to be 
manipulated (nor even necessarily understood) by the designer but for other tools. 
However, to simplify its presentation in the extended model, we could easily define 
an stereotype for each constraint type, as done in [9]. 

Next subsections define a set of patterns for the generation of the process con-
straints corresponding to the different constructs appearing in workflow models (se-
quences, split gateways, merge gateways, conditions, loops, and so on).  The patterns 
can be combined to produce the full translation of the workflow model. As an exam-
ple, we provide in Section 4.6 the translation of the workflow model of Fig. 2.1. Pat-
terns for the generation of process constraints for Events are only shown in [3]. 

Note that some constructs admit several graphical representations equivalent to the 
ones used in this paper (see [20] for details). Moreover, the workflow language de-
fines some complex constructs that can be derived from the basic ones, such as com-
plex gateways and event-based gateways, not addressed here due to lack of space. 

4.1   Sequences of Activities 

A sequence flow between two activities (Fig. 4.1) indicates that the first activity (A) 
must be completed before starting the second one (B). Moreover, if A is completed 
within a given case, B must be eventually started before ending the case (we do not 
require B to be completed since, for instance, it could be interrupted by the trigger of 
an intermediate exception event). This behavior can be enforced by means of the 
definition of three OCL constraints. 

BA

 

Fig. 4.1. Sequence flow 



382 M. Brambilla, J. Cabot, and S. Comai 

The first constraint (seq1 constraint) is defined over the entity type corresponding 
to the destination activity (B in the example) stating that for all activity instances of 
type B the preceding activity instance must be of type A and that it must have been 
already completed. Its specification in OCL is the following: 

context B inv seq1: previous->size()=1 and previous->exists(a| a.oclIsTypeOf(A) 
and a.status=‘completed’) 

This OCL definition enforces that B instances (since B is the context type of the 
constraint) have a previous activity (because of the size operator over the value of the 
navigation through the role previous) and that such activity is of type A  (enforced by 
the exists operator). B and A are Activity subtypes as defined in Section 3.  

The other two required constraints are: 

- A constraint seq2 over the second activity to prevent the creation of two different B 
instances related with the same A activity instance 

context B inv seq2: B.allInstances()-> isUnique(previous)  

- A constraint seq3 over the Case entity type verifying that when the case is com-
pleted there exists a B activity instance for each completed A activity instance. This 
B instance must be the only instance immediately following the A activity instance. 

context Case inv seq3: status=‘completed’ implies self.activity-> select(a| 
a.oclIsTypeOf(A) and a.status=‘completed’)->forAll(a|a.next->exists( b| 
b.oclIsTypeOf(B)) and a.next->size()=1) 

4.2   Split Gateways  

A split gateway is a location within a workflow where the sequence flow can take two 
or more alternative paths. The different split gateways differ on the number of possi-
ble paths that can be taken during the execution of the workflow. For XOR-split gate-
ways only a single path can be selected. In OR-splits several of the outgoing flows 
may be chosen. For AND-splits all outgoing flows must be followed. 

For each kind of BPMN split gateway, Table 4.1 shows the process constraints re-
quired to enforce the corresponding behavior.  

Besides the process constraints appearing in the table, we must also add to all the 
activities B1…Bn the previous constraints seq1 and seq2 to verify that the preceding 
activity A has been completed and that no two activity instances of the same activity 
Bi are related with the same preceding activity  A. We also require that the activity 
instance/s following A is of type B1 or … or Bn. 

Table 4.1. Constraints for split gateways 

Split gateway Process constraints 

Bn

A

B1

XOR Split
 

- Only one of the B1..Bn activities may be started  

context A inv: next->select(a| a.oclIsTypeOf(B1) or … or 
a.oclIsTypeOf(Bn))->size()<=1  

- If A is completed, at least one of the B1..Bn activities must be 
created before ending the case 

context Case inv: status=‘completed’ implies activities-> se-
lect(a|a.oclIsTypeOf(A) and a.status=‘completed’)-> forAll 
(a|a.next->exists(b|b.oclIsTypeOf(B1) or..or b.oclIsTypeOf(Bn))) 



 Automatic Generation of Workflow-Extended Domain Models 383 

Table 4.1. (continued) 

B1

Bn

A

OR Split  

- Since several B1..Bn activities may be started, we just need to 
verify that if A is completed, at least one of the B1..Bn activities 
is created before ending the case (like in the XOR split above) 

A

Bn

B1

AND Split
 

-If A is completed all B1..Bn activities must be eventually started  
context Case inv:status=‘completed’ implies activity->select(a| 
a.oclIsTypeOf(A) and a.status=‘completed’)->forAll(a| a.next-
>exists(b| b.oclIsTypeOf(B1)) and … and a.next->exists( 
b|b.oclIsTypeOf(Bn))) 

4.3   Merge Gateways  

Merge gateways are useful to join or synchronize alternative sequence flows. Depend-
ing on the kind of merge gateway, the outgoing activity may start every time a single 
incoming flow is completed (XOR-Merge) or must wait until all incoming flows have 
finished in order to synchronize them (AND-Merge gateways). The semantics of the 
OR-Merge gateways is not so clear. If there is a matching OR-split, the OR-Merge 
should wait for the completion of all flows activated by the split. If no matching split 
exists several interpretations are possible, being the simplest one to wait just till the 
first incoming flow. This is the interpretation adopted in this paper. For a complete 
treatment of this construct see [24].  

Table 4.2 presents the different translation patterns required for each kind of merge 
gateway. Besides the constraints included in the table, a constraint over A should be 
added to all gateways to verify that two A instances are not created for the same in-
coming set of activities (i.e. the intersection between the previous instance/s of all A 
instances must be empty). 

Table 4.2. Constraints for merge gateways 

Merge gateway Process constraints 

B1

A

Bn
XOR Merge

 

- All A activity instances have as a previous activity instance a 
completed activity instance of type B1 or … or Bn 

context A  inv: previous->size()=1 and previous->exists(b| 
(b.oclIsTypeOf(B1) or … or b.oclIsTypeOf(Bn)) and 
b.status=‘completed’) 

- Each B1..Bn  activity instance is followed by an A activity 

context Case inv: status=‘completed’ implies activity->select(b| 
b.oclIsTypeOf(B1) or … or b.oclIsTypeOf(Bn))-> forAll(b|b.next-
>exists(a| a.oclIsTypeOf(A))) 

A

Bn

B1

OR Merge
 

- An A activity instance must wait for at least an incoming flow 

context A  inv: previous->select(b| (b.oclIsTypeOf(B1) or … or  
b.oclIsTypeOf(Bn)) and b.status=‘completed’)->size()>=1 



384 M. Brambilla, J. Cabot, and S. Comai 

Table 4.2. (continued) 

B1

Bn

A

AND Merge  

- An activity instance of type A must wait for a set of activities 
B1..Bn to be completed 
context A inv: previous->exists(b| b.oclIsTypeOf(B1) and 
b.status=‘completed’) and … and  
previous->exists(b| b.oclIsTypeOf(Bn) and b.status=‘completed’) 

- Each set of completed B1..Bn activity instances must be related 
with an A activity instance.  
context Case inv: status=‘completed’ implies not ( 
activity->exists(b|b.oclIsTypeOf(B1) and   b.status=‘completed’ 
and not b.next->exists(a| a.oclIsTypeOf(A)) and … and activity-
>exists(b| b.oclIsTypeOf(Bn) and b.status=‘completed’ and not 
b.next->exists(a| a.oclIsTypeOf(A))) 

4.4   Condition Constraints 

The sequence flow and the OR-split and XOR-split gateways may contain condition 
expressions to control the flow execution at run-time. As an example, Fig. 4.2 shows 
a conditional sequence flow. In the example, the activity B cannot start until A is com-
pleted and the condition cond is satisfied. The condition expression may require ac-
cessing the entity types of the domain subschema related to B in the workflow-
extended model. Through the Precedes relationship type, we can also define condi-
tions involving the previous A activity instance and/or its related domain information.  

To handle these condition expressions we must add, for each condition defined in a 
sequence flow or in an outgoing link of OR and XOR gateways, a new constraint over 
the destination activity. The constraint ensures that the preceding activity satisfies the 
specified condition, according to the following pattern: 

context B inv: previous->forAll(a| a.cond) 
Note that these additional constraints only need to hold when the destination activity 
is created, and thus, they must be defined as creation-time constraints [19]. 
  

A Bcond

 

Fig. 4.2. A conditional sequence flow 

4.5   Loops 

A workflow may contain loops among a group of different activities or within a single 
activity. In this latter case we distinguish between standard loops (where the activity 
is executed as long as the loop condition holds) and multi-instance loops (where the 
activity is executed a predefined number of times). Every time a loop is iterated a new 
instance of the activity is created. Fig. 4.3 shows an example of each loop type. 
 



 Automatic Generation of Workflow-Extended Domain Models 385 

BAAA

 
Standard Multi-Instance External 

 

Fig. 4.3. Loop examples  

Management of external loops does not require new constraints but the addition of 
a temporal condition in all constraints stating a condition like “an instance of type B 
must be eventually created if an instance of type A is completed”. The new temporal 
condition on those constraints ensures that the B instance is created after the A in-
stance is completed (earlier B instances may exists due to previous loop iterations). 

Standard loops may be regarded as an alternative representation for conditional 
sequence flows having the same activity as a source and destination. Therefore, the 
constraints needed to handle standard loop activities are similar to those required for 
conditional sequence flows. We need a constraint checking that the previous loop 
instance has finished and another one stating that the loop condition is still true when 
starting the new iteration (again, this is a creation-time constraint). The loop condition 
is taken from the properties of the activity as defined in the workflow model. More-
over, we need also to check that the activity/ies at the end of the outcoming flows of 
the loop activity are not started until the loop condition becomes false. To prevent this 
wrong behavior we should treat all outgoing flows from the loop activity as condi-
tional flows with the condition ‘not loopCondition’. Then, constraints generated to 
control the conditional flow will prevent next activity/ies to start until the condition 
‘not loopCondition’ becomes true. 

Multi-instance loop activities are repeated a fixed number of times, as defined by 
the loop condition, which now is evaluated only once during the execution of the case 
and returns a natural value instead of a boolean value. At the end of the case, the 
number of instances of the multi-instance activity must be an exact multiple of this 
value. Assuming that the multi-instance activity is called A, the OCL formalization of 
this constraint would be: 

context Case inv: (activity->select(a|a.oclIsTypeOf(A))->size() mod loopCondition)=0 

For multi-instance loops the different instances may be created sequentially or in 
parallel. Besides, we can define when the workflow shall continue. It can be either 
after each single activity instance is executed (as in a normal sequence flow), after all 
iterations have been completed (similar to the AND-merge gateways), or as soon as a 
single iteration is completed (similar to the basic OR-merge gateway).  

4.6   Applying the Translation Patterns 

As an example, Table 4.3 summarizes the process constraints resulting from applying 
the translation over the workflow schema of Fig. 2.1.   

For sake of brevity, we do not include here the complete set of constraints, but we 
exemplify in Table 4.4 the full definition of the constraints involved in the Provide 
Quotation activity (the rest of the specifications can be found in the extended version 
of the paper at [3]). The Provide Quotation activity involves a set of constraints due 



386 M. Brambilla, J. Cabot, and S. Comai 

to the sequence constraint with Ask Quotation activity and a set due to the subsequent 
XOR split.   

Table 4.3. Process constraints for the workflow running example 

Activity Constraints 
Ask 

Quotation 
- When the activity instance comes after a Provide Quotation, the latter must 

have been completed (a single new ask quotation activity can be generated). 
Otherwise, it must have been created in response to the occurrence of a start 
event (due to the implicit XOR merge gateway corresponding to the two in-
coming arrows).  

Provide 
Quotation 

- A quotation cannot be provided until the Ask Quotation activity has finished. 
Moreover, if an instance of Ask Quotation is completed, a single Provide 
Quotation instance must eventually be created 

- After providing a quotation we can either ask for a new quotation or submit 
an order, but not both.  At least one of them must be executed. 

Submit 
Order 

- The previous Provide Quotation activity must be completed. Besides, only a 
single Submit Order instance must be created for the same Provided Quota-
tion instance 

- After submitting an order, both the Choose Shipment and the Process Or-
derLine activities must be executed 

Choose 
Shipment 

- The preceding Submit Order activity instance must be completed. Besides, a 
single Choose Shipment activity must be executed for each Submit Order  
activity instance 

Process 
OrderLine 

- The preceding Submit Order activity  must be completed  
- The system must exactly execute as many Process OrderLine activity in-

stances as the number of order (quotation) lines for the related order 
Ship 

Order 
- The order cannot be shipped until the shipment has been chosen and all 

order lines have been processed. Then, a Ship Order activity instance must 
be executed before ending the case 

Pay 
Order 

- An order cannot be paid until it has been shipped. A single pay order activ-
ity shall be created in response to each order shipment 

 

5   Code-Generation of the Workflow-Extended Domain Model 

A workflow-extended domain model is a completely standard domain model. No new 
modeling primitives have been created to express the extension of the original model 
with the required workflow information. Therefore, any method or tool able to pro-
vide an automatic implementation of the initial domain model can also cope with the 
automatic generation of our workflow-extended model in any final technology plat-
form using general-purpose MDD techniques and frameworks. 

For instance, activity classes (as AskQuotation or ProvideQuotation) could be  
implemented as database tables or Java classes while process constraints could be 
implemented as triggers and method preconditions respectively. Note that a transla-
tion from OCL into SQL or Java is already provided by several tools (e.g., [10], [16]), 
covering also efficient implementation of OCL constraints [7]. 



 Automatic Generation of Workflow-Extended Domain Models 387 

Table 4.4. Constraint definitions for the Provide Quotation activity 

The preceding activity must be of type Ask Quotation and must be completed 
context ProvideQuotation inv: previous->size()=1 and previous->exists(a| 
a.oclIsTypeOf(AskQuotation) and a.status=‘completed’) 
No two instances may be related with the same Ask Quotation instance 
context ProvideQuotation inv: ProvideQuotation.allInstances()-> is-
Unique(previous) 
A Provide Quotation instance must exist for each completed Ask Quotation 

Constraints 
due to the 
sequence 
with Ask 
Quotation  

context Case inv: status=‘completed’ implies activity-> select(a| a.oclIsTypeOf( 
AskQuotation) and a.status=‘completed’)->forAll(a|a.next-
>exists(b|b.oclIsTypeOf( ProvideQuotation)  and a.end<=b.start) and a.next-
>size()=1) 
The next activity must be either another Ask Quotation instance or a Submit 
Order instance, but not both 
context ProvideQuotation inv: next->select (a|  a.oclIsTypeOf(AskQuotation) or 
a.oclIsTypeOf(ProvideQuotation))->size()<=1  
If the Provide Quotation instance is completed, an Ask Quotation or a Submit 
Order must be created before ending the case.  

context Case inv: status=‘completed’ implies activity->select(a|a.oclIsTypeOf( 
ProvideQuotation) and a.status=‘completed’)-> forAll (a| a.next-> exists(b|  
b.oclIsTypeOf(AskQuotation) or b.oclIsTypeOf(SubmitOrder))) 
Only Ask Quotation activity instances or Submit Order instances may follow a 
Provide Quotation instance 

Constraints 
due to the 
XOR split 

context ProvideQuotation inv: next->forAll(b| b.oclIsTypeOf(AskQuotation) or 
b.oclIsTypeOf(SubmitOrder) 

6   Related Work 

Research on business process in software engineering has mainly addressed the cor-
rectness of the design of the workflow model (see [12] as an example) or its direct 
implementation in specific final technology platforms (see [2] for an implementation 
over a relational database and [5] for an implementation using web technologies). 
Integration of workflows and MDD approaches has only been explored from a gen-
eral framework perspective [14]. 

As far as we know, ours is the first proposal where both workflow information and 
process constraints are automatically derived from a workflow model and integrated 
within a platform-independent domain model. As we have seen in the previous sec-
tion, this integration permits to generate workflow applications in any final technol-
ogy without requiring to develop an specific treatment for the workflow model. 

Moreover, ours is also the first translation of a workflow model into a set of OCL 
declarative constraints. Such a translation is necessary regardless how these con-
straints are to be enforced in the final workflow implementation.  

Very few examples of translations to other declarative languages exist (e.g., see [4] 
for a translation to LTL temporal logics). In literature, workflow metadata and OCL 
constraints have only been used in [11] to manually specify workflow access control 
constraints and derive authorization rules, in [1] to express constraints with respect to the 
distribution of work to teams, in ArgoUWE [17] to check for well-formedness in the 
design of process models, in [22] to manually specify business models with UML and in 
[18] to specify the contracts for the transformation of activity diagrams into BPEL4WS.  



388 M. Brambilla, J. Cabot, and S. Comai 

7   Conclusions 

In this paper we presented an automatic approach to integrate the semantics of busi-
ness process specifications within domain models.  

Once the designer has specified both the workflow and the domain models sepa-
rately, we build an integrated workflow-extended domain model by means of adding 
to the domain model (i) the definition of a set of new entity and relationship types for 
workflow status tracking and (ii) the rules for generating the integrity constraints on 
such types, needed for enforcing the business process specification.  

The integration of both the domain and the workflow aspects in a single extended 
domain model permits a homogeneous treatment of the workflow-based application.  
For instance, we can apply the usual model-driven development methods over our 
extended model to generate its automatic implementation in any technology platform. 

To make the proposed approach viable, we have developed a visual editor proto-
type that allows to design BPMN diagrams (see the tool of Fig. 2.1) and to automati-
cally generate the corresponding workflow subschema (Fig. 3.1) and its process  
constraints, according to the guidelines presented in this paper. In particular, given the 
XML representation of the workflow model and the XMI representation of the initial 
domain model (in particular the XMI version used by MagicDraw), our tool generates 
a new XMI file containing the workflow-extended model and the process constraints.   

Future work will include the extension of our translation patterns to directly cover 
the full expressivity of the BPMN notation and the study and comparison of different 
implementation options for the workflow-extended models depending on application-
specific requirements. Also, we would like to explore the possibility of using our 
extended model as a bridge to facilitate reverse-engineering of existing applications 
into their original workflow models and to ease keeping them aligned. Finally, we 
plan to develop a method that, from the generated process constraints, is able to com-
pute the list of activities that can be enacted by a user in a given case (i.e. those activi-
ties that can be created without violating any of the workflow constraints according to 
the case state at that specific time. 

Acknowledgments 

This work has been partially supported by the Italian grant FAR N. 4412/ICT, the 
Spanish-Italian integrated action HI2006-0208, the grant BE 00062 (Catalan Gov-
ernment) and the Spanish Research Project TIN2005-06053. 

References 

1. van der Aalst, W.M.P., Kumar, A.: A reference model for team-enabled workflow man-
agement systems. Data & Knowledge Engineering 38, 335–363 (2001) 

2. Bae, J., Bae, H., Kang, S.-H., Kim, Y.: Automatic Control of Workflow Processes Using ECA 
Rules. IEEE Transactions on Knowledge and Data Engineering 16, 1010–1023 (2004) 

3. Brambilla, M., Cabot, J., Comai, S.: Automatic Generation of Worfklow-extended Domain 
Models (extended version), Available: http://www.elet.polimi.it/upload/mbrambil/ 
WFdomainmodels/ 

 
 



 Automatic Generation of Workflow-Extended Domain Models 389 

4. Brambilla, M., Deutsch, A., Sui, L., Vianu, V.: The Role of Visual Tools in a Web Appli-
cation Design and Verification Framework: a Visual Notation for LTL Formulae. In: 
Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 557–568. Springer, 
Heidelberg (2005) 

5. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web Applica-
tions. ACM Transactions on Software Engineering and Methodology 15, 360–409 (2006) 

6. Cabot, J., Raventós, R.: Conceptual Modelling Patterns for Roles. Journal on Data Seman-
tics V, 158–184 (2006) 

7. Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In: Dubois, E., Pohl, 
K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 81–95. Springer, Heidelberg (2006) 

8. Combi, C., Pozzi, G.: Temporal Conceptual Modelling of Workflows. In: Song, I.-Y., Lid-
dle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 59–76. 
Springer, Heidelberg (2003) 

9. Costal, D., Gómez, C., Queralt, A., Raventós, R., Teniente, E.: Facilitating the definition 
of general constraints in UML. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) 
MoDELS 2006. LNCS, vol. 4199, pp. 260–274. Springer, Heidelberg (2006) 

10. Demuth, B., Hussmann, H., Loecher, S.: OCL as a Specification Language for Business 
Rules in Database Applications. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, 
vol. 2185, pp. 104–117. Springer, Heidelberg (2001) 

11. Domingos, D., Rito-Silva, A., Veiga, P.: Workflow Access Control from a Business Per-
spective. In: Proc. ICEIS, vol. 3, pp. 18–25 (2004) 

12. Eshuis, R., Wieringa, R.: Verification support for workflow design with UML activity 
graphs. In: Proc. ICSE’02, pp. 166–176 (2002) 

13. Ho, W.-M., Jézéquel, J.-M., Pennaneach, F., Plouzeau, N.: A toolkit for weaving aspect 
oriented UML designs. In: Proc. AOSD’02, pp. 99–105 (2002) 

14. Hur, W., Jung, J.-y., Kim, H., Kang, S.-H.: Model-Driven Approach to workflow execu-
tion. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 261–
273. Springer, Heidelberg (2004) 

15. IBM: WebSphere MQ Workflow, http://www.ibm.com/software/ts/mqseries/workflow/ v332/ 
16. KlasseObjecten: Octopus OCL Tool for Precise Uml Specifications, http://www.klasse.nl/ 

octopus/ index.html 
17. Knapp, A., Koch, N., Zhang, G., Hassler, H.: Modeling Business Processes in Web Appli-

cations with ArgoUWE. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) Proc. 
UML 2004. LNCS, vol. 3273, pp. 69–83. Springer, Heidelberg (2004) 

18. Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Declarative techniques for model-driven 
business process integration. IBM Systems Journal 44, 47–65 (2005) 

19. Olivé, A.: A method for the definition of integrity constraints in object-oriented conceptual 
modeling languages. Data & Knowledge Engineering 58, 243–262 (2006) 

20. OMG/BPMI: Business Process Management Notation v.1. OMG Adopted Specification 
21. Oracle. Workflow 11i,  

http://www.oracle.com/appsnet/technology/products/docs/workflow.html 
22. Takemura, T., Tamai, T.: Rigorous Business Process Modeling with OCL. In: Nierstrasz, 

O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, Springer, 
Heidelberg (2006) 

23. White, S.A.: Process Modeling Notations and Workflow Patterns. BPTrends (2004) 
24. Wynn, M.T., Edmond, D., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Achieving a gen-

eral, formal and decidable approach to the OR-join in Workflow using Reset nets. In: Ci-
ardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 423–443. Springer, 
Heidelberg (2005) 

View publication statsView publication stats

https://www.researchgate.net/publication/221223988

	Automatic Generation of Workflow-Extended Domain Models
	Introduction
	Basic Workflow Concepts
	Extending Domain Models with Workflow Information
	Translation of Process Constraints
	Sequences of Activities
	Split Gateways
	Merge Gateways
	Condition Constraints
	Loops
	Applying the Translation Patterns

	Code-Generation of the Workflow-Extended Domain Model
	Related Work
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




