
An OpenAPI-based Testing Framework to
Monitor Non-Functional Properties of REST

APIs?

Steven Bucaille1[0000−0003−1997−3753], Javier Luis Cánovas
Izquierdo2[0000−0002−2326−1700], Hamza Ed-douibi2[0000−0003−4342−4818], Jordi

Cabot2,3[0000−0003−2418−2489]

1 Katholieke Universiteit Leuven, Belgium
steven.bucaille@student.kuleuven.be

2 UOC. Barcelona, Spain
{jcanovasi,hed-douibi}@uoc.edu

3 ICREA. Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. REST APIs have become key assets for any company will-
ing to have online presence and provide access to its services. Several
approaches have been proposed to describe this kind of APIs, being
OpenAPI the dominant proposal in the last years. OpenAPI allows any
consumer to understand the operations and data elements of a REST
API. However, it does not cover any kind of non-functional properties,
such as performance and availability. In this paper we present Gadolin-
ium, a framework that leverages the OpenAPI specification to test non-
functional properties of REST APIs. Gadolinium automatically tests
performance and availability in different geographical locations by means
of a master/slave architecture. The results of the test can eventually be
injected in the original OpenAPI definition of the REST API.
Demo: http://hdl.handle.net/20.500.12004/1/C/ICWE/2020/001

1 Introduction

The Web has become the main source of information and services for both de-
velopers and big companies. Nowadays the most popular way to access this
information is via REST APIs. REST APIs have been usually documented in
natural language only, which hampers its understanding and use. In the last
years a number of specifications have appeared to formalize the definition of
APIs and solve this problem. OpenAPI is now the de facto standard for this.

OpenAPI provides a specification language to describe the operations and
data structures of REST APIs. OpenAPI covers the functional and actionable
elements of a REST API, however, it does not support Non-Functional Properties
(NFPs) like performance or availability, which are crucial to help developers
choose and integrate the most suitable API for their applications.
? Work supported by the Spanish government (TIN2016-75944-R project)



In this demo paper we present Gadolinium, a framework that relies on
OpenAPI to automatically test NFPs of REST APIs. The framework provides
data schemas to describe NFPs and the required testing process, which relies
on a master/slave architecture. The results of the test can eventually be stored
in the OpenAPI description to enrich API information and make sure it is even
more helpful for future developers evaluating its adoption. Our current imple-
mentation covers the test of performance and availability NFPs, and supports
the deployment of clients in the Google Cloud platform.

To the best of our knowledge, ours is the first general approach to automat-
ically test NFPs in OpenAPI. While some works have explored the definition of
NFPs in Web development (e.g., [2, 4, 3]) and others have studied how to bench-
mark quality aspects in Web APIs (e.g., [1]), none of them mix the study and
testing of NFPs in OpenAPI. Only some commercial tools (e.g., SOAP UI4)
propose NFP testing for REST APIs but mostly focusing on load testing.

2 Our Proposal

We propose a framework called Gadolinium that relies on the OpenAPI de-
scription of REST APIs to test NFPs of their operations.

Our proposal currently supports two NFPs: performance and availability.
Others can be added following a similar approach to the one explained herein.
Performance is measured by calculating the latency or time interval between
a request and the response. Availability is measured via the API uptime (i.e.,
percentage of time the API is ready to receive requests). We use random values
for mandatory parameters of the requests and omits values for optional ones.

Both properties should be evaluated considering that APIs can be trans-
parently replicated in different locations and therefore users can access them
from diverse geographical places. As such, NFPs values can change on a per
geographical basis. To deal with this, Gadolinum follows a master/slave ar-
chitecture where slaves are geographically distributed and deployed in different
locations to ensure a good coverage of the test.

Figure 1 illustrates our proposal. As can be seen, Gadolinium takes as
input the OpenAPI description to be tested and monitored. Once the OpenAPI
description is loaded, the user configures the testing process. At that point, the
testing process launches several slaves to test the NFPs and report back the
results. The master element of this architecture controls the slaves, monitors the
sequence of events and displays a dashboard to the user summarizing the status
of the testing process and its results. The user can then review and analyze
the results, which can also be exported into the OpenAPI description provided
initially using the standard extension mechanism of the OpenAPI specification.

Figure 2 shows an example of using Gadolinium. Figure 2a shows the im-
portation dialog, where the user provides the OpenAPI description and configure
the process. The configuration involves (1) setting the number of times the API

4 https://www.soapui.org/



Extended
OpenAPI

Input
OpenAPI

test 
results

G���������

«reads» «exports»

«report»«launches»

Slave 1

Slave 2

Slave n

Slave 1
Slave 2
Slave n

Testing API

Fig. 1: General overview of Gadolinium.

will be tested, (2) the time between tests and (3) the geographical zones to de-
ploy the slaves for each NFP. Figure 2b shows an example of the results page. On
top, it shows the importation and slaves execution data, including the progress
until reaching the final stage. At the bottom, it shows the results of the uptime
(on the left) as a pie chart and latency (on the right) as a bar chart that can be
filtered according to either operations or geographical zones.

3 Architecture

This section provides some more details on the architecture and implementation
of Gadolinium. As we described above, the two key components are the master
and the slaves. While the master can be deployed anywhere, slaves must be
physically distributed and deployed in different locations of the world to ensure
a good coverage for the NFPs tested. Next we describe the implementation of
both master and slaves.
Master The Master is the central piece of Gadolinium and provides a dash-
board to import OpenAPI files, monitor the APIs being tested and download
results. The backend has been developed in NodeJS, providing an HTTP server
for the frontend and a communication channel via SocketIO for slaves. The
frontend has been developed in Angular, allowing the user to provide an Open-
API description and configure the testing process.
Slaves A slave is created to test a specific non-functional property of a REST
API from a location. The lifecycle of a slave includes its deployment, configu-
ration, connection to the Master to get the instructions (i.e., NFP and API to
test), test execution and send back the results. Slaves have been developed as
independent NodeJS applications running on Google’s data centers.

4 Conclusion

We have presented Gadolinium, a framework to test and monitor NFPs of
REST APIs by leveraging the OpenAPI specification. The approach currently
supports testing and monitoring latency and uptime NFPs and provides a dash-
board view to control the complete lifecycle of the testing process. Gadolinium



(a) (b)

Fig. 2: Example of dashboard in Gadolinium. (a) Adding an API and configur-
ing the NFP metrics. (b) Results of the testing process.

has been made available on GitHub5, where additional information about its
inner workings can be found.

As further work, we plan to support additional NFPs (e.g., throughput and
reliability) as well as other cloud platforms to improve the geographical coverage.
We are also interested in exploring new visualization techniques to help devel-
opers study how structural properties (e.g., the size or structure of the payload
of the operations) may affect the NFPs.

References

1. Bermbach, D., Wittern, E.: Benchmarking Web API Quality. In: Int. Conf. in Web
Engineering. pp. 188–206 (2016)

2. Galster, M., Bucherer, E.: A Taxonomy for Identifying and Non-Functional Re-
quirements in Service-Oriented Development. In: IEEE Congress on Services. pp.
345–352 (2008)

3. Junghans, M., Agarwal, S.: Web Service Discovery Based on Unified View on Func-
tional and Non-functional Properties. In: Int. Conf. on Semantic Computing. pp.
224–227 (2010)

4. Ortiz, G., Núñez, J.H., Clemente, P.J.: How to Deal with Non-functional Properties
in Web Service Development. In: Int. Conf. in Web Engineering. pp. 98–103 (2005)

5 http://hdl.handle.net/20.500.12004/1/A/GADOLINIUM/001


