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Abstract

The principle divide ef conquere is even much older than its adaption by the Romans, but
is still the key to handle complex systems. Another old principle is what has remained
since a long fime, will mosf likely remain a long time.

The approach beside being based on these two very basic principles respecfs cognitive
limits and common habifs of humans, the needs of different stakeholders and the fact a
system architecture is somefhing living that evolves over the fime. Furthermore the
approach is designed to optimize collaboration, because collaboration is viewed as the
key fo master highly complex systems.

But the paper is not about nomenclature, it is about principles. How the elements the
paper deals with gef named is up to your organization. Thart is the reason somefimes
several names separated by slashes occur. In this cases | simply wrote the most common
ferms used.

Levels of Structure

On the Macro-Structure

The scope of the macro-structure are the dependencies befween configuration items.
The sfructure of configurafion items is 2-dimensional. The two dimensions are spawn up
by capabilifies and the three levels of abstraction each of these capabilifies is specified
ar.

1*" Dimension - Capabilities

A natfural mefaphor common to most people is capability. A capability is the ability to do
something. A capability is sometimes referred to as feafure. A feafure, | was fold some
years ago is something a car dealer writes on the windscreen of a car fo sell. | really like
that definifion.
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2" Dimension - Levels of Abstraction

Different stakeholders of a system architecture require different information. Product
Owners (POs) are mainly interested in which capabilities (= user stories) gef covered. Also
a RAMS' (Reliability, Availability, Maintainability & Safety) engineer requires the capability
specifications to perform the hazard analysis. But an RAMS engineer requires
implementation details foo, to approve the design. Project leads (PLs) require information
enabling them fto define and plan work packages. A software developer ...

Given fhat

] a PO requires to know fthe operational architecture only

. a PL can perform first planning on logical architecture level

o a RAMS engineer is damned fo think on all levels of abstraction
. a software developer requires the physical architecfure only

Operafional Architecture

On the highest level of abstraction, referred fo as operational architecture (OA) a
capability is described by an actor capable fo fulfill a sef of use cases.

A capability shall have a well-defined level or several well defined levels of quality.
Beside the criteria given by the ISO/IEC 25000:2011" also requirements on throughput
and latency (timing constraints) can and shall be specified on that level.

Also requirements on both safety and security can and shall be specified on that level.

An operafional architecture mainly specifies what shall be implemented. The specificafion
of how fo implement if, is limited to operafional procedures.

Both the common understanding what a capabllity is about and operational procedures
are mosfly extfremely long-living. As a small anecdote: | was recently working as a
systems architect in the railways domain, sfafing to a feam member being frain operator
for more than 30 years thaf we currently model operational procedures defined some
120 years ago | got the answer: “Well, thaf is simply the way to operafe frains.”.
Operafional procedures tend to be established to the level of common sense. Think of
operational procedures defined for road fraffic. How fo proceed in fronf of sfop signs or
fraffic lights is established fo the level of common sense or “thaf is simply the way fo ...”.

Operational architecfure is a ferm used by the OMG UAF", the Arcadia method" and
ofhers. Using the terms defined by MDA" the operational architecture is referred fo as
Computafion Independent Model (CIM).

Logical Architecture

The questions “Which fasks of an operatfional procedure is performed by whom?” and/or
“‘How fthe use cases get implemented?” is answered by the logical architecture (LA).

The question “Which fasks of an operafional procedure is performed by whom?” is
merely the quesfion “Which tasks shall be aufomated and which fasks shall be performed
by humans?”. As a resulr the acfors defined by the operafional architecfure either gef
realized by a system providing services or become operafional roles.



In general the logical archifecture maps aspects of a capability on logical enfifies
(systems) performing services. The logical entities (systems) can be either technical
sysfems or humans.

The logical architecture describes how capabilifies get implemented. To clarify on thaf,
the operational architecture may specify safefy goals on a capability. The logical
architecture shall specify mechanisms required to fulfill the safety goals, but shall nof
parameferize these mechanisms. As an example, if if is on logical architecture level
obvious fthaf redundancy is required to fulfill specific safefy goals the logical archirecture
shall enable redundancy. But the logical architecture shall not specify if 2 or 3 redundant
instances shall be present.

Even if logical architectures do not fend fo be as long-living as operational archirectures,
logical architectures tend to stay for decades.

Multiple logical architectures may exist for a single operational architecture. Either
because fechnology evolved enabling a more advanced logical architecture to be
designed. Or because different levels of quality as specified by the operational
architecture are mapped to different logical architectures.

Logical architecture is a ferm used by the SEBok, the Arcadia method” and ofhers. The
OMG MDA method" calls the logical architecture Platform Independent Model (PIM).

Physical Architecture

Specifications like whether 3 redundant instances shall ensure the safety goals to be mef
are part of the physical architecfture. The physical architecture is to answer the question
“With which means the fechnical systems specified by the logical architecture gef
realized?”.

As the physical architecture depends on fechnical ifems being available, on physical
architecture is obsoleted if a technical ifem required by the physical architecture reaches
EOL". As an example a physical architecture of an electronic confrol unit (ECU) becomes
obsolete if the used micro-confroller (UC) gets discontinued. As a resulf physical
architectures trend to life more short-term.

Multiple physical architectures may exist for a single logical architecture. Either because,
as discussed before, an item used gefts disconfinued. Or because of rising volumes a
different physical architecture can be produced cheaper (i.e. using an ASIC"" instead of a
software based solution). Or because an altered physical architecture reduces production
costs for other reasons. Or ...

Physical architecture is a term used by the SEBok™, the Arcadia method" and ofhers. The
OMG MDA method" calls the physical architecture Platform Specific Model (PSM).

Cross-Level Elements

Some elements cover several levels of absfracfion. Such elements might be

. a library model containing the dimensions and unifs to be used
. a library model containing an overarching faxonomy of ferms
. a library requirements model containing requirements imposed by an overarching

specificafion/standard



beside others.

When migrating legacy architectures, these legacy architecfures referenced are most
likely cross-level elements.

Cross-level elements can be manifold. The cross-level elements reside as a fourth
category separafed and might be referenced by all three architecture levels.

Meta-configuration ifems

The approach results in a large number of individual, self-confained , versioned
architectures. Each of these architectures is a configuration ifem. Mefa-configuration ifems
bundle all architectures belonging to a capability specification of a given version.

The mefa-configurafion ifems are a mere means fo ease navigafion.

On the Meso-Structure

Scope of the meso-sfructure are the sef of services a capability provides. Each service a
capability provides is provided via well defined inferfaces. Every single interface
specificafion is freafed as an own self-confained configuration item. This approach has
been chosen, because every single interface has its own sef of stakeholders and ifs own
life-cycle.

On operational architecture level the stakeholders of an interface and their requirements
on that inferface get documented for each inferface. On logical architecture level the
information to be inferchanged is specified. On logical architecture level only the
dimension and the type boolean, enumeration, number or string of the informatfion items
gef specified. Beside this the inferchange profocol and the means fo ensure integrity and
confidentiality are specified on logical architecture level. The profocol shall also specify
failure handling. The unit and exact physical representation of each information item is
specified on the physical architecture level. Furthermore the physical architecture specifies
with what values the means get parameterized fo ensure the required degree of integrity
and confidenfiality.

The meso-structure provides nothing more than the black-box view on the services the
capabilifies provide. Based on the black-box view both integration ftests and funcfional
fests of the services can be specified.

There are several reasons for the strict separation of concerns, which gefs realized by
modeling for each atomic concern a dedicated, self-contained interface as a separated,
self-contrained model.

First of all an inferface is a confract fo be negotiated by all stakeholders. | have worked in
companies that print ouf the interface specifications and lef these prinf-oufs be signed by
all stakeholders. The smaller the group of stakeholders is the less effort is required fo gef
the stakeholders commit on an interface. Furthermore the less complex an inferface is the
less effort is required fo gef the stakeholders commit on that interface. The negofiation
process for each inferface is divided into three steps. First each stakeholder can issue ifs
requirements. These stakeholder requirements gef consolidared and published as
operational architectures. The operational architectures get committed on and released. In
a second sfep for each concern a logical model based on the released operafional
architectures is created. As soon as a logical model is commifted on and released the
physical model based on that logical model is created. The detailed physical model
needs only fo be committed on by system and/or software architects. As a result each
inferface specification on logical architecture level references the released operational
inferface specification if realizes.

Another reason is that developers tend fo highly underestimate the efforft required o
creafe somefhing from scrarch and to highly overestimafe the effort required fo re-use a



given item. Making individual interfaces as less complex as possible increases the
mofivafion fo re-use the inferfaced irem.

On the Micro-Structure

The micro-sfructure confains the whife box view of the capabilities. For each capability
the white box view gefs modeled as logical architecture first. As soon as fthe logical
architecture is reviewed, committed on and released the physical model based on that
logical model is created. The physical model then gets reviewed, commifted on and
finally released.

The logical architecture of a capability references the operational architecture it is based
on and the logical architecfures of its inferfaces. In analogy the physical archirecture
references the logical architecture if is based on and the physical architectures of its
inferfaces.

As soon as the physical architecture of a capability is released a mefa-configurafion item
referencing all architecfures creafed for that capability gets created and released. It has
been proven to be a good idea fo also affach PDF documents generated based on the
operational architectures. Just because a PDF document is much more likely to be
opened and read fthan a model.

The Meta-Model
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lllustration 1. The Meta-Model

The meta-model is as follows

On all three abstraction levels both system specificafions as well as inferface
specificafions exist.



Each system specificafion can reference any number of inferface specifications of the
same absfracfion level. In the following examples a provided interface is referenced by an
UML::Realization whereas a required interface is referenced by an UML:Usage.

Given fhat, the only way for a system fo interact with another system is fo use inferfaces
provided by the other system. As mentioned before these inferfaces have fo be
committed on by the affected stakeholders and be in the stafe released.

Each specificafion can reference any number of specifications of the nexf higher
abstraction level. These references are shown as UML::Abstraction in the following
examples.

The Configuration lrem Specification

All specifications are specified fo be configuration items. Each configurafion item has ifs
own lifecycle. Its current sfare is defined by ifs version, given by major, minor and
parchLevel and its mafurity stafe referred to as stafe.

On the version numbering scheme

| stfrongly advise fo use following semantics

major change - interface are either delefed or alfered incompatibly
minor change - inferface gof extended only

pafchLevel change - interface remain unchanged (bug fixing only)

The reason is, this allows a system to remain unchanged if its required inferfaces change
in their patchLevel or even in their minor version number.



The Configuration lrem Meta-Model
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llustration 2: The Configuration Ifem Meta-Model

Top-Down & Bottom-Up

The approach supports both the top-down as well as the bottom-up design approach.
Inferestingly the mechanism, inferfaces is same for both approaches. It is a matter of the
fimely order of the specificafions being created.

Both approaches resulf in the same principle sfrucfure being given by the mefa-model

( Figure 1: The Mefa-Model). As a consequence you can mix both approaches. Feel free
fo use whatever approach is better fitted in the very situation.

On functional break-down - the top-down approach

A functional break-down is performed by specifying required inferfaces on operafional
architecture level and realizing the required inferfaces afterwards. Thaf is the way fo
perform a FAST analysis or alike.

On assembling compounds - the bottom-up approach

Compounds are assembled by specifying a sysfem using interfaces provided by other
inferfaces fo assemble a more complex compound system. This can be done on all levels
of abstraction.

Operational Architecture Example

This example shows only an incomplete excerpt (as the following ftwo examples as well)



The operational architecture is the highest abstraction level existing. Consequently no

UML::Abstraction relafions start from the operational architecture level.
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lllustration 3: Operational Architecture Example

The interface SpeedSensorGetSpeed is realized (UML::Realize) by the SpeedSensor and
used by the SpeedContfroller (UML::Usage).

Logical Architecture Level Example

On the Logical Level everything is prefty much the same, inferfaces gef realized and are
used. Bur both system as well as inferface specificafions shall reference the system
specificafions respective inferface specifications these are based on.

In the example this is only shown for the inferface specifications

SpeedContfrollerSetDriveTorque and SpeedContfrollerSelfTest. Nevertheless all sysfem
and interface specificafions reference their bases.
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llustration 4: Logical Architecture Example

As a convention all specificafions being based on shall be released. The state of each
specification is specified by state:ConfigltemState. The type ConfiglfemStafe has, as
menfioned before, been named intentionally o express each specificafion is a
configuration item. Each configurafion itfem has its own lifecycle representated by ifs
version (major, minor, patchLevel) and by its current stafe (stafe).

As shown in the example, on logical architecture level interfaces might get realized or
used by a system not being referenced by the system’s specificafion on operafional
archirecture level. If is allowed to specify defails on logical archifecfure level that are nof
of inferest on operational architecture level. As an example the SpeedController uses the
Electronic Journal via the ElectronicJournalSetMessage inferface. This usage has no
countferparf on operafional architecture level.

Physical Architecture Example

Everything specified for the logical architecture level also applies for the physical
architecture level. On the physical architecfure level if is also allowed fo infroduce derails

not of inferest on the logical architecture level.

A special case of a defail likely to be infroduced on physical architecture level are the
use of third party libraries. It absolutely does not make sense fo mention third party
libraries on logical architecture level or even on operational architecture level. Thaf is why
these are only represenfted by an inferface specification on physical architecture level. In
the example the ThirdPartyNumericalDifferentiationLibrary represents such a third party

library.
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lllustration 5: Physical Architecture Example

Augmenting Specifications

The mechanisms used by the mefa-model also allow specificafions to be augmenfed.

The AddOn Meta Model

In the meta-model shown below only augmentafion of systfem specificafions is allowed.
This has been done to simplify the meta-model to beffer express the mechanism.

An specification add-on references the specificafion it augments. The mefta-model shows
a hazard analysis on operational architecture as well as risk assessmenfs on logical and
physical architecture level as examples. This can be extended by FMEDA, FMECA, FTA or
ofher models that augment a specification.

If inferface specificafions shall be included, the dependencies between the system and
the interfaces that system provides have to be modeled foo.

The rules for an add-on model fo reference a specificafion model do not need fo be as
sfrict as the rules required for a system specification fo reference an interface
specificafion. The reference may already exist if the specificafion fo be augmented is in
work. But an add-on model shall only be released if the augmented model is released.
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llustration 6: The AddOn Meta Model

Operational Architecture Level Augmentation Example

Logical Architecture Level Augmentation Example

An AddOn-model references to
base model it augments.

An AddOn-model yet in work
may reference a base model
already released. But an AddOn-
madel being in the state
released implies the referenced
base maodel is in the state
released.
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lllustration /: Logical Architecture Level Augmentation Example

Physical Architecture Level Augmentation Example

[Z) Released SpeedController SysSpec: PA SysSpec
state : ConfigltemState = released

An AddOn-model references to base
model it augments.

An AddOn-model in the state
released shall reference a base model
released. Because an AddOn-model
being in the state released implies the
referenced base model is in the state
released.

[Z] Risk Assessment Example on PA level: PA Level Risk Assessment

state : ConfigltemState = released

lllustration 8: Physical Architecture Level Augmentation Example



Agile or V-Model or ...

Despite the fact the approach presented is a nafive agile approach it can also be used in
environments using the V-Model.

We had this before: It is simply a maffer of the timely order of the specifications being
creafed. Both approaches result in the same principal structure being given by the metfa-
model ( Figure 1: The Mefa-Model). As a consequence you can mix both approaches.
Feel free o use whatever approach is better fitted in the very situafion.

Going Agile
Going agile you define epics and refine each epic with a sef of user stories. Each user
story gets fully implemented individually.

Given that an epic is a compound being divided info parts, called user stories using the
fop-down approach discussed before. Both an epic as well as an user sfory semantically
perfectly fif info the operafional architecfure level. | suggesf fo describe an epic texfually
and ifs user stories as an use case diagram wifthin a single operational architecture level
specificafion. Furthermore | highly advise you fo specify the acftors (UML::Actfor) in a
separafe operafional architecfure level specificafion referenced by the epic specificafions.

To facilitate that, simply extend the mefta-model (Figure 1: The Mefa-Model) fo supporf a
system specification fo reference system specifications on the same level of absfraction. |
infentionally did not mention this before, because this extension will be most likely
misused fo couple systems directly and nof via interface specificafions. As a resulf |
sfrongly advise you only fo infroduce this extension if you have a well-esfablished
governance. An IVVQ (Integration, Validation, Verification & Quality) department, to be
menfioned lafer in this arficle, is an organization well suifed fo realize governance.

Each use case then gefs realized by an inferface (UML:Inferface) specified by a logical
architecture level interface specificafion which ifself gefs realized by an inferface
(UML:Interface) specified by a physical architecfure level interface specification. The
inferfaces then get realized by elements (UML::BehavioredClassifier) specified by systems
specificafions on the respective abstraction level.

As a hint the UML specification explicitly allows an actor (UML::Actor) to realize
(UML::Realize) an inferface (UML:Inferface). Given thaft on physical architecture level an
(human) actor can be defined that realizes an interface. This does nof make any sense on
logical architecture level because fhaf level is abour “How?” and nof about “With what
means?”.

Even going agile a strongly advise you fo go fthrough all three levels of abstraction,

because fhis facilitates the highesf possible re-use.

Following the V

As mentioned before following the V - or fo be accurafe, using the big-bang approach -
all operafional architecture level specifications are complefed first,

The released operafional architecture, meaning all confained operational archirecture level
specifications are released then gets realized by the logical architecture.



The released logical architecfure, meaning all confained logical architecture level
specificafions are released as a third sfep then gefs realized by the physical architecture.

The capability based approach

The NAF v3, the DODAF as well as the Arcadia method are based on a capability based
approach. A capability is defined as the ability fo perform some fask. A capability is
semantically idenfical fo an use case. It is just expressed in another way. Instead of sfafing
for example “As a frain company we want fo be able fo inform our customers about
delays” one can also sfafe “l as a frain company want fo inform my customers about
delays”.

Given that equivalence the capability based approach is equivalent fo going agile.

On Interfaces

| recognized writing this paper, reflecting what | did the last 20+ years altered my view on
interfaces. My view did not get completely altered, but the priorities of the aspects
shiffed. Before, the aspect thaf an inferface absfracts from implementafion had the fop
priority. Now the aspect thaf intferfaces significantly reduce the required design and
implementation efforfs by decoupling users from providers is on the top.

On the Rationale

As shown in the three examples (Figure 3: An Operational Architecture Example, Figure 4:
An Logical Architecture Example and Figure 5: An Physical Architecture Example) users
access provided entifies via interfaces. Well, the meta-model (Figure 1: The Mefa-Model)
only allows users fo access provided enfifies via inferfaces and that is by very infenfion.

The intention, or to be more precise the rationale leading fo this decision is: An inferface,
merely presenting the black-box of a specific aspect of an entity is in general significantly
less complex than the whife-box view of that enfity given by ifs system specification. As
an inferface is significantly less complex, it is significantly less error prone or to express i
the other way round much more stable in fime.

Given that simple fact, forcing systems to inferact via interfaces eliminates the need ,to
perform an impact analyses on each change of the system specificafions of the used
enfitfies. Thaf very need for frequent impact analyses was a really serious problem for a
feam designing a system aggregating data delivered by 47/ different systems connected.
Infroducing aspect specific interfaces as self-confained, versioned configurafion ifems
reduced the efforf required to perform this impact analyses by more than a magnitude.
Instead of being in permanent “baffle mode” requiring, as fime sheefs proved, approx.
87% of the resources to react on the change reporfs issued by the authors of the
connected systems, affer forcing the ofher feams to design, deliver and maintain aspect
specific interfaces as self-confained, versioned configuration items thaf number reduced
fo a ftolerable 4%. In that very case it was needed fo stop the payments fo the other
feams fo make them design, deliver and mainfain aspect specific interfaces as self-
contained, versioned configurafion itfems. That is why | wrofre “forcing”.

| - consulfing the team responsible for the dafa aggregator - did a surprisingly precise a
priori esfimate of the effort simply by stating the effort reduction factor expected is the
number of impact analyses performed divided by the number of impact analyses requiring



the system fo be changed. Now, almost 11 years after | consulted on thaf issue, writing
this paper | state: The a priori estimafte was that exact, simply because only inferface
changes require an user to adapt.

On Abstraction Levels, Contracts and the like

| assume how fo specify the information fo be inferchanged via an interface on logical
and physical architecture level does nof require any further explanation. Buf what abouf
inferfaces on operational architecture level?

On OA Level Interfaces

It was sfated before that a system specification on operafional architecture level
describes a capability or an epic, depending on which rerm is preferred. Nice, buf
inferfaces are about information inferchange, about interaction. Do capabilities/epics
inferact?

Well, not directly but a capability/epic is always bound to operational roles represented
by the actors (UML::Actor) involved. These Actors either use or provide parts of that
capability/epic. Actors being users in the context of a capability/epic have operational
information needs. Actors being providers in the context of a capability/epic provide
operafional information. The actors inferact both within the confext of a specific
capability/epic and/or combine capabilifies/epics fo a compound capability/epic.

Given the above it gefs obvious, an interface on operafional architecture level describes
an operational information provided by an acfor.

| used the ferm “describes” by infenfion, because on fhat level of abstraction in general
we have fo deal with rather informal prose descriptions. These can be represenfted as
Requirements (SysML::Requirement). E.g. in the case of the capability/epic “approving a
business frip” a sfakeholder might stafe “The employee shall state the reason for
fraveling.”.

That level of defail and formalism proved to be sufficient on operational architecture level.
Remember it has been stated before: The operafional architecfure level is about the
question “What?”. The “How?” is lafer specified on the logical architecfure level.

On Contracts aka the Liskov Substifution Principle

Inferfaces are confracts in the sense of the Design by Contract Principle*. Given that both
pre- and post-condifions have to be specified.

A pre-condition specifies what the user has to assure. E.g. a technical component using
an electronic journal fo persist issue messages shall only use message fype IDs defined.
Even though if is the dufy of the user fo assure each pre-condition, | highly advise to
specify the providers fo check if the pre-conditions are fulfilled and perform an error
reacfion in the case the pre-condition is nof fulfilled. In my experience this leads fo more
robust, easier to fix and mainfain systems. Simply because the explicit error reaction of
the provider discloses the faulty implementation of the user. This discloses errors early
and significantly reduces the effort required for debugging.

A post-condition specifies what the provider has to assure. E.g. a sensor is required to
have a folerance of af most 10mm in the range from Omm to 1000mm. Post-conditions
often cannotf be checked by the users. In the rare cases this is possible (e.g. a disposifion



sysfem shall ensure that tasks shall not have a due date before sfart dafe.) this check shall
be specified for the same reasons as pre-conditions shall be checked.

One benefit of following the Design by Contract Principle is described by the Liskov
Substitution Principle”. Any system requiring pre-conditions af most as sfrong as specified
and providing posft-condifions as leasf as sfrong as specified fulfills the confract. This
eases fo infroduce drop-in replacements significantly.

On operational architecture level the pre-conditions specify what can be presumed when
using the capability. These can be skill levels of human actors, weather condifions and the
like. For example it can be stafed the capability presumes wind speed is ar most 100kn.

Post-condifion on operational architecture level is sometimes referred o as effect level.
Effect Level is a term used in capability management*. The effect level required specifies
how complefe and how mafure the implementation of a capability shall be. In my
experience it is in mosf cases sufficient on the complefeness dimension fo differenfiare
whether only the necessary requirements shall be implemented or all requirements
regarded ro be sufficient fo gain broad user acceptance shall be implemented. The
necessary case is somefimes also referred fo as MVP*'. The dimension mafurity level is
more complex. This dimension may include beside others all aspects of RAMS (Reliability,
Availability, Maintainability and Safety) and Security. A MVP only fo be used in a piloting
phase mostly requires a lower maturity level than a product fo be rolled-out for
producfion.

As illustrated by the MVP only to be used in a piloting phase vs. product to be rolled-out
for production comparison, different sefs of interface specifications requiring different
levels of pre- and post-condifions may exist for a single system specification.

Other aspects

Beside various different sefs of interfaces that may exist for a single system specification.
Each sef may have various access profocols. For example for a software system an
inferface for local access specifying a local AP may exist along-side with a remote
access via remote APl realized as a sef of web services® may exisf.

Interfaces are provided and used. Because the number of users is in most cases higher
than but af least the number of providers by convention the provider-side port gefs
conjugated™. This convenfion is esfablished among ROOM* und RT-UML*" ysers for
decades. Thaf eases users fo access the interface and further improves accepfance of
re-use.

On Requirements

In most existing projects the requirements sefts reflect neither the abstraction level nor the
breakdown structure. Requirements of all abstraction levels and of different scope are
mixed fogether in a huge single requirement-sef. Sometimes affributes exist fo specify the
scope. Such requirement-sefs are managed by sforing them apart from the models in
dedicated requirement management systems. This is the reason, why these are referred to
as external requirements. This approach requires a bridge connecting the modeling fool
with the requirement management systems.

Such requirement-sets define a single specific product and cannor be re-used. For fthaf
reason | sfrongly plead to handle such requirements sets as legacy. The order of the



following three sub-chapters describes the suggested procedure fo iterafively migrafe to
scoped re-usable requirement-sets.

Map external requirements on model elements

This is the commonly present legacy sfatre. Requiremenfs confained in a single
requirement-set get referenced by architecture elements fulfilling these requirements.

Map external requirements on local requirements

In my experience the approach described in this paper results in af most a few hundred
requirements needed for a system or interface specificafion. And even that figure is a rare
worst case. This can be managed using a SysML requirements model eliminating the
need fo additionally use a dedicafed requirements management system and as a
consequence a bridge. As a result in the following targef sfafe instead of three only one
single applicafion has fo be masfered by the architects and mainfained by the operafors.

Use only local requirements

This is the suggested farget state. Nevertheless beside local requirements also over-
arching requirements exist. Such over-arching requirements are requirements implied by
domain or organization specific specifications or standards (i.e. the VDA LV124/LV148
for the automotive domain). These specificafions or standards in my experience result in
specification-sefs that can be managed using a SysML requirements model.

Traceability can be, depending on the required conformance level either be achieved by
the navigafion feafures present in modeling fools or by scripfs analyzing the model. One
might say dedicated requirement management fools deliver fraceability out of the box.
Bur in pracfice these are on the same level as navigafion feafures presenf in modeling
fools. In practice traceability is mosfly verified by DXL or equivalent scripfs.

Requirements vs. Design Decisions vs. Constraints

In most if not all projects | was involved the last 20+ years design decisions like “Buffer
size shall be 10" have been freated as requiremenfs. Even though an IREB* template has
been used for the senfence, if is no requirement as no stakeholder requires the buffer
size fo be 10. If is a design decision based on a, hopefully educated guess by an
architect.

In SysML this is handled by a parameterization specified by a sef of paramefric diagrams.
UML does nof feafure a dedicated means fo parameterize, but this can be achieved by
seffing cardinalities to a literal, by specifying constraints and other means.

We just mentioned the term constraint. A constraint constrains something. Both UML and
SysML feature formal (i.e. OCL) constraints that can be validated automatically.
Consequently using formal consfraints instead of requirements not only puts the
information in the right place, the use of formal constraints also enables automated
validation.

On Traceability

A reference shall always start af the user and reference a provider. Given that, an item
fulfilling a requirement shall reference its base requirement. But why?



The rafionale is simple: A provider provides ifs capability independently by whom the
capability is used. Consequently a user depends on a provider, but nof vice versa.

Besides that a provider may be used by more than one single user. Even worse, further

users may be added lafer. Linking from a provider to a user would enforce the provider

fo be alfered each time a new user is added. This nof only infroduces addifional efforf to
unfreeze the provider, add the links and re-release the provider, but furthermore friggers
the need for impact analyses.

A side note: As IREB requires requirements to be atomic, a requirement shall not be
refined. The rationale is simply atomic (ancient greek &TOpOG) means cannot be divided.
Consequently either the requirement is nof afomic or cannof be refined.

On Variant Handling

The only and hence suggested way fo specify a variant supporfed by this method is o
extend a base (compound) giving a compound specifying the variant. There is no way fo
express a variant that shall exclude some capabilities of some base (compound).
Nevertheless a strip-down variant can be specified, with some little more efforf. The strip-
down variant ifself becomes the new base (compound) and all other variants, including
the former base (compound) gef re-based on the new base (compound).

The re-base does not change the inferfaces provided by the existing variants and is,
consequently a local operafion not affecting the existing users of the existing variants.
That way of specifying variants extends the semantic of compounds beside being a mere
conrainer, compounds are also the mean fo specify varianfs.

In my experience specifying variants by extending base (compounds) only, simplifies the
analysis what a specific variant provides significantly.

On IVVQ, RAMS and Security

Both the aerospace domain (DO 178 and DO278) as well as railways domain (CENELEC)
explicitfly require IVVQ and RAMS. The automotive domain (IEC/ISO 26262) is not that
strict, but nevertheless IVVQ and RAMS are also of interest in that domain.

Security is of growing inferest, not only in the domains mentioned above but even in
commercial applicafions. Furthermore security issues allowing man-in-the-middle affacks
corrupt safety.

IVVQ - Integration, Verification, Validation & Quality

Even though IVVQ fterminology is based on the V-Model, IVVQ fits perfectly info this agile
approach. | think that is not af all surprising, hence, as menfioned before, big bang and
agile just differ in the order in which tasks are performed.

Integration

Infegration is performed by specifying compounds. Compounds aggregate capabillities,
feaftures or functions fo provide higher level capabilities, feafures or funcfions. The
infegration check is done implicifly. Integrafion is done on operafional archifecture level
first. Then it is performed on logical architecture level and finally on physical architecture
level.



Furthermore infegrafion is typically done incrementally. Compounds get infegrated info
compounds of compounds and so on. Each infegrafion shall infegrate af most /% items
info a compound. That number represents a cognifive limif thaf shall be respected.

Verification

As defined by the V-Model verification is the process fo check whether the specifications
on the next higher absfraction level are sufficiently concise to enable specifications on the
current level of absfracfion. Verification is a process being performed on the leff hand
side of the V. A verificafion resulfs in a feed-back fo the authors of the specifications on
the next higher abstraction level. A verification either states a specification on the next
higher abstraction level is accepfed or issues a sef of change requesfs. A specificafion
being realized by several lower abstraction level specificafions might ger accepted by
some of them while others issue change requests. This enables the work on the lower
level specification accepting the base specification fo start. Well, the others are sfill
pending. Buf nevertheless the approach enables significant concurrency specifying system
of systems.

In this approach not only lower abstraction level specificafions being based on a
specification verify fthis specification bur also any specification on the same absfracfion
level using this specification. As a result verificafion in this approach is even more
comprehensive than in the V-Model.

Validation

As defined by the V-Model validafion is the process fo test products. Validation is a
process performed on the right-hand side of the V. Test in this context means, run resf
cases on a product. Test cases shall be created for each specification.

On physical and also on logical architecture level test cases specify unit and infegrafion
fesfs. These can be both funcfional fesfs as well as non-functional fesfs. Each fesf case
being specified on logical architecfure level applies for each realizafion. Test cases on
logical architecture level are abstract and consequently need fo be adapted to reflect the
concrete realization. Nevertheless concrefe inpuf values to be tested can be defined on
logical architecture level.

An acceptance fesf is located on the operational architecture layer. Hence the test cases
shall reflect operational procedures. The fest cases for an acceptance test are also
referred fo as acceptance criteria and might be parf of a commercial contract.

Despite the fact thaf test cases can only be executed on a realized product, the frest
cases shall be specified as soon as a first draft of a specificafion exisfs. Architects and
fest engineers shall collaborate. This is why | suggest creating fest specifications as add-
on models being bi-directional linked to the specifications the test cases apply fo.

Beside of a fest specification being a means of validafion creafing a fesf specificafion also
verifies the affected specificafion and assures the specificafion fo be festable.

Validafion is a further means fo give a feed-back fo the authors of specificafions. In the
case execufing test cases discloses specification issues, these have to be solved by
correcting the specifications.



Quality

The described approach assures items to be based on quality assured items only. This
reduces GIGO™ significantly. Furthermore verification is even more comprehensive than
with the V-Model. Validafion is supporfed on all test levels. As a resulf the approach
enables quality targets to be defined and reached.

| highly recommend using the criteria defined by the ISO/IEC 25000:2011 to specify
quality requirements.

The approach is quality farget specification method agnostic. Feel free fo use kaizen™, six
sigma“ or any other method to define or refine quality fargefs.

This qualifies the approach fo be used to build critical systems*".

RAMS - Reliability, Availability, Maintainability & Safety

RAMS is a term originated in building safety-critical systems* also in some domains
referred o as life-crifical systems. Safefy-critical systems are required fo conform to
RAMS metrics. For example a realization of a SIL 4 rated capability must assure the mean
fime befween hazardous events fo be at least 100000 years. This implies mathematical
models (i.e. FMEA) have to be sef-up and calculated to calculate this figures. In some
cases formal proves are required fo formally prove sysfem’s conformance.

RAMS also implies feedback loops. In the case a capability / epic / feafure cannor be
implemented conforming to RAMS requirements this capability / epic / feature has to be
re-thought. In the case a logical architecture does nof enable the RAMS requirements to
gef fulfilled, the logical architecture has fo be re-worked.

Each aspect shall be handled by augmenting the affected specifications using add-on
models.

Reliability

Reliability is defined as the probability of components, parfs and systems to perform their
required functions for a desired period of time without failure in specified environments
with a desired confidence. Given thar reliability is related fo operafion time.

The expected reliability is mainly calculated performing a FMEDA. The reliability required is
defined on operational architecture level. It is based on the capabiliies specified. On
logical architecture level the FMEDA can be set-up. The logical architecture mainly is
about allocafing behavior fo elements or in brief about sfructure. Hence the elements fo
be considered and how these elements relafe are given by the logical architecture.
Consequently the templafe for the FMEDA can be creafed on logical architecture level.
On physical architecture level the concrefe values gef available. So on physical
architecture level these values are filled info the FMEDA femplate and the calculation can
gef performed.

e Mean Time Between Failure (MTBF), which is defined as: fofal operation fime /
#failures

e Failure Rate (A), which is defined as: #failures / ftotal operation time

What are these values? These values may be the number of redundant instances used or
the reliability of an off-the-shelf product used or others.



Availability

Availability is defined as the probability that the system is operating properly when it is
requested for use. As example a system can be requesfed fo be available 98% each

working day between 06:00 and 22:00. Given that availability is mainly related to wall
clock fime.

As side effect availability requirements indirectly specify possible maintenance infervals.

As with reliability also availability gets required on operafional architecture level, enabled
on logical architecture level and implemenfed on physical architecture level.

Maintainability

Maintainability is highly related with diagnostics. A maintainer needs to know what
happened with an ifem fo maintain that ifem. Diagnosfic figures may include operafion
fime since last maintenance, but also issues defected (i.e. ECC errors on memory reads).

Consequently also maintainability mainly gefs required on operational architecfure level,
enabled on logical architecture level and implemented on physical architecture level. Why
“mainly gefs required on operational architecture level”? Simply because some
requirements for diagnostics first become obvious ar logical architecture level or even at
physical architecture level.

Safety

Safety is about livings nof to gef harmed. Harm can only happen, in the case sometfhing
happens. Given that harms are bound fo evenfs or actions, or fo generalize fo behavior.
The desired behavior of an item is specified via a capability / epic / feature specificafion
on operational architecture level. Consequently the HARA™ (hazard analysis & risk
assessment) shall augment a capability / epic / feature specification on operational
architecture level.

A HARA resulfs in a classification for each behavior to what degree shall be either
assured or prevented. Such classificafions mainly use SIL*I, ASIL*" or similar classificafion
schemes. As example commonly the event an airbag opens without need shall be
prevenfed with ASIL D. On the other side an airbag shall assure fo open when needed
with ASIL B.

Beside ofhers (i.e. reliability figures) a SIL / ASIL / or similar classificaftion typically implies
limits for

* Ay = rafe a Fail Safe gefs defecred,
e Aw
* Aw

* A = rate a Fail Dangerous gefs not defected.

rate a Fail Safe gefs not detected,

rate a Fail Dangerous gets defected,

Furthermore the decision whether a system shall be fail safe or fail operable shall be
made.

Consequently safefy gefs required on operafional architecfture level, enabled on logical
architecture level and implemented on physical architecture level.



As with reliability a FMEA template shall be created on logical architecfure level and
calculated on physical level.

Security

Security is about profecting information. Nevertheless security can be handled analogous
fo safety.

On operafional architecture level, based on a risk assessment the decision is fo be made
fo what degree each information ifem shall be proftected. The logical archifecfure shall
enable the level of profection and the physical architecture finally shall realize the level of
profection.

As with RAMS the security aspect shall be handled by augmenting the affecfted
specificafions using add-on models.

Even though handling security and safefy aspects have a lof in common, | strongly advise
both aspects fo be handled by different persons.

Complexity, the main Rafionale of the approach
presented

The approach cannotr make complexity vanish by magic. Buf the approach provides a
sfructure fo master complexity by disfributing it. The overall complexity is system inherent
and as a consequence remains the same whatever structure is used.

On Complexity Metric Values
The current status quo
Currently the most complex systems are designed by the automofive domain.
Audi stafes™™ currently it requires
e ~60 million requirements
e ~1 billion lines of code

to build their cars.

How many specifications are required for that?

| infensely discussed fthat question first ar a project af a German car OEM and a second
fime 2 years later af a project at a German 1° level automotive ECU supplier. In both
cases the result was approx. 150.000 for all Level*™ 3 automated cars of that OEM.

At the first glance that figure is rather scaring. But dividing the 60 million requirements by
the 150.000 specifications the result is an average of 400 requirements per specificafion.
Thaf is a sane figure, respecting the fact mosf requirements are design resulfs or
consfrains.

A single high end ECU, the system under construction at the German 1* level automotive
ECU supplier consists of approx. 1000 specificafions. But a mere 150 of them were
considered product specific. The rest of 850 were considered shared specificafions.
Given fhat rafio 85% of the specificafions can be re-used.



What to expect in near future?

And these are Level 3 automated cars. Level 5 automated cars will be magnitudes more
complex.

On how fo master complexity -- On Collaboration

Highly complex system cannot be specified by a single person in a reasonable fime.
Specifying and implementing highly complex systems respecting all consfraints imposed
by RAMS and Security requires collaboration, large scale collaborafion. In my actual
project in the railways domain the core design feam consisfs of currently 20 persons and
the complexity fo be mastered is mediocre. In the case designing a Level 3 automated
car this figure is more like a 1000 persons, excluding suppliers. In the case of a Level 3
automated car the design team is distributed. While overarching aspects are done by the
car company ifself, the component level gefs specified by various 1 fier suppliers.

Even foday’s figures sfress V-Model based approaches fto their exireme limits and are
likely to fail even more offen in future.

Facing this | designed this approach with opfimized collaboration as highest priority goal.
It is all about enabling feedback and reducing feedback lafency in the collaborafion
process as much as possible. It is nof abour correspondence, meaning fo respond fo
each other. Collaborafion, meaning fo work fogether is about communicafion, meaning fo
gef a common understanding. To gef an understanding not just common fo a handful
persons collaborafting on a single specification, not just common on a single level of
absfraction, but being common on all levels of abstraction.

Validafion and Verificafion are about communication, about geffing a common
understanding. That is why | elaborafed on these ferms before.

On coherence

The above leads fo an even more fundamental aspect, the coherence™. The whole
system of specificafions has fo be coherent. Validafion and Verification are, beside being
about communication also about coherence.

Coherence, or to be more accurafe coherentism is about first-order logic®" also referred
fo as predicafe logic and about proof theory™. Both first-order logic and proof theory
work is better to be performed by finite stafe machines than by humans. Doesn’t thaf
confradict with the stafement Validation and Verification is about communication.

| clearly state no, just because these are two completely different aspects. Neither first-
order logic nor proof theory is able fo check semantfic, this parf is up fo humans. Even
betfer finite state machines can free humans from the burden fo do first-order logic and
proof theory work themselves enabling them fo focus on semantfic, on understanding.

Conclusion

The approach summarizes the author’s 20+ year experience building highly complex
systems. All mechanisms required by the approach can be achieved using Eclipse Papyrus
or some commercial UML/SysML modeling tools.

The author also realized mental barriers. An example for such a menfal barrier was the
sfafement: “If you require more than a single model fo model whafever system, you are
doing wrong.” issued by a well-known UML/SysML Trainer / Coach. Well, | am quifte



sure foday no complex software sysfem is programmed using just a single source file.
Interestingly the approach is well-established in programming software for some 60 years.
The same is frue for digital circuir design, PCB design and other domains. The approach
represents nothing really new. I is just an adoption of a well-known, well-established
approaches followed by different domains for decades.

Nevertheless mental barriers are the problem most difficult fo solve.
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