
An approach to model complex systems
based on two principles being successful thousands

of years by now

Carsten Pitz
carsten.pitz@gmx.de

Abstract
The principle divide et conquere is even much older than its adaption by the Romans, but
is still the key to handle complex systems. Another old principle is what has remained
since a long time, will most likely remain a long time.

The approach beside being based on these two very basic principles respects cognitive
limits and common habits of humans, the needs of different stakeholders and the fact a
system architecture is something living that evolves over the time. Furthermore the
approach is designed to optimize collaboration, because collaboration is viewed as the
key to master highly complex systems.

But the paper is not about nomenclature, it is about principles. How the elements the
paper deals with get named is up to your organization. That is the reason sometimes
several names separated by slashes occur. In this cases I simply wrote the most common
terms used.

Levels of Structure
On the Macro-Structure
The scope of the macro-structure are the dependencies between configuration items.
The structure of configuration items is 2-dimensional. The two dimensions are spawn up
by capabilities and the three levels of abstraction each of these capabilities is specified
at.

1st Dimension – Capabilities
A natural metaphor common to most people is capability. A capability is the ability to do
something. A capability is sometimes referred to as feature. A feature, I was told some
years ago is something a car dealer writes on the windscreen of a car to sell. I really like
that definition.

mailto:carsten.pitz@gmx.de

2nd Dimension – Levels of Abstraction
Different stakeholders of a system architecture require different information. Product
Owners (POs) are mainly interested in which capabilities (= user stories) get covered. Also
a RAMSi (Reliability, Availability, Maintainability & Safety) engineer requires the capability
specifications to perform the hazard analysis. But an RAMS engineer requires
implementation details too, to approve the design. Project leads (PLs) require information
enabling them to define and plan work packages. A software developer …
Given that
 a PO requires to know the operational architecture only
 a PL can perform first planning on logical architecture level
 a RAMS engineer is damned to think on all levels of abstraction
 a software developer requires the physical architecture only
 …

Operational Architecture
On the highest level of abstraction, referred to as operational architecture (OA) a
capability is described by an actor capable to fulfill a set of use cases.

A capability shall have a well-defined level or several well defined levels of quality.
Beside the criteria given by the ISO/IEC 25000:2011 ii also requirements on throughput
and latency (timing constraints) can and shall be specified on that level.

Also requirements on both safety and security can and shall be specified on that level.

An operational architecture mainly specifies what shall be implemented. The specification
of how to implement it, is limited to operational procedures.

Both the common understanding what a capability is about and operational procedures
are mostly extremely long-living. As a small anecdote: I was recently working as a
systems architect in the railways domain, stating to a team member being train operator
for more than 30 years that we currently model operational procedures defined some
120 years ago I got the answer: “Well, that is simply the way to operate trains.”.
Operational procedures tend to be established to the level of common sense. Think of
operational procedures defined for road traffic. How to proceed in front of stop signs or
traffic lights is established to the level of common sense or “that is simply the way to ...”.

Operational architecture is a term used by the OMG UAFiii, the Arcadia methodvi and
others. Using the terms defined by MDAiv the operational architecture is referred to as
Computation Independent Model (CIM).

Logical Architecture
The questions “Which tasks of an operational procedure is performed by whom?” and/or
“How the use cases get implemented?” is answered by the logical architecture (LA).
The question “Which tasks of an operational procedure is performed by whom?” is
merely the question “Which tasks shall be automated and which tasks shall be performed
by humans?”. As a result the actors defined by the operational architecture either get
realized by a system providing services or become operational roles.

In general the logical architecture maps aspects of a capability on logical entities
(systems) performing services. The logical entities (systems) can be either technical
systems or humans.
The logical architecture describes how capabilities get implemented. To clarify on that,
the operational architecture may specify safety goals on a capability. The logical
architecture shall specify mechanisms required to fulfill the safety goals, but shall not
parameterize these mechanisms. As an example, if it is on logical architecture level
obvious that redundancy is required to fulfill specific safety goals the logical architecture
shall enable redundancy. But the logical architecture shall not specify if 2 or 3 redundant
instances shall be present.
Even if logical architectures do not tend to be as long-living as operational architectures,
logical architectures tend to stay for decades.
Multiple logical architectures may exist for a single operational architecture. Either
because technology evolved enabling a more advanced logical architecture to be
designed. Or because different levels of quality as specified by the operational
architecture are mapped to different logical architectures.
Logical architecture is a term used by the SEBokv, the Arcadia methodvi and others. The
OMG MDA methodiv calls the logical architecture Platform Independent Model (PIM).

Physical Architecture
Specifications like whether 3 redundant instances shall ensure the safety goals to be met
are part of the physical architecture. The physical architecture is to answer the question
“With which means the technical systems specified by the logical architecture get
realized?”.
As the physical architecture depends on technical items being available, on physical
architecture is obsoleted if a technical item required by the physical architecture reaches
EOLvii. As an example a physical architecture of an electronic control unit (ECU) becomes
obsolete if the used micro-controller (µC) gets discontinued. As a result physical
architectures tend to life more short-term.
Multiple physical architectures may exist for a single logical architecture. Either because,
as discussed before, an item used gets discontinued. Or because of rising volumes a
different physical architecture can be produced cheaper (i.e. using an ASICviii instead of a
software based solution). Or because an altered physical architecture reduces production
costs for other reasons. Or ...
Physical architecture is a term used by the SEBok ix, the Arcadia methodvi and others. The
OMG MDA methodiv calls the physical architecture Platform Specific Model (PSM).

Cross-Level Elements
Some elements cover several levels of abstraction. Such elements might be
 a library model containing the dimensions and units to be used
 a library model containing an overarching taxonomy of terms
 a library requirements model containing requirements imposed by an overarching
specification/standard

beside others.
When migrating legacy architectures, these legacy architectures referenced are most
likely cross-level elements.
Cross-level elements can be manifold. The cross-level elements reside as a fourth
category separated and might be referenced by all three architecture levels.

Meta-configuration items
The approach results in a large number of individual, self-contained , versioned
architectures. Each of these architectures is a configuration item. Meta-configuration items
bundle all architectures belonging to a capability specification of a given version.
The meta-configuration items are a mere means to ease navigation.

On the Meso-Structure
Scope of the meso-structure are the set of services a capability provides. Each service a
capability provides is provided via well defined interfaces. Every single interface
specification is treated as an own self-contained configuration item. This approach has
been chosen, because every single interface has its own set of stakeholders and its own
life-cycle.

On operational architecture level the stakeholders of an interface and their requirements
on that interface get documented for each interface. On logical architecture level the
information to be interchanged is specified. On logical architecture level only the
dimension and the type boolean, enumeration, number or string of the information items
get specified. Beside this the interchange protocol and the means to ensure integrity and
confidentiality are specified on logical architecture level. The protocol shall also specify
failure handling. The unit and exact physical representation of each information item is
specified on the physical architecture level. Furthermore the physical architecture specifies
with what values the means get parameterized to ensure the required degree of integrity
and confidentiality.

The meso-structure provides nothing more than the black-box view on the services the
capabilities provide. Based on the black-box view both integration tests and functional
tests of the services can be specified.
There are several reasons for the strict separation of concerns, which gets realized by
modeling for each atomic concern a dedicated, self-contained interface as a separated,
self-contained model.

First of all an interface is a contract to be negotiated by all stakeholders. I have worked in
companies that print out the interface specifications and let these print-outs be signed by
all stakeholders. The smaller the group of stakeholders is the less effort is required to get
the stakeholders commit on an interface. Furthermore the less complex an interface is the
less effort is required to get the stakeholders commit on that interface. The negotiation
process for each interface is divided into three steps. First each stakeholder can issue its
requirements. These stakeholder requirements get consolidated and published as
operational architectures. The operational architectures get committed on and released. In
a second step for each concern a logical model based on the released operational
architectures is created. As soon as a logical model is committed on and released the
physical model based on that logical model is created. The detailed physical model
needs only to be committed on by system and/or software architects. As a result each
interface specification on logical architecture level references the released operational
interface specification it realizes.
Another reason is that developers tend to highly underestimate the effort required o
create something from scratch and to highly overestimate the effort required to re-use a

given item. Making individual interfaces as less complex as possible increases the
motivation to re-use the interfaced item.

On the Micro-Structure
The micro-structure contains the white box view of the capabilities. For each capability
the white box view gets modeled as logical architecture first. As soon as the logical
architecture is reviewed, committed on and released the physical model based on that
logical model is created. The physical model then gets reviewed, committed on and
finally released.

The logical architecture of a capability references the operational architecture it is based
on and the logical architectures of its interfaces. In analogy the physical architecture
references the logical architecture it is based on and the physical architectures of its
interfaces.

As soon as the physical architecture of a capability is released a meta-configuration item
referencing all architectures created for that capability gets created and released. It has
been proven to be a good idea to also attach PDF documents generated based on the
operational architectures. Just because a PDF document is much more likely to be
opened and read than a model.

The Meta-Model

The meta-model is as follows

On all three abstraction levels both system specifications as well as interface
specifications exist.

Illustration 1: The Meta-Model

Each system specification can reference any number of interface specifications of the
same abstraction level. In the following examples a provided interface is referenced by an
UML::Realization whereas a required interface is referenced by an UML::Usage.

Given that, the only way for a system to interact with another system is to use interfaces
provided by the other system. As mentioned before these interfaces have to be
committed on by the affected stakeholders and be in the state released.

Each specification can reference any number of specifications of the next higher
abstraction level. These references are shown as UML::Abstraction in the following
examples.

The Configuration Item Specification
All specifications are specified to be configuration items. Each configuration item has its
own lifecycle. Its current state is defined by its version, given by major, minor and
patchLevel and its maturity state referred to as state.

On the version numbering scheme
I strongly advise to use following semantics
major change – interface are either deleted or altered incompatibly
minor change – interface got extended only
patchLevel change – interface remain unchanged (bug fixing only)
The reason is, this allows a system to remain unchanged if its required interfaces change
in their patchLevel or even in their minor version number.

The Configuration Item Meta-Model

Top-Down & Bottom-Up
The approach supports both the top-down as well as the bottom-up design approach.
Interestingly the mechanism, interfaces is same for both approaches. It is a matter of the
timely order of the specifications being created.
Both approaches result in the same principle structure being given by the meta-model
(Figure 1: The Meta-Model). As a consequence you can mix both approaches. Feel free
to use whatever approach is better fitted in the very situation.

On functional break-down – the top-down approach
A functional break-down is performed by specifying required interfaces on operational
architecture level and realizing the required interfaces afterwards. That is the way to
perform a FAST analysis or alike.

On assembling compounds – the bottom-up approach
Compounds are assembled by specifying a system using interfaces provided by other
interfaces to assemble a more complex compound system. This can be done on all levels
of abstraction.

Operational Architecture Example
This example shows only an incomplete excerpt (as the following two examples as well)

Illustration 2: The Configuration Item Meta-Model

The operational architecture is the highest abstraction level existing. Consequently no
UML::Abstraction relations start from the operational architecture level.

The interface SpeedSensorGetSpeed is realized (UML::Realize) by the SpeedSensor and
used by the SpeedController (UML::Usage).

Logical Architecture Level Example
On the Logical Level everything is pretty much the same, interfaces get realized and are
used. But both system as well as interface specifications shall reference the system
specifications respective interface specifications these are based on.

In the example this is only shown for the interface specifications
SpeedControllerSetDriveTorque and SpeedControllerSelfTest. Nevertheless all system
and interface specifications reference their bases.

Illustration 3: Operational Architecture Example

As a convention all specifications being based on shall be released. The state of each
specification is specified by state:ConfigItemState. The type ConfigItemState has, as
mentioned before, been named intentionally to express each specification is a
configuration item. Each configuration item has its own lifecycle representated by its
version (major, minor, patchLevel) and by its current state (state).

As shown in the example, on logical architecture level interfaces might get realized or
used by a system not being referenced by the system’s specification on operational
architecture level. It is allowed to specify details on logical architecture level that are not
of interest on operational architecture level. As an example the SpeedController uses the
Electronic Journal via the ElectronicJournalSetMessage interface. This usage has no
counterpart on operational architecture level.

Physical Architecture Example
Everything specified for the logical architecture level also applies for the physical
architecture level. On the physical architecture level it is also allowed to introduce details
not of interest on the logical architecture level.

A special case of a detail likely to be introduced on physical architecture level are the
use of third party libraries. It absolutely does not make sense to mention third party
libraries on logical architecture level or even on operational architecture level. That is why
these are only represented by an interface specification on physical architecture level. In
the example the ThirdPartyNumericalDifferentiationLibrary represents such a third party
library.

Illustration 4: Logical Architecture Example

Augmenting Specifications
The mechanisms used by the meta-model also allow specifications to be augmented.

The AddOn Meta Model
In the meta-model shown below only augmentation of system specifications is allowed.
This has been done to simplify the meta-model to better express the mechanism.
An specification add-on references the specification it augments. The meta-model shows
a hazard analysis on operational architecture as well as risk assessments on logical and
physical architecture level as examples. This can be extended by FMEDA, FMECA, FTA or
other models that augment a specification.
If interface specifications shall be included, the dependencies between the system and
the interfaces that system provides have to be modeled too.
The rules for an add-on model to reference a specification model do not need to be as
strict as the rules required for a system specification to reference an interface
specification. The reference may already exist if the specification to be augmented is in
work. But an add-on model shall only be released if the augmented model is released.

Illustration 5: Physical Architecture Example

Operational Architecture Level Augmentation Example

Logical Architecture Level Augmentation Example

Physical Architecture Level Augmentation Example

Illustration 6: The AddOn Meta Model

Illustration 7: Logical Architecture Level Augmentation Example

Illustration 8: Physical Architecture Level Augmentation Example

Agile or V-Model or ...
Despite the fact the approach presented is a native agile approach it can also be used in
environments using the V-Model.

We had this before: It is simply a matter of the timely order of the specifications being
created. Both approaches result in the same principal structure being given by the meta-
model (Figure 1: The Meta-Model). As a consequence you can mix both approaches.
Feel free to use whatever approach is better fitted in the very situation.

Going Agile
Going agile you define epics and refine each epic with a set of user stories. Each user
story gets fully implemented individually.
Given that an epic is a compound being divided into parts, called user stories using the
top-down approach discussed before. Both an epic as well as an user story semantically
perfectly fit into the operational architecture level. I suggest to describe an epic textually
and its user stories as an use case diagram within a single operational architecture level
specification. Furthermore I highly advise you to specify the actors (UML::Actor) in a
separate operational architecture level specification referenced by the epic specifications.
To facilitate that, simply extend the meta-model (Figure 1: The Meta-Model) to support a
system specification to reference system specifications on the same level of abstraction. I
intentionally did not mention this before, because this extension will be most likely
misused to couple systems directly and not via interface specifications. As a result I
strongly advise you only to introduce this extension if you have a well-established
governance. An IVVQ (Integration, Validation, Verification & Quality) department, to be
mentioned later in this article, is an organization well suited to realize governance.
Each use case then gets realized by an interface (UML:Interface) specified by a logical
architecture level interface specification which itself gets realized by an interface
(UML:Interface) specified by a physical architecture level interface specification. The
interfaces then get realized by elements (UML::BehavioredClassifier) specified by systems
specifications on the respective abstraction level.
As a hint the UML specification explicitly allows an actor (UML::Actor) to realize
(UML::Realize) an interface (UML::Interface). Given that on physical architecture level an
(human) actor can be defined that realizes an interface. This does not make any sense on
logical architecture level because that level is about “How?” and not about “With what
means?”.
Even going agile a strongly advise you to go through all three levels of abstraction,
because this facilitates the highest possible re-use.

Following the V
As mentioned before following the V – or to be accurate, using the big-bang approach –
all operational architecture level specifications are completed first.
The released operational architecture, meaning all contained operational architecture level
specifications are released then gets realized by the logical architecture.

The released logical architecture, meaning all contained logical architecture level
specifications are released as a third step then gets realized by the physical architecture.

The capability based approach
The NAF v3, the DODAF as well as the Arcadia method are based on a capability based
approach. A capability is defined as the ability to perform some task. A capability is
semantically identical to an use case. It is just expressed in another way. Instead of stating
for example “As a train company we want to be able to inform our customers about
delays” one can also state “I as a train company want to inform my customers about
delays”.
Given that equivalence the capability based approach is equivalent to going agile.

On Interfaces
I recognized writing this paper, reflecting what I did the last 20+ years altered my view on
interfaces. My view did not get completely altered, but the priorities of the aspects
shifted. Before, the aspect that an interface abstracts from implementation had the top
priority. Now the aspect that interfaces significantly reduce the required design and
implementation efforts by decoupling users from providers is on the top.

On the Rationale
As shown in the three examples (Figure 3: An Operational Architecture Example, Figure 4:
An Logical Architecture Example and Figure 5: An Physical Architecture Example) users
access provided entities via interfaces. Well, the meta-model (Figure 1: The Meta-Model)
only allows users to access provided entities via interfaces and that is by very intention.
The intention, or to be more precise the rationale leading to this decision is: An interface,
merely presenting the black-box of a specific aspect of an entity is in general significantly
less complex than the white-box view of that entity given by its system specification. As
an interface is significantly less complex, it is significantly less error prone or to express it
the other way round much more stable in time.
Given that simple fact, forcing systems to interact via interfaces eliminates the need ,to
perform an impact analyses on each change of the system specifications of the used
entities. That very need for frequent impact analyses was a really serious problem for a
team designing a system aggregating data delivered by 47 different systems connected.
Introducing aspect specific interfaces as self-contained, versioned configuration items
reduced the effort required to perform this impact analyses by more than a magnitude.
Instead of being in permanent “battle mode” requiring, as time sheets proved, approx.
87% of the resources to react on the change reports issued by the authors of the
connected systems, after forcing the other teams to design, deliver and maintain aspect
specific interfaces as self-contained, versioned configuration items that number reduced
to a tolerable 4%. In that very case it was needed to stop the payments to the other
teams to make them design, deliver and maintain aspect specific interfaces as self-
contained, versioned configuration items. That is why I wrote “forcing”.
I – consulting the team responsible for the data aggregator – did a surprisingly precise a
priori estimate of the effort simply by stating the effort reduction factor expected is the
number of impact analyses performed divided by the number of impact analyses requiring

the system to be changed. Now, almost 11 years after I consulted on that issue, writing
this paper I state: The a priori estimate was that exact, simply because only interface
changes require an user to adapt.

On Abstraction Levels, Contracts and the like
I assume how to specify the information to be interchanged via an interface on logical
and physical architecture level does not require any further explanation. But what about
interfaces on operational architecture level?

On OA Level Interfaces
It was stated before that a system specification on operational architecture level
describes a capability or an epic, depending on which term is preferred. Nice, but
interfaces are about information interchange, about interaction. Do capabilities/epics
interact?
Well, not directly but a capability/epic is always bound to operational roles represented
by the actors (UML::Actor) involved. These Actors either use or provide parts of that
capability/epic. Actors being users in the context of a capability/epic have operational
information needs. Actors being providers in the context of a capability/epic provide
operational information. The actors interact both within the context of a specific
capability/epic and/or combine capabilities/epics to a compound capability/epic.
Given the above it gets obvious, an interface on operational architecture level describes
an operational information provided by an actor.
I used the term “describes” by intention, because on that level of abstraction in general
we have to deal with rather informal prose descriptions. These can be represented as
Requirements (SysML::Requirement). E.g. in the case of the capability/epic “approving a
business trip” a stakeholder might state “The employee shall state the reason for
traveling.”.
That level of detail and formalism proved to be sufficient on operational architecture level.
Remember it has been stated before: The operational architecture level is about the
question “What?”. The “How?” is later specified on the logical architecture level.

On Contracts aka the Liskov Substitution Principle
Interfaces are contracts in the sense of the Design by Contract Principlex. Given that both
pre- and post-conditions have to be specified.
A pre-condition specifies what the user has to assure. E.g. a technical component using
an electronic journal to persist issue messages shall only use message type IDs defined.
Even though it is the duty of the user to assure each pre-condition, I highly advise to
specify the providers to check if the pre-conditions are fulfilled and perform an error
reaction in the case the pre-condition is not fulfilled. In my experience this leads to more
robust, easier to fix and maintain systems. Simply because the explicit error reaction of
the provider discloses the faulty implementation of the user. This discloses errors early
and significantly reduces the effort required for debugging.
A post-condition specifies what the provider has to assure. E.g. a sensor is required to
have a tolerance of at most 10mm in the range from 0mm to 1000mm. Post-conditions
often cannot be checked by the users. In the rare cases this is possible (e.g. a disposition

system shall ensure that tasks shall not have a due date before start date.) this check shall
be specified for the same reasons as pre-conditions shall be checked.
One benefit of following the Design by Contract Principle is described by the Liskov
Substitution Principlexi. Any system requiring pre-conditions at most as strong as specified
and providing post-conditions as least as strong as specified fulfills the contract. This
eases to introduce drop-in replacements significantly.
On operational architecture level the pre-conditions specify what can be presumed when
using the capability. These can be skill levels of human actors, weather conditions and the
like. For example it can be stated the capability presumes wind speed is at most 100kn.
Post-condition on operational architecture level is sometimes referred to as effect level.
Effect Level is a term used in capability managementxii. The effect level required specifies
how complete and how mature the implementation of a capability shall be. In my
experience it is in most cases sufficient on the completeness dimension to differentiate
whether only the necessary requirements shall be implemented or all requirements
regarded to be sufficient to gain broad user acceptance shall be implemented. The
necessary case is sometimes also referred to as MVPxiii. The dimension maturity level is
more complex. This dimension may include beside others all aspects of RAMS (Reliability,
Availability, Maintainability and Safety) and Security. A MVP only to be used in a piloting
phase mostly requires a lower maturity level than a product to be rolled-out for
production.
As illustrated by the MVP only to be used in a piloting phase vs. product to be rolled-out
for production comparison, different sets of interface specifications requiring different
levels of pre- and post-conditions may exist for a single system specification.

Other aspects
Beside various different sets of interfaces that may exist for a single system specification.
Each set may have various access protocols. For example for a software system an
interface for local access specifying a local APIxiv may exist along-side with a remote
access via remote API realized as a set of web servicesxv may exist.
Interfaces are provided and used. Because the number of users is in most cases higher
than but at least the number of providers by convention the provider-side port gets
conjugatedxvi. This convention is established among ROOMxvii und RT-UMLxviii users for
decades. That eases users to access the interface and further improves acceptance of
re-use.

On Requirements
In most existing projects the requirements sets reflect neither the abstraction level nor the
breakdown structure. Requirements of all abstraction levels and of different scope are
mixed together in a huge single requirement-set. Sometimes attributes exist to specify the
scope. Such requirement-sets are managed by storing them apart from the models in
dedicated requirement management systems. This is the reason, why these are referred to
as external requirements. This approach requires a bridge connecting the modeling tool
with the requirement management systems.
Such requirement-sets define a single specific product and cannot be re-used. For that
reason I strongly plead to handle such requirements sets as legacy. The order of the

following three sub-chapters describes the suggested procedure to iteratively migrate to
scoped re-usable requirement-sets.

Map external requirements on model elements
This is the commonly present legacy state. Requirements contained in a single
requirement-set get referenced by architecture elements fulfilling these requirements.

Map external requirements on local requirements
In my experience the approach described in this paper results in at most a few hundred
requirements needed for a system or interface specification. And even that figure is a rare
worst case. This can be managed using a SysML requirements model eliminating the
need to additionally use a dedicated requirements management system and as a
consequence a bridge. As a result in the following target state instead of three only one
single application has to be mastered by the architects and maintained by the operators.

Use only local requirements
This is the suggested target state. Nevertheless beside local requirements also over-
arching requirements exist. Such over-arching requirements are requirements implied by
domain or organization specific specifications or standards (i.e. the VDA LV124/LV148
for the automotive domain). These specifications or standards in my experience result in
specification-sets that can be managed using a SysML requirements model.
Traceability can be, depending on the required conformance level either be achieved by
the navigation features present in modeling tools or by scripts analyzing the model. One
might say dedicated requirement management tools deliver traceability out of the box.
But in practice these are on the same level as navigation features present in modeling
tools. In practice traceability is mostly verified by DXL or equivalent scripts.

Requirements vs. Design Decisions vs. Constraints
In most if not all projects I was involved the last 20+ years design decisions like “Buffer
size shall be 10” have been treated as requirements. Even though an IREBxix template has
been used for the sentence, it is no requirement as no stakeholder requires the buffer
size to be 10. It is a design decision based on a, hopefully educated guess by an
architect.
In SysML this is handled by a parameterization specified by a set of parametric diagrams.
UML does not feature a dedicated means to parameterize, but this can be achieved by
setting cardinalities to a literal, by specifying constraints and other means.
We just mentioned the term constraint. A constraint constrains something. Both UML and
SysML feature formal (i.e. OCL) constraints that can be validated automatically.
Consequently using formal constraints instead of requirements not only puts the
information in the right place, the use of formal constraints also enables automated
validation.

On Traceability
A reference shall always start at the user and reference a provider. Given that, an item
fulfilling a requirement shall reference its base requirement. But why?

The rationale is simple: A provider provides its capability independently by whom the
capability is used. Consequently a user depends on a provider, but not vice versa.
Besides that a provider may be used by more than one single user. Even worse, further
users may be added later. Linking from a provider to a user would enforce the provider
to be altered each time a new user is added. This not only introduces additional effort to
unfreeze the provider, add the links and re-release the provider, but furthermore triggers
the need for impact analyses.
A side note: As IREB requires requirements to be atomic, a requirement shall not be
refined. The rationale is simply atomic (ancient greek) means cannot be divided. ἄτομος) means cannot be divided.
Consequently either the requirement is not atomic or cannot be refined.

On Variant Handling
The only and hence suggested way to specify a variant supported by this method is to
extend a base (compound) giving a compound specifying the variant. There is no way to
express a variant that shall exclude some capabilities of some base (compound).
Nevertheless a strip-down variant can be specified, with some little more effort. The strip-
down variant itself becomes the new base (compound) and all other variants, including
the former base (compound) get re-based on the new base (compound).
The re-base does not change the interfaces provided by the existing variants and is,
consequently a local operation not affecting the existing users of the existing variants.
That way of specifying variants extends the semantic of compounds beside being a mere
container, compounds are also the mean to specify variants.
In my experience specifying variants by extending base (compounds) only, simplifies the
analysis what a specific variant provides significantly.

On IVVQ, RAMS and Security
Both the aerospace domain (DO 178 and DO278) as well as railways domain (CENELEC)
explicitly require IVVQ and RAMS. The automotive domain (IEC/ISO 26262) is not that
strict, but nevertheless IVVQ and RAMS are also of interest in that domain.
Security is of growing interest, not only in the domains mentioned above but even in
commercial applications. Furthermore security issues allowing man-in-the-middle attacks
corrupt safety.

IVVQ – Integration, Verification, Validation & Quality
Even though IVVQ terminology is based on the V-Model, IVVQ fits perfectly into this agile
approach. I think that is not at all surprising, hence, as mentioned before, big bang and
agile just differ in the order in which tasks are performed.

Integration
Integration is performed by specifying compounds. Compounds aggregate capabilities,
features or functions to provide higher level capabilities, features or functions. The
integration check is done implicitly. Integration is done on operational architecture level
first. Then it is performed on logical architecture level and finally on physical architecture
level.

Furthermore integration is typically done incrementally. Compounds get integrated into
compounds of compounds and so on. Each integration shall integrate at most 7xx items
into a compound. That number represents a cognitive limit that shall be respected.

Verification
As defined by the V-Model verification is the process to check whether the specifications
on the next higher abstraction level are sufficiently concise to enable specifications on the
current level of abstraction. Verification is a process being performed on the left hand
side of the V. A verification results in a feed-back to the authors of the specifications on
the next higher abstraction level. A verification either states a specification on the next
higher abstraction level is accepted or issues a set of change requests. A specification
being realized by several lower abstraction level specifications might get accepted by
some of them while others issue change requests. This enables the work on the lower
level specification accepting the base specification to start. Well, the others are still
pending. But nevertheless the approach enables significant concurrency specifying system
of systems.
In this approach not only lower abstraction level specifications being based on a
specification verify this specification but also any specification on the same abstraction
level using this specification. As a result verification in this approach is even more
comprehensive than in the V-Model.

Validation
As defined by the V-Model validation is the process to test products. Validation is a
process performed on the right-hand side of the V. Test in this context means, run test
cases on a product. Test cases shall be created for each specification.
On physical and also on logical architecture level test cases specify unit and integration
tests. These can be both functional tests as well as non-functional tests. Each test case
being specified on logical architecture level applies for each realization. Test cases on
logical architecture level are abstract and consequently need to be adapted to reflect the
concrete realization. Nevertheless concrete input values to be tested can be defined on
logical architecture level.
An acceptance test is located on the operational architecture layer. Hence the test cases
shall reflect operational procedures. The test cases for an acceptance test are also
referred to as acceptance criteria and might be part of a commercial contract.
Despite the fact that test cases can only be executed on a realized product, the test
cases shall be specified as soon as a first draft of a specification exists. Architects and
test engineers shall collaborate. This is why I suggest creating test specifications as add-
on models being bi-directional linked to the specifications the test cases apply to.
Beside of a test specification being a means of validation creating a test specification also
verifies the affected specification and assures the specification to be testable.
Validation is a further means to give a feed-back to the authors of specifications. In the
case executing test cases discloses specification issues, these have to be solved by
correcting the specifications.

Quality
The described approach assures items to be based on quality assured items only. This
reduces GIGOxxi significantly. Furthermore verification is even more comprehensive than
with the V-Model. Validation is supported on all test levels. As a result the approach
enables quality targets to be defined and reached.
I highly recommend using the criteria defined by the ISO/IEC 25000:2011 to specify
quality requirements.
The approach is quality target specification method agnostic. Feel free to use kaizenxxii, six
sigmaxxiii or any other method to define or refine quality targets.
This qualifies the approach to be used to build critical systemsxxiv.

RAMS – Reliability, Availability, Maintainability & Safety
RAMS is a term originated in building safety-critical systemsxxv also in some domains
referred to as life-critical systems. Safety-critical systems are required to conform to
RAMS metrics. For example a realization of a SIL 4 rated capability must assure the mean
time between hazardous events to be at least 100000 years. This implies mathematical
models (i.e. FMEA) have to be set-up and calculated to calculate this figures. In some
cases formal proves are required to formally prove system’s conformance.
RAMS also implies feedback loops. In the case a capability / epic / feature cannot be
implemented conforming to RAMS requirements this capability / epic / feature has to be
re-thought. In the case a logical architecture does not enable the RAMS requirements to
get fulfilled, the logical architecture has to be re-worked.
Each aspect shall be handled by augmenting the affected specifications using add-on
models.

Reliability
Reliability is defined as the probability of components, parts and systems to perform their
required functions for a desired period of time without failure in specified environments
with a desired confidence. Given that reliability is related to operation time.
The expected reliability is mainly calculated performing a FMEDA. The reliability required is
defined on operational architecture level. It is based on the capabilities specified. On
logical architecture level the FMEDA can be set-up. The logical architecture mainly is
about allocating behavior to elements or in brief about structure. Hence the elements to
be considered and how these elements relate are given by the logical architecture.
Consequently the template for the FMEDA can be created on logical architecture level.
On physical architecture level the concrete values get available. So on physical
architecture level these values are filled into the FMEDA template and the calculation can
get performed.

 Mean Time Between Failure (MTBF), which is defined as: total operation time /
#failures

 Failure Rate (), which is defined as: #failures / total operation timeλ), which is defined as: #failures / total operation time

What are these values? These values may be the number of redundant instances used or
the reliability of an off-the-shelf product used or others.

Availability
Availability is defined as the probability that the system is operating properly when it is
requested for use. As example a system can be requested to be available 98% each
working day between 06:00 and 22:00. Given that availability is mainly related to wall
clock time.
As side effect availability requirements indirectly specify possible maintenance intervals.
As with reliability also availability gets required on operational architecture level, enabled
on logical architecture level and implemented on physical architecture level.

Maintainability
Maintainability is highly related with diagnostics. A maintainer needs to know what
happened with an item to maintain that item. Diagnostic figures may include operation
time since last maintenance, but also issues detected (i.e. ECC errors on memory reads).
Consequently also maintainability mainly gets required on operational architecture level,
enabled on logical architecture level and implemented on physical architecture level. Why
“mainly gets required on operational architecture level”? Simply because some
requirements for diagnostics first become obvious at logical architecture level or even at
physical architecture level.

Safety
Safety is about livings not to get harmed. Harm can only happen, in the case something
happens. Given that harms are bound to events or actions, or to generalize to behavior.
The desired behavior of an item is specified via a capability / epic / feature specification
on operational architecture level. Consequently the HARAxxvi (hazard analysis & risk
assessment) shall augment a capability / epic / feature specification on operational
architecture level.
A HARA results in a classification for each behavior to what degree shall be either
assured or prevented. Such classifications mainly use SILxxvii, ASILxxviii or similar classification
schemes. As example commonly the event an airbag opens without need shall be
prevented with ASIL D. On the other side an airbag shall assure to open when needed
with ASIL B.
Beside others (i.e. reliability figures) a SIL / ASIL / or similar classification typically implies
limits for

 λ), which is defined as: #failures / total operation timeSD = rate a Fail Safe gets detected,
 λ), which is defined as: #failures / total operation timeSU = rate a Fail Safe gets not detected,
 λ), which is defined as: #failures / total operation timeDD = rate a Fail Dangerous gets detected,
 λ), which is defined as: #failures / total operation timeDU = rate a Fail Dangerous gets not detected.

Furthermore the decision whether a system shall be fail safe or fail operable shall be
made.
Consequently safety gets required on operational architecture level, enabled on logical
architecture level and implemented on physical architecture level.

As with reliability a FMEA template shall be created on logical architecture level and
calculated on physical level.

Security
Security is about protecting information. Nevertheless security can be handled analogous
to safety.
On operational architecture level, based on a risk assessment the decision is to be made
to what degree each information item shall be protected. The logical architecture shall
enable the level of protection and the physical architecture finally shall realize the level of
protection.
As with RAMS the security aspect shall be handled by augmenting the affected
specifications using add-on models.
Even though handling security and safety aspects have a lot in common, I strongly advise
both aspects to be handled by different persons.

Complexity, the main Rationale of the approach
presented
The approach cannot make complexity vanish by magic. But the approach provides a
structure to master complexity by distributing it. The overall complexity is system inherent
and as a consequence remains the same whatever structure is used.

On Complexity Metric Values
The current status quo
Currently the most complex systems are designed by the automotive domain.
Audi statesxxix currently it requires

 ~60 million requirements
 ~1 billion lines of code

to build their cars.

How many specifications are required for that?
I intensely discussed that question first at a project at a German car OEM and a second
time 2 years later at a project at a German 1st level automotive ECU supplier. In both
cases the result was approx. 150.000 for all Levelxxx 3 automated cars of that OEM.
At the first glance that figure is rather scaring. But dividing the 60 million requirements by
the 150.000 specifications the result is an average of 400 requirements per specification.
That is a sane figure, respecting the fact most requirements are design results or
constrains.
A single high end ECU, the system under construction at the German 1st level automotive
ECU supplier consists of approx. 1000 specifications. But a mere 150 of them were
considered product specific. The rest of 850 were considered shared specifications.
Given that ratio 85% of the specifications can be re-used.

What to expect in near future?
And these are Level 3 automated cars. Level 5 automated cars will be magnitudes more
complex.

On how to master complexity -- On Collaboration
Highly complex system cannot be specified by a single person in a reasonable time.
Specifying and implementing highly complex systems respecting all constraints imposed
by RAMS and Security requires collaboration, large scale collaboration. In my actual
project in the railways domain the core design team consists of currently 20 persons and
the complexity to be mastered is mediocre. In the case designing a Level 3 automated
car this figure is more like a 1000 persons, excluding suppliers. In the case of a Level 3
automated car the design team is distributed. While overarching aspects are done by the
car company itself, the component level gets specified by various 1st tier suppliers.
Even today’s figures stress V-Model based approaches to their extreme limits and are
likely to fail even more often in future.
Facing this I designed this approach with optimized collaboration as highest priority goal.
It is all about enabling feedback and reducing feedback latency in the collaboration
process as much as possible. It is not about correspondence, meaning to respond to
each other. Collaboration, meaning to work together is about communication, meaning to
get a common understanding. To get an understanding not just common to a handful
persons collaborating on a single specification, not just common on a single level of
abstraction, but being common on all levels of abstraction.
Validation and Verification are about communication, about getting a common
understanding. That is why I elaborated on these terms before.

On coherence
The above leads to an even more fundamental aspect, the coherencexxxi. The whole
system of specifications has to be coherent. Validation and Verification are, beside being
about communication also about coherence.
Coherence, or to be more accurate coherentism is about first-order logicxxxii also referred
to as predicate logic and about proof theoryxxxiii. Both first-order logic and proof theory
work is better to be performed by finite state machines than by humans. Doesn’t that
contradict with the statement Validation and Verification is about communication.
I clearly state no, just because these are two completely different aspects. Neither first-
order logic nor proof theory is able to check semantic, this part is up to humans. Even
better finite state machines can free humans from the burden to do first-order logic and
proof theory work themselves enabling them to focus on semantic, on understanding.

Conclusion
The approach summarizes the author’s 20+ year experience building highly complex
systems. All mechanisms required by the approach can be achieved using Eclipse Papyrus
or some commercial UML/SysML modeling tools.
The author also realized mental barriers. An example for such a mental barrier was the
statement: “If you require more than a single model to model whatever system, you are
doing wrong.” issued by a well-known UML/SysML Trainer / Coach. Well, I am quite

sure today no complex software system is programmed using just a single source file.
Interestingly the approach is well-established in programming software for some 60 years.
The same is true for digital circuit design, PCB design and other domains. The approach
represents nothing really new. It is just an adoption of a well-known, well-established
approaches followed by different domains for decades.
Nevertheless mental barriers are the problem most difficult to solve.

i https://en.wikipedia.org/wiki/RAMS
ii https://de.wikipedia.org/wiki/ISO/IEC_25000
iii https://www.omg.org/spec/UAF/About-UAF/
iv https://www.omg.org/mda/
v https://www.sebokwiki.org/wiki/Logical_Architecture_(glossary)
vi https://en.wikipedia.org/wiki/Arcadia_(engineering)
vii https://en.wikipedia.org/wiki/End-of-life_(product)
viii https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
ix https://www.sebokwiki.org/wiki/Physical_Architecture_(glossary)
x https://en.wikipedia.org/wiki/Design_by_contract
xi https://en.wikipedia.org/wiki/Liskov_substitution_principle
xii https://en.wikipedia.org/wiki/Capability_management_in_business
xiii https://en.wikipedia.org/wiki/Minimum_viable_product
xiv https://en.wikipedia.org/wiki/Application_programming_interface
xv https://en.wikipedia.org/wiki/Web_service
xvi https://www.omg.org/spec/UML/2.5.1/PDF (chapter 11.8.14 Port [Class])
xvii https://en.wikipedia.org/wiki/Real-Time_Object-Oriented_Modeling
xviii https://www.omg.org/news/meetings/workshops/presentations/embedded-rt2002/04-1_Selic-Watson_RT-UML.tutorial
xix https://www.ireb.org
xx https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
xxi https://en.wikipedia.org/wiki/Garbage_in,_garbage_out
xxii https://en.wikipedia.org/wiki/Kaizen
xxiii https://en.wikipedia.org/wiki/Six_Sigma
xxiv https://en.wikipedia.org/wiki/Critical_system
xxv https://en.wikipedia.org/wiki/Safety-critical_system
xxvi https://uspas.fnal.gov/materials/12UTA/08_hazard_assessment.pdf
xxvii https://en.wikipedia.org/wiki/Safety_integrity_level
xxviii https://en.wikipedia.org/wiki/Automotive_Safety_Integrity_Level]
xxix https://se-trends.de/tdse-2017-menschen-modellierung/
xxx https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
xxxi https://en.wikipedia.org/wiki/Coherentism
xxxii https://en.wikipedia.org/wiki/First-order_logic
xxxiii https://en.wikipedia.org/wiki/Proof_theory

	Abstract
	Levels of Structure
	On the Macro-Structure
	1st Dimension – Capabilities
	2nd Dimension – Levels of Abstraction
	Operational Architecture
	Logical Architecture
	Physical Architecture
	Cross-Level Elements
	Meta-configuration items

	On the Meso-Structure
	On the Micro-Structure

	The Meta-Model
	The Configuration Item Specification
	On the version numbering scheme
	The Configuration Item Meta-Model

	Top-Down & Bottom-Up
	On functional break-down – the top-down approach
	On assembling compounds – the bottom-up approach

	Operational Architecture Example
	Logical Architecture Level Example
	Physical Architecture Example

	Augmenting Specifications
	The AddOn Meta Model
	Operational Architecture Level Augmentation Example
	Logical Architecture Level Augmentation Example
	Physical Architecture Level Augmentation Example

	Agile or V-Model or ...
	Going Agile
	Following the V
	The capability based approach

	On Interfaces
	On the Rationale
	On Abstraction Levels, Contracts and the like
	On OA Level Interfaces
	On Contracts aka the Liskov Substitution Principle
	Other aspects

	On Requirements
	Map external requirements on model elements
	Map external requirements on local requirements
	Use only local requirements
	Requirements vs. Design Decisions vs. Constraints
	On Traceability

	On Variant Handling
	On IVVQ, RAMS and Security
	IVVQ – Integration, Verification, Validation & Quality
	Integration
	Verification
	Validation
	Quality

	RAMS – Reliability, Availability, Maintainability & Safety
	Reliability
	Reliability is defined as the probability of components, parts and systems to perform their required functions for a desired period of time without failure in specified environments with a desired confidence. Given that reliability is related to operation time.
	Availability
	Maintainability
	Safety

	Security

	Complexity, the main Rationale of the approach presented
	On Complexity Metric Values
	The current status quo
	How many specifications are required for that?
	What to expect in near future?

	On how to master complexity -- On Collaboration
	On coherence

	Conclusion

