
WAPIML: Towards a Modeling Infrastructure for
Web APIs

Hamza Ed-douibi
IN3 - UOC

Barcelona, Spain
hed-douibi@uoc.edu

Javier Luis Cánovas Izquierdo
IN3 - UOC

Barcelona, Spain
jcanovasi@uoc.edu

Francis Bordeleau
ÉTS

Montreal, Canada
francis.bordeleau@etsmtl.ca

Jordi Cabot
ICREA - UOC

Barcelona, Spain
jordi.cabot@icrea.cat

Abstract—Web APIs are becoming key assets for any business.
Most of these Web APIs are “REST-like”, meaning that they
adhere partially to the Representational State Transfer (REST)
architectural style. The OpenAPI Initiative (OAI) was launched
with the objective of creating a vendor neutral, portable, and
open specification for describing REST APIs. The initiative has
succeeded in attracting major companies and the OpenAPI
specification has become de facto format for describing REST
APIs. However, there is currently a lack of tools to provide
modeling facilities for developers who want to manage and
visualize their OpenAPI definitions as models and integrate
them into model-based processes. In this paper, we propose
WAPIML an OpenAPI round-trip tool that leverages model-
driven techniques to create, visualize, manage, and generate
OpenAPI definitions. WAPIML embeds an OpenAPI metamodel
but also an OpenAPI UML profile to enable working with Web
APIs in any UML-compatible modeling tool.

Index Terms—UML, UML Profile, REST APIs, OpenAPI

I. INTRODUCTION

Consuming, developing and evolving Web APIs are
common tasks in many companies’ daily activities [1]. This is
also reflected by the growing number of available public Web
APIs, listed in catalogs such as API Harmony1 (over 1,000
APIs), RapidAPI2 marketplace (over 8,000 APIs), APIs.guru3

(over 800 APIs), or ProgrammableWeb (over 21,000 APIs).
In practice, most of these Web APIs are “REST-like”,
meaning that they partially adhere to the Representational
State Transfer (REST) architectural style. REST is a technical
description which outlines the principles, properties, and
constraints to build Internet-scale distributed hypermedia
systems. Due to its lightweight nature, adaptability to the
Web and scaling capability, REST has become the preferred
style for building Web APIs.

However, REST is a design paradigm and does not propose
any standards to describe REST APIs. This situation triggered
the creation of several specification languages and protocols
to describe REST APIs (e.g., Swagger4, API Blueprint5,

1https://apiharmony-open.mybluemix.net/public
2https://rapidapi.com/
3https://apis.guru/openapi-directory/
4http://swagger.io
5https://apiblueprint.org/

RAML6) and design them (e.g., OData7), which makes choos-
ing one format or another subjective to API providers.

To face this situation, a consortium of major actors in
the API market has launched the OpenAPI Initiative (OAI)
with the goal of standardizing the way to describe REST
APIs. OAI has succeeded in attracting major companies in the
API ecosystem, including its competitors (e.g., MuleSoft8, the
creator of RAML; or Apiary9, creator of API Blueprint). As
a result, the OpenAPI specification (formally Swagger speci-
fication) is now de facto format for describing REST APIs.

Despite the growing importance of Web APIs, and OpenAPI
in particular, there is a lack of tools to provide modeling
facilities for developers who want to follow any kind of model-
based approach for the design of OpenAPI definitions. To
overcome this situation, we present in this paper WAPIML,
an OpenAPI round-trip tool that leverages model-driven tech-
niques to create, visualize, manage, and generate OpenAPI
definitions. Once Web APIs are represented as models we
can easily integrate them with the rest of modeling efforts
in the company, facilitating a global model-driven engineering
approach including not only such model representations of the
APIs but also their interactions with the rest of the system.

Using WAPIML, developers can import OpenAPI defini-
tions (or create them from scratch), edit the generated class
diagrams with any UML Eclipse editor (e.g., Papyrus) and
export them to generate the corresponding OpenAPI definition.

Our final goal is to advance towards the definition of a
Model-Driven Engineering (MDE) infrastructure for Web APIs
with a specific focus on current APIs specifications (e.g., the
OpenAPI specification) and protocols (OData protocol), thus
facilitating the integration of Web APIs in all kinds of model-
based processes.

The remainder of this paper is structured as follows. Section
II provides a global overview of WAPIML and its main
components. Section III presents the OpenAPI metamodel and
UML profile that are at the core of the tool. Section IV
discusses the tool support. Section V presents related work.
Finally, Section VI concludes the paper and presents some
future work.

6https://raml.org/
7https://www.odata.org/
8https://swagger.io/blog/news/mulesoft-joins-the-openapi-initiative/
9https://blog.apiary.io/We-ve-got-Swagger



OpenAPI 
model

Annotated 
UML model

Extractor

OpenAPI 
metamodel

OpenAPI
UML profile

M2MM2MOpenAPI 
definition

JSON
OpenAPI 
definition

JSON

UML
metamodel

OpenAPI 
model

OpenAPI 
metamodel

Serializer

conforms to conforms to annotates conforms to

Papyrus

OpenAPI Importer1

a b

OpenAPI Modeler

WAPIml

2 OpenAPI Generator3

a b

OpenAPI 
model

Fig. 1. Overview of the WAPIML tool.

II. WAPIML OVERVIEW

WAPIML is an Eclipse-based editor for OpenAPI. It in-
cludes both an OpenAPI metamodel and a UML-based version
of such metamodel, in the form of a UML profile. Beyond
purely modeling a Web API, WAPIML supports the reverse
engineering of existing API specifications (from its OpenAPI
definitions) and the code-generation of OpenAPI files from
our OpenAPI models (or UML-annotated ones).

Our approach is depicted in Figure 1. As can be seen, it
is composed of three components: (1) OpenAPI Importer, (2)
OpenAPI Modeler and (3) OpenAPI Generator; all of them
relying on the OpenAPI metamodel and the OpenAPI UML
profile.

The metamodel provides the foundation for the reverse and
forward engineering activities as it allows capturing all of the
elements of an OpenAPI definition in a model representation.
The profile allows reusing existing UML tooling infrastructure
(i.e., UML210 and PAPYRUS11) to create an editor for Open-
API; and also promotes integration with other model-based
processes. The metamodel and the profile will be presented in
more detail in Sections III-A and III-B, respectively.

OpenAPI Importer is in charge of generating a UML
class diagram annotated with OpenAPI stereotypes from an
OpenAPI definition, and relies on two subprocesses. The first
subprocess (see process 1.a in Figure 1) extracts a model con-
forming to our OpenAPI metamodel from the input OpenAPI
definition. This process is almost straightforward since our
OpenAPI metamodel mimics the structure of the OpenAPI
specification. The second subprocess (see process 1.b in Figure
1) performs a model-to-model transformation to generate a
model conforming to the UML metamodel annotated with the
OpenAPI UML profile from the previously extracted OpenAPI
model. This transformation iterates over the operations and
definitions of the OpenAPI model in order to generate classes,
properties, operations, data types, enumeration, and parame-
ters, accordingly. These elements are enriched with OpenAPI
stereotypes to complete their definitions. This process relies

10https://www.eclipse.org/modeling/mdt/?project=uml2
11https://www.eclipse.org/papyrus/

on a set of heuristics to identify the most adequate UML class
to attach each OpenAPI operation to. The full list of heuristics
can be found in the tool repository12.

OpenAPI Modeler provides an editor for OpenAPI defini-
tions based on the UML metamodel and the OpenAPI UML
profile. The profile can be used to annotate both new or
existing UML class diagrams. The editor relies on Papyrus
modeling environment.

OpenAPI Generator is in charge of generating an Open-
API definition from a UML class diagram annotated with the
OpenAPI UML profile. It applies a process similar to the
importer but in the reverse order. The first subprocess (see
process 3.a in Figure 1) performs a model-to-model trans-
formation to generate a model conforming to our OpenAPI
model and then the second subprocess (see process 3.2 in
Figure 1) performs a model-to-text transformation to generate
an OpenAPI-compliant JSON file.

III. MODELING REST APIS

This section describes the modeling artifacts we created to
support the OpenAPI specification at the model level, namely:
the OpenAPI metamodel and the OpenAPI UML profile.

A. The OpenAPI Metamodel

The OpenAPI metamodel is derived from the concepts and
properties described in the OpenAPI specification13. Figure 2
shows an excerpt of a simplified version of this metamodel.
The API element is the root of the metamodel and includes
the main attributes to specify the API, like the host or its
base path, among others. It also includes references to the
data types (i.e., Schema elements) used by the operations
(definitions reference) and the paths of the API (paths
reference).

The Schema element defines the data types that can be
consumed and produced by operations. It uses a subset of
the JSON Schema Specification defined in the superclass

12https://github.com/opendata-for-all/WAPIml\#notes
13https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.

md



API

swagger: String
host: String
basePath: String
schemes: SchemeType [0..*]
consumes: String [0..*]
produces: String [0..*]

Schema

name: String
title: String
example: String
discriminator: String

JSONSchemaSubset

type: JSONDataType
format: String
maximum: Double
enum: String [0..*]
default: String
...

Property

name: String
required: Boolean

path

relativePath: String

Operation

operationId: String
schemes: SchemeType [0..*]
summary: String
description: String
consumes: String[0..*]
produces: String [0..*]
deprecated: Boolean

Response

description: String
code: Integer

Example

mimeType: String
value: String

Header

name: String

Parameter

name: String
location: ParameterLocation
required: Boolean
collectionFormat: CollectionFormat

ItemsDefinition

collectionFormat: CollectionFormat

«enumeration»
SchemeType

http
https
ws
wss

«enumeration»
JSONDataType

integer
number
string
boolean
object
array
...

«enumeration»
CollectionFormat

csv
ssv
tsv
pipes
multi

«enumeration»
ParameterLocation

path
query
header
body
formData

definitions *

properties
*

paths
*

get

post

put

delete

options
head

0..1

0..1

0..1

0..1

0..1
0..1patch 0..1

1

parameters *

items 0..1

responses
1..*

examples *

headers *

allOf*

items
0..1

schema

0..1
value
1

schema
0..1

Fig. 2. Excerpt of the simplified OpenAPI metamodel.

JSONSchemaSubset to define constraints. Inheritance and
polymorphism are specified by using the allOf reference and
the discriminator attribute, respectively. The items ref-
erence is used to specify the items of array schema elements.

The Path element defines a relative path of an API
endpoint and the supported operations (e.g., get reference
for GET HTTP method). The Operation element defines
an API operation and includes its parameters (parameters
reference) and responses (responses reference).

The Parameter element defines an operation parameter
and includes attributes for its name and its location (e.g., see
values of ParameterLocation), among others. It inherits
from JSONSchemaSubset to define constraints. When the
parameter location is body, the schema reference is used to
specify its data type. When the parameter location is array,
the items reference and the collectionFormat attribute
specify its items and the collection format, respectively.

The Response element defines the possible responses of
an operation and includes the response code and the response
headers, among others. When the response returns data, the
schema reference defines its data type.

The complete OpenAPI metamodel, comprised of 31 dif-
ferent metaclasses, is available at our GitHub repository14

and covers all the aspects of the OpenAPI specification (e.g.,
security elements or metadata information).

B. The OpenAPI UML profile

We created a UML profile to extend standard UML class
diagrams with support for OpenAPI definitions. This enables
OpenAPI designers to keep using their preferred UML model-
ing tool while still benefiting from our work and it also facil-
itates the integration of our model-driven OpenAPI approach
in companies following a UML-based development process.

14https://github.com/opendata-for-all/openapi-metamodel

TABLE I
MAPPING OPENAPI AND UML ELEMENTS.

OPENAPI
ELEMENT

CONDITION UML ELEMENT DETAILS

Schema A Schema defini-
tion of object Class -

Property

A Schema property
of type primitive or
array of primitives

Property A class attribute

A Schema property
of type object or ar-
ray of objects

Property Association end

Operation - Operation -
Parameter - Parameter direction = in
Response - Parameter direction = return

We will explain first how we map OpenAPI elements to
UML concepts and then illustrate some stereotypes created
for OpenAPI definitions.

1) Mapping UML and OpenAPI: We use UML class di-
agrams as the basis of our OpenAPI UML profile due to
its semantic similarities with the OpenAPI specification. With
UML class diagrams we represent the data model (i.e., schema
definitions) and operations of OpenAPI definitions.

Table I shows how we map OpenAPI elements to UML
concepts. Columns one and two show an OpenAPI element
and a condition (if any), respectively; while columns three and
four show the corresponding UML element and the details of
such element, respectively. Some mappings are more complex
than others depending on the semantic gap between UML and
OpenAPI. For instance discriminator and allOf prop-
erties (used to define hierarchy in OpenAPI) are represented
by inheritance in a class diagram. The complete list of rules
can be found in our repository15.

2) The OpenAPI UML Profile: Based on the previous map-
pings, we define the profile that includes a set of stereotypes,

15https://github.com/opendata-for-all/openapi-profile



properties and data types required to complete the modeling of
OpenAPI definitions in UML class diagrams. API definitions
are represented by Model elements of UML class diagrams.
We defined the API stereotype, which extends the metaclass
Model and includes the global details of an API.
Schema, APIProperty, APIDataType stereotypes

extend the UML metamodel (Class, Property and
PrimitiveType metaclasses) to support data types ac-
cording to OpenAPI, in particular, to define schema objects,
schema properties and primitive types, respectively.

The stereotype APIOperation extends the metaclass
Operation to define API operations. It includes information
such as the relative path of the operation or the HTTP
method of the operation, among others. Note that the concept
path is not present in the OpenAPI UML profile. Thus, the
information of the path and the appropriate HTTP method are
included in the definition of the APIOperation stereotype.

The stereotypes APIParameter and APIResponse ex-
tend the metaclass Parameter to define operation param-
eters and responses, respectively. APIParameter includes
information such as the parameter location and the col-
lection format (for multivalued parameters). It also extends
JSONSchema stereotype to add additional JSON schema con-
straints. The stereotype APIResponse includes information
such as the HTTP status code or the list of response headers.
Note that these stereotypes do not include information about
the data types associated with the parameter or the response, as
such information is defined by the type of the UML parameter.

The complete profile, which contains 13 stereotypes, sup-
ports all aspects of the OpenAPI specification (e.g., metadata,
security) and can be found in our GitHub repository.

IV. TOOL SUPPORT

WAPIML is available as a set of plugins for Eclipse16

extending the UI of the platform to provide: (i) two con-
textual menus to generate either a simple UML model or a
UML model annotated with OpenAPI UML profile, from an
OpenAPI definition; (ii) an editor for these models provided as
an extension to UML2 plugin17 (i.e., tree-based format plus
properties view) and Papyrus18 modeling environment (i.e.,
diagram-based format plus rich properties view); and (iii) a
contextual menu to generate an OpenAPI definition in JSON
from a UML model annotated with OpenAPI UML profile.

Figure 3 shows a screenshot of our tool illustrating an
excerpt of the generated class digram (annotated with Open-
API UML profile) from the Petstore OpenAPI definition19,
displayed using Papyrus. As can be seen, the Pet class, which
represents a pet definition, is annotated with the stereotype
schema, while its extracted attributes are annotated with
APIProperty, and its extracted operations are annotated
with APIOperation and Security. The tag values com-
plementing the applied stereotypes can be showed using

16https://github.com/opendata-for-all/wapiml
17https://www.eclipse.org/modeling/mdt/?project=uml2#uml2
18https://www.eclipse.org/papyrus/
19https://petstore.swagger.io/v2/swagger.json

comments (e.g., see the Schema comment box next to the
class Pet) and modified using the Properties view (e.g.,
see the lower part of the screenshot showing the stereotype
APIOperation of the findPetsByStatus operation).

V. RELATED WORK

The OpenAPI specification is supported by a number of
tools providing features such as the generation of SDKs (e.g.,
OpenAPI Generator20), the generation of documentation pages
(e.g., ReDoc21 and Swagger UI22), and the manual creation of
OpenAPI definitions with a number of IDEs and editors (e.g.,
Swagger Editor23, KaiZen OpenAPI Editor24 or the Senya
Editor25). Nevertheless, none of these tools provide a graphical
visualization of the OpenAPI operations and structure.

JSONDiscoverer [2] allows visualizing the data schema
of JSON-based REST APIs while focusing on the
inputs/outputs of the operations. However, it does not
model the operations themselves nor supports OpenAPI
descriptions. OpenAPItoUML [3] is the predecessor of
WAPIML. It proposed the generation of UML models
to describe OpenAPI definitions. WAPIML extends it by
automatically applying the profile to imported OpenAPI
definitions and by offering a code-generation option to
recreate the (modified) OpenAPI definition.

Only a few other tools have some kind of graphical / model-
ing editors for OpenAPI. RepreZen API Studio26, Stoplight27

and Visual API designer28 are the best examples. Nevertheless,
they all provide their own adhoc editors and notation which
hampers their integration with any other modeling environ-
ment (e.g. no support for EMF nor for any kind of UML tool
or UML-like syntax is provided).

WAPIML complements other MDE techniques used to
automate different development tasks for Web APIs in general
(e.g., [4], [5], [6], [7], [8], [9], [10], [11]) by potentially
enhancing them with specific OpenAPI import, modeling and
generation support.

VI. CONCLUSION

We have presented WAPIML, an OpenAPI round-trip tool
that leverages model-driven techniques to create, visualize,
manage, and generate OpenAPI definitions using an OpenAPI
DSL also expressed as a UML profile for a simpler integration
with existing modeling tools. WAPIML has been implemented
as a set of Eclipse plugins.

We believe this tool will help modelers who would like
to model their Web APIs prior to its actual implementation
and will enable the integration of such modeled APIs within
the rest of the model-based engineering processes already in

20https://openapi-generator.tech/
21https://redocly.github.io/redoc/
22https://swagger.io/swagger-ui/
23https://editor.swagger.io
24https://github.com/RepreZen/KaiZen-OpenAPI-Editor
25https://senya.io/
26https://www.reprezen.com/
27https://stoplight.io/
28https://www.visual-paradigm.com/features/visual-api-designer/



Fig. 3. A screenshot of the WAPIML tool.

place in the companies. Indeed, WAPIML brings to the table
the power of MDE in the context of Web APIs. API models
derived using WAPIML could be used to automate differ-
ent development tasks related to Web APIs such as testing,
generation of clients/server SDKs and modeling additional
API aspects (e.g., dynamic behavior) by using other UML
diagrams, among others. WAPIML has been made available
at GitHub29. A video illustrating the tool is also available30.

One of our next steps is to work on the systematic validation
of the WAPIML tool. For this purpose, the first phase will
consist in using a set of existing APIs to validate that we can
import existing OpenAPI definitions and generate a seman-
tically equivalent OpenAPI definition from the unchanged
model. We will also need to validate that any modification
done at the model level is correctly reflected in OpenAPI
definition. Additionally, we plan to add support for validating
OpenAPI definitions at the model level (e.g., using OCL),
thus allowing modelers to correct their definitions as they
model them. Moreover, we will also add a set of heuristics to
infer more information from OpenAPI definitions, especially
regarding associations between concepts. OpenAPI does not
have explicit support for references between types but these
could be somehow deduced from the attribute name and type in
the JSON schema in order to generate richer UML diagrams.

OpenAPI is just the first standard to be supported by
WAPIML. In the near future, we plan to extend WAPIML and
transform it into a real Web API modeling platform. Examples
of other types of APIs to be added to WAPIML will be OData
(partially done already, see our previous work [12], [13]),
Socrata 31 (often used in Open Data scenarios), and OpenAPI
v3.0, which may allow us to generate other types of UML dia-
grams (e.g., sequence diagram for operation execution order).

29https://github.com/opendata-for-all/wapiml
30http://hdl.handle.net/20.500.12004/1/C/MODELS/2019/212
31https://dev.socrata.com/

ACKNOWLEDGMENT

This work has been supported by the Spanish government
(TIN2016-75944-R project).

REFERENCES

[1] M. Bortenschlanger and S. Willmott, “The API Owner’s Manual,”
3Scale, Tech. Rep., 2014.

[2] J. Cánovas Izquierdo and J. Cabot, “JSONDiscoverer: Visualizing the
schema lurking behind JSON documents,” Knowl.-Based Syst., vol. 103,
pp. 52–55, 2016.

[3] H. Ed-douibi, J. L. Cánovas Izquierdo, and J. Cabot, “OpenAPItoUML:
A Tool to Generate UML Models from OpenAPI Definitions,” in Int.
Conf. on Web Engineering.

[4] H. Ed-Douibi, J. L. Cánovas Izquierdo, A. Gómez, M. Tisi, and J. Cabot,
“EMF-REST: Generation of RESTful APIs from Models,” in Symp. On
Applied Computing, 2016, pp. 1446–1453.

[5] A. M. Segura, J. S. Cuadrado, and J. de Lara, “ODaaS: Towards the
Model-driven Engineering of Open Data applications as Data Services,”
in Int. Conf. on Enterprise Distributed Object Computing, Workshops
and Demonstrations, 2014, pp. 335–339.

[6] F. Haupt, D. Karastoyanova, F. Leymann, and B. Schroth, “A Model-
Driven Approach for REST Compliant Services,” in Int. Conf. on Web
Services, 2014, pp. 129–136.

[7] J. M. Rivero, S. Heil, J. Grigera, E. Robles Luna, and M. Gaedke,
“An Extensible, Model-driven and End-User Centric Approach for API
Building,” in Int. Conf. on Web Engineering, S. Casteleyn, G. Rossi, and
M. Winckler, Eds., 2014, pp. 494–497.

[8] R. Rodrı́guez-Echeverrı́a, F. Macı́as, V. M. Pavón, J. M. Conejero, and
F. Sánchez-Figueroa, “Model-driven Generation of a REST API from a
Legacy Web Application,” in Int. Conf. on Web Engineering, Workshops,
2013, pp. 133–147.

[9] I. Porres and I. Rauf, “Modeling Behavioral RESTful Web Service
Interfaces in UML,” in Symp. on Applied Computing, 2011, pp. 1598–
1605.

[10] N. A. Tavares and S. Vale, “A Model Driven Approach for the Develop-
ment of Semantic RESTful Web Services,” in Int. Conf. on Information
Integration and Web-based Applications & Services, 2013, p. 290.

[11] J. M. Rivero, S. Heil, J. Grigera, M. Gaedke, and G. Rossi, “MockAPI:
an Agile Approach Supporting API-first Web Application Development,”
in Int. Conf. on Web Engineering, 2013, pp. 7–21.

[12] H. Ed-douibi, J. L. Cánovas Izquierdo, and J. Cabot, “A UML Profile
for OData Web APIs,” in Int. Conf. on Web Engineering, 2017, pp.
420–428.

[13] ——, “Model-driven Development of OData Services: An Application
to Relational Databases,” in Int. Conf. on Research Challenges in
Information Science, 2018, pp. 1–12.


