
Exploiting Multi-Level Modelling for Designing
and Deploying Gameful Systems

Antonio Bucchiarone
Fondazione Bruno Kessler

Trento, Italy
bucchiarone@fbk.eu

Antonio Cicchetti
IDT Department

Mälardalen University
Västerås, Sweden

antonio.cicchetti@mdh.se

Annapaola Marconi
Fondazione Bruno Kessler

Trento, Italy
marconi@fbk.eu

Abstract—Gamification is increasingly used to build solutions
for driving the behaviour of target users’ populations. Gameful
systems are typically exploited to keep users’ involvement in
certain activities and/or to modify an initial behaviour through
game-like elements, such as awarding points, submitting chal-
lenges and/or fostering competition and cooperation with other
players. Gamification mechanisms are well-defined and composed
of different ingredients that have to be correctly amalgamated
together; among these we find single/multi-player challenges
targeted to reach a certain goal and providing an adequate award
for compensation. Since the current approaches are largely based
on hand-coding/tuning, when the game grows in its complex-
ity, keeping track of all the mechanisms and maintaining the
implementation can become error-prone and tedious activities.
In this paper, we describe a multi-level modelling approach for
the definition of gamification mechanisms, from their design
to their deployment and runtime adaptation. The approach is
implemented by means of JetBrains MPS, a text-based meta-
modelling framework, and validated using two gameful systems
in the Education and Mobility domains.

Index Terms—Multi-Level Modelling, Model-Driven Engineer-
ing, MPS, Gamification Engine

I. INTRODUCTION

Studies on human behaviour generally agree on the effec-
tiveness of gamification as a self-motivation tool. In particular,
it is widely accepted that, in order to promote behavioural
changes typically hard to achieve through enforcement rules,
building up a game-like scenario in which such changes are
adequately rewarded can be successful. That is the reason
why there is a growing exploitation of gameful systems in
disparate contexts [1], including promotion of healthy habits,
self-motivation for education, encouragement to use more
public transportation, to recycle, to reduce food waste, etc.
Gamification mechanisms are quite standardised in their con-
struction elements: in general there is one or more challenges
for which the player gets a reward when the challenge is
accomplished. However, a very important condition for the
game to be effective is to keep engaged its players: a too
easy/difficult challenge might quickly lose interest and hence
make the game goals to fail [2]. In this respect, setting up all
the aspects of a game can become tedious and error-prone,
especially when dealing with a lot of users and the game
combining multiple, interacting challenges.

Gameful systems development requires therefore a well-
founded software engineering approach [3], [4]. Current ap-
proaches tackle the design and development at a very low
level of abstraction. In some cases it is possible to define the
main components, as challenges, rewards, players, etc. in a
more user-friendly way, however the core gaming behaviour
has to be coded in an appropriate programming language
(usually rule/event-based). As a consequence, there exists an
abstraction gap between domain experts (both for gaming and
for the field of exploitation of the game), and the way in which
the game is developed. Practically, domain experts define the
game requirements and its main components, while program-
mers translate the desired behaviours into corresponding code
routines. This gap can cause unexpected game deviations to
be detected late, if ever discovered. Moreover, it makes very
difficult to maintain and evolve a running game.

With the aim of raising the level of abstraction of gami-
fication mechanisms, we propose a well-defined set of lan-
guages for designing a game, its main components, and the
behavioural details. In this respect, we introduced a multi-
level way of development, given the inherent characteristic of
games definition: at the highest level of abstraction a game
is defined by its main components, keeping in mind a certain
gamification strategy; at the next (lower) level, each of the
components takes form as a set of game modules; starting from
such a library of modules, each component can be instantiated
into a concrete game component; as lowest level of abstraction,
we consider the game at runtime. This chain of instantiation
levels is better expressed and supported by means of multi-
level modelling approaches rather than the traditional two-level
modelling [5].

The implementation of the gamification design and de-
ployment is realised by means of JetBrains MPS (briefly,
MPS)1. MPS is a meta-programming framework that can be
exploited as modelling languages workbench, it is text-based,
and provides projectional editors. The choice of MPS is due
to the inherent characteristics of game definition languages,
which are by nature collections of rules and constraints. In this
respect, graphical languages do not scale with the complexity
of the rules. Moreover, MPS smoothly supports languages

1http://www.jetbrains.com/mps/

embedding, such that our multi-level definition of gamification
solutions is easily implemented.

As a validation of our approach, we re-designed and de-
ployed two real gamification applications in the education and
mobility domains. Our experience shows that by raising the
level of abstraction:

• the complexity of the design of gamification applications
is reduced;

• the quality of the deployed applications is enhanced;
• runtime adaptation is enabled.

A. Structure of the Paper

The remainder of the paper is organized as follows: Section
II presents the basics about gamification and the metamod-
elling framework used in the proposed approach. Starting from
this preliminary information, Section III illustrates the moti-
vations and summarizes the contribution of the work. Section
IV presents the Gamification Design Framework (GDF) with
all its languages, while Section V shows the applications used
to validate the framework and its prototype implementation.
In Section VI lessons learned and future investigations are
discussed. Section VII surveys related works and Section VIII
concludes the paper.

II. BACKGROUND

A. Gamification

The term gamification has been introduced in the early
2000s [6] and has as central idea the usage of game elements
in non-entertainment application domains to foster motivation
[7]–[9]. There is a considerable amount of literature concern-
ing gamification concepts [10], [11], related taxonomies [12],
[13], and literature reviews [1]. Analysing this literature, we
can characterize a gameful system as a software artifact that
embeds a gamification process composed by the following
components: game elements, game mechanics and game
dynamics. As depicted in Figure 1, these components form a
layered structure starting from the game elements that define
the game concepts used in the application, passing through
the game mechanics, that are used to evolve the players and
application status, and ending up with the game dynamics
devoted to the ultimate goals of introducing the gamification
into a software system. In the following we present details of
the three components and their relations, giving some concrete
examples.

B. Game Elements

Game Elements are the basic building blocks of gamified
applications [10], [14] and are defined to specify how the
players should interact with the application to reach the ulti-
mate goals. Points are basic elements of gamified applications
and allow tracking and rewarding players for the successful
accomplishment of specific activities using the application
(e.g., number of tracked journeys using a shared bike). Each
player, accumulating a specific amount of points or executing a
particular action, makes progress in the general ranking. Badge
and Badge Collection elements are awarded to the player after

Fig. 1. Gamification Concepts - Elements, Mechanics and Dynamics.

achieving a certain level (e.g., a set of sustainable trips in
a limited time) or after finishing a specific task (e.g., invite
a friend). Badges symbolize the players merits with a visual
status symbol (e.g., green leaves) and indicate how the players
are performing. Leaderboards rank players or teams and help
to determine who performs best in a certain period of the
application execution (i.e., weekly, monthly competition). This
element is used to create competition among players and to
increase their level of engagement and can have a positive
effect on participation.

Challenges request of attaining a certain goal hindered by
one or more constraints and that results in an extraordinary
reward (e.g., at work without car or a certain number of
kilometers using a shared bike). The reward for each challenge
is calculated according to the estimated difficulty of the
challenge itself, which considers the effort that the players
are supposed to make to win it on the base of their skills.

In addition to the previous ones, there are many other
elements available, such as levels, paths, stories, feedback,
progress, etc.

C. Game Mechanics

Game Mechanics are the set of rules that specify how the
game should evolve for its participants (e.g., students, citizens
or employees). Through these rules the game designer specifies
when and how the state of the game and therefore of the
players evolves. This evolution happens every time that a game
action is executed (e.g., bike trip tracking) and has as effect
the update of a set of connected game points (e.g., shared bike
trips, kilometres by bike, etc.). This mechanics type is called
Score Update and defines the semantics of a player’s points
update. Challenge Achievement mechanic is used to define
“when” a specific challenge has been achieved (e.g., “do at
least 5km by bike”) and “how” the player status should evolve
(e.g., “to win a bonus of 120 Green Leaves points”). Level
Achievement mechanic has as main goal to provide players
and teams with a level in the game that is proportional to
the amount of points they gathered, and represents their level
of expertise in the game. For example it can represent how
experienced in being green citizens the players are (e.g., Green
Soldier, Green Warrior, Green Guru).

Finally, the Ranking mechanic is used to understand who
performs best in a certain activity and is an indicator of social
comparison that relates the single player/team performance to
the performance of other players/teams.

D. Game Dynamics

Game Dynamics represent the high-level aspects of a game
that have to be considered and managed, but not directly
implemented in it. A game dynamic can also be defined as
the “emergent” behavior that arises using a gameful system,
when the mechanics are used. Each game can provide a single
dynamic or a combination of them and they are used to learn
the game benefits or its drawbacks and possibly adapt the
mechanics and fine-tune the game’s overall goal.

Example of game dynamics are:
• Engagement: in gamified systems, particular attention is

payed to keep users in a state of flow [2], achieved by
customized challenges. This dynamic will happen any
time that a challenge is defined, assigned and accepted
by specific players. The goal behind it is to improve
or maintain the players performance without frustrating
them with unattainable goals.

• Competition: it emerges, for example, every time that
players compete against each other to be first in the final
Ranking. In this case the Ranking mechanic is specified
in a such a way that the winner is awarded with a prize
as for example: theatre or sport tickets and discounts.

• Cooperation: this dynamic emerges e.g. when players
decide to work together to overcome a challenge. Players
are given a common goal and, not matter the individual
contribution, if they reach the goal before a multi-player
challenge expires they all win. The purpose of this
dynamic is to foster cooperation between players.

E. Gamification Engine

A Gamification Engine is a software framework responsible
for the execution of the game associated with the gameful
application. It is usually a rule execution system2 able to
execute a rule set, which constitutes the implementation of
the game logic. This logic is specified by a gamification
designer and mainly includes the game mechanics needed for
the specific game. In particular, each mechanic is represented
by a set of rules that are fired in response to incoming
instances of the defined gamifiable actions. These are game-
relevant actions and events that occur as the player inter-
acts with the application (i.e., mobile app). The game state
evolves executing the rules and manipulating the value of
the associated gamification elements (i.e., points, challenges,
etc.). For example let’s consider a rule assigning a badge
to a player: since it does not make sense for a player to
collect the same badge repeatedly, the rule implements a guard
to check whether the player already has that badge in her
collection. Besides changing the state of the game, the effect

2The gamification engine used in this paper uses the open source DROOLS
(http://www.drools.org) rule engine.

of a rule execution can also produce additional notifications
as for example the presentation of the updated game state to
the player.

F. Jetbrains MPS: a text-based metamodelling framework

Meta Programming System (MPS) by JetBrains is a text-
based meta-programming system that enables language ori-
ented programming [15]. MPS is open source and is used to
implement interesting languages with different notations [16].
In particular, based on MPS BaseLanguage it is possible to de-
fine new custom languages through extension and composition
of concepts [17]. A new language is composed by different
aspects making its specification modular and therefore easy to
maintain [18], [19]. Notably, the Structure Definition aspect is
used to define the Abstract Syntax Tree (AST) of a language
as a collection of concepts. Each concept is composed of
properties, children, and relationships, and can possibly extend
other concepts. The Editor Definition aspect deals with the
definition of the concrete syntax for a DSL: it specifies
both the notation (i.e., tabular, diagram, tree, etc.) and the
interaction behavior of the editor. The Generators Definition
aspect is used to define the denotational semantics for the
language concepts. In particular, two kinds of transformation
are supported: (1) AST to text (model-to-text), and (2) AST
to AST (model-to-model). Other aspects like the Type System
Definition, the Constraints Definition, etc. are provided. For
the sake of brevity, we refer the reader to [20] and [21].

III. MOTIVATION AND CONTRIBUTION

As clarified so far, each gamification solution is the result
of a combination of well-defined ingredients that should be
carefully combined to gain and keep the motivation of the
intended target players. This objective can be challenging
when dealing with applications involving large number of
users, and combining a variety of behavioural change goals. In
this respect, designing and deploying gameful systems needs
adequate software engineering practices [4], which however
are largely missing: as we will discuss more extensively in
Section VII, most of the existing solutions either provide
ready-made games with scarce customization chances, or
they demand low level of abstraction tuning comparable to
writing code in a programming language. As a result, current
approaches introduce an abstraction gap between domain
experts and concrete solutions, which has to be closed by
programmers. Moreover, programmers themselves typically
need to “translate” these applications in terms of rules for rule-
/event-based mechanisms. The consequences are: (a) increased
error-proneness of the implementation with the growth of the
game complexity and its needs of maintenance and evolution;
(b) difficulty in monitoring the evolution of the game and
possibly applying runtime adjustments; (c) decreased chances
of reusing game elements in other scenarios. Notably, a devel-
oper might erroneously set a wrong update for a certain score,
making a challenge too easy/complicated or even impossible
to achieve; or the game designers would realise that in certain

Fig. 2. The Gamification Design Framework (GDF).

contexts the players progress through the game levels at a too
slow pace.

We aimed at tackling the complexity of the mentioned and
other problematic cases by raising the level of abstraction
in the design and deployment of serious games. This paper
reports our experiences in designing and realizing a MDE
approach for gamification. In particular, we propose to exploit:
separation of concerns [22], where each concern is one of the
gamification components shown in Figure 1; domain-specific
languages (DSLs) for each concern; automated generation of
implementation code. Moreover, our solution is based on a
multi-level modelling [5] approach such that: a gamification
model defines the elements by which a certain game model
will be designed; in turn, the game model specifies the
concepts through which a game instance will be described;
based on the game instance, the code for deploying the game
is automatically generated. These mechanisms are realised by
means of MPS — a text-based language workbench — and
validated against two real life gamification applications.

IV. GAMIFICATION DESIGN THROUGH
MULTI-LEVEL MODELLING

In order to tackle the complexity of gamification design we
propose a Gamification Design Framework (GDF). The frame-
work provides a modular approach that can be customised
for different gameful systems and reflects the gamification
process, introduced in Section II-A. In particular, it provides a
modelling language for each component (i.e., Game Elements,
Mechanics and Dynamics) plus game utility languages devoted
to the management of simulation and runtime adaptation
phases of a gameful application. The GDF architecture has
been specified and is composed by different modelling layers,
each of which defined on the basis of the layer above;
moreover, utility layers are orthogonal to the others in the
sense that they can be defined on the basis of any of them.
A graphical representation of this stack is shown in Figure 2.
It is worth noting that the top layer (GML in the picture)
is defined on the basis of the MPS language workbench,
while code generation is performed by means of the last two
layers (GaML and GiML in the picture, respectively). Given
the architecture of GDF and the relationships between the
gamification components, exploiting a multi-level modelling
approach adequately fits our purposes. In fact, the framework
starts from very general gamification concepts, which could be

Fig. 3. The Gamification Model Language (GML).

part of any application, and it gets progressively more specific
through the instantiation of the generic concepts into concrete
game elements, included only in a particular game and a
corresponding implementation. Notably, generating code for
a different target gamification engine would require the sole
modification of the generators (see later in this section for
more details on the code generation), while all the remaining
part of the GDF components would stay the same. The same
kind of relationships could have been defined by means of
traditional two-level (meta-)modeling approaches, however it
has been extensively discussed in existing literature that such
type/instance facet requires workarounds to be successfully
implemented [5], [23]. For example, GaML is built-up and
used by instantiating elements defined in GML, hence in this
respect a game definition is correct by construction from a type
perspective. The same cannot be guaranteed by a two-level
modeling approach, which would require additional checks
and constraints to ensure that a type is always related with a
correct instance of itself. These issues are amplified whenever
new types would be introduced (e.g., new game elements in
our case), since the correctness checks shall be manually added
to the language definition.

The following sections provide detailed descriptions of each
of the layers in Figure 2 with the aim of clarifying how
GDF allows to partition the problem of gamification design
in simpler sub-problems which are later on re-amalgamated to
generate the target application code.

A. The Gamification Model Language (GML)

Gamification is generally referred to as the use of elements
characteristic of games in non-game contexts [10]. Therefore,
the top layer of our solution is represented by a core language
defined to introduce the essential elements to describe a
gameful system. Figure 3 shows an excerpt of the concepts
defining the abstract syntax of the Gamification Modelling
Language (GML)3. In particular, a Game concept comprises
a set of properties (i.e., id, domain, and owner) that
characterise the specific gameful system, and a set of children
representing its core ingredients. As described in Section II-A,

3The complete specification of the languages together with their graphical
rendering are included in the GitHub repository of the framework, available
at https://github.com/antbucc/GDF

Fig. 4. GameDefinition Concept of the GaML.

each gamified application must be designed defining a set
of game elements devoted to specify how the players should
interact with the application. The children part of the Game
concept of GML has been defined for this purpose. This core
language provides the basic building blocks on top of which all
the subsequent modelling layers can be described. As already
mentioned, GML is itself an instance of a modelling language,
that is the MPS base language.

B. The Game Model Language (GaML)

Based on the core ingredients in GML, the Game Model
Language (GaML) relies on Game Mechanics and allows
the game designer to design a certain concrete game. An
excerpt on the concepts defined for GaML are depicted
in Figure 4. At this level of abstraction the designer can
specify in more details how the game components are as-
sembled to create a gamification application. In particular
dataDrivenAction are operators that act on data (i.e.,
kms, legs, etc.) while eventDrivenAction are related to
specific events (i.e., surveys, check-in, etc.). skillPoint are
points used to denote a users ability in a specific area, while
experiencePoint are points used to quantify a players
progression through the game. Finally, badgeCollection
and challenge represent game elements that each players
can collect and achieve, respectively.

It is very important to notice that in this way GaML allows
the designer to specify game components which are reusable
in different gamification scenarios. Notably, the abstract con-
cept experiencePoint can take the concrete forms of
pedibus_distance or Walk_Km, depending on the target
application.

GaML also enables the definition of a new game and
its deployment in a target gamification engine. This part is
performed automatically by means of an appropriate generator
(see Figure 5 for an excerpt). In particular, it is a part of the
language specification that defines the operational semantics
of the GameDefinition concept in the GaML language. As
illustrated in Figure 5, generators specifications are given by
means of template mechanisms. Templates are written by using
the output language (i.e., Java in our case), and are parametric
with respect to the elements retrievable from the input model

Fig. 5. GaML Generator.

through Macros, denoted by the $ symbol. Notably, in the
template shown in Figure 5 the $LOOP$ macro is used to
iterate over the sets of various game elements defined in the
game definition (i.e., dataDrivenActions, eventDrivenActions,
skillPoints, etc.) and are used to generate the corresponding
Java code. The outputs of GaML generator are Java classes
that completely define a game, ready to be deployed in the
gamification engine.

C. The Game Instance Model Language (GiML)

A gamification engine is responsible for the execution
of one or more instances of multiple games that may run
concurrently. Therefore, we introduced GiML, a language that
relies on the Game Dynamics and is used to specify the
instantiation of the different games originating from the same
GameDefinition as defined in GaML. Game instances
differ from one another by the set of Teams and Players
that play a game. These concepts have been defined as part
of Environment concept, children of the GameInstance
concept, as depicted in Figure 6. The Environment is used
to define the set of teams and corresponding players that play
a certain instance of a game definition.

Similarly to GaML, a generator takes as input GiML models
(i.e., the GameInstance concept as depicted in Figure 7)
and derives Java classes used to create corresponding game
instances. In this case the template is composed by two main
methods: initEnv and defineGame. The former is used to
generate the code needed to instantiate the set of teams and
players that will take part in the game (e.g., specific classes
and students of a school); the latter is used to instantiate the

Fig. 6. GameInstance Concept of the GiML.

Fig. 7. GiML Generator.

set of game elements from a specific gameDefinition
(i.e., actions, points, badge, challenges, etc.). This is done
iterating on the various sets defined in the environment and
gameDefinition models through the $LOOP$ macros.

D. The Game Simulation Language (GsML)

When a game instance is running, the game state changes
whenever one of the mechanics defined in the game (i.e.,
score update, challenge achievement, etc.) is used. In par-
ticular, this means that one of the game rules defined using
GaML is executed in a specific instance defined through
GiML. Therefore, the game state evolves as the righthand
side of the game rules prescribe to manipulate the object base
through the gamification engine services. Based on this, our
approach provides support for simulating the behaviour of a
running game under certain conditions, by means of the GsML
component. It is part of the Game Utility component of the
GDF (see Figure 2) and its core concept is represented by
the GameSimulation element depicted in Figure 8. This
concept is composed by a GameDefinition and a set
of SingleGameExecution. In turn, each game execution
is made-up of a Team and/or a Player that can execute
an actionInstance or a challengeInstance (see
Figure 9). In this way, GsML allows to model specific game

scenarios together with triggered mechanisms, and hence to
simulate specific game state changes (e.g. for testing pur-
poses).

As for the previous components, also GsML is equipped
with a generator to map the GameSimulation in a piece
of code that can be executed by the gamification engine.

The implemented generator is depicted in Figure 10: the
defineExecData method generates the set of game executions
starting from the defined GameSimulation. Each simulation
is specified by the target action type (i.e., action, challenge,
etc.) executed by a specific player, with well defined values
assigned as action data (i.e., the payload variable in Figure
10). To assign the specific action to players, we have also
defined a property macro able to randomly select a player for
each game execution.

E. The Game Adaptation Language (GadML)

The gamification engine exploited by the GDF includes
a Recommendation System (RS) able to generate challenges
tailored to each player’s history, preferences and skills. In
this context, the GadML language is used whenever a new
game content (i.e., a new challenge generated by the RS),
has to be assigned to a specific player on-the-fly. The core
concept of this language is the GameAdaptation element.
While the gameId and playerId are general parameters
of a game adaptation, Figure 11 shows the newChallenge
concept that extends a simple game adaptation defining the
ChallengeModel, the ChallengeData (i.e., bonusS-
core, virtualPrice, etc.) and ChallengeDate (i.e., start and
termination date of the new challenge).

As for the previous components, also GadML is provided
with a generator to map the GameAdaptation in a piece
of code that, if executed, injects the game adaptation (i.e.,
the new challenge) in the specific player game instance.
In this respect, GDF provides a third-party adaptation [24],
since the generated applications are currently not able to
adapt themselves to different players’ behaviors and/or game
evolution patterns.

The implemented generator is depicted in Figure 12: it
retrieves all the elements of a newChallenge definition, i.e.
gameId, challengeName, ChallengeData and the playerId, and
by invoking the saveGameUsingPOST method it assigns the
new challenge to a specific player.

V. CASE STUDIES AND IMPLEMENTATION DETAILS

As a first iteration towards realizing the framework proposed
in this paper, we developed a prototype implementation of the
GDF. This prototype includes all the functionalities described
in Section IV and has been experimented using two Smart
City gamified applications in the Education and Mobility
domains. In the following sections, we first introduce the two
applications used to validate our proposal and then we present
the technical details of GDF implementations.

Fig. 8. GameSimulation Concept of the GsML.
Fig. 9. Single Execution of a Game
Simulation.

Fig. 10. GsML Generator.

Fig. 11. newChallenge Concept of the GadML.

Fig. 12. GadML Generator for a new player challenge.

A. The Kids-Go-Green Application

Kids-go-Green (KGG) [25]4 is an application designed for
primary school classrooms (age group 6-11) for supporting
active and sustainable mobility habits, both at personal and
collective level. The core part of KGG is a virtual jour-
ney undertaken by students using the sustainable kilometres
travelled in real life in their home-school commuting. Every
day each class accesses the KGG Web application and fills
the Mobility Journal. The children indicate the way they
reached school that day by expressing a specific sustainable
transportation mode (i.e., by foot, bike, walking bus, or school
bus). The number of kilometres travelled each day by the
children in their trips to school contributes to the progress
on a virtual journey. The latter is created by the teachers and
includes a final destination and a set of intermediate stops that
are locations in the real-world. The journey can be defined
according to the interests and the educational needs of the

4https://kidsgogreen.eu

teachers for the specific classrooms.
In order to cover longer distances bonuses are given to

the school in various situations (i.e., walking or cycling with
bad weather conditions). Furthermore, KGG also includes
class-level and school-level challenges: upon completion of
a specific objective (e.g., zero emission day, no-car week,
etc.) the class/school benefits from virtual prizes that can be
exploited in the journey to gain additional kilometers (i.e., a
cruise ticket along a river, or a plane ticket to reach an oversea
stop).

The journey progress is shown in the KGG Web application,
and every time a virtual stop is reached, the teacher can use
the associated multimedia educational material for in-class
lessons.

B. The Play&Go Application

Play&Go (P&G) is a mobile application currently used
by the citizens of Trento in Italy that fosters sustainable
mobility behaviors. Citizens (i.e., players), can track their
daily movement through the app by specifying whether they
are walking, riding a bike or using a public transportation
mean. At the end of the journey they receive an amount of
Green Leaves points proportional to the amount of kilometers
travelled and the level of sustainability of the used mean.

Players can monitor their history and achievements in their
profile, where they can keep track of their progress by a
variety of badges symbolizing particular achievements, such
as reaching a certain amount of Green Leaves, or the usage of
a specific transportation mean (e.g., an additional bike badge is
assigned every 10 trips by bike), or the exploration of mobility
alternatives (e.g., when using a designated Park&Ride facilities
for the first time, i.e. parking lots with public transport
connections, or exploring different Bike Sharing stations).

The game is structured in timeframes of one week each. At
the beginning of each week, an email is sent to all participants
presenting personalized challenges, which grant Green Leaves
points, and announcing the weekly prizes. At the end of
the week, physical prizes are assigned to top players and a
communication is sent via mail with the recap of the week
activity and the information about the winners. The reward
for each challenge is also defined and takes into account the
effort that the players are supposed to make to win it on the
base of their skills.

Weekly and global leaderboards allow players to compare
their performance to other players in terms of collected Green

Fig. 13. The GDF Internal Logic.

Leaves, to motivate them to reach an even higher score.
Furthermore, leaderboards promote social comparison, which
can be an important provider of motivation.

C. GDF Technical Details

Figure 13 shows the internal logic of the GDF, made by
four components: (a) Game Model, (b) Game Instance, (c)
Game Simulation, and (d) Game Adaptation. For the interested
reader, the prototype is available in its entirety on the GitHub
repository defined for the framework. Each component is
made-up of two layers, the former is implemented using MPS
while the latter exploits an open-source Gamification Engine
[26]–[28]. The engine has been realised in GitHub under the
Apache License Version 2.05 and is available as stand-alone
application as well as software-as-a-service (SaaS).

The Game Model component is composed by the GaML
language devoted to the definition of a Game in a specific
domain (e.g., Education or Mobility) and a generator able to
transform this definition in a Java program used to deploy it
in the gamification engine.

To realize the two applications described in Section V-A
and Section V-B, we started by defining the set of game
elements (i.e., actions, points, challenges, etc.), with their cor-
responding types (i.e., dataDrivenAction, eventDrivenAction,
experiencePoint, singlePlayer challenge, etc.). By using these
core elements, and thanks to the GaML language, we defined
new games and deployed them in the gamification engine. The
deployment step is done using the GaML generator described
in Section IV-B and depicted in Figure 5. When executed, the
generated Java code results in the creation of corresponding
game models.

The Game Instance component has been introduced to
instantiate the different games starting from the same game
Model. Starting from a Game Instance model, as the one in
Figure 14, and using the generator introduced in Figure 7,
we generated Java code as the one illustrated by Figure 15.
This code is used to initialize the game execution environment
composed by the set of Teams and their respective Players that

5https://github.com/smartcommunitylab/smartcampus.gamification

Fig. 14. Game Instance Model (KGG Application).

are ready to run the specific game instance. The execution of
the code leads to the creation of a database that the gamifica-
tion engine uses during the game execution. In particular, as
depicted in Figure 13(b), a mongoDB6 file is created.

To simulate the defined games, GDF uses the GsML compo-
nent. As we have described in Section IV-D, a game simulation
is defined by a Team and/or a Player that should execute
an actionInstance or a challengeInstance. Starting from a
GameSimulation model specified using GsML and containing
the elements we mentioned earlier, we used the generator
introduced in Figure 10 to derive the corresponding Java code.
In this case a jUnit test, as the one depicted in Figure 16, is
generated. In the specific case, it represents a game simulation
of the P&G application where a specific player (i.e., prowler)
executes two times the Save_itinerary action: the first
time walking while the second time biking.

6https://www.mongodb.com/

Fig. 15. Game Environment - generated class.

Fig. 16. jUnit Test for the Game Simulation (P&G Application).

Finally, whenever a game adaptation (i.e., new challenge)
must be executed for a specific player of team, we use the
generator introduced in Figure 12. As in the case of the Game
Instance component, the execution of the generated Java code
leads to the creation of a Database (as depicted in Figure 13(c))
that the gamification engine uses to update the game instance
of a specific player.

VI. LESSONS LEARNED AND FUTURE INVESTIGATIONS

The framework illustrated in this paper can be considered
a domain independent solution for the design of gamified
applications. In fact, the architecture of GDF allows to define
different gamification mechanisms and even to re-define how
game elements should be combined. The sole aspect that
should be considered as specific of the applications shown
in this paper is the target gamification engine. Indeed, de-
ploying the game on different target platforms would require
the definition of new code generators. In this respect, the
effort could vary from minimal to considerable, depending on
whether the target language was Java-like or not, respectively.

Previous experiences with similar modeling needs [29] made
us immediately opt for a text-based solution; game defini-
tions are essentially sets of rules and their compositions, and
graphical concrete syntaxes tend to be intricate to use when
combining more than two rules, possibly including negative
application conditions. In this respect, the choice of MPS was
mainly due to: (limited) previous knowledge of the language
workbench; its projectional editors feature, inherited by any
language defined through MPS; the native code generation
support for Java.

The choice of a multi-level modelling approach came out
directly from the nature of gamification applications: gamifi-
cation principles, instantiated in terms of game elements, in
turn materialised as game element instances [23]. As already
mentioned throughout the paper, a traditional two-level mod-
eling approach would have posed important issues in terms of
maintenance and evolution of the framework. Notably, adding
a new element in GaML would have required the verification
of its correctness with respect to the elements existing in
GML (i.e., its supertypes); moreover, the new added element
would have needed apposite validation constraints to ensure
that GiML elements connected to it as its instances were of
the correct types. The solution discussed in this work leverages
language imports and inheritance mechanisms provided by
MPS to implement the desired GDF multi-layer architecture.
As noticed already in [30], MPS cannot be considered a
multi-level language workbench in a rigorous way; notably,
there is no notion of instantiation depth, nor of clabjects,
and so forth [5]. However, MPS smoothly supports language
embedding through which it is possible to reuse/extend the
concepts defined in one language for the specification of
another language. In this respect, the number of levels and
instantiation depth are determined dynamically by the use of
a language. For example, GML can be placed at level M4,
GaML at M3, GiML at M2, Game in GML has a depth of
1, being instantiated by GameDefinition in GaML, while
Challenge has a depth of 2, being instantiated by concrete
challenges in GiML or GsML. In our experience, these mech-
anisms make the definition of the different modelling levels
and their interconnections by far a simpler task if compared to
realising the same framework through a “proper” multi-level
modelling approach [5].

From an end-user perspective, the typical starting point of
traditional gamification development are graphical interfaces
to define the skeleton of the application, i.e. core game
components and some of the relationships among them, while
large parts of the business logic are delegated to code snippets
opportunely attached to the game elements. The abstraction
gap introduced by code snippets has two main drawbacks:
i) for domain experts it becomes difficult to keep track of
lower level of abstraction details; ii) for programmers the
complexity and error-proneness of the required code grows.
Instead, by means of GDF and its sub-languages domain
experts are able to handle details at lower levels of abstraction
to the granularity of point update operations. Moreover, the
quality of the applications is improved thanks to the checks

embedded in the language definitions, such that it would not
be possible to misspell game elements, nor to define erroneous
state values. These checks are in general difficult to perform
when using code snippets, since the code is managed as text
and is not knowledgeable of the concepts defined at higher
levels of abstraction (notably challenges, players, etc.). The
mentioned improvements become more evident when manag-
ing a running application: in fact, an important challenge in the
development and evolution of gameful systems is the ability
to revise or introduce new game elements and mechanics
during the system execution, e.g., to keep the desired level
of users’ engagement. In this respect, GDF allows domain
experts to reason about gamification specific concerns while
implementation details are automatically handled by the code
generators. Notably, experts might conceive new challenges
and/or reward mechanisms, simulate them through GsML, and
deploy them as adaptations by means of GadML. For these
reasons and our personal experiences matured through the two
case studies, we are confident about noticeable improvements
in development time and application quality when adopting
GDF as opposed to writing source code. Nonetheless, a more
solid empirical evaluation about the proposed solution has still
to be done, and is planned as future work.

Apart a thorough empirical validation of the proposed
gamification modeling approach, we plan to investigate further
adaptation and learning capabilities of GDF, to move from
third-party to self-adaptation features [24], thus introducing
more sophisticated self-adaptation mechanisms in gameful
systems.

VII. RELATED WORKS

Gamification is gaining popularity in all those domains that
would benefit from an increased engagement of their target
users [1]. Therefore, gamification applications are found in
disparate contexts, such as education [9], [31], health and
environment [7], [25], e-banking [32], and even software
engineering [3], just to mention a few. The growing adoption
of gamified solutions made their design and development
increasingly complex, due to e.g. the number and variety of
users, and the mission criticality of some of the applications.
Therefore, in general a rigorous development process is rec-
ommended to avoid the gamification project to fail [4]. In
this respect, the approach proposed in this paper is not the
first gamification design and deployment solution based on
MDE. Notably, in [31] the authors propose a gamification
framework targeting learning of modelling. The authors pro-
pose to partition the problem in similar sub-problems, like
modelling the game, its main components, and the mechanics.
Moreover, the authors provide automation in terms of listeners
for detecting users’ actions and corresponding achievements.
Compared to our approach, the solution in [31] is domain-
specific, and therefore does not require expressive power to
define new game mechanisms, new game elements, and so
forth. On the other hand, the domain-specificity allows the
authors to implement automated monitors for detecting users’
actions and keep track of the achievements. In this respect, we

consider these automated trackings as target platform specific
and not part of the game definition.

A domain independent solution is presented by Calderón et
al. called MEdit4CEP-Gam [33]: it proposes a methodology
and tool for defining gamified applications through complex
event programming (CEP) and MDE. In particular, the ap-
proach exploits MDE techniques to define a game at a higher
level of abstraction, and to generate corresponding code for a
CEP engine. In this respect, the solution proposed in [33] is
conceptually similar to the framework proposed in this paper.
However, that solution exploits a two-layered metamodelling
architecture, which in our opinion makes gamification design
more intricate due to the flattening of different instantiation
layers. Moreover, the tool is based on a diagrammatic concrete
syntax, which in general does not scale well in case of complex
rule definitions.

The market offers a plethora of other possible gamification
resources, as presented and continuously updated in [34]. The
main difference between the solutions proposed in the website
and the approach proposed here is that the former ones are pre-
conceived for a certain application domain, and very often
the designer has little control about the game elements and
mechanics.

As mentioned several times, the gamification framework
illustrated in this paper is conceived on the basis of multi-
level modelling (referred to also as deep metamodelling).
A comparison between the available multi-level modelling
alternatives goes beyond the scope of this work, and the reader
is referred to [5] for an introductory discussion about existing
solutions. Here we want just to remark that, to the best of our
knowledge, there exist no gamification approaches based on
multi-level modelling.

VIII. CONCLUSIONS

In this paper we presented the experiences matured in the
development of a MDE approach for designing gameful sys-
tems. The proposed solution is based on multi-level modelling,
such that the game definition is performed by successively
refining the specification of the game, from the definition of
main game components towards the instantiation of concrete
game elements. The proposed layered architecture allows
domain experts to abstract implementation problems and fo-
cus on details closer to their expertise, namely gamification
techniques and application domain targeted by the game. The
proposed mechanisms have been implemented by means of the
MPS text-based language workbench. The resulting GDF not
only reduces the complexity of defining gameful applications,
but it also discloses the opportunities of specifying simulations
and adaptations for particular gaming scenarios.

ACKNOWLEDGMENT

This work was partially funded by the EIT Climate KIC
projects CLIMB Ferrara and SMASH.

REFERENCES

[1] Jonna Koivisto and Juho Hamari. The rise of motivational information
systems: A review of gamification research. International Journal of
Information Management, 45:191 – 210, 2019.

[2] Mihaly Csikszentmihalyi and Isabella Selega Csikszentmihalyi. Optimal
experience: Psychological studies of flow in consciousness. Cambridge
university press, 1992.

[3] Oscar Pedreira, Félix Garcı́a, Nieves Brisaboa, and Mario Piattini. Gam-
ification in software engineering - a systematic mapping. Information
and Software Technology, 57:157 – 168, 2015.

[4] Benedikt Morschheuser, Lobna Hassan, Karl Werder, and Juho Hamari.
How to design gamification? a method for engineering gamified soft-
ware. Information and Software Technology, 95:219 – 237, 2018.

[5] Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. When and
how to use multilevel modelling. ACM Trans. Softw. Eng. Methodol.,
24(2):12:1–12:46, December 2014.

[6] Andrzej Marczewski. Gamification: A Simple Introduction and a bit
more - tips, advice and thoughts on gamification (2. ed). Andrzej
Marczewski, 2012.

[7] Daniel Johnson, Sebastian Deterding, Kerri-Ann Kuhn, Aleksandra
Staneva, Stoyan Stoyanov, and Leanne Hides. Gamification for health
and wellbeing: A systematic review of the literature. Internet Interven-
tions, 6:89–106, 2016.

[8] Richard M Ryan, C Scott Rigby, and Andrew Przybylski. The mo-
tivational pull of video games: A self-determination theory approach.
Motivation and emotion, 30(4):344–360, 2006.

[9] Darina Dicheva, Christo Dichev, Keith Irwin, Elva J. Jones, Lil-
lian (Boots) Cassel, and Peter J. Clarke. Can game elements make
computer science courses more attractive? In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education, SIGCSE
2019, page 1245, 2019.

[10] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart E. Nacke.
From game design elements to gamefulness: defining ”gamification”. In
Proceedings of the 15th International Academic MindTrek Conference:
Envisioning Future Media Environments, MindTrek 2011, pages 9–15,
2011.

[11] Katie Salen and Eric Zimmerman. Rules of play: game design funda-
mentals. MIT Press, 2004.

[12] Gustavo Fortes Tondello, Hardy Premsukh, and Lennart E. Nacke. A
theory of gamification principles through goal-setting theory. In 51st
Hawaii International Conference on System Sciences, HICSS 2018,
2018.

[13] Manuel Schmidt-Kraepelin, Scott Thiebes, Minh Chau Tran, and Ali
Sunyaev. What’s in the game? developing a taxonomy of gamification
concepts for health apps. In 51st Hawaii International Conference on
System Sciences, HICSS 2018, pages 1–10, 2018.

[14] Kevin Werbach and Dan Hunter. The gamification toolkit : dynamics,
mechanics, and components for the win. Wharton Digital Press,
Philadelphia, 2015.

[15] Martin Ward. Language oriented programming. Software-
Concepts&Tools, 15:147–161, 01 1994.

[16] Markus Voelter and Sascha Lisson. Supporting diverse notations in mps’
projectional editor. In Proceedings of the 2nd International Workshop on
The Globalization of Modeling Languages co-located with ACM/IEEE
17th International Conference on Model Driven Engineering Languages
and Systems, GEMOC@Models 2014, pages 7–16, 2014.

[17] Markus Voelter. Language and IDE modularization and composition
with MPS. In Generative and Transformational Techniques in Software
Engineering IV, International Summer School, GTTSE 2011, pages 383–
430, 2011.

[18] Markus Voelter and Vaclav Pech. Language modularity with the MPS
language workbench. In 34th International Conference on Software
Engineering, ICSE 2012, pages 1449–1450, 2012.

[19] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth.
DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013.

[20] Fabien Campagne and Fabien Campagne. The MPS Language Work-
bench, Vol. 1. CreateSpace Independent Publishing Platform, USA, 1st
edition, 2014.

[21] Fabien Campagne. The MPS Language Workbench Volume II: The Meta
Programming System (Volume 2). CreateSpace Independent Publishing
Platform, USA, 1st edition, 2016.

[22] Robert France and Bernhard Rumpe. Model-based development. Soft-
ware and Systems Modeling, 7(1):1–2, 2008.

[23] Colin Atkinson and Thomas Kühne. Model-driven development: A
metamodeling foundation. IEEE Softw., 20(5):36–41, September 2003.

[24] Franck Barbier, Eric Cariou, Olivier Le Goaer, and Samson Pierre.
Software adaptation: Classification and a case study with state chart
xml. IEEE Software, 32(5):68–76, Sep. 2015.

[25] Annapaola Marconi, Gianluca Schiavo, Massimo Zancanaro, Giuseppe
Valetto, and Marco Pistore. Exploring the world through small green
steps: improving sustainable school transportation with a game-based
learning interface. In Proceedings of the 2018 International Conference
on Advanced Visual Interfaces, AVI 2018, pages 24:1–24:9, 2018.

[26] Raman Kazhamiakin, Annapaola Marconi, Mirko Perillo, Marco Pistore,
Giuseppe Valetto, Luca Piras, Francesco Avesani, and Nicola Perri.
Using gamification to incentivize sustainable urban mobility. In IEEE
First International Smart Cities Conference, ISC2 2015, Guadalajara,
Mexico, October 25-28, 2015, pages 1–6, 2015.

[27] Raman Kazhamiakin, Annapaola Marconi, Alberto Martinelli, Marco
Pistore, and Giuseppe Valetto. A gamification framework for the long-
term engagement of smart citizens. In IEEE International Smart Cities
Conference, ISC2 2016, pages 1–7, 2016.

[28] Reza Khoshkangini, Giuseppe Valetto, and Annapaola Marconi. Gen-
erating personalized challenges to enhance the persuasive power of
gamification. In Proceedings of the Second International Workshop on
Personalization in Persuasive Technology co-located with the 12th In-
ternational Conference on Persuasive Technology, PPT@PERSUASIVE
2017, pages 70–83, 2017.

[29] Antonio Bucchiarone and Antonio Cicchetti. A model-driven solution to
support smart mobility planning. In Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, MODELS ’18, pages 123–132, New York, NY, USA, 2018.
ACM.

[30] Andreas Prinz. Multi-level language descriptions. In Procs. of the 3rd
Intl. Workshop on Multi-Level Modelling at MoDELS 2016, pages 56–
65. CEUR-WS, 2016.

[31] Valerio Cosentino, Sébastien Gérard, and Jordi Cabot. A model-
based approach to gamify the learning of modeling. In Proceedings
of the 5th Symposium on Conceptual Modeling Education and the
2nd International iStar Teaching Workshop co-located with the 36th
International Conference on Conceptual Modeling (ER 2017), Valencia,
Spain, November 6-9, 2017., pages 15–24, 2017.

[32] Luı́s Filipe Rodrigues, Carlos J. Costa, and Abı́lio Oliveira. Gamifica-
tion: A framework for designing software in e-banking. Computers in
Human Behavior, 62:620 – 634, 2016.

[33] Alejandro Calderón, Juan Boubeta-Puig, and Mercedes Ruiz.
Medit4cep-gam: A model-driven approach for user-friendly gamification
design, monitoring and code generation in cep-based systems.
Information & Software Technology, 95:238–264, 2018.

[34] Compare 120+ gamification platforms. https://technologyadvice.com/
gamification/. Accessed: April 2019.

