
GDF: a Gamification Design Framework powered by Model-Driven Engineering

Antonio Bucchiarone
Fondazione Bruno Kessler

Trento, Italy
bucchiarone@fbk.eu

Antonio Cicchetti
IDT Department

Mälardalen University
Västerås, Sweden

antonio.cicchetti@mdh.se

Annapaola Marconi
Fondazione Bruno Kessler

Trento, Italy
marconi@fbk.eu

Abstract—Gamification refers to the exploitation of gaming
mechanisms for serious purposes, like promoting behavioural
changes, soliciting participation and engagement in activities,
and so forth. In this demo paper we present the Gamifica-
tion Design Framework (GDF), a tool for designing gamified
applications through model-driven engineering mechanisms.
In particular, the framework is based on a set of well-
defined modelling layers that start from the definition of the
main gamification elements, followed by the specification on
how those elements are composed to design games, and then
progressively refined to reach concrete game implementation
and execution. The layers are interconnected through spe-
cialization/generalization relationships such that to realize a
multi-level modelling approach. The approach is implemented
by means of JetBrains MPS, a language workbench based
on projectional editing, and has been validated through two
gameful systems in the Education and Mobility domains.

A prototype implementation of GDF and related artefacts
are available at the demo GitHub repository: https://github.
com/antbucc/GDF.git, while an illustrative demo of the frame-
work features and their exploitation for the case studies are
shown in the following video:https://youtu.be/wxCe6CTeHXk.

Keywords-Gamification Design Framework, Multi-Level
Modelling, Model-Driven Engineering, JetBrains MPS

I. INTRODUCTION AND MOTIVATIONS

Exploiting gaming mechanisms for achieving more seri-
ous goals is typically referred to as gamification. Indeed,
gamification is more and more establishing itself as a tool
for promoting behavioural changes that would be harder to
obtain through, e.g., direct prescriptions and rules. Notably,
gameful systems find their application into disparate con-
texts like health, education, environment, and so forth [1].
Gamification relies on a set of consolidated construction
elements, that are one or more challenges the achievement
of which is rewarded by appropriate prizes distributed to
the successful players. The gained awards allow players to
advance their status and contribute to their general ranking
in the game. These mechanisms are supposed to stimulate
players in performing the activities meant to be promoted
by the game, and to keep them engaged for long periods of
time. As a matter of fact, there exist ready-made gamification
solutions able to automatically generate a gameful system
based on a minimal set of configuration parameters [2].

A critical aspect for a game to be effective is to keep
engaged its players: a too easy/difficult challenge might
quickly lose interest and hence make the game goals to fail
[3]. In this respect, on the one hand pre-conceived gamifica-
tion solutions may fall short of malleability needs, especially
when dealing with a lot of users and the game combining
multiple, interacting challenges. On the other hand, hand-
coding the gaming behaviour in a programming language
poses other issues, like the abstraction gap between domain
experts and the concrete application implementation, and the
growing complexity of the programming tasks, especially
when considering maintenance and evolution needs. As a
consequence, gameful systems development requires well-
founded software engineering approaches [4], [5].

Model-Driven Engineering (MDE) [6] is a software en-
gineering methodology that proposes to shift the focus of
the development from coding to modelling. The goal is to
reduce the complexity of software development by raising
the level of abstraction, analyzing application properties
earlier, and introducing automation in the process. In fact,
models are expected to allow domain experts to reason
about a certain solution by means of concerns closer to their
area of expertise than to implementation details. Moreover,
automated mechanisms, i.e. model transformations, can ma-
nipulate those models to evaluate attributes of the application
and/or to generate implementation code.

This demo presents the Gamification Design Framework
(GDF) [7], a tool for the design and implementation of
gameful systems. GDF has been conceived by pursuing three
main properties:

• abstraction, the framework shall allow the design of a
game in domain-specific terms, that is gamification el-
ements in a certain application domain scenario, rather
than focusing on implementation details;

• extensibility, given the characteristics of target applica-
tions, the framework shall not constrain the designers
in using pre-conceived gamification mechanisms;

• effectiveness, by adopting GDF the designer shall not
incur in excessive accidental complexity, comparable
to developing the same applications by writing source
code.



By going into more details, abstraction is required to allow
domain experts to gain more control about the exploited
mechanisms and their effects over the target players. In
fact, in current state-of-the-art approaches the core business
logic has to be typically encoded manually in a rule-/event-
based programming language. This makes it difficult for
domain-experts (not necessarily programmers) to backtrack
monitored game dynamics to corresponding game elements.
Additionally, programmers might translate game require-
ments into erroneous rules causing deviations difficult to
detect and understand.

Gamification is intrinsically a creative domain of software
applications. Therefore, any development support shall not
constrain the solution into pre-conceived boundaries, that is
it shall be extensible. In this respect, ready-made solutions
could be useful to perform exploratory experiments to un-
derstand what mechanisms to use, but would fall short of
adaptation possibilities in the long run.

With effectiveness we refer to the concrete gain in adopt-
ing the MDE based framework when compared to writing
directly implementation code for the gamified application.
This is a quite general concern for software engineering in
general and MDE in particular, since there exists always
the risk of over-engineering the system under study, es-
pecially when automation, re-use, and maintenance aspects
are irrelevant. Gamification could potentially benefit e.g. of
automated code generation and re-use, but these should not
come at the price of overly complex system designs.

By means of the Gamification Design Framework we
propose a structured approach and a well-defined set of
languages for designing a game, its main components, and
the behavioural details. GDF is structured in the sense that
it provides several abstraction layers, defining: on top the
general game elements and mechanics; based on these, the
next layer specifies a gamification model, i.e. a specific
way of combining the elements and mechanics to build-up
a game; starting from the gamification model, in the next
layer GDF allows to declare concrete instances of the game
elements and hence enables to deploy and run a game by
means of a gamification engine. Each layer is defined by
means of a domain-specific language where a lower level
of abstraction layer instantiates and possibly refines entities
pertaining to the layer(s) above. In this respect, GDF realizes
a multi-level modelling approach [8], [9], [10]. The multi-
level modelling approach implicitly ensures type correctness,
since the instantiation of language elements has to be done
such that to produce well-formed models.

The GDF implementation of the gamification design and
deployment is realised by means of JetBrains MPS (briefly,
MPS)1. MPS is a meta-programming framework that can
be exploited as modelling languages workbench, and pro-
vides projectional editors. Moreover, it smoothly supports

1http://www.jetbrains.com/mps/

Figure 1. The Gamification Design Framework (GDF)

languages embedding, such that the proposed multi-level
definition of gamification solutions is easily implemented.
Additionally, since one of the main characteristics of game
definitions is being collections of rules and constraints, GDF
languages adopt text-based concrete syntaxes. In fact, graph-
ical languages tend to not scale with the complexity of the
rules. Eventually, GDF leverages MPS generation features
to automatically derive Java implementation code to be run
through a specific gamification engine. To demonstrate the
features of GDF, we re-design and deploy a real gamification
application in the education domain.

The remainder of the paper is organized as follows: the
next Section presents the Gamification Design Framework
(GDF) with all its languages, while Section III shows the
concrete gamification application used to demonstrate the
framework and its prototype implementation.

II. THE GAMIFICATION DESIGN FRAMEWORK
PROTOTYPE

The GDF adopts a modular architecture composed by
several modelling layers, each of which approaching gam-
ification at a different level of abstraction. A graphical
representation of this stack is shown in Figure 1 [7]. It
is worth noting that some of the layers that we will call
game modelling layers, namely GML, GaML, and GiML in
the figure, represent incremental refinements/specializations
of gamification concepts, from higher to lower levels of
abstraction, respectively. Instead the remaining layers, i.e.
GsML and GadML, are so called utility layers and can be
defined on top of any of the game modelling ones (their
purpose will be better clarified later in this section).

The modular approach provided by GDF implicitly con-
veys a gamification design process that reflects widely
adopted practices in the state-of-the-art and practice of this
field [11], [12]. In particular, it provides different modelling
languages for specifying the main game components, i.e.,
game elements, and how they interact to build-up a gameful
application, that is mechanics. Such components are pro-
gressively refined to reach implementation code for a target
gamification engine.



Figure 2. The Gamification Model Language (GML).

A. The Gamification Model Language (GML)

The top layer of GDF represents a set of core elements
essential to describe a gameful system and is called Gam-
ification Modelling Language (GML). Figure 2 shows an
excerpt of the main GML concepts: a Game concept is
composed of a set of properties (i.e., id, domain, and
owner) that characterise a specific gameful solution, and a
set of children concepts that allow to specify the main game
elements, that is the fundamental ingredients of a gamified
application. GML conforms to the MPS base language and
provides the basic building blocks on top of which all
the subsequent modelling layers can be described. In this
respect, a game designer should extend/refine GML concepts
every time there is a need of introducing new game elements
or mechanics.

B. The Game Model Language (GaML)

Starting from the primitive gamification elements it is
possible to define a specific concrete game. For this pur-
pose, the Game Model Language (GaML) instantiates the
concepts defined in GML as a concrete game description.
As depicted in Figure 3, the designer can specify further
how the game components are assembled to create an
application into a GameDefinition. Notably, the concept
of Point in GML is specialized in skillPoint and
experiencePoint, to distinguish between points gained
by means of specific activity goals and points gained due
to the progression through the game, respectively. More-
over, dataDrivenAction and evenDrivenAction
are exploited to recognize activities based on data (i.e.,
kms, legs, etc.) or on events (i.e., surveys, check-in, etc.).
In a similar manner, the Challenge concept coming
from GML is refined through, e.g., PlayerChallenge
and TeamChallenge to distinguish between challenges
intended to be completed individually and the ones to be
accomplished as groups of players, respectively.

GaML is generic enough to enable the reuse of the
defined gamification concepts into multiple development
scenarios (e.g. the distinction between the types of actions
and points). Nonetheless, it allows to automatically generate

Figure 3. GameDefinition Concept of the GaML.

Figure 4. GameInstance Concept of the GiML.

part of the implementation for the application on a specific
target gamification engine, notably the set of challenges,
the actions, the points, and so forth2. More specifically, the
outputs of GaML code generation are Java classes ready to
be deployed in the gamification engine.

C. The Game Instance Model Language (GiML)

A game instance is a GameDefinition, as prescribed
in GaML, opportunely instantiated to be run by the gami-
fication engine. In general an instantiation consists of the
specification of the players/teams involved in the game,
hence one or more instances of multiple games may run
concurrently by means of the same engine. The Game
Instance Model Language (GiML) binds game definitions
coming from GaML with instantiation details, as depicted
in Figure 4. In particular, the classrooms defines teams
and players that play in a certain instance of a game.

Analogously to GaML, GiML includes code generation
features that generate Java classes corresponding to the game
instances defined through the GameInstance concept.

2For the sake of space, the details of code generators are not shown in
the paper. The interested reader is referred to the GDF GitHub repository



Figure 5. GameSimulation Concept of the GsML.

Figure 6. Single Execution of a Game Simulation.

D. The Game Simulation Language (GsML)

Apart from game modelling languages, GDF pro-
vides so called utility languages. One of them is the
Game Simulation Language (GsML), that allows to sim-
ulate game scenarios. In particular, a GameSimulation
is composed of a GameDefinition and a set of
SingleGameExecution elements, as depicted in Figure
5. In turn, each game execution is made-up of a Team and/or
a Player that can execute an actionInstance or a
challengeInstance (see Figure 6). In this way, the
designer can specify specific game situations and check what
state changes are triggered. In this respect, it is important
to mention that the target gamification engine 3 provides the
necessary features to track the gamification rules triggered
during the execution together with the corresponding state
changes.

E. The Game Adaptation Language (GadML)

Another utility feature provided by GDF is adaptation.
This feature leverages specific capabilities of the target
gamification engine: a recommendation system for gener-
ating players’ tailored challenges based on game histori-
cal data and current status; a mechanism to “inject”new
game contents on-the-fly. With this premise, the GadML
language allows to model those scenarios when a new game
content (i.e., a new challenge recommended by engine)
has to assigned to a specific player on-the-fly. In partic-
ular, the GameAdaptation concept includes gameId
and playerId parameters for a game adaptation, plus

3https://github.com/smartcommunitylab/smartcampus.gamification

Figure 7. newChallenge Concept of the GadML.

a set of children to specify the new challenge to be in-
jected. As Figure 7 shows, a newChallenge refines a
simple game adaptation by defining a ChallengeModel,
ChallengeData (i.e., bonusScore, virtualPrize, etc.) and
ChallengeDate (i.e., validity period of time for the
challenge).

GadML is equipped with an apposite code generator that
allows to inject a corresponding game adaptation as per the
GameAdaptation definition.

III. DEMONSTRATOR DETAILS

GDF is demonstrated by means of a real gamified ap-
plication called Kids-go-Green (KGG) [13]4. KGG is an
application for supporting active and sustainable mobility
habits, both at personal and collective level, and targeting
younger citizens (elementary schools students). KGG is
based on a virtual journey that can be travelled by play-
ers using the sustainable kilometres collected in real life.
Moreover, the virtual journey can be customized according
to the interests and the educational needs of the teachers
for specific classrooms. Every day each class accesses the
KGG Web application and fills the Mobility Journal. The
children indicate the way they reached school that day by
expressing a specific sustainable transportation mode (i.e.,
by foot, bike, walking bus, or school bus). The number of
kilometres travelled each day by the children in their trips
to school contributes to the progress on a virtual journey.
KGG also includes class-level and school-level challenges:
upon completion of a specific objective (e.g., zero emission
day, no-car week, etc.).

Using GDF, a gamification designer can design a new
game defining the set of teams (i.e., schools and classrooms)
and players (i.e., students) participating in the virtual jour-
ney. The specific Institute with its respective Schools
and Classrooms are specified with all the needed infor-
mation (see Figure 8 label 1). Starting from these models, all
the game elements (i.e., points, actions, badges, challenges,
etc..) that regulate the game behavior can be defined using
a specific editor (see Figure 8 label 2). It has been created
using all the the fields of the GamificationInstance
concept of the GiML language (see Figure 8 label 3).

4https://kidsgogreen.eu



Figure 8. Game Definition Steps using GDF.

Figure 9. GameInstance generator for a new game.

Exploiting the code completition facility provided by MPS,
the generated editor helps the designer to define all the game
elements within the visibility scope of the overall game
design.

Once the designer have specified the new game, she/he
can proceed with the game deployment in the gamification
engine. The deployment step is done using the GiML gen-
erator depicted in Figure 9. When executed, the generated

Figure 10. Deployed Game Instance in the Gamification Engine.

Java code results in the creation of corresponding game
instance in the gamification engine (see Figure 10). GDF
also provides support for the simulation of the behaviour of
a running game and the definition of new game contents and
their assignment to a specific player on-the-fly.

To see all these aspects in action, we have realized
a video, available at the following url:https://youtu.be/
wxCe6CTeHXk. It shows: (1) the specification and the
deployment of a new game; (2) the specification of a game
simulation that allows to simulate game scenarios before
the real deployment and, (3) the specification of new game
contents and its assignment to a specific player on-the-fly.



ACKNOWLEDGMENT

This work was partially funded by the EIT Climate KIC
projects CLIMB Ferrara and SMASH.

REFERENCES

[1] Jonna Koivisto and Juho Hamari. The rise of motivational
information systems: A review of gamification research. Inter-
national Journal of Information Management, 45:191 – 210,
2019.

[2] Compare 120+ gamification platforms. https:
//technologyadvice.com/gamification/. Accessed: April
2019.

[3] Mihaly Csikszentmihalyi and Isabella Selega Csikszentmiha-
lyi. Optimal experience: Psychological studies of flow in
consciousness. Cambridge university press, 1992.

[4] Oscar Pedreira, Félix Garcı́a, Nieves Brisaboa, and Mario
Piattini. Gamification in software engineering - a systematic
mapping. Information and Software Technology, 57:157 –
168, 2015.

[5] Benedikt Morschheuser, Lobna Hassan, Karl Werder, and
Juho Hamari. How to design gamification? a method for
engineering gamified software. Information and Software
Technology, 95:219 – 237, 2018.

[6] Douglas C. Schmidt. Guest editor’s introduction: Model-
driven engineering. Computer, 39(2):25–31, February 2006.

[7] Antonio Bucchiarone, Antonio Cicchetti, and Annapaola Mar-
coni. Exploiting multi-level modelling for designing and
deploying gameful systems. In In IEEE/ACM 22nd Interna-
tional Conference on Model Driven Engineering Languages
and Systems (MODELS), September 1520, 2018, Munich,
Germany, 2019. To appear.

[8] Colin Atkinson and Thomas Kühne. Model-driven develop-
ment: A metamodeling foundation. IEEE Softw., 20(5):36–41,
September 2003.

[9] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado.
Model-driven engineering with domain-specific meta-
modelling languages. Software and System Modeling,
14(1):429–459, 2015.

[10] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado.
When and how to use multilevel modelling. ACM Trans.
Softw. Eng. Methodol., 24(2):12:1–12:46, 2014.

[11] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart E.
Nacke. From game design elements to gamefulness: defining
”gamification”. In Proceedings of the 15th International
Academic MindTrek Conference: Envisioning Future Media
Environments, MindTrek 2011, pages 9–15, 2011.

[12] Katie Salen and Eric Zimmerman. Rules of play: game design
fundamentals. MIT Press, 2004.

[13] Annapaola Marconi, Gianluca Schiavo, Massimo Zancanaro,
Giuseppe Valetto, and Marco Pistore. Exploring the world
through small green steps: improving sustainable school trans-
portation with a game-based learning interface. In Proceed-
ings of the 2018 International Conference on Advanced Visual
Interfaces, AVI 2018, pages 24:1–24:9, 2018.


