
Conceptual Modelling Patterns for Roles

Jordi Cabot
1,2
 and Ruth Raventós

2

1
Estudis d'Informàtica i Multimèdia, Universitat Oberta de Catalunya

Av. Tibidabo, 39-43, E08035 Barcelona
jcabot@uoc.edu

2 Departament Llenguatges i Sistemas Informàtics, Universitat Politècnica de Catalunya

Campus Nord, Edif. Omega, Jordi Girona 1-3, E08034 Barcelona
raventos@lsi.upc.edu

Abstract. Roles are meant to capture dynamic and temporal aspects of real-

world objects. The role concept has been used with many semantic meanings:

dynamic class, aspect, perspective, interface or mode. This paper identifies

common semantics of different role models found in the literature. Moreover, it

presents a set of conceptual modelling patterns for the role concept that include

both the static and dynamic aspects of roles. In particular, we propose the Role

as Entity Types conceptual modelling pattern to deal with the full role

semantics. A conceptual modelling pattern is aimed at representing a specific

structure of knowledge that appears in different domains. The use of these

patterns eases the definition of roles in conceptual schemas. In addition, we

describe the design of schemas defined by using the patterns in order to

implement them in any object-oriented language.

1 Introduction

An accurate and complete conceptual modelling is essential for a correct development

of information systems. Reusable conceptual schemas facilitate this difficult and time-

consuming activity. The use of patterns is essential to increase the reusability in all

stages of software development.

A pattern identifies a problem and provides the specification of a generic solution

to that problem. The definition of patterns in conceptual modelling may be regarded

in two different ways: conceptual modelling patterns and analysis patterns.

In this paper, we distinguish between a conceptual modelling pattern that is aimed

at representing a specific structure of knowledge encountered in different domains

(for instance the MemberOf relationship) and an analysis pattern that specifies a

generic and domain-dependent knowledge required to develop an application for

specific users (for instance a pattern for electronic marketplaces). Authors do not

always make this distinction. For example, to Fowler, in [13], patterns correspond to

our conceptual modelling patterns while to Fernandez and Yuan, in [12], patterns

correspond to our definition of analysis patterns. For a further discussion on analysis

patterns see Teniente in [43].

The goal of this paper is to propose a set of conceptual modelling patterns to

facilitate the representation of roles in conceptual schemas.

Although definitions of the role concept abound in the literature of conceptual

modelling [3, 5 8, 13, 18, 35, 37] a uniform and globally accepted definition is not

given. To sum up, we could say that roles are meant to capture the dynamic and

temporal aspects of real-world objects.

Roles appear very frequently in conceptual schemas. They are useful to model

some dynamic situations from the real world that are not well represented just with

the basic modelling language constructs, such as entity types that present different

properties or behaviour depending on the context where they are used. For instance,

the properties of a person when playing the role of student are different from those

when playing the role of Employee. Moreover, when asking for his email address the

answer depends on the role/s he is playing, it may be his personal email address, his

student email address or his work email address.

Despite its importance, the possibilities that conceptual modelling languages offer

to deal with roles are very limited (see, for example, what UML supports in [9] and

[39]). In short, they consider roles just as the name of a participant in a relationship

type.

We identify common and different semantics of role models found in the literature

and characterize the patterns in terms of the features they cover. This allows the

designer to choose the pattern best suitable for his needs. We also discuss the design

and implementation of conceptual schemas that use these patterns to facilitate their

implementation in object-oriented languages.

Of particular importance is our Role as Entity Types pattern, useful to represent

roles when the full expressiveness of the role concept is needed. The pattern covers

the most well-known role semantics. In contrast with previous approaches, one of its

advantages is its simplicity, since roles and their evolution are represented with

already existing constructs (entity types and constraints). Therefore, roles are easily

integrated in conceptual schemas.

 The rest of this paper is organized as follows: the next section presents a set of

basic patterns. Section 3 proposes the Roles as Entity Types pattern. Section 4

comments related work and compares it with our proposals. Finally, conclusions and

further work are presented.

2 Conceptual Modeling Patterns for Roles

The aim of this section is to define and compare a set of patterns to specify roles in

conceptual schemas (CSs) by using just the standard constructs offered by conceptual

modelling languages. Mosse in [24] and Fowler in [13] also propose a series of

patterns for role representation. However, both of them discuss the patterns very

informally and consider only a small subset of the role features we take into account.

One of the advantages of patterns explained in this section is that they are quite

simple but, as a trade-off, their expressiveness is rather limited.

In order to describe the role patterns we adopt the template proposed by Geyer-

Schulz and Hahsler in [16] to describe conceptual modelling patterns (called by the

authors analysis patterns). They adopt a uniform and consistent format, in contrast to

Fowler in [13] who uses a very free format for pattern writing. Geyer-Schulz and

Hahsler stress that adhering to a structure for writing patterns is essential since

patterns are easier to teach, learn, compare with, write and use once the structure has

been understood.

Their template preserves the typical context/problem/forces/solution structure of

design patterns but adapted for the description of conceptual modelling patterns. The

template includes the following sections: (1) Pattern Name. (2) Intent: what the

pattern does and the problems it addresses. (3) Motivation: a scenario that illustrates

the problem and how the pattern contributes to the solution in the specific scenario.

(4) Forces and Context that should be resolved by the pattern. (5) Solution:

description of all relevant structural and behavioural aspects of the pattern. (6)

Consequences: how the pattern achieves its objectives and the existing trade-off. (7)

Design and implementation: how the pattern can be realized in the design stage. (8)

Known uses: examples of the pattern.

Obviously sections about intent, motivation and forces and context are common to

all patterns for role representation. We first address these sections. Then, we define

the solution that each pattern proposes, its consequences, its design and the known

uses.

2.1 Intent

The intent is the representation of roles that entities play through their life span and

the control of their evolution.

2.2 Motivation

The role concept appears frequently in many different domains of the real world,

since we can find entity types in each domain that present some properties that evolve

over time (see Papazoglou et al. in [32] and Jodlowski et al. in [20] for some example

applications where roles are specially useful).

There is not a uniform and globally accepted definition of roles. The first

commonly credited definition of roles in a data model goes back to the 70s when

Bachman and Dayas proposed the role data model [3]. They defined a role as “a

defined behaviour pattern that may be assumed by entities of different kinds”. Since

then, many other definitions and additional semantics have been proposed.

For instance, to Dahchour et al. in [8], the concept of role is “a generic relationship

for conceptual modeling that relates a class of objects (e.g., people) and classes of

roles (e.g., students, employees) for those objects. The relationship is meant to capture

temporal aspects of real-world objects”. To Papazoglou and Krämer in [31] a role

“ascribes properties that possibly vary over time. The purpose of a role is to model

different representation alternatives for the same object in terms of both structure and

behavior“.

To sum up, we could state that roles are useful to model the properties and

behaviour of entities that evolve over time. The entity type Person is an illustrative

example. During his or her life, a person may play different roles, for example he or

she may become a student, an employee, a project manager, and so forth. Besides this,

a person may have different properties and behaviours depending on the role or roles

he/she is playing at a certain time.

For instance, let us consider the following scenario, which will serve as a recurrent

example in the following pages: let Maria be a person (with a name, phone number,

birthdate, country, age, sex and full address), who starts a degree (Maria plays the role

of student). After some years of study, she registers to a second university program

(Maria plays twice the role of student) and starts to work in a company (Maria plays

the role of employee). In that company she may become a project manager (now,

Maria through her employee role, plays the role of project manager). If in the future,

Maria became a department manager, now Maria through her employee role would

play a new role, department manager.

For each role we are interested in recording a set of properties specific for that role.

As employee we are interested in: her employee number, category, company phone

number, working status and the expiration date of her contract. As a project manager

we are interested in information about the project she manages (the project name, the

start date and the tasks it involves). Moreover, roles share properties with the main

entity type. For instance, when considering Maria as employee we also want to know

her name, even though the name is not an explicit property of employee.

Figure 1 shows the different relationships that are involved in the scenario

introduced above. Note that, in this situation, if we ask for the value of a property of

Maria the answer is not trivial because it depends on the role or roles she is playing.

For instance, if we ask for her telephone number, the answer may be her personal

number (since Maria is a person) or her company phone number (since Maria is an

employee).

Fig. 1. Relationships involved in the example application

Despite its importance, the possibilities that conceptual modelling languages offer

to deal with roles are very limited and cover only a very small part of their features.

For instance, the ER model [6] considers roles as named places in a relationship;

UML [29] considers that a role is an association end; in Description Logics [2] roles

only denote binary relationships between individuals; in Nijssen’s information

analysis method (NIAM) [25] and in its descendants as Object-Role Modeling (ORM)

[19] each fact type (relationship) involves a number of roles, hence, roles are named

placed in the relationships.

Taking into account the complexity of the notion of role and the lack of support for

roles in present conceptual modelling languages, it is clear that patterns to define such

a common construct are needed in conceptual modelling.

2.3 Forces and Context

To account for the complexity of the notion of roles and variety of semantics found in

them, we describe below the set of features that roles should meet, most of which

have been identified by Steinmann [38]. In our case, these features are the forces that

influence and should be resolved by the pattern.

We describe them by using some examples related to the scenario introduced

above:

1. Ownership. A role comes with its own properties and behaviour, i.e., an instance of
Employee has its own properties which may be different from the ones of the entity

type that plays such a role.

2. Dependency. An instance of a role is related to a unique instance of its entity type
and its existence depends on the entity type to which it is associated to, i.e., it is not

possible to have an instance of Student not related to an instance of Person.

Although a fundamental characteristic, there exist proposals considering that a role

should remain unconnected to any entity type, for instance, to model the salary of

a vacant position for department manager [36]. This work does not address such

possibility.

3. Diversity. An entity may play different roles simultaneously, i.e., an instance of
Person may play simultaneously the role of Student and Employee.

4. Multiplicity. An instance of an entity type may play several instances of the same
role type at the same time. For instance, a person that registers to more than one

university has multiple instances of Student related to it.

5. Dynamicity. An entity may acquire and relinquish roles dynamically, i.e., a person
may become a student, after some years become an employee, finish his/her

studies, become a project manager, start another program and so forth.

6. Control. The sequence in which roles may be acquired and relinquished can be
subject to restrictions, i.e., a person may not become an employee after he/she has

retired or when he/she is also studying two degrees. Note that this does not

prevents an employee from studying two degrees in the future. The restriction

needs to be true only when hiring the employee.

7. Roles can play roles. This mirrors that an instance of Person can play the role of
Employee and an instance of Employee can also play de role of ProjectManager.

8. Role identity. Each instance of a role has its own role identifier, which is different
from that of all other instances of the entity to which is associated with. This solves

the so-called counting problem introduced by Wieringa et al in [44]. It refers to the

fact that we need to distinguish the instances of the roles from the instances of the

entity types that play them. For example, if we want to count the number of people

that are students in a university (i.e., every person who is registered to at least a

program in such university), the total number is less than the number of registered

students in such university (in this case a person is counted twice if he or she is

registered at two programs).

9. Adoption. Roles do not inherit properties from their entity types. Instead, instances
of roles have access to some properties of their corresponding entities i.e., Student

may adopt name and address properties of Person but neither religion nor marital

status properties. Therefore, the Student role cannot use the last two referred

properties.

10. Relationship independency. A role is meaningful even out of the context of a
relationship. E.g., a person may play the role of student or employee without

necessarily being tied to a university or a company respectively.

11. Common role for unrelated types. A set of unrelated types may play the same role
[3]. For instance, a project manager may be the role of both employee and external

service provider.

12. Sharing structure and behavior. Roles may have some common structure and
behavior. For instance, the constraint that Maria may not become an employee

before she is 16 years old should apply also to project manager.

2.4 Roles as Participant Names Pattern

2.4.1 Solution

A role is merely represented as a name assigned to the participation of an entity type

in a relationship type. Although a rather limited representation, it is what conceptual

modelling languages usually consider.

Figure 2 models the running example when considering roles as the participant

names of a relationship type. Note that ProjectManager and DepartmentManager do

not appear in the conceptual schema, since, in this approach, a role cannot play other

roles. Students can neither be classified in domestic or foreign students.

2.4.2 Consequences

Only a small subset of the previous features is covered by the pattern. We justify each

of them as follows:

2. Dependency: a relationship in a relationship type is always related to an instance

of the participant entity types. For example, a student may only be defined if an

instance of the relationship type relating Person and University exists.

3. Diversity: an entity type can participate in many different relationship types.

4. Multiplicity: this feature is partially covered since an entity type can play several

times the same role (i.e., it may participate in the same relationship type) by providing

the value of the multiplicy of the participant greater than one. However, two

relationships of a relationship type may not exist between the same participants (i.e a

person cannot study twice in the same University).

5. Dynamicity: relationships can be added and deleted at any time.

Due to the limited expressiveness of participant names, the pattern does not

support the following features:

1. Ownership: the participation of an entity type in a relationship type does not

have properties nor behaviour

 6. Control: we cannot attach constraints to the participation apart from multiplicity

constraints.

7. Roles can play roles: only entity types can participate in other relationship types.

Therefore, we cannot define that the role Employee has the role of ProjectManager.

 8. Role identity: a relationship type has no identity, it is identified through its

participants.

 9. Adoption: by navigating through the relationship type where the role is defined

we can access to all properties of the entity type. We cannot restrict the access to the

personal number of person when navigating from employee.

 10. Relationship independency: obviously, roles represented as participant names

only make sense in the context of a relationship type.

 11. Common role for unrelated types: the same role cannot be used in different

relationship types.

 12. Different roles may share structure and behaviour: since roles as participant

names have no structure or behaviour they cannot share it.

Fig. 2. Example of the Roles as Participant Names Pattern

2.4.3 Design and implementation

The design and implementation of roles defined following this pattern in object

oriented languages is straightforward. Roles are simply transformed into attributes of

the entity type. The multiplicity and type of these attributes is obtained from the

definition of the relationship type including the role.

2.4.4 Known Uses

This pattern is useful when we want to qualify the participation of an entity type in a

relationship type but we are not interested in defining properties or behaviour of that

participation. For instance, if we are only interested on a person becoming a student

without worrying about his or her properties as student, like the degree he/she is

studying.

2.5 Roles as Subtypes Pattern

2.5.1 Solution

Role entity types are represented as subtypes of the entity type playing them. For

instance, Student and Employee would appear as subtypes of Person. Quite obviously,

such a solution requires dynamic and multiple classification, since a person can

change his/her role and play several roles simultaneously.

As an example Figure 3 shows the running example when considering roles as

subtypes.

Fig. 3. Example of the Roles as Subtypes Pattern

2.5.2 Consequences

The following list of role features is supported for this pattern:

1. Ownership: as a subtype, the role can define its own properties and behaviour.

2. Dependency: all subtype instances are instances of their supertypes.

3. Diversity: by assuming multiple classification, an entity may appear in several role

subtypes (i.e., a person may be an employee and a student at the same time).

5. Dynamicity: by assuming dynamic classification role instances can be added and

removed from the subyptes at any time.

7. Roles can play roles: this feature is simulated by defining a role type as a subtype

of another role type. For instance, ProjectManager is defined as a subtype of

Employee.

10. Relationship independency: as entity types, roles have their own existence

independent from any relationship type.

12. Different roles may share structure and behaviour: by assuming multiple

inheritance, two roles may share structure and behaviour if they inherit them from a

common supertype.

On the other hand some important features are not covered by the pattern:

4. Multiplicity: since Employee is a subtype of Person, we cannot define that a person

plays simultaneously twice the role of Employee.

6. Control: as entity types, we can define constraints on role types. However, the

constraints are static and thus must be satisfied at any time. We cannot define

constraints that only apply when the role is inserted or deleted.

8. Role identity: as a subtype, the identifier of the role instance is the same as the

identifier of the entity type instance. Therefore, the counting problem mentioned

before is not solved. In fact, the counting problem is not solved either because

multiplicity cannot be addressed with this pattern.

9. Adoption: with specialization we cannot restrict which attributes are adopted by the

roles because they inherit all the attributes and relationships of their supertype (i.e.

Employee inherits all the Person’s attributes).

11. Common role for unrelated types: this could be simulated using multiple

inheritance. However, in such a case the role would inherit the properties of all its

supertypes which is not what we meant. For instance, if we need ProjectManager to

be the role of both Employee and ExternalServiceProvider, we could define

ProjectManager as a subtype of both Employee and ExternalServiceProvider but then

ProjectManager would inherit the properties of Employee as well as the properties of

ExternalServiceProvider.

2.5.3 Design

The design and implementation of roles defined following this pattern in object

oriented languages is not straightforward, since, in general, they do not support

multiple nor dynamic classification. Fowler [13] and Pelechano et al. [34] comment

some design patterns to cope with these issues.

2.5.4 Known Uses

Probably, this is the most intuitive way to represent roles. Provided that the previous

limitations are not a problem in the specific application, this pattern represents a good

combination between simplicity and expressiveness. However, we should also take

into account that the design of this pattern is not trivial.

2.6 Roles as Interfaces Pattern

2.6.1 Solution

Roles are represented as interfaces. An interface represents a declaration of a set of

coherent public features and obligations [29]. To define that an entity type plays a

certain role we must specify that the type realizes (i.e., implements) the interface

corresponding to that role.

The implementation relationship signifies that the entity type conforms to the

contract specified by the interface (i.e., the entity type provides an operation for every

operation defined in the interface and a property for each feature).

Figure 4 shows the running example when considering roles as interfaces. For

instance, to specify that Person plays the role of Employee, Employee is defined as an

interface that is implemented by Person. Note that this obliges Person to contain all

the attributes defined in Employee, since an entity needs to contain all attributes of all

its interfaces. Students are not classified in domestic or foreign since the notion of

subtypes cannot be applied to interfaces. We could define them as interfaces

extending the Student interface but the resulting semantics would be different (for

example, the state of a person being a student would be completely independent from

the state of a person being a domestic student, since interfaces inherit only the

specification of extended interfaces but not its state).

Fig. 4. Example of the Roles as Interfaces Pattern

2.6.2 Consequences

The features covered for this pattern are:

2. Dependency: the role does not exist as a separate instance from the instance of the

entity type.

3. Diversity: an entity type can implement several interfaces.

10. Relationship independency: as interfaces, roles do not depend on any relationship

of the entity type.

11. Common role for unrelated types: interfaces can be implemeted by many

unrelated types.

12. Different roles may share structure and behaviour: this can be simulated by

defining inheritance relationships between interfaces.

The features not covered for this pattern are:

1. Ownership: even though an interface defines its own properties, it does not have an

independent state from the state of the instances of the entity type implementing them.

4. Multiplicity: an entity type cannot implement twice an interface, and thus, a entity

type can only play once the same role.

5. Dynamicity: every instance of the entity type plays all roles corresponding to the

interfaces implemented by the type during its whole life. All interfaces are acquired

when the instance is created.

6. Control: since all roles are acquired at the beginning, this property does not make

sense.

7. Roles can play roles: interfaces cannot implement other interfaces. For instance,

Employee cannot implement the ProjectManager interface. When defining

ProjectManager we can extend the specification of Employee but the semantics are

the same as if two independent interfaces were defined since it is Person and not

Employee who implements the interface ProjectManager.

8. Role identity: interfaces do not have instances.

9. Adoption: interfaces do not adopt any of the properties of the entity type. On the

contrary, each interface defines its independent set of properties that must be

implemented by the entity type.

2.6.3 Design and implementation

One of the advantages of this pattern is that the design and implementation of roles as

interfaces is a direct translation from the conceptual schema since most object

oriented languages perfectly support the notion of interfaces.

2.6.4 Known uses

Despite its major drawbacks, the main usage of this pattern is the definition of

conceptual schemas where roles must be played by unrelated entity types. Also, as

Fowler in [13] proposes, the pattern can be used to integrate seamlessly the

specification of CS with its implementation when the implementation language does

not support multiple and dynamic classification.

2.7 Roles as Reified Entity Types Pattern

2.7.1 Solution

Roles are represented as reified entity types of a relationship type between the entity

type playing the role and another entity type (called the companion entity type). For

instance, the student role can be defined as the reified entity type of the relationship

between Person and University (although a more appropriate name for the reified type

could be enrolment). Note that it is not clear whether Student is a role of Person or

University.

Choosing the right companion entity type is not easy. In fact, sometimes it does not

exist and must be created specifically to be able to define the role. For instance, to

define the student role we have to include in the CS the University type. Note that,

depending on the purpose of the CS, we may not be interested in recording data about

the universities where people study. In such a case, a plain string recording the name

of the university as an attribute of the student could be enough (as in the roles as

subtypes approach).

On the other hand, the election may impose some constraints to the role since there

could not exist two relationships of a relationship type between the same participants.

In the previous example, choosing University as companion entity type prevents a

person to study twice in the same university.

Figure 5 shows the running example when considering roles as reified entity types.

Fig. 5. Example of the Roles as Reified Entity Types Pattern.

2.7.2 Consequences

The features covered for this pattern are:

1. Ownership: as an entity type, the role can define its own properties and behaviour.

2. Dependency: as a reified entity type, an instance of the role type can only exist

when the participants of the relationship also exist.

3. Diversity: an entity type may participate in several relationships.

5. Dynamicity: instances of reified entity types can be inserted and deleted at any

time.

7. Roles can play roles: a reified entity type can be a participant in other relationship

types. For instance, the reified entity type Employee is one of the participants of the

relationship defined to specify the role DepartmentManager

8. Role identity: the role has its own identity as a reified entity type, different from the

identity of the entity type.

12. Different roles may share structure and behaviour: this can be simulated by means

of generalization and specialization relationships between the reified types.

On the other hand, the roles do not cover:

4. Multiplicity: it is restricted by the choosen companion class.

6. Control: as entity types, we can define constraints on role types. However, we

cannot define constraints that only apply when the role is inserted or deleted.

9. Adoption: we cannot restrict which attributes are adopted by the roles since, by

default, all properties can be acceded.

10. Relationship independency: as reified entity types, roles can only exist in the

context of a relationship type.

11. Common role for unrelated types: two different relationship types cannot share the

same reified entity type.

2.7.3 Design and implementation

The reified entity types are designed and implemented as classes with a set of single-

valued additional attributes, which refer to each of the participants of the relationship

type.

2.7.4 Known Uses

This pattern can be regarded as an extension of the previous roles as participant

names pattern. Therefore, this pattern is useful to qualify the participation of an entity

type in a relationship type. Moreover, by using the pattern we can define properties

and behaviour of that participation.

As a disadvantage, apart from the features not covered by the pattern, the use of

this pattern may increase the complexity of the resulting CS since for each role we

must create a relationship type, a reified relationship type and, when not present in the

CS, the companion entity type.

3 Roles as EntityTypes Pattern

Previous patterns cover only a subset of the required role features. We propose to use

our Role as Entity types pattern when the full expressivity of the role concept is

needed. This pattern is an updated and extended version of the one presented in [5].

The basic aim of the pattern is to represent roles as an entity type related to the

entity type playing the role by means of a special kind of relationship type, the RoleOf

relationship type.

Next sections discuss in depth the pattern solution, its consequences, design and

known uses.

3.1 Solution

We divide the solution of our role pattern in two subsections. The first one deals with

the structural aspects of roles while the second one deals with their evolution.

3.1.1 Structural Aspects of Roles

We believe there is not a fundamental difference between roles and entity types since

roles have their own properties and identity. Therefore, when using this pattern we

represent roles as entity types with their own attributes, relationships and

generalisation/specialisation hierarchies. For practical reasons, we call role entity

types (or simply role if the context is clear) the entity types that represent roles and

natural entity types1 (or simply entity types) the entity types that may play those roles.

We define the relationship between a role entity type and its natural entity type by

means of a new generic relationship type, the RoleOf relationship. A generic

relationship type is a relationship type that may have several realizations in a domain

[27]. Each realization of this generic relationship type is a specific relationship type

relating a natural entity type to a role entity type to indicate that the natural entity type

may play the role represented by the role entity type.

In the relationship type we also specify the properties (attributes and associations)

of the natural entity type that are adopted by the role entity type.

Note that, since roles may play other roles, the same entity type may appear as a

role entity type in a RoleOf relationship and as a natural entity type in a different

RoleOf relationship.

Although this representation may be expressed in many conceptual modelling

languages, in this work, we only adapt it to UML [29] and OCL [28]. See Olivé in

[27] for a general discussion about the implementation of generic relationship types in

conceptual schemas.

To represent the RoleOf relationship we use the standard extension mechanisms

provided by UML, such as stereotypes, tags and constraints. Stereotypes allow us to

define (virtual) new subclasses of metaclasses by adding some additional semantics

and properties (tags) to its base entity type. A stereotype may also define additional

1 The natural entity type of a role relationship has sometimes been called object class [8, 44]

ObjectWithRoles [17], natural type [18, 38], base class [7, 31], entity type [1], entity class

[3], base role [33], or core object [4].

constraints. It is worth to notice that merely using these lightweight2 extension

mechanisms ensures that the pattern can be easily integrated in UML conceptual

schemas.

We represent the RoleOf generic relationship type by means of the «RoleOf»

stereotype. The base class of the stereotype is the Association metaclass, which

represents association relationships among classes. Each specific relationship type is

labelled with this stereotype. The stereotype also permits the definition of the

properties3 the role adopts from the natural entity type. They are represented with a

multivalued attribute, called adoptedProperties. Figure 6 shows the definition of the

«RoleOf» stereotype.

Fig. 6. Definition of the RoleOf stereotype

As an example, figure 7 shows the running example introduced in section 2.2 using

this pattern. Note that all roles are represented as entity types with a «RoleOf»

relationship type relating the role with is entity type. For instance, the role Student is

represented as an entity type related to Person through a «RoleOf» relationship type.

In the relationship type it is also indicated that student adopts the properties: name,

address, phone# and country from Person (its natural entity type). Employee

participates in three «RoleOf» relationship types, one as a role of Person and the other

ones as a natural entity type playing the role of ProjectManager and

DepartmentManager.

The stereotyped operations, also shown in the figure, will be further described in

the following section.

To complete the definition of the static aspects of roles we must attach some

constraints to the «RoleOf» stereotype in order to control the correctness of its use.

There already exist proposals to automatically ensure the consistency of a conceptual

schema according to the conceptual modelling language metamodel extended with

stereotypes [41].

The constraints are the following:

• A stereotyped «RoleOf» association is a binary association with multiplicity

‘1’ and settability readOnly in an association end.

• Each value of the adoptedProperty tag must coincide with the name of a

property of the natural entity type.

• A role entity type can only be related throughout a RoleOf relationship to at

most a natural entity type.

• No cycles of roles are permitted. A role entity type may not be related

throughout a direct or indirect RoleOf relationship to itself.

2 In contrast with heavyweight mechanisms that involve the creation of new metaentity types.
3 A property in UML 2.0 [29] represents both the attributes and associations of an entity type.

«stereotype»

RoleOf

adoptedProperties[*]: String

«Metaclass»

Association

«stereotype»

Fig. 7. Example of RoleOf relationships in the UML

Properties adopted by the role from its natural entity type may be considered as

implicit properties of the role entity type. Nevertheless, in order to facilitate the use of

these adopted properties (for instance, when writing OCL expressions) we may need

to include them explicitly in the role entity type. In this case, we add an extra property

in the role entity type for each adopted property. These extra properties are labeled

with the «adopted» stereotype to distinguish them from the own properties of the role

entity type. In addition, they are derived. Their derivation rule always follows the

general form:

context RoleEntityType::adoptedPropertyX: Type
derive: naturalEntityType.propertyX

Note that, to facilitate the work of designers, these added properties can be

automatically generated.

Fig. 8. Example of the Student role entity type

Person

phone#: PhoneNumber

birthDate: Date
country: String

{adoptedProperties =
 name, age}

«RoleOf»

{adoptedProperties = name,
 address, phone#, country}

{adoptedProperties = name,
 employee#, expirationDate}

1 {readOnly}

*

1

{readOnly}
*

1{readOnly}

0..2

 Employee

employee#: Integer
category: String
phone#: PhoneNumber
state: String

expirationDate: Date

«IniIC» mayBeHired()

«DelIC» mayBeFired()

Address

street: String

number: Integer

ZIPcode: String

1*

Task

taskName: String

startDate: Date

dueDate: Date

cost: Integer

*1

ProjectManager

projectName: String

startDate: Date

«IniIC»

notTooManyPendingTasks()

Male Female

«RoleOf»

name: String

/age: Integer

«RoleOf»
«RoleOf»

1{readOnly}

DepartmentManager

Student

student#: Integer

university : String

DomesticStudent ForeignStudent

degree: String

*

Figure 8 extends a subset of the previous example illustrating the Student role

entity type including its adopted properties.

Likewise, when the CS includes operations role entity types can also adopt said

operations. For instance, if we express the age derived property of the Person entity

type as a query operation (Figure 9) we may be interested in defining that the age

operation can also be executed over employees (indicated in the adoptedOperation

tag). Operations are adopted following a delegation mechanism, i.e., the body of the

adopted operation delegates the execution to the original operation.

Fig. 9. Adoption of the age operation

For instance, the adopted age operation in the Employee role entity type would be

defined as:

context Employee::Age():Natural
body: person.age()

3.1.2 Role Acquisition and Relinquishment

So far, we have introduced a representation of the static part of the Roles as Entity

Types Pattern. Nevertheless, this is not enough since role instances may be added or

removed dynamically from an entity during its lifecycle and this addition or removal

may be subjected to user-defined restrictions.

Since roles are represented as entity types we may define constraints on roles in the

same way we define constraints on entity types. Some of the constraints are inherent

to our role representation (for example, that a person must play the role of Employee

to play the role of ProjectManager, is already enforced by the schema). Other

restrictions may be expressed by means of the predefined constraints of the UML. For

example, to restrict that an Employee cannot play more than twice the

ProjectManager role simultaneously, it is enough to define a cardinality constraint in

the relationship type. The definition of the rest of constraints requires the use of a

general-purpose language, commonly OCL in the case of UML. For instance, we

could specify OCL constraints to control that:

• A Person can only play the role of Employee if he/she is between 18 and 65

years old:

 context Employee
 inv: self.age>=18 and self.age<=65

• Any task of a ProjectManager must finish before his contract expires

context Task
inv:self.dueDate<self.projectManager.expirationDate

These OCL constraints are static, and thus, the role instances must satisfy them at

any time. However, many of the restrictions that may be involved in the evolution of

roles only apply at particular times, particularly they only need to be satisfied when

the role is acquired or when it is relinquished. To specify such constraints we use the

notion of creation-time constraints defined by Olivé in [26] and, in a similar way, we

define the deletion-time constraints.

Creation-time constraints must hold when the instances of some entity type are

created (in our case when the role is created). Deletion-time constraints must hold

when the instances of some entity type are deleted (in our case when the role is

deleted). These constraints are represented as operations, also called constraint

operations, attached to the entity types and identified by a special stereotype. The

creation-time constraint operations are marked with the stereotype «IniIC». We define

the stereotype «DelIC» for the deletion-time constraint operations.

These operations return a boolean that must be true to indicate that the constraint is

satisfied. If the operation returns false (i.e., the constraint is not satisfied) then the

creation or deletion event of the role is not accomplished. When appropriate, the

operations are automatically executed by the information system.

As an example, the constraints in Figure 7 can be defined as follows:

• A person cannot become an employee if he/she is studying two university

programs simultaneously. Note that this does not imply that a person that is

already an employee may not apply for two degrees.

 context Employee :: mayBeHired () : Boolean
 body: self.person.student->size()<2

• An employee may not be fired if he or she is in maternity leave.

context Employee :: mayBeFired () : Boolean
 body: self.workingStatus<>’MaternityLeave’

• An employee may not become a new project manager if he/she still holds

more than ten pending tasks.

context ProjectManager::notTooManyPendingTasks():

 Boolean
body : self.employee.projectManager.tasks ->

 select(dueDate>Today)->size()<=10

3.2 Consequences

The pattern achieves most of the role features outlined before:

1. Ownership. As roles are represented as entity types, they may have their own

properties.

2. Dependency. The cardinality ‘1’ with the tag {readOnly} ensures that all role

instances depend on a unique instance of the natural entity type.

3. Diversity. Entity types may have many RoleOf relationships.

4. Multiplicity. This is obtained by defining a cardinality greater than one in the

RoleOf relationship.

5. Dinamicity. Entities are related to their roles through an association. Thus, an

entity may acquire or retract instances of a role at any time.

6. Control. The sequence in which roles may be acquired and relinquished can be

subjected to restrictions, including creation-time and deletion-time constraints.

7. Roles can play roles. Roles are represented by ordinary entity types. So, they can

be participants of a RoleOf relationship.

8. Role identity. As roles are represented as entity types, their instances have their

own identifier.

9. Adoption. The adoptedProperty tag of the RoleOf relationship allows the

definition of the adopted properties.

10. Relationship independency. As entity types, roles are independent from

relationship types.

12. Different roles may share structure and behavior. As entity types we can define

generalization relationships between roles.

 As a trade-off, our pattern does not directly supports the remaining feature (11.

Common role for unrelated types). However it can be easily represented. For instance,

if we need ProjectManager to be the role of both Employee and

ExternalServiceProvider, we could define a common supertype for Employee

(understood as InternalServiceProvider) and ExternalServiceProvider, called

ServiceProvider, which plays the role of ProjectManager.

An alternative is to define two different RoleOf relationship types, one between

ProjectManager and Employee and another one between ProjectManager and

ExternalServiceProvider. Both relationship types are specified with a xor constraint to

prevent a project manager being an employee and an external service provider at the

same time. ServiceProvider is not needed. On the other hand, the management of the

adopted properties is more complex.

Figure 10 shows the example using both alternatives.

Fig. 10. Representing common role for unrelated types feature

3.3 Design and Implementation

There are some design patterns useful for designing and implementing roles in object

oriented languages [13]. However, most of them are unable to deal with our proposed

role semantics completely. A well-known pattern close to our role defined semantics

is the Role Object Pattern [4]. This pattern is especially well suited for role

implementation when roles are deemed as a specialization (or a kind of specialization)

of its entity type (see Pelechano et al. in [33] as an example).

Nevertheless, this pattern is not entirely appropriate for designing our conceptual

modelling pattern. We encounter two main problems in the Role Object Pattern. First,

it uses a common superclass for all the roles of the entity type. In our approach, roles

are independent entity types with not necessarily any common properties that justify

this superclass. Second, all the roles are forced to have the same inherited properties;

it is not possible to define different adopted properties for each role.

This is the reason why we advocate here for an adapted version of this pattern that

takes into account our complete role semantics, including the adoption mechanism

and the creation-time and deletion-time constraints.

Given a natural entity type and the set of its roles, we create a class for the natural

entity type and a class for each role. We create a different relationship between the

natural entity type and each of its roles. This relationship will be used to navigate

from the natural entity type to its roles and vice versa. We add to the natural entity

type two new operations addRole and deleteRole in charge of adding (deleting) roles

to the natural entity after checking the creation-time (deletion-time) constraints. We

could also add other useful operations when dealing with roles, such as hasRole (to

check whether an entity plays a role) or getRole (to obtain a role played by the entity).

The problem of the design of the adopted properties may be regarded as the same

problem as designing derived information. In general, from a design and/or

implementation point of view, there are two different approaches to deal with derived

information. The attributes may be computed if they are calculated by means of an

operation or may be materialized if they are explicitly stored in the class. In this case,

for each adopted property we add an extra operation to the role class that returns the

value of the property of the natural entity type. The operation accesses the property

of the natural entity type navigating through the relationship.

Figure 11 summarizes our proposal.

Fig. 11. Summarized class diagram of the design

In figure 12, we apply the proposed design pattern to a part of the conceptual

schema of figure 7. Note that Employee is both a role for the Person entity type and a

natural entity type for the ProjectManager role, and thus, it presents both a reference

to Person (as a role entity type) and the operations addRole and deleteRole (as a

natural entity type). Additionally, Employee includes also the name and age

operations to get this information from Person.

Fig. 12. Example of an application of the design

This structure can be directly implemented in any common object-oriented

language. An example of the implementation in the Java Language can be found in

Appendix A.

3.4 Known Uses

This pattern should be used to represent the full expressiveness of roles in conceptual

schemas.

In contrast to other approaches where the complexity of the CS is really increased

when using roles due to the special construct needed to represent them, our pattern

allows a plain integration of roles in CS. Therefore, there are no trade-offs that

prevent from applying the pattern whenever it may be useful.

4 Related Work

The role concept has been widely addressed in the literature. Although all approaches

present their own characteristics, they can be grouped in four basic approaches to

represent roles: 1 - roles as the name of a participant in a relationship type [6, 10, 19,

 29]; 2 - roles as a sort of subtypes or supertypes of the natural entity types [1, 31, 37];

3 - roles as interfaces [21, 23, 40]; and 4 - roles as a distinct element from an entity

type but coupled to it [3, 7, 8, 11, 17, 20, 22, 35, 38, 42 , 44, 45].

The first three families are similar to our Roles as Participant Names, Roles as

Subtypes and Roles as Interfaces patterns, respectively. Therefore, the major

advantages and drawbacks of these three groups are mainly the same commented for

the corresponding patterns in Section 2.

In this section we focus on the comparison between our Roles as Entity types

pattern and the other approaches also considering a role as a distinct element from an

entity type but coupled to it.

Table 1 compares the most representative approaches in terms of the role features

they can handle. Most of these approaches use different semantics from the ones

presented in this paper or are unable to handle the full role semantics.

All approaches shown in the table fulfil the ownership, dependency, diversity and

dynamicity features.

Table 1. Comparison of role representation approaches

However, few approaches consider roles with their other identity (thus, solving the

counting problem). Some of them propose alternative techniques to distinguish

between different role instances of the same natural instance. For instance, Gottlob et

al [17] mixes the identifier of the natural instance with the value of a special attribute,

called qualifier and Wong et al. [45] uses the state of the role instance.

Even more critical is the support of the control and adoption features.

 Approaches

Features B
ac
h
m
an
 a
n
d

D
ay
a
[3
]

C
h
u
 a
n
d
 Z
h
an
g

[7
]

D
ah
ch
o
u
r,

P
ri
o
tt
e
an
d

Z
im
án
y
i
[8
]

F
an
,
B
ar
k
er
,

P
o
rt
er
 a
n
d

C
la
rk
 [
1
1
]

G
o
tt
lo
b
,
S
ch
re
fl

an
d
 R
ö
ck
 [
1
7
]

Jo
d
lo
w
sk
i,

H
ab
el
a,

P
o
d
zi
en
 a
n
d

S
u
b
ie
ta
 [
2
0
]

K
ri
st
en
se
n
 [
2
2
]

P
er
n
ic
i
[3
5
]

S
te
im
an
n

(D
K
E
)
[3
8
]

T
h
al
h
ei
m
 [
4
2
]

W
ie
ri
n
g
a,
 d
e

Jo
n
g
e
an
d

S
p
ru
it
 [
4
4
]

W
o
n
g
,
C
h
au

an
d
 L
o
ch
o
v
sk
y

[4
5
]

Ownership � � � � � � � � � � � �

Dependency � � � � � � � � � � � �

Diversity � � � � � � � � � � � �

Multiplicity � � � � � � � � � � � �

Dynamicity � � � � � � � � � � � �

Control � � � � � � � ∼∼∼∼ � � ∼∼∼∼ �

Roles can play

roles
� � � � � � � � � � � �

Identity � � � � ∼∼∼∼ � � � � � � ∼∼∼∼

Adoption � � � � � � � � � � � �

Relantionship

Independency � � � � � � � � � � � �

Common role

for unrelated

types
� � � � � � � � � � � �

Sharing

structure and

behavior

� � � � � � � � � � � �

Most of them do not handle the control feature. Some allow the definition of static

constraints. Additionally, Pernici [35] and Wieringa [44] take into account the

sequence in which roles are acquired and relinquinshed, but do not consider the

definition of additional restrictions over the sequence (as our creation-time and

deletion-time constraints).

Adoption is neither supported. Most approaches define that roles can (or cannot)

access all the properties of the natural entity type but they do not provide a

mechanism to indicate which properties may be adopted.

Our alternative suggesting roles as separated entity types fulfils the role semantics.

We believe one of the main advantages of our Roles as Entity Types pattern over

previous approaches is that we handle the complexity of role semantics in a very

simple manner since we represent roles and their evolution with already existing

elements (entity types and constraints) without adding completely new language

constructs (as done by several of the previous approaches). Therefore, the designer

can easily use the patterns to specify roles in conceptual schemas. In addition, our

pattern describes a representation of roles in the standard UML, and thus, the pattern

can be directly incorporated into current UML CASE tools.

We would also like to remark that our pattern is complete and feasible in the sense

that it includes the design and the implementation of the pattern, in contrast to most of

previous approaches that do not state how this could be achieved.

5 Conclusions

This paper identifies the most important features of roles and presents a set of

conceptual modelling patterns to facilitate the representation of roles in conceptual

schemas. Each pattern is characterized in terms of the features it covers. We also

review their design and implementation.

Roles as Entity Types pattern is of special importance. We propose using this

pattern when we need to represent the full expressivity of roles in CSs. We have

adapted the pattern to the UML conceptual schemas. To our knowledge, ours is the

first UML standard extension that defines roles in conceptual schemas specified with

this language. Because of its simplicity, the pattern can be easily implemented in any

CASE tool in order to allow designers the use of the role concept.

The pattern includes the static aspects of roles as well as their evolution. We define

roles as entity types (role entity types) related to natural entity types by means of a

generic RoleOf relationship type that includes the adoption of properties from the

natural entity types by the role entity types. We have extended UML by means of the

«RoleOf» stereotype to be able to represent such kind of relationships. To specify the

role evolution, we use two special kinds of constraints: creation-time constraints and

deletion-time constraints.

It would be interesting to semi-automate the selection and application of these

patterns in CS. Given the set of role features the designer needs to take into account,

the CS and a set of roles, we could integrate the roles in the CS by using the simplest

pattern covering the required role features. Additionally, given the CS with the roles

included, we would like to automate its design and implementation by means of an

application that, given a conceptual schema (for instance, represented in XMI [30]),

generates automatically the corresponding classes in the target object oriented

language. These are directions in which we plan to continue our work.

Acknowledgements

We would like to thank Jordi Conesa, Dolors Costal, Xavier de Palol, Cristina

Gómez, Antoni Olivé, Anna Queralt, Maria Ribera Sancho, Ernest Teniente for their

many useful comments in the preparation of this paper. This work has been partially

supported by the Ministerio de Ciencia y Tecnologia and FEDER under project

TIC2002-00744.

References

1. A. Albano, R. Bergamini, G. Ghelli, R. Orsini, “An Object Data Model with Roles”,

Proceedings of the 19th Very Large Data Bases (VLDB) Conference. Morgan

Kaufmann, 1993, pp. 39-51.

2. F. Baader, W. Nutt, “Basic Description Logics”, In: F. Baader, D. Calvanese, D.

McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, The Description Logic

Handbook: Theory, Implementation, and Applications. CambridgeUniversity Press,

2003

3. C.W. Bachman, M. Daya. “The Role Concept in Data Models”, Proceedings of the

3rd Very Large Data Bases (VLDB) Conference, 1977, pp. 464-476.

4. D. Bäumer, D. Riehle, W. Wiberski, M. Wulf. “The Role Object Pattern”,

Proceedings of Pattern Languages of Programming (PLoP) Conference 1997.

Technical Report WUCS-97-34. Washington University Dept.

5. J. Cabot, R. Raventos, “Roles as Entity Types: A Conceptual Modelling Pattern”,

Proceedings of the 23rd International Conferece on Conceptual Modeling (ER’04),

LNCS 3288, Springer, pp. 69-82

6. P.P. Chen. “The entity-relationship model: Towards a unified view of data, ACM

Transactions on DatabaseSystems 1 (1), 1976, pp. 9-36.

7. W.W. Chu, G. Zhang, “Associations and Roles in Object-oriented Modeling”,

Proceedings of the 16th International Conferece on Conceptual Modeling (ER'97),

LNCS 1331, Springer, pp. 257-270.

8. M. Dahchour, A. Pirotte, E. Zimányi, “A role model and its metaclass

implementation”, Information Systems, 29 (2004) pp. 235-270.

9. R.Depke, G.Engels, J.M. Küster, “On the Integration of Roles in the UML”,

Technical Report No. 214, University of Paderborn, August 2000.

10. E. Falkenberg, “Concepts for modelling information”, Proceedings of the IFIP

Conference on Modelling in Data Base Management Systems, North-Holland,

Amsterdam; 1976, pp. 95-109.

11. J. Fan, K. Barker, B.W. Porter, P. Clark, “Representing roles and purpose”,

Proceedings of the First International Conference on Knowledge Capture (K-CAP

2001), pp. 38-43.

12. E. B. Fernandez; X. Yuan. “Semantic Analisis Patterns”, Proceedings of the 19th Int.

Conference on Conceptual Modeling (ER’00), LNCS 1920, Springer 2000, pp. 183-

195.

13. M. Fowler, “Dealing with Roles”, Pattern Languages of Programming (PLoP '97)

and EuroPLoP '97 Conference, Technical Report #wucs-97-34, Dept. of Computer

Science, Washington University, 1997.

14. M. Fowler, “Analysis Patterns: Reusable Object Models”, Addison-Wesley, 1997.

15. E.Gamma, R.Helm, R.Johnson, J. Vlissides, “Design Patterns – Elements of

Reusable Object-Oriented Software”, Addison-Wesley, 1994.

16. A. Geyer-Schulz, M. Hahsler, “Software Reuse with Analysis Patterns”, Proceedings

of the 8th Americas Conference on Information Systems (AMCIS 2002), August

2002, pp. 1156-1165.

17. G. Gottlob, M. Schrefl, B. Röck, “Extending Object-oriented Systems with Roles”,

ACM Transactions on Information Systems 14 (3), 1996, pp. 268-296.

18. N. Guarino, “Concepts, Attributes and Arbitrary Relations”, Data & Knowledge

Engineering 8, 1992, pp. 249-261.

19. T. Halpin, “Conceptual Schema & Relational Database Design”, Second Edition,

Prentice-Hall of Australia Pty Ltd: Sydnes, 1995

20. A. Jodłowski, P. Habela, J. Płodzien, C. Subieta, “Extending OO Metamodels

towards Dynamic Object Roles”, R. Meersman et al. (Eds.): On The Move to

Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE - OTM

Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, LNCS

2888 Springer 2003, pp. 1032–1047.

21. E.A. Kendall, Role Modeling for Agent System Analysis, Design, and

Implementation, IEEE Concurrency, vol. 8 no. 2, 2000, pp. 34-41.

22. B.B. Kristensen, Object Oriented Modeling with Roles, Proceedings of the 2nd

International Conference on Object-Oriented Information Systems (OOIS’95), 1995

23. D. Lea, J. Marlowe, “Interface-Based Protocol Specification of Open Systems using

PSL”, 9th European Conference ECOOP'95 - Object-Oriented Programming, LNCS

952 Springer 1995, pp. 374-398.

24. F.G. Mossé, “Modeling Roles - A Practical Series of Analysis Patterns”, Journal of

Object Technology (JOT) , vol.1 no.4, 2002, pp.27-37.

25. G.M. Nijssen and T.A. Halpin. “Conceptual Schema and Relational Database

Design: a fact oriented approach”. Prentice-Hall, Sydney, Australia, 1989.

26. A. Olivé, “Integrity Constraints Definition in Object–Oriented Conceptual Modeling

Languages”, Proceedings of the 22th International Conference on Conceptual

Modeling (ER’03), LNCS 2813, 2003, pp.349-362.

27. A. Olivé, “Representation of Generic Relationship Types in Conceptual Modeling·,

Proceedings of the 14th International Conference on Advanced Information Systems

Engineering (CAiSE’02), LNCS 2348, pp. 675-691

28. OMG, “UML 2.0 OCL Specification”, Adopted Specification (ptc/03-10-14), 2003

29. OMG, “UML 2.0 Superstructure Specification”, Adopted Specification (ptc/03-08-

02), 2003

30. OMG, “OMG XML Metadata Interchange Specification”, v.1.2, January 2002.

31. M.P. Papazoglou, B.J. Krämer, “A database model for object dynamics”, The Very

Large Databases (VLDB) Journal (6), January 1997, pp. 73-96.

32. M. P. Papazoglou, “Modeling Object Dynamics”, in. M.P. Papazoglou, S.

Spaccapietra, Z.Tari (Eds.), Advances in Object-Oriented Data Modeling. MIT Press

2000, pp. 195-217.

33. V. Pelechano, M. Albert, E. Campos, O. Pastor, “Automating the Code Generation of

Role Classes in OO Conceptual Schemas”, Proceedings of the 4st International

Conference on Enterprise Information Systems (ICEIS 2002), 2002, pp. 656-686.

34. V. Pelechano, O. Pastor, E. Insfrán, “Automated code generation of dynamic

specializations: an approach based on design patterns and formal techniques”, Data &

Knowledge Engineering 40, 2002, pp. 315-353

35. B. Pernici, “Objects with Roles”, Proceedings of the Conference on Office

Information Systems, SIGOIS Bulletin, vol. 11, no. 2/3, ACM Press, New York,

1990, pp. 205-215.

36. T. Reenskaug, P.Wold, O.A. Lehne, Working with Objects: The OOram Software

Engineering Method, Prentice-Hall, Englewood Cliffs, NJ, 1995.

37. J. Sowa, “Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley Publishing Company, New York, 1984.

38. F. Steimann, “On the Representation of Roles in Object-oriented and Conceptual

Modelling”, Data & Knowledge Engineering 35, 2000, pp. 83-106.

39. F. Steimann, “A Radical Revision of UML’s Role Concept”, UML 2000: The

Unified Modelling Language, LNCS 1939, Springer, pp. 194-209.

40. F. Steimann, “Role=Interface”, Journal of Object-Oriented Programming,

October/November 2001, Vol. 14, Num. 14, pp. 23-32.

41. J.G. Süß, A. Leicher, F. Chabarek, “Software Model Engineering and Reuse with the

Evolution and Validation Environment”, N.Guelfi, E. Astesiano, G. Reggio (Eds.):

Scientific Engineering of Distributed Java Applications, Third International

Workshop, FIDJI 2003, November 27-28, 2003, Revised Papers, LNCS 2952,

Springer 2004, pp. 196-105.

42. B. Thalheim, “Entity-Relationship Modeling: Foundations of Database Technology”,

Springer-Verlag, 2000.

43. E. Teniente, “Analysis Pattern Definition in the UML”, Proceedings Information

Resources Management Association (IRMA) 2003, Idea Group Pub., pp. 774–777.

44. R.Wieringa, W. de Jorge, P.Spruit, “Using Dynamic Classes and Role Classes to

Model Object Migration”, Theory and Practice of Object Systems, 1(1), 1995,pp. 61-

83.

45. R. K. Wong, H. L. Chau, F. H. Lochovsky, “A Data Model and Semantics of Objects

with Dynamic Roles”, 13th International Conference on Data Engineering, IEEE

Computer Society, pp. 402-411.

Appendix A

public class Person
{
 public String name;
 public PhoneNumber phone;
 public Date birthDate;
 public Address address;

 Vector rols=new Vector() 4;

 public double age() { //Age calculation}

4 Note that Person has a single multivalued attribute to store all the roles of that person,

instead of having a different multivalued attribute for each of its roles (an attribute for the

student instances, another for the employee instances…). We can use a single attribute since all

the classes in Java are implicit subclasses of the class Object. When dealing with the attribute

we make the appropriate castings to the specific role class.

 public void addRole(Object o) //Adding a new role
 {
 if (o instanceof Employee)
 { //Checking mayBeHired constraint
 int i=0; int numSt=0; Object o2;
 while (i<rols.size() && numSt<2)
 {
 o2=rols.get(i);
 if(o2 instanceof Student) numSt++;
 i++;
 }
 if(numSt<2) {rols.add(o);
 ((Employee)o).naturalEntityType=this;}
 else System.out.println("Error");
 }
 . . .
 }

 public void deleteRole(Object o)
 {
 if(o instanceof Employee)//Checking mayBeFired
 constraint
 {
 if(!((Employee) o).
 workingStatus.equals("MaternityLeave"))
 { rols.removeElement(o);
 ((Employee) o).naturalEntityType=null;}
 }
 // ...
 }
}

public class Employee
{
 public int emp;
 public String category;
 public Object naturalEntityType;

. . .
 //Adopted properties
 public String name()
 { return ((Person) naturalEntityType).name; }
 public double age()
 { return ((Person) naturalEntityType).age; }

 }

