
How are UML Class Diagrams built in practice?
A usability study of two UML tools: MagicDraw and

Papyrus

Elena Planasa,∗, Jordi Cabotb,a

aUniversitat Oberta de Catalunya (UOC), Barcelona Spain
bICREA, Barcelona, Spain

Abstract

Software modeling is a key activity in software development, especially when

following any kind of Model Driven Software Engineering (MDSE) process. In

this context, standard modeling languages, like the Unified Modeling Language

(UML), and tools for supporting the modeling activities become essential.

The aim of this study is to analyze how modelers build UML models and

how good modeling tools are in supporting this task. Our goal is to draw

some useful lessons that help to improve the (UML) modeling process both by

recommending changes on the tools themselves and on how UML is taught so

that theory and practice of UML modeling are better aligned.

Our study employs two research approaches. The main one is an empirical

experiment (which analyzes screen recordings registered by undergraduate stu-

dents during the construction of a UML class diagram). An analytical analysis

complements the previous experiment. The study focuses on the most frequent

type of UML diagram, the class diagram, and on two tools widely used by the

modeling community: MagicDraw and Papyrus.

Keywords: UML, Class Diagram, Papyrus, MagicDraw, Controlled

Experiment, GOMS

∗Corresponding author at: Rambla del Poblenou 156, 08018 Barcelona, Spain. Tel.: +34
93 326 35 49; fax: +34 93 326 88 22.

Email addresses: eplanash@uoc.edu (Elena Planas), jordi.cabot@icrea.cat (Jordi
Cabot)

Preprint submitted to Journal of Computer Standards & Interfaces July 22, 2019

1. Introduction

Software modeling is a key activity in Model Driven Software Engineering

(MDSE) [1] to increase efficiency and effectiveness in software development, as

demonstrated by various quantitative and qualitative studies [2]. In this context,

standard languages and tools for supporting modeling become essential. On the

language side, the Unified Modeling Language (UML)1 is the de facto standard

for modeling software systems. UML [3] provides several diagrams for modeling

the structure of a software system, its architecture and its behavior. A large

number of commercial and open-source tools are available to support UML

modeling such as MagicDraw, Papyrus, ArgoUML, Modelio, StarUML, among

many others2. While the tool features differ, they all offer a graphical editor to

facilitate the definition of UML models.

A large number of studies have been conducted in the literature to analyze

how UML is used and how usable are UML modeling tools [4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17]. Our study adds a new perspective to these previous

works by analyzing screen recordings of modelers3 actually trying to build UML

models. We focus on the most frequently used UML diagram, the class diagram

[18], and on two tools widely used by the community: MagicDraw4 (version 18.0

Personal Edition, from 2017) and Papyrus5 (Neon 2.0.X version, from 2017).

We have chosen these tools because they are two of the most popular modeling

tools and they cover a representative group of modelers. MagicDraw is one of

the major commercial modeling tools, recently acquired by Dassault Systems

to strengthen its set of System Engineering tools while Papyrus is the reference

open source modeling tool in the Eclipse community.

In contrast, many of the previous studies relied on surveys to get the raw

1UML specification: https://www.omg.org/spec/UML/
2See a curated list of UML tools here: https://modeling-languages.com/uml-tools/
3In this paper we use the word modeler to refer to all the users that use modeling tools,

including students and professional developers.
4www.nomagic.com/products/magicdraw
5www.eclipse.org/papyrus

2

https://modeling-languages.com/uml-tools/

data that limits the insights that can be derived for a usability study. We believe

our real-time observations of the study participants during the modeling process

itself bring new dimensions to be exploited. In particular, we analyze several

perspectives: the strategy followed to build the models, the effort required to

build them and the obstacles arisen throughout all the modeling process. Note

that our focus is to assess the usability of UML modeling tools and not to

study the variations in the quality and creativity of the models defined by each

participant. To isolate as much as possible the study of this usability aspect

from other dimensions, participants were asked to draw with the tool a UML

model already given in advance. Therefore, in this paper, we use the term

“modeling” strictly in the sense of recording a UML class diagram in a given

modeling tool. This approach allows us to compare the results of our controlled

experiment.

The empirical data reported in this paper is supported by more than 12 hours

of screen recordings (interaction with the modeling tools including verbal audio

comments) registered by undergraduate students during the construction of a

UML class diagram. To complement our controlled experiment, we conducted

a GOMS (Goals, Operators, Methods and Selection Rules) study in order to

assess the usability of the studied tools from an analytical view.

According to the objectives template of the Goal/Question/Metric method

(GQM) [19], the general objective of our study is: Analyze how students model

(what strategy they follow, what effort is needed and what obstacles they en-

counter) and how modeling tools support this task in order to to improve the

performance of UML modeling tools as well as the way of how UML modeling

is taught with respect to the construction of UML class diagrams from the

perspective of the modeler.

The rest of the paper is organized as follows: Section 2 discusses the state

of the art; Sections 3 and 4 describe in more detail the perspectives of our

study and its goals; Sections 5 and 6 describe our empirical and analytical

studies respectively; Section 7 discuses the results of both experiments and

proposes several recommendations; and finally Section 8 draws the conclusions

3

and outlines the further work.

2. State of the Art

In the last years, an increasing amount of research in software engineering

has been devoted to analyze and experiment how software engineering methods

and tools are being used by students and practitioners. In this section we review

the most relevant related works covering software modeling aspects according

to several perspectives.

The related works may be classified into two categories based on whether

their focus is on the usability of the language or on the tools supporting it. Many

works belong to the former [7, 8, 9, 13, 14, 15, 17, 20, 21]. These works aim

to examine how UML is adopted, which are the most/less used UML diagrams,

what are the main difficulties when modeling, etc. Other works look more closely

to the usability of UML modeling tools themselves [4, 5, 6, 10, 11, 12, 16] mainly

to compare the different tools among them. These are the works closer to ours.

Table 1 summarizes the studies of this second category according to its goal,

the tool/s under study, the employed research approach, the size of the sample

(if applicable) and the data analyzed during the study. The last row shows our

own study for comparison purposes.

Table 1: Related works focused on analyze the usability of UML modeling tools.

Ref

(year)

Goal Tool/s Research

Approach

Sample Data ana-

lyzed

[4]

(2017)

Analyze the use of

tools in modeling

teaching

n/a Empirical:

Web-based

survey

150 profes-

sors who

taught

modeling in

30 countries

Data col-

lected from

the survey

[5]

(2007)

Compare the usability

of two UML tools with

respect to their suit-

ability for explorative

UML sketching

Rational

Rose and

UMLet

Empirical:

Case Study

n/a Usability

data (mouse

clicks) col-

lected from

16 testing

scenarios

Continued on next page

4

Table 1 – continued from previous page

Ref Goal Tool/s Research

Approach

Sample Data ana-

lyzed

[6]

(2005)

Test empirically per-

formance of several

UML modeling tools

Visual

Paradigm

for UML,

Enterprise

Architect,

Jude Com-

munity,

Meta Mill,

Poseidon for

UML and

ArgoUML

Empirical:

Controlled

experi-

ment +

Analytical:

GOMS

58 third-

year stu-

dents of

Computer

Science

course at

Gdansk

University

of Technol-

ogy

Data man-

ually col-

lected by

the par-

ticipants

during the

realization

of the ex-

periment’s

tasks

[10]

(2009)

Propose a feature-

based evaluation

approach to deter-

mine the specification

compliance of UML

tools

68+ model-

ing tools

Empirical:

Case study

(tool evalu-

ation)

n/a Usability

data col-

lected

during the

case study

[11]

(2011)

Compare several mod-

eling tools, showing

advantages and disad-

vantages for each one

UMLet,

Visual

Paradigm,

Rational

Rose, Mag-

icDraw,

ArgoUML,

Enterprise

Architect

Empirical:

Case study

n/a Usability

data col-

lected

during the

case study

[12]

(2009)

Define criteria to se-

lect the best tool for

building software sys-

tems

Rational

Rose, Ar-

goUML,

MagicDraw,

Enterprise

Architect

Empirical:

Case study

n/a Usability

data col-

lected

during the

case study

[16]

(2015)

Compare the produc-

tivity of the soft-

ware engineers while

modeling with several

tools

IBM Ratio-

nal Software

Architect

(RSA),

Magic-

Draw and

Papyrus

Empirical:

Controlled

experiment

30 students

at National

University

of Com-

puter and

Emerging

Sciences

(Islamabad,

Pakistan)

Data col-

lected from

a survey

conducted

as part of

the experi-

ment

Continued on next page

5

Table 1 – continued from previous page

Ref Goal Tool/s Research

Approach

Sample Data ana-

lyzed

Our

work

Analyze how two

UML modeling tools

(MagicDraw and

Papyrus) are used

MagicDraw

and Pa-

pyrus

Empirical:

Controlled

experi-

ment +

Analytical:

GOMS

45 stu-

dents at

Universitat

Oberta de

Catalunya

(Barcelona,

Spain)

Screen-

cast videos

captured

during the

tools usage

From Table 1 we can observe that most works employ empirical research

approaches, relying on case studies [5, 10, 11, 12], controlled experiments [6, 16]

and web-based surveys [4] to conduct the study. To a lesser extent, some works

employ also analytical research approaches [6].

To the best of our knowledge, our study is the first one in this context

analyzing video recordings as part of an empirical study.

Finally, although they are out of the scope of this work, we would like to

briefly mention two works which have inspired our work. Aiko et al. [22]

and Murphy et al. [23] analyze how Java programming tools (in particular,

the IDE Eclipse) are used by practitioners through analyzing video recordings

and interaction traces. As our work, these procedures allow to extract highly

relevant information, through the observation in real time of all intermediate

states during the programming process, instead of analyzing only the final state

once the program has been constructed.

3. Perspectives of our study

As introduced before, the overall goal of this study is to analyze how UML

class diagrams are built using two modeling tools (MagicDraw and Papyrus)

and how well modeling tools support this task. To this end, we pay attention to

three perspectives: the modeling strategy (see Section 3.1), the modeling effort

(see Section 3.2), and the modeling obstacles (see Section 3.3).

This section introduces and motivates each one of these perspectives.

6

3.1. Modeling Strategy

We define the modeling strategy as the approach employed to model the class

diagram, i.e. the sequence of actions that are executed by the modeler to draw

it. According to the focus and the granularity of the analysis, the modeling

strategy can be decomposed into two sub-perspectives: (1) the global modeling

strategy, i.e. the general approach followed to create the whole class diagram;

and (2) the specific modeling strategy, i.e. the particular approach followed to

create specific parts of the class diagram such as the attributes and associations.

Regarding the global modeling strategy, we define in this paper two global

modeling strategies inspired in two graph theory algorithms [24]:

• Breadth Modeling (see Figure 1 - left), inspired in the Breadth First Search

graph algorithm, BFS. We consider that a class diagram is modeled follow-

ing a breadth strategy when their elements are created in an orderly way

by its typology, being the most usual order: first create the classes, then

the attributes and, finally, the associations and the rest of the elements

(associative classes, data types, etc).

• Depth Modeling (see Figure 1 - right), inspired in the Depth First Search

graph algorithm, DFS. We consider that a class diagram is modeled fol-

lowing a depth strategy when, the designer starts from an element (usu-

ally a class) and expands as far as possible every related element before

backtracking, being the most usual order: on the basis of a class, first

incorporate their attributes, then its relations with other classes, and so

on.

3.2. Modeling Effort

We define the modeling effort as the “physical or mental activity needed to

achieve something”6, in this case, modeling a class diagram. In our study, the

modeling effort is evaluated in terms of time and number of clicks needed to

6https://dictionary.cambridge.org/dictionary/english/effort

7

 Breadth Modeling

A	
a	

B	
b	

A	
a	

B	
b	

A	 B	

A	
a	

B	
b	

A	
a	

B	

A	
a	

Step 1:

Step 2:

Step 3:

Step 1:

Step 2:

Step 3:

Depth Modeling strategy

Figure 1: Breadth Modeling (left) and Depth Modeling (right) strategies where the new

elements on each step are highlighted.

model the class diagram. According to the focus of the analysis, the modeling

effort can be studied from two points of view: (1) the effort devoted to initial-

ization tasks, i.e. the work devoted to initialize the modeling tool and create an

empty class diagram; and (2) the total modeling effort, i.e. the complete effort

devoted to modeling the whole class diagram, including the effort devoted to

initialization tasks.

3.3. Modeling Obstacles

Finally, we consider the modeling obstacles as “something that blocks you

so that movement, going forward, or action is prevented or made more diffi-

cult”7 during the modeling process. In this study, we consider as obstacles

the difficulties participants encountered with the use of modeling tools and the

mistakes made by the modelers while using these tools. In both cases, obsta-

cles have been analyzed and classified under the CRUD (Create, Read, Update

and Delete) perspective, that is, the obstacles are contextualized according to

whether they have arisen when the elements of the diagram are Created (C),

Read (R), Updated (U) or Deleted (D).

7https://dictionary.cambridge.org/dictionary/english/obstacle

8

4. Research Questions

As introduced before, the overall goal of this study is to analyze how UML

class diagrams are built and how well modeling tools support modelers on this

task. In order to study this general goal, we define three research questions:

1. RQ1: What modeling strategy do the modelers follow to specify

UML class diagrams?

This RQ is centered on the first perspective of our study, the modeling

strategy (see Section 3.1). In other words, it focuses on the method to

built UML class diagrams, i.e. the procedure or process for attaining it.

2. RQ2: How much modeling effort (time and number of clicks) is

needed to model UML class diagrams?

This RQ is centered on the second perspective of our study, the modeling

effort (see Section 3.2). In other words, it focuses on evaluating the degree

to which modeling tools support and facilitate the construction of UML

class diagrams through its graphical interface.

3. RQ3: What are the most common obstacles (difficulties and er-

rors) encountered by modelers when modeling UML class dia-

grams?

This last RQ is centered on the third perspective of our study, the mod-

eling obstacles (see Section 3.3).

To answer these research questions, we carried out two studies employing

different research approaches. First, an empirical study based on a controlled

experiment was performed to investigate all the three above research questions.

Then, an analytical study based on GOMS (Goals, Operators, Methods and

Selection Rules) was performed to analyze RQ2 from another viewpoint. The

design and the results of both studies are detailed in Sections 5 and 6 respec-

tively.

Table 2 summarizes the outlined research questions, the perspective each

one is focused and the research approaches employed in the rest of this paper

to address them.

9

Table 2: Research questions, their perspectives and research approaches used to address them.

Research

question

Perspective of

study

Employed Research Approach

Empirical Analytical

RQ1 Modeling process 3

RQ2 Modeling effort 3 3

RQ3 Modeling obstacles 3

Experiment	goal:		
Analyze	how	UML	Class	
Diagrams	are	built	using	
two	modelling	tools	

Variables	
	

Independent:	
		-	Modeling	tools:	MagicDraw,	Papyrus	
		-	UML	Diagram:	Class	Diagram	
Dependent:	
		-	Strategy	
		-	Effort	
		-	Obstacles	(difficulEes,	mistakes)	

Par+cipants	
	

-	SE	students	at	UOC	
-	Voluntary	parEcipaEon	

Objects	
	

-	UML	Class	Diagram	
-	Screen	capture	soIware	
-	Online	campus	
-	Experiment	statement	

Experiment	Design	
	

Independent	Measures	
-	Group	1:	MagicDraw	
-	Group	2:	Papyrus	

Data	Collec+on	Procedure	
	

Phase	1.	Training	
Phase	2.	Experiment	execuEon	
Phase	3.	Data	collecEon	and	analysis	

>
in

vo
lv

es

> uses

< based on > scheduled

< analyzes

Figure 2: Experimental design.

5. Controlled Experiment

The aim of this experiment is to empirically evaluate the three perspectives

of our study described in Section 3.

In the following subsections we give an overview of the experiment (see

subsection 5.1) and detail the experiment design (see subsection 5.2), the data

collection procedure (see subsection 5.3) and the results of the experiment (see

subsection 5.4). The interpretation of these results is provided in Section 7.

5.1. Overview of the overall Experimental Design and Execution

Figure 2 summarizes the experimental design in a conceptual map.

5.1.1. Variables

Two types of variables (independent and dependent) are involved in our

experiment.

10

Table 3: Effort sub-variables.
Initialization tasks Complete modeling process

Time Time devoted to initialization tasks Total time for modeling

Clicks Number of clicks devoted to initialization tasks Total number of clicks for modeling

The independent variables (aka. factors or predictor variables) of our

study are:

1. Modeling tools: We focus on two of the most popular modeling tools:

MagicDraw (version 18.0 Personal Edition, from 2017) and Papyrus (Neon

2.0.X version, from 2017).

2. UML diagram: We select the most widely used UML diagram [18], that

is, the UML class diagram.

The dependent variables (aka. response variables) of our study are:

1. Strategy: As introduced before (see Section 3.1) it refers to the approach

used to model the class diagram.

2. Effort: As introduced before (see Section 3.2) it refers to the work devoted

to model the class diagram. This variable is specialized in the sub-variables

detailed in Table 3.

3. Obstacles: As introduced before (see Section 3.3) obstacles are the dif-

ficulties with the use of modeling tools and the mistakes made by the

participants during the modeling process.

5.1.2. Objects

The objects used during the experiment are:

• UML Class Diagram: A UML class diagram (see Figure 3) was provided

as an object for the experiment. It consists of three classes, an associative

class, a data type, two associations, a generalization, and eight attributes.

The given class diagram was modeled using both MagicDraw and Papyrus.

• Screen capture software: Students were encouraged to use one of the fol-

lowing available screen capture software to record their videos: Screencast-

11

O-Matic8 (free, online, available for windows/mac), Recordmydesktop9

(open source, linux), Camstudio10 (free, available for windows) or Camta-

sia11 (trial license, available for windows/mac), although they could choose

any other software.

• Online campus of the university: The UOC online campus12, where all

the courses are taught, was the platform used to send the individual par-

ticipation invitations.

• Experiment statement: The experiment statement provided the instruc-

tions to participate in the experiment. These instructions included three

actions: (1) to model the provided UML class diagram using the assigned

tool (MagicDraw/Papyrus); (2) in parallel, to record the entire model-

ing process using the screen capture software; and (3) finally, to send the

recorded video through the online campus of the university. Besides, at

the beginning of the video, students were asked to provide information

about their previous experience with modeling and modeling tools. Also,

they were encouraged to verbalize their impressions, doubts and difficulties

during all the modeling process. The experiment statement was exactly

the same for both groups.

5.1.3. Participants

The target participants of our experiment are undergraduate students en-

rolled in a Software Engineering course at the Universitat Oberta de Catalunya

(UOC), an online university. This course is a mandatory subject within the

Computer Science degree, where modeling is introduced for the first time. At

the beginning of the course, students receive a list of suggested modeling tools

they can use, although students can freely choose the tool they will use.

8www.screencast-o-matic.com
9www.recordmydesktop.sourceforge.net

10http://camstudio.org/
11http://discover.techsmith.com/camtasia-brand-desktop
12www.uoc.edu

12

Worker

-name : String

PeriodicTask

-periodicity : String

Agreement

-from : Date
-to : Date

Task

-name : String

<<dataType>>
Date

-day : Integer
-month : Integer
-year : Integer

0..1 * 0..1

*

relatedTo

Figure 3: UML Class Diagram of our experiment.

The participation of the students in the experiment was voluntary, that is,

although all the students enrolled in the course were invited to participate,

only a subset of them chose to participate. To motivate their participation, all

participants were rewarded with an extra score at the final grade of the course.

5.1.4. Sample

The experiment was conducted under the context of the TeSLA project13, a

project funded by the European Commission and coordinated by the Open Uni-

versity of Catalonia (UOC). Roughly, the TeSLA project provides to educational

institutions, an adaptive trust e-assessment system for assuring e-assessment

processes in online and blended environments. It aims to support both contin-

uous and final assessment to improve the trust level across students, teachers

and institutions. In 2017, the Software Engineering course participated in a pi-

lot of the TeSLA project, where all the enrolled students could chose voluntary

13www.tesla-project.eu/partner/uoc

13

0%	 20%	 40%	 60%	 80%	 100%	

Newbie	

Beginner	

Proficient	

Advanced	

MagicDraw	

0%	 20%	 40%	 60%	 80%	 100%	

Newbie	

Beginner	

Proficient	

Advanced	

Papyrus	

Figure 4: Expertise level of the participants with MagicDraw and Papyrus.

to participate. All participants signed an informed consent to agree the data

collected during the pilot and their uses.

A total of 202 students were enrolled in the course. Although a total of 65

students (32% of the enrolled students) were initially interested to participate

in our experiment, the participation in the study was finally comprised for a

total of 45 students (i.e. 20 students drop out) - 4 women (9%) and 41 men

(91%) -, representing the 22% of the total students enrolled in the course. The

expertise level of the participants with the tools before executing the experiment

was captured. As shown in Figure 4, the experience of the participants using

both modeling tools, according to her own point of view, was low, although

the students which used MagicDraw reported a little more expertise wrt the

students which used Papyrus.

5.2. Experiment Design

The experimental design applied to conduct this study is independent mea-

sures. An independent measures design assigns participants to separate groups.

Each of the groups is then designated to a single research condition.

In our experiment, the participants were allocated into two experimental

groups, according to the group to which they were enrolled. This explains the

different size of both groups (the first group had 27 participants, while the

second group had 18 participants). A different modeling tool was assigned to

14

each group to conduct the experiment: the first group used MagicDraw and the

second group used Papyrus. The participants did not know their assigned tool

in advance.

The experiment was conducted at the end of the semester, so the students

were trained about modeling UML class diagrams before participating at the

experiment.

The experiment was limited to 15 minutes, so if the students had not been

able to model the diagram at that time, they had to abort the process. In order

to process the data, we fix a total time of 15 minutes to those students who

did not complete the task. We do not omit these observations since they are

interesting regarding the modeling strategy and specially the modeling obstacles.

5.3. Data Collection Procedure

The experiment was planned in a term with the following schedule:

• Weeks 1 to 11: Training. Before conducting the experiment, the par-

ticipants, together with the rest of their classmates, were trained about

modeling with UML. This phase includes training on the construction of

UML class diagrams with the tool chosen by the students (which was not

necessarily the tool used during the experiment).

• Weeks 11 to 14: Experiment execution. The experiment was released

at the 11st week of the semester and the students had exactly three weeks

to run the experiment, i.e. to download the instructions from the online

campus, to learn the assigned tool, to record their videos and deliver them

through the online campus again.

• After week 14: Data Collection and Analysis. Finally, all the videos

were downloaded and manually analyzed by the researchers. For each

video, we manually collected data from the three variables of the study:

– Strategy: After the visualization of the each video, the strategy used

to model the whole class diagram was classified into Breadth Model-

ing, Depth Modeling or alternating strategy. In a similar line, other

15

behaviours observed during the modeling of other specific elements

(like classes or attributes) were manually collected.

– Effort: The time as well as the number of clicks devoted to model the

whole class diagram was manually computed during the visualization

of each video.

– Obstacles: The obstacles (difficulties and errors) encountered by

modelers during the experiment were manually collected during the

visualization of each video.

To analyze each video, it was (re)reproduced and paused repeatedly to

carefully collect all the relevant information. The videos were analyzed

primarily by one of the researchers. Anyway, in order to validate our

study, 18% of them were also analyzed by both researchers.

5.4. Results

This section summarizes the results of the collected data from our experiment

regarding the three study perspectives: the modeling strategy (Section 5.4.1),

the modeling effort (Section 5.4.2) and the modeling obstacles (Section 5.4.3).

These results are analyzed and interpreted in Section 7 together with the results

of the analytical experiment.

A total of 45 observations, more than 12 hours of screen recordings, were

analyzed, 27 (60%) of which used MagicDraw and 18 (40%) of which used

Papyrus.

5.4.1. Strategy

As introduced before, the strategy variable refers to the approach used to

model the class diagram.

Global modeling strategy

Figure 5 reports the global modeling strategy during the construction of the

whole class diagram. The chart on the left (blue) shows the data of the first

16

0%	 20%	 40%	 60%	

Alternately		
modeling		

Depth		
modeling	

Breadth		
modeling	

MagicDraw	

0%	 20%	 40%	 60%	

Alternately		
modeling		

Depth		
modeling	

Breadth		
modeling	

Papyrus	

0%	 20%	 40%	 60%	

Alternately		
modeling		

Depth		
modeling	

Breadth		
modeling	

Average	

Figure 5: Modeling strategies followed by the participants during the construction of the

whole class diagram.

group (MagicDraw), the chart on the middle (yellow) shows the data of the

second group (Papyrus) and the chart on the right (grey) shows the average

between both tools. As can be seen in Figure 5, the participants followed the

two previously introduced strategies (breadth and depth modeling) in a balanced

way in both groups: an average of 51% of the participants (52% in the 1st group

(MagicDraw) and 50% in the 2nd group (Papyrus)) used the breadth modeling

strategy, in front of an average of 42% of the participants (41% in the 1st group

(MagicDraw) and 44% in the 2nd group (Papyrus)) that used a depth modeling

strategy. To a lesser extent, an average of 7% of the participants (7% in the 1st

group (MagicDraw) and 6% in the 2nd group (Papyrus)) modeled the diagram

following an alternating strategy. As can be seen, in average, there is no relevant

difference in terms of global modeling strategy depending on the modeling tool.

On the other hand, we want to highlight that in 93% of the cases the first

element modeled was a class, whereas in only 7% of the cases the first was the

data type Date.

Specific modeling strategy

Regarding the specific modeling strategy involving the creation of attributes

and associations, we analyze the specific order in which their properties (name,

multiplicity, visibility, etc.) were updated.

During the creation of the attributes, in most of the cases in both groups,

the first specified property was its name, followed by its type and, only in some

17

0%	 20%	 40%	 60%	 80%	 100%	

Mul,plicity	

Visibility	

Type	

Name	

Papyrus	

0%	 20%	 40%	 60%	 80%	 100%	

Mul,plicity	

Visibility	

Type	

Name	

Average	

0%	 20%	 40%	 60%	 80%	 100%	

Mul,plicity	

Visibility	

Type	

Name	

MagicDraw	

Figure 6: Initialized properties during attribute’s modeling.

cases, its visibility and multiplicity in random order. As can be seen in Figure

6, 98% of the participants (96% in MagicDraw and 100% in Papyrus) indicated

the name of the attributes and 80% (85% in MagicDraw and 72% in Papyrus)

also indicated its type. On the other hand, only 22% of the participants (7% in

MagicDraw and 44% in Papyrus) indicated the visibility of the attributes and

20% (11% in MagicDraw and 33% in Papyrus) indicated its multiplicity. In all

the cases, the most usual order to modify the properties of the attributes was:

name, type and visibility/multiplicity (these last two alternately).

During the creation of the associations, in most of the cases in both groups,

the first specified property was its multiplicity, followed by its name and, only in

a few cases, its navigability and the role names in random order. As can be seen

in Figure 7, 87% of the participants (100% in MagicDraw and 67% in Papyrus)

indicated the name of one or more associations and 82% (81% in MagicDraw

and 83% in Papyrus) also indicated its multiplicity. Other properties such as

navigability and the role names of associations were only modified by the par-

ticipants of group 2 (Papyrus), although they only represent 28% (navigability)

and 11% (role names) respectively.

In addition to the above, we observed some other common behaviours related

with the strategy. For instance, only one student (from the second group) saved

the project just after create the empty project, while most of the students did

not save the project throughout the experiment.

18

0%	 20%	 40%	 60%	 80%	 100%	

Roles	

Navigability	

Mul8plicity	

Name	

MagicDraw	

0%	 20%	 40%	 60%	 80%	 100%	

Roles	

Navigability	

Mul8plicity	

Name	

Papyrus	

0%	 20%	 40%	 60%	 80%	 100%	

Roles	

Navigability	

Mul8plicity	

Name	

Average	

Figure 7: Initialized properties during association’s modeling.

0%	 20%	 40%	 60%	 80%	

<	5	minutes	

[5-10)		

[10-15]		

>	15	

Papyrus	

0%	 20%	 40%	 60%	

<	5	minutes	

[5-10)		

[10-15]		

>	15	

Average	

0%	 20%	 40%	 60%	

<	5	minutes	

[5-10)		

[10-15]		

>	15	

MagicDraw	

Figure 8: Total modeling time aggregated by categories.

5.4.2. Effort

As introduced before, the effort variable represents the work devoted to

model the class diagram.

As the time to construct the whole class diagram was limited to 15 minutes,

not all participants finished the proposed task. In the first group (MagicDraw)

1 participant (4%) did not finish the whole class diagram; while in the second

group (Papyrus) 5 participants (28%) did not finish it.

Table 4 presents descriptive statistics for the effort variable including mea-

sures for central tendency and dispersion. As can be observed, in all the mea-

sures, the results obtained by the MagicDraw participants are better than the

results obtained by the Papyrus participants.

Figures 8 and 9 show the total effort in both groups aggregated by categories

and Figure 10 shows the dispersion of the total effort regarding both groups.

These figures show a subset of the descriptive statistics shown on Table 4.

In addition to the above, we observed some other relevant behaviours related

with the effort. For instance, around half of the students on each group were

19

0%	 20%	 40%	 60%	

<	100	clicks	

[100-150)	

[150-200]		

>	200		

MagicDraw	

0%	 20%	 40%	 60%	 80%	

<	100	clicks	

[100-150)	

[150-200]		

>	200		

Papyrus	

0%	 20%	 40%	 60%	

<	100	clicks	

[100-150)	

[150-200]		

>	200		

Average	

Figure 9: Total modeling clicks aggregated by categories.

0	

50	

100	

150	

200	

250	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

To
ta
l	n
um

be
r	o

f	c
lic
ks
	

Total	<me	(seconds)	

MagicDraw	

0	

50	

100	

150	

200	

250	

300	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

To
ta
l	n
um

be
r	o

f	c
lic
ks
	

Total	<me	(seconds)	

Papyrus	

Figure 10: Dispersion of the effort in MagicDraw and Papyrus.

Table 4: Descriptive statistics for the effort variable (time and number of clicks) considering

the effort devoted to initialization tasks (until the first UML element is created) and the total

effort (until the whole Class Diagram is created) using MagicDraw (MD) and Papyrus (P).

Measure

type
Measure

Time (seconds) Number of clicks

Initialization Total Initialization Total

MD P MD P MD P MD P

Central

tendency

Mean 51.3 68.2 502.4 615.2 8.5 12.6 118 150.1

Median 30 56.5 515.5 608 7 9.5 112 140.5

Mode 30 N/A 430 480 6 11 90 133

Dispersion

Min 14 33 240 440 2 6 62 98

Max 145 183 840 788 25 37 192 245

Range 131 150 600 348 23 31 130 147

Standard

deviation

37.4 39.4 164.5 116.2 4.8 7.8 32.6 35

20

concerned about the aesthetics of the diagram, investing a considerable amount

of time trying to align the elements of the diagram.

Moreover, we assessed whether the distributions of the variables time and

number of clicks were significantly different for MagicDraw and Papyrus. This

assessment is usually performed by applying the Students t-test to compare two

independent samples, which tests a statistically significant difference between

the distributions according to some known probability density function under

the null hypothesis. Students t-test assumptions require the data to both fol-

low a normal distribution and have homogeneity of variances. To check these

assumptions we applied the Saphiro-Wilk normality test for the former and the

Barlett test for the later. The results for both tests are shown in Table 5. As

can be observed, all variables passed both the normality and homogeneity of

variances tests (see rows 1-4 and 5-6, respectively). Then, we could trust the

Students t-test results (see rows 7-8). As the tests outputs return an overall

p-value, to avoid clutter when reporting p-values, we superscript the results us-

ing the following convention: no superscript corresponds to p-value >= 0.05 , *

corresponds to 0.01 <= p-value < 0.05, ** corresponds to 0.001 <= p-value <

0.01 and *** corresponds to p-value < 0.001.

Our results reveal that there are significant differences in the distributions

of both variables with regard to the tool, which means that the effort (measured

as time and number of clicks) is significantly different when using MagicDraw

and Papyrus.

5.4.3. Obstacles

As introduced before, the obstacles variable represents the difficulties and

the mistakes made by the participants using the target modeling tools.

Difficulties

Table 6 describes the most frequent difficulties risen during the modeling

process, classified according the CRUD perspective and Figure 11 shows their

frequency on each tool. Clearly, the most relevant difficulty in both environ-

21

Table 5: Results of the applied tests. Column p-value indicates whether the variable pass the

corresponding test (3value) or not (7value). If the variable do not pass the test, we indicate

the interval of the p-value: no superscript corresponds to p-value >= 0.05 , * corresponds to

0.01 <= p-value < 0.05, ** corresponds to 0.001 <= p-value < 0.01 and *** corresponds to

p-value < 0.001.

Test Variable p-value

1 Shapiro-Wilk normality test Total time - MagicDraw 3

2 Total time - Papyrus 3

3 Total number of clicks - MagicDraw 3

4 Total number of clicks - Papyrus 3

5 Bartlett’s test (homogeneity

of variance)

Total time MagicDraw-Papyrus 3

6 Total number of clicks MagicDraw-Papyrus 3

7 t-Student test Total time MagicDraw-Papyrus 7*

8 Total number of clicks MagicDraw-Papyrus 7**

ments, but especially in Papyrus, was the creation of the association class (D1).

33% of the participants in the 1st group (MagicDraw) had difficulties creat-

ing the association class. This percentage rises up to 78% in the 2nd group

(Papyrus). Analyzing the videos, we observed that the participants had seri-

ous difficulties to choose the right element of the palette of elements to create

associative classes (trying several elements as a class or an association). In

addition, although in MagicDraw there is a unique way to create an associative

class, in Papyrus there are several alternatives, which confuse and disorients the

participants. On the other hand, 100% of the participants of the second group

(Papyrus) who achieved the task of creating an associative class through the use

of the AssociationClass node of the palette of elements, had later difficulties to

modify the multiplicities of the association (D3), since the tool has a bug that

does not allow to modify the multiplicities of an association created using that

node.

Mistakes

Table 7 describes the most frequent mistakes risen during the modeling pro-

cess, classified according the CRUD perspective and Figure 12 shows their fre-

22

Table 6: Difficulties risen during the modeling process classified according the CRUD per-

spective.

Identifier Type Description

D1 Create Create an association class

D2 Read Visualize the properties of a DataType once created (in MagicDraw,

they are not displayed by default)

D3 Update Update the multiplicity of an association class (not possible in Pa-

pyrus)

D4 Delete Delete the navigability, visibility and role names of an association

D5 Update Assign a previously created DataType to an attribute

D6 Update Update the multiplicity of associations

D7 Update Update the name of a DataType

D8 Update Update the properties of a previously created element (due to not

having the Properties tab opened)

0%	 20%	 40%	

D8	
D7	
D6	
D5	
D4	
D3	
D2	
D1	

MagicDraw	

0%	 20%	 40%	 60%	 80%	

D8	
D7	
D6	
D5	
D4	
D3	
D2	
D1	

Papyrus	

0%	 20%	 40%	 60%	

D8	
D7	
D6	
D5	
D4	
D3	
D2	
D1	

Average	

Figure 11: Difficulties risen during the modeling process.

23

Table 7: Mistakes risen during the modeling process classified according the CRUD perspec-

tive.
Identifier Type Description

M1 Create Connect a class with a previously created association instead of using

the AssociationClass element

M2 Create Create a dependency, abstraction or association instead of a general-

ization

M3 Create Try to create an attribute of a data type not previously created

M4 Update Assign the name and/or the multiplicity of an association using roles

or comments

M5 Create Create a model inconsistent with the model provided

M6 Update Assign the multiplicities of an association in a swapped way

M7 Create Create a class with stereotype Type instead of a DataType or create

an enumeration instead of a DataType

M8 Update Not being able to assign a basic UML type to an attribute because it

has not been imported previously

M9 Create Create a note instead of class or create x copies of the same class

instead of creating x classes

M10 Create Create a reflexive association instead of an associative class or create

a generalization instead of a binary relationship

M11 Create Create additional/redundant elements (and delete them)

M12 Create Create an element already previously created

M13 Create Create a Data Type instead of a Property

quency on each tool. The most repeated mistake made by the participants of

group 1 (MagicDraw) was to connect a simple class with a previously created as-

sociation instead of using the AssociationClass element (M1), with a frequency

of 33%. On the contrary, this mistake did not occur in the group 2 (Papyrus),

since this tool allows associating a simple class with a previously created asso-

ciation to create an associative class. On the other hand, the most repeated

mistake made by the participants of group 2 (Papyrus) was the misuse of the

connectors to create an inheritance, with a frequency of 33%.

In addition to the above difficulties and mistakes, we observed some other,

less frequent, obstacles. For instance, one student of the first group commented

that the MagicDraw tool crashed on several occasions, having to perform the

experiment again. On the other hand, one student pointed out problems dur-

ing the installation of Papyrus on Mac. Besides, as can be observed in some

24

0%	 20%	 40%	

M13	
M12	
M11	
M10	
M9	
M8	
M7	
M6	
M5	
M4	
M3	
M2	
M1	

MagicDraw	

0%	 20%	 40%	

M13	
M12	
M11	
M10	
M9	
M8	
M7	
M6	
M5	
M4	
M3	
M2	
M1	

Papyrus	

0%	 20%	 40%	

M13	
M12	
M11	
M10	
M9	
M8	
M7	
M6	
M5	
M4	
M3	
M2	
M1	

Average	

Figure 12: Mistakes risen during the modeling process.

videos, few students also had problems using the tools because of the resolution

of the screen they used. Finally, as a curiosity, although the used version of

Papyrus contain a bug to assign multiplicities on association classes, only one

student contacted the teachers to ask how they could assign such multiplicity.

As explicitly evident in most of the videos, all the above mentioned obstacles

generated a considerable feeling of frustration among the students.

Even though this is not directly related with obstacles, some students pointed

out several specific improvements regarding both tools that we want to state in

this study. For instance, improving the aesthetics of MagicDraw (“given it is

currently outdated” expressed by the student) or extending the tools to allow

collaborative work.

5.5. Threats To Validity

In this section, we discuss the main threats to validity that can affect the

results of our experiment.

Our work is subjected to a number of threats to validity, namely: (1) internal

validity, which is related to the inferences we made; and (2) external validity,

which discusses the generalization of our findings.

Regarding the internal validity, our threats are mainly associated with the

participants and the measurements. First, the participants of our experiment

could have a different previous knowledge of the tools before the execution of

25

the experiment (though we explicitly asked for this information and at least

what they claimed level of expertise show a reasonable homogeneity among

them). Secondly, since each student executed the experiment at their place and

using their own settings, we cannot ensure identical conditions. For instance,

some participants had the target diagram printed in paper while others had

to visualize it on the screen (which implies to switch the screen in case they

did not have multiple screens). Also, after visualizing the videos, we realized

that some students had suffered from model visualization problems because

of the resolution of their screens. Regarding the measurements, the data we

collected could be error-prone given that the videos were manually processed.

To minimize this, as commented before, an 18% of the videos were analyzed

by both researchers and their results were compared, with the deviation being

below 13%.

Regarding the external validity, our threats are related to our selection of

the modeling tools (MagicDraw and Papyrus). Since they represent a subset of

the available modeling tools, the results of this experiment should not be gener-

alized to the global population of modeling tools even if our personal experience

suggests that indeed at least some of the problems and feedback participants

gave applies indeed to a large number of tools we have used ourselves

6. GOMS analysis

In order to address in more detail the RQ2 described in Section 4, now from a

more analytical perspective, this section evaluates the effort necessary to create

class diagrams using MagicDraw and Papyrus by means of a well-known ana-

lytical method called GOMS (Goals, Operators, Methods and Selection Rules).

This method, beginning as a theoretical model in HCI (Human-Computer

Interaction), attempts to predict and evaluate the usability of tools, interfaces

or any complex applications. GOMS describes the procedures required for ac-

complishing a general set of tasks by decomposing the tasks into four elements

[25]:

26

• Goals, i.e. something that the user tries to accomplish, often divided into

subgoals.

• Operators, i.e. basic actions that the software allows the user to take (e.g.

commands, menu selections, button clicks or direct-manipulation actions).

• Methods, i.e. well-learned sequences of subgoals and operators that can

accomplish a goal.

• Selection rules, i.e. personal rules that users follow in deciding what

method (if there is more than one method to accomplish the same goal)

to use in a particular circumstances.

We use a simplified version of the GOMS model called Keystroke-Level

Model (KLM) [26] which uses only keystroke-level operators to predict task ex-

ecution time from a specified design and specific task scenario. The estimated

time to accomplish each task, according to [26], is presented in Table 8. The

analysis of UML modeling tools using GOMS, and KLM in particular, consisted

of the following steps: (1) create a hierarchy of goals (one for both tools), (2)

describe all the methods (basic action sequences) for each UML modeling tool,

(3) select the operators and list their corresponding times, (4) sum the times of

the operators for each method, and, finally (5) compare the results among the

tools.

In the next subsections we describe in more detail the goals and methods

of our KLM analysis (see Section 6.1) and the resulting time (see Section 6.2).

The interpretation of the GOMS analysis is described in Section 7 together with

the analysis of the controlled experiment.

6.1. Goals and methods

Following the GOMS terminology, our main goal is to create a UML class

diagram for a system. This goal is decomposed into sub-goals associated with

creating several parts of the class diagram: create a new project, create an empty

UML class diagram, create a simple UML class with name, add attributes to a

class, create an association, etc.

27

Table 8: Estimated execution time for operators.

Operator Description Estimated time (sec)

K Pressing a key or button on the keyboard 0.12 (expert typist), 0.20

(average skilled typist), 0.28

(average non-secretarial

typist), 1.2 (worst typist)

T(n) Type a sequence of n characters on a keyboard n x K

P Point with mouse to a target on the display 1.1

B Press or release mouse button 0.1

BB Double-click mouse button 0.2

H Home hands to keyboard or mouse 0.4

M Mental act of routine thinking or perception 0.6 - 1.35; use 1.2

W (t) Waiting for the system to respond (time t must be

determined)

t

In the following, we exemplify the steps to accomplish several of the above

goals (in particular: create a new project, create an empty class diagram, add

an attribute (with name and type) to an existing class, create a binary associ-

ation (with name and multiplicity) between two existing classes, and create an

association class (with name and multiplicity) between two existing classes). In

all cases, we assume three facts: (1) the analyzed tools are installed and opened

before performing the methods; (2) at the beginning of each method the user

hand starts on mouse; and (3) the users are skilled typists (55 wpm) on average.

Additionally, we omit mental operators (assuming the diagram was transcribed

but not created in that precise moment, as it was the case in the empirical

study) and we fix the waiting time to 2 seconds.

The specification for the sub-goal create a new Project with the correspond-

ing operators and estimated time is presented in Table 9 (MagicDraw) and

Table 10 (Papyrus). The complete specification of the rest of the sub-goals can

be found at https://hdl.handle.net/20.500.12004/1/J/CSI/633.

6.2. Results

Table 11 summarizes the results of our KLM analysis for the different sub-

goals (see each row). For each tool (MagicDraw and Papyrus) we compute the

number of steps and the estimated time to achieve the specific sub-goal. It is

28

Table 9: Specification and evaluation of the method create a new Project using the main

menu of MagicDraw.

Step Description Operator Estimated

Time (sec)

1 Point the ”File” menu P 1.1

2 Click the ”File” menu B 0.1

3 Point the ”New Project” option P 1.1

4 Click the ”New Project” option B 0.1

5 Point the ”Name” field P 1.1

6 Move hand from the mouse to the keyboard H 0.4

7 Keystroke the project name (we assume 5 letters) T(5) 1

8 Move hand from the keyboard to the mouse H 4

9 Point the ”Ok” option P 1.1

10 Click the ”Ok” option B 0.1

11 System response time W(2) 2

Total estimated time (sec) 8.5

Table 10: Specification and evaluation of the method create a new Project using the main

menu of Papyrus.

Step Description Operator Estimated

Time (sec)

1 Point the ”File” menu P 1.1

2 Click the ”File” menu B 0.1

3 Point the ”New” sub-menu P 1.1

4 Point the ”Other” sub-menu P 1.1

5 Click the ”Other” sub-menu B 0.1

6 Point the ”Papyrus” option P 1.1

7 Click the ”Papyrus” option B 0.1

8 Point the ”Papyrus project” option P 1.1

9 Click the ”Papyrus project” option B 0.1

10 Point the ”Next” option P 1.1

11 Click the ”Next” option B 0.1

12 Point the ”Next” option again P 1.1

13 Click the ”Next” option again B 1.1

14 Point the ”Name” field P 1.1

15 Move hand from the mouse to the keyboard H 0.4

16 Keystroke the project name (we assume 5 letters) T(5) 1

17 Move hand from the keyboard to the mouse H 0.4

18 Point the ”Finish” option P 1.1

19 Click the ”Finish” option B 0.1

20 System response time W(2) 2

Total estimated time (sec) 14.4

29

Table 11: Summary of the number of steps and estimated time for achieving several sub-goals

using MagicDraw and Papyrus.

Sub-goal

MagicDraw Papyrus Average

Number

of steps

Estimated

time

(sec)

Number

of steps

Estimated

time

(sec)

Number

of steps

Estimated

time

(sec)

0. Create a new project 8 6.8 17.5 12.95 12.75 9.88

1. Create an empty

Class Diagram

9.67 5.83 24 16.3 16.83 11.07

2. Create a UML class

(with name)

11 6.25 9.5 5.6 10.25 5.93

3. Add an attribute

(with name and type) to

an existing class

13.5 8.2 15.5 9.4 14.5 12.9

4. Create a binary asso-

ciation (with name and

multiplicity) between

two existing classes

20 11.6 17 10.2 18.5 10.9

5. Create an association

class (with name and

multiplicity) between

two existing classes

25 15.1 26 15.6 25.5 15.35

important to note that there exist several methods (i.e. sequences of actions)

to perform the same task using a specific tool. For instance, in MagicDraw the

modeler can create a new project from the main menu (as specified in Table 9),

from the quick menu or using quick-shorts, while in Papyrus the modeler can

create a new project from the main menu (as specified in Table 10) or from the

quick menu. In case there is more than one method to perform the same task,

Table 11 shows the average number of steps and estimated time for each tool.

Finally, last column of the table shows the average of both tools.

Using the results of this GOMS analysis, we can predict the expected time

to accomplish the modeling goal asked in our previous controlled experiment

(see Section 5 and Figure 3). As shown in Table 12, according to the GOMS

analysis, there is an estimated difference of 20 sec regarding MagicDraw and

Papyrus in order to build the same UML class diagram.

30

Table 12: Estimated time to build the UML class diagram using MagicDraw and Papyrus.

Sub-goal Occurrences in

the class dia-

gram

Estimated time

in MagicDraw

(sec)

Estimated time

in Papyrus (sec)

Create a new project 1 6.80 12.95

Create an empty class Diagram 1 5.83 16.30

Create a UML class (with name) 5 31.25 28.00

Add an attribute (with name and

type) to an existing class

8 65.50 75.20

Create a binary association (with

name and multiplicity) between

two existing classes

2 23.2 20.40

Create an association class (with

name and multiplicity) between

two existing classes

1 15.10 15.60

Total estimated time (sec) 147.78 (sec) 168.45 (sec)

Total estimated time (min) 2.46 (min) 2.81 (min)

7. Interpretation and Recommendations

In this section we discuss and interpret the findings from the empirical exper-

iment (see Section 5) as well as the analytical analysis (see Section 6), according

to the research questions outlined in Section 4.

Besides, in order to overcome the detected challenges, we suggest several

recommendations to improve the performance of UML modeling tools as well

as the way of how UML modeling is taught.

RQ1: What modeling strategy do the modelers follow to specify UML

class diagrams?

In terms of the modeling strategy, the most relevant finding from our em-

pirical experiment is that there is no relevant difference in terms of the global

modeling strategy (breadth, depth or alternately modeling). In all cases, the

vast majority started by modeling the classes (93% of the time the first modeled

element was a class).

This behavior is in part due to the unrestricted approach followed by the

modeling tools that let modelers draw diagrams as they please. And while this

freedom is, in principle beneficial, it adds a new hurdle to novel modelers that

31

would probably prefer a more systematic approach and guidance to model.

As such, we recommend either teachers or (even better) tools to suggest a

modeling strategy to novice modelers until they feel empowered enough to adapt

the strategy to their own perspective on how to be most efficient at modeling.

A typical strategy to be used could be, for instance, using a top-down view

(which directly derives from the breadth modeling strategy proposed in this

work), which consists in: (1) first, identify and model the classes (which classes

do we need?), (2) then, identify and model associations (how are the classes con-

nected?, and (3) finally, identify attributes and multiplicities (what do we want

to know about the objects?). If enforced by the modeling tools, this functionality

should be optional and be switched on/off by the modeler at will.

Even though we suggest recommending a specific modeling strategy, the

results of our empirical experiment did not find significant differences in terms

of effort (time and number of clicks) wrt the used strategy. In particular, the

collected data reveals that the students who follow the depth modeling strategy

took 9 minutes on average to model the whole class diagram, while the students

who follow the breadth modeling strategy took 10 minutes and the students who

follow an alternately strategy took 11 minutes. Similarly, regarding the number

of clicks, the students who follow the depth modeling strategy took 127 clicks

on average to model the whole class diagram, while the students who follow

the breadth modeling strategy took 133 clicks and the students who follow an

alternately strategy took 119 clicks.

In fact, the ideal modeling strategy, especially when it comes to the modeling

of specific individual types of elements like attributes or associations, can also

depend on the particular UI of the modeling tool. For instance, in MagicDraw

a user can create an attribute directly introducing its name and type inside the

class box (and obviate the rest of its properties unless it explicitly wants to

indicate them by first opening the extended menu). Instead, in Papyrus each

time a user creates an attribute, the extended menu is automatically opened at

the bottom of the screen and all its properties are visualized. This could explain

why only the users of the second group specified some properties such as the

32

visibility and multiplicity of attributes.

RQ2: How much modeling effort (time and number of clicks) is needed

to model UML class diagrams?

From our empirical experiment, we observed that the effort (measured as

time and number of clicks) devoted to build a class diagram is significantly

different when using MagicDraw and Papyrus. This difference is related with

the obstacles the participants found using both tools (slightly more in Papyrus),

as we will discuss in RQ3. As a curiosity, 13% of the participants (considering

both groups) did not finish the whole class diagram in 15 minutes. This is

clearly a trade-off to convince software developers to use modeling tools.

Moreover, from our analytical experiment we conclude that, during the ini-

tialization tasks (creating a new project and an empty UML class diagram),

MagicDraw is more usable in terms of efficiency (amount of steps and estimated

time). For instance, on average, MagicDraw requires 9.5 steps and 6.15 sec-

onds less than Papyrus to create a new project (sub-goal 0) and 14.33 steps and

10.47 seconds less than Papyrus to create an empty class diagram (sub-goal 1).

However, in the rest of the tasks devoted to the construction of the UML class

diagram (sub-goals 2-5) both MagicDraw and Papyrus present similar usabil-

ity. In particular, MagicDraw is slightly more efficient when adding attributes

(sub-goal 3) and creating association classes (sub-goal 5) while Papyrus is more

efficient when creating UML classes (sub-goal 2) and binary associations (sub-

goal 4).

When taking into account both experiments, we conclude that globally the

effort and efficiency could be improved in both tools. Many times modelers were

not able to optimally use the tools and end up being much more inefficient than

the optimal solution. For instance, when the tool offers several alternatives to

achieve the same goal (e.g. creating an association class), modelers do not always

choose the simplest path. Similar trade-off between freedom and efficiency as

above. We encourage tools to rethink some of their UI components and be more

opinionated with their interface in order to prevent clearly inefficient modeling

33

strategies.

RQ3: What are the most common obstacles (difficulties and errors)

encountered by modelers when modeling UML class diagrams?

Section 5.4.3 reports on the list of modeling obstacles modelers encountered

during the experiment. Many of these obstacles are due to the inexperience

of the modelers. For instance, in many of the recorded videos, we observed

students having difficulties navigating the tools’ menus and options, forcing

them to attempt the same task several times before finding the proper way to

perform their goal. As explicitly evident in most of the videos, this generated a

considerable feeling of frustration among them.

To overcome the modeling obstacles detected in our study (and indirectly

decrease the modeling effort), we suggest several recommendations mainly ori-

ented to improve the usability of modeling tools:

• First, and most important, modeling tools should fix their current known

issues to increase the level of trustiness in them. For instance, in the

Neon version of Papyrus, it is not possible to introduce the multiplicity

of an association class created using the AssociationClass element in the

palette.

• Modeling tools should include a guidance for beginners to perform specific

tasks. This guidance should be available under user request, for instance,

as short embedded videos showing how to carry out specific tasks using the

tool (such as creating association classes, etc.). Modeling wizards could

also be created for this purpose.

• Modeling tools should provide useful tips not only when the tool is opened

but when the tool detects the modeler really needs such tip. For instance,

tools could detect when the modeler is in a loop trying to achieve a specific

task and suggest useful and personalized tips to help her. AI techniques

could be employed to detect such tool learning challenges and react ac-

cordingly.

34

Although most of the obstacles observed are directly related with the mod-

eling tools, like the ones above, other obstacles are more linked to a general lack

of modeling knowledge. To improve them, we would like to see some tweaks on

how we teach modeling:

• Modeling instructors should explain that some elements in a class diagram

should be created following a specific order, even if it is just for pragmatic

reasons.

• Instructors should also emphasize the use of the best practices in concep-

tual modeling, as those detailed by Kuzniarz et al [27].

• And they should recommend the use of proper names to facilitate the

understandability of the class diagrams, for instance making use of the

naming guides provided by Aguilera et at. [28]. As an example, one

naming guideline from the previous work states that ”the name of an

entity type should be a noun phrase whose head is a countable noun

in singular form“. For instance, names such as Person, Chair, Invoice

or Category (classes), Job or Enrollment (association classes), Date or

AmountOfMoney (data types), and Sex or Color (enumerations) follow

the guideline.

8. Conclusions and Further Work

In this paper we have analyzed how UML class diagrams are built by ana-

lyzing video recordings of 45 students in the process of creating class diagrams

using the MagicDraw and Papyrus tools in a controlled experiment. We an-

alyzed the over 12 hours of videos to analyze the usability of such tools from

three perspectives: the modeling process, the modeling effort and the model-

ing obstacles they encounter during the process. To deepen the study of the

modeling effort perspective, we carried out a complementary analytical study

comparing the efficiency (in terms of number of clicks and time) of both tools

35

during the performance of several tasks required to build a UML class diagram

by an expert modeler.

Our experiments report that there are no notable differences regarding he

usability of MagicDraw and Papyrus. But only because both showed important

shortcomings that could be improved to provide a significantly better modeling

experience. Several suggestions related to these three perspectives have been

provided.

As a further work, we plan to extend this study considering other UML

modeling tools (not only graphical tools but also textual tools like TextUML or

Umple, including a grouped comparison of graphical vs textual tools) and UML

diagrams to see how the results of this study can be generalized. We would also

like to discuss with UML tool builders to try to integrate some of our suggestions

in their future releases and to replicate our study in other modeling fields, like

BIM (Building Information Modeling) and see if the modeling tools in those

domains suffer from the same problems (and therefore could also benefit from

an adapted version of our suggestions).

References

[1] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering

in Practice, 1st Edition, Morgan & Claypool Publishers, 2012.

[2] R. Acerbis, A. Bongio, M. Brambilla, M. Tisi, S. Ceri, E. Tosetti, Develop-

ing eBusiness Solutions with a Model Driven Approach: The Case of Acer

EMEA, in: Web Engineering, 7th International Conference, ICWE 2007,

Como, Italy, July 16-20, 2007, Proceedings, 2007, pp. 539–544.

[3] R. B. France, A. Evans, K. Lano, B. Rumpe, The UML as a formal modeling

notation, Computer Standards & Interfaces 19 (7) (1998) 325–334.

[4] L. T. W. Agner, T. C. Lethbridge, A survey of tool use in modeling ed-

ucation, in: 20th ACM/IEEE International Conference on Model Driven

36

Engineering Languages and Systems, MODELS 2017, Austin, TX, USA,

September 17-22, 2017, 2017, pp. 303–311.

[5] M. Auer, L. Meyer, S. Biffl, Explorative UML modeling - comparing the

usability of UML tools, in: ICEIS 2007 - Proceedings of the Ninth In-

ternational Conference on Enterprise Information Systems, Volume EIS,

Funchal, Madeira, Portugal, June 12-16, 2007, 2007, pp. 466–473.

[6] A. E. Bobkowska, K. Reszke, Usability of UML modeling tools, in: Software

Engineering: Evolution and Emerging Technologies, 2005, pp. 75–86.

[7] M. R. V. Chaudron, W. Heijstek, A. Nugroho, How effective is UML model-

ing ? - an empirical perspective on costs and benefits, Software and System

Modeling 11 (4) (2012) 571–580.

[8] I. Davies, P. F. Green, M. Rosemann, M. Indulska, S. Gallo, How do prac-

titioners use conceptual modeling in practice?, Data Knowl. Eng. 58 (3)

(2006) 358–380.

[9] B. Dobing, J. Parsons, How UML is used, Commun. ACM 49 (5) (2006)

109–113.

[10] H. Eichelberger, Y. Eldogan, K. Schmid, A comprehensive survey of UML

compliance in current modelling tools, in: Software Engineering 2009:

Fachtagung des GI-Fachbereichs Softwaretechnik 02.-06.03. 2009 in Kaiser-

slautern, 2009, pp. 39–50.

[11] Heena, R. Garg, A comparative study of UML tools, in: International

Conference on Advances in Computing and Artificial Intelligence, ACAI

’11, Rajpura/Punjab, India - July 21 - 22, 2011, 2011, pp. 1–4.

[12] L. Khaled, A comparison between UML tools, in: 2009 Second Interna-

tional Conference on Environmental and Computer Science, ICECS 2009,

Dubai, UAE, 28-30 December 2009, 2009, pp. 111–114.

37

[13] M. Petre, UML in practice, in: 35th International Conference on Software

Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, 2013,

pp. 722–731.

[14] J. Recker, “Modeling with tools is easier, believe me” - The effects of tool

functionality on modeling grammar usage beliefs, Inf. Syst. 37 (3) (2012)

213–226.

[15] G. Reggio, M. Leotta, F. Ricca, D. Clerissi, What are the used UML di-

agrams? A preliminary survey, in: Proceedings of the 3rd International

Workshop on Experiences and Empirical Studies in Software Modeling co-

located with 16th International Conference on Model Driven Engineering

Languages and Systems (MoDELS 2013), Miami, USA, October 1, 2013.,

2013, pp. 3–12.

[16] S. A. Safdar, M. Z. Iqbal, M. U. Khan, Empirical evaluation of UML mod-

eling tools-a controlled experiment, in: Modelling Foundations and Appli-

cations - 11th European Conference, ECMFA 2015, Held as Part of STAF

2015, L’Aquila, Italy, July 20-24, 2015. Proceedings, 2015, pp. 33–44.

[17] K. Siau, P. Loo, Identifying difficulties in learning uml, IS Management

23 (3) (2006) 43–51.

[18] B. Dobing, J. Parsons, How UML is used, Communications of the ACM

49 (5) (2006) 109–113.

[19] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, Experimen-

tation in Software Engineering, Springer, 2012.

[20] F. Ricca, M. D. Penta, M. Torchiano, P. Tonella, M. Ceccato, How develop-

ers’ experience and ability influence web application comprehension tasks

supported by UML stereotypes: A series of four experiments, IEEE Trans.

Software Eng. 36 (1) (2010) 96–118.

38

[21] M. Torchiano, F. Ricca, P. Tonella, Empirical comparison of graphical and

annotation-based re-documentation approaches, IET Software 4 (1) (2010)

15–31.

[22] A. Yamashita, F. Petrillo, F. Khomh, Y.-G. Guhneuc, Developer Interac-

tion Traces backed by IDE Screen Recordings from Think aloud Sessions,

booktitle = MSR 2018 - 15th International Conference on Mining Software

Repositories, co-located with ICSE 2018 in Gothenburg, Sweden., year =

2018.

[23] G. C. Murphy, M. Kersten, L. Findlater, How Are Java Software Developers

Using the Eclipse IDE?, IEEE Software 23 (4) (2006) 76–83.

[24] K. Thulasiraman, M. N. Swamy, Graphs: Theory and Algorithms, John

Wiley & Sons, 2011.

[25] B. E. John, D. E. Kieras, Using GOMS for user interface design and evalua-

tion: Which technique?, ACM Trans. Comput.-Hum. Interact. 3 (4) (1996)

287–319.

[26] D. E. Kieras, Using the Keystroke-Level Model to Estimate Execution

Times, University of Michigan 555.

[27] L. Kuzniarz, M. Staron, Best practices for teaching UML based software de-

velopment, in: Satellite Events at the MoDELS 2005 Conference, MoDELS

2005 International Workshops, Doctoral Symposium, Educators Sympo-

sium, Montego Bay, Jamaica, October 2-7, 2005, Revised Selected Papers,

2005, pp. 320–332.

[28] D. Aguilera, C. Gómez, A. Olivé, A complete set of guidelines for naming

UML conceptual schema elements, Data Knowl. Eng. 88 (2013) 60–74.

39

	Introduction
	State of the Art
	Perspectives of our study
	Modeling Strategy
	Modeling Effort
	Modeling Obstacles

	Research Questions
	Controlled Experiment
	Overview of the overall Experimental Design and Execution
	Variables
	Objects
	Participants
	Sample

	Experiment Design
	Data Collection Procedure
	Results
	Strategy
	Effort
	Obstacles

	Threats To Validity

	GOMS analysis
	Goals and methods
	Results

	Interpretation and Recommendations
	Conclusions and Further Work

