
Journal on Software and Systems Modeling manuscript No.
(will be inserted by the editor)

A Generic LSTM Neural Network Architecture to Infer
Heterogeneous Model Transformations

Loli Burgueño · Jordi Cabot · Shuai Li · Sébastien Gérard

Received: date / Accepted: date

Abstract Models capture relevant properties of sys-
tems. During the models’ life-cycle, they are subjected
to manipulations with different goals such as manag-
ing software evolution, performing analysis, increasing
developers’ productivity, and reducing human errors.
Typically, these manipulation operations are implemented
as model transformations. Examples of these transfor-
mations are (i) model-to-model transformations for model
evolution, model refactoring, model merging, model mi-
gration, model refinement, etc., (ii) model-to-text trans-
formations for code generation and (iii) text-to-model
ones for reverse engineering.

These operations are usually manually implemented,
using general-purpose languages such as Java, or domain-
specific languages (DSLs) such as ATL or Acceleo. Even
when using such DSLs, transformations are still time-
consuming and error-prone.

We propose using the advances in artificial intelli-
gence techniques to learn these manipulation operations
on models and automate the process, freeing the devel-
oper from building specific pieces of code. In particu-
lar, our proposal is a generic neural network architec-

Loli Burgueño
Open University of Catalonia, IN3, Spain
Institut LIST, CEA, Université Paris-Saclay, France
E-mail: lburguenoc@uoc.edu

Jordi Cabot
ICREA, Spain
Open University of Catalonia, IN3, Spain
E-mail: jordi.cabot@icrea.cat

Shuai Li
Institut LIST, CEA, Université Paris-Saclay, France
E-mail: shuai.li@cea.fr

Sébastien Gérard
Institut LIST, CEA, Université Paris-Saclay, France
E-mail: sebastien.gerard@cea.fr

ture suitable for heterogeneous model transformations.
Our architecture comprises an encoder-decoder LSTM
(Long Short-Term Memory) with an attention mecha-
nism. It is fed with pairs of input-output examples and,
once trained, given an input, automatically produces
the expected output.

We present the architecture and illustrate the feasi-
bility and potential of our approach through its applica-
tion in two main operations on models: model-to-model
transformations and code generation. The results con-
firm that neural networks are able to faithfully learn
how to perform these tasks as long as enough data is
provided and no contradictory examples are given.

Keywords model manipulation · code generation ·
model transformation · artificial intelligence · machine
learning · neural networks

1 Introduction

In software development, data, structured as models,
are manipulated on a daily basis through systematic
model manipulation operations. Automating such oper-
ations, typically in the form of model transformations,
can reduce the time-to-market of project development
and improve its quality. Usually, a model-driven project
involves several consecutive transformations. Interme-
diate steps are often implemented as model-to-model
transformations, each one taking as input the output of
the previous step as part of a continuous refinement pro-
cess from high-level models to platform-specific ones.
One last step consists in a model-to-text transforma-
tion that takes this low-level models and generates a
textual output, i.e. the final code, as a result.

This automatic code generation step aims to limit
tedious tasks, reduce the chances of programming er-

2 L. Burgueño, et al.

rors, and improve the quality of the code, hence min-
imizing the maintenance cost. We also have the re-
verse scenario where we want to generate the mod-
els corresponding to a (legacy) system. Starting with
a text-to-model transformation we generate an initial
set of models that are then abstracted out via addi-
tional model-to-model transformations. All these het-
erogeneous types of model transformations play a key
role in any model-driven engineering activity.

Domain-specific languages and tools, such as ATL [1],
Acceleo [2], and Xtext [3], aim to accelerate the writing
of model transformations by offering facilities to handle
model querying, model serialization, etc.

Nevertheless, creating model transformations remains
a challenging task that requires a high-level expertise,
competences in language engineering, and extensive do-
main knowledge [4]. Moreover, developers may be re-
luctant to adopt some automatic model manipulators,
especially model-to-text ones because they do not trust
them—usually considering that it cannot be as perfor-
mant as the manually performed tasks or because the
output artefacts of such automatic tools look artificial
and foreign to them [5]. For instance, they do not follow
the company’s coding style.

As systematic model transformation is a key aspect
of Model-Based Engineering (MBE), we argue that the
lack of competences, the maintenance cost of model
transformation operations, and the defiance from devel-
opers, hinder the adoption of MBE at enterprise scale [4,
6]. The work presented in this paper aims at fostering
model-driven engineering at enterprise scale, providing
a stepping stone towards a next generation of cognitive
model-based engineering tools.

The proposal we present in this paper aims at over-
coming aforementioned issues. We propose to automat-
ically infer heterogeneous model transformations from
only input-output examples. Not only are the inferred
transformations able to automatically produce expected
output artifacts, but they are able to oblige developers
to comply to company or project standards, key to the
solution’s adoption and valuable to ensure quality [7].

Given the recent improvements in artificial intelli-
gence, and especially in supervised machine learning,
we believe such intelligent model manipulations can be
“implemented” as an encoder-decoder [8] with an atten-
tion mechanism [9] trained with pairs of input-output
data, where both the encoder and decoder are LSTM
(Long Short-Term Memory) neural networks [10].

We rely on existing works on Machine Learning (ML)
and neural machine translation [11, 12] to propose an
ML-based generic architecture for heterogeneous model
transformations. This architecture consolidates, gener-
alizes and expands on the the technical details of our

previous experience with the specific problem of apply-
ing machine learning for model-to-model transforma-
tions [13]. Beyond generalizing and validating this pre-
vious result to more types of model transformations,
this paper adds a second case study (for model-to-text
transformations) and includes several technical improve-
ments in the configuration and evaluation of the net-
work to optimize the learning process.

Our proposal is among the first ones to explore and
bridge two different fields: model transformations and
artificial neural networks. The feasibility of our approach
is shown by applying it to realistic scenarios and projects,
while discussing the limitations of neural networks in
this domain.

The rest of the paper is organized as follows. Section
2 describes basic concepts related to neural networks,
and the encoder-decoder LSTM network we use in this
paper. Section 3 presents our neural network architec-
ture that automatically infers model manipulation op-
erations. In Section 4, the architecture is instantiated
and evaluated on a model-to-model transformation and
a code generation scenario. Section 5 presents the lim-
itations of neural networks to deal with model manip-
ulation activities. Related work is discussed in Section
6. Finally, we conclude in Section 7 with future work.

2 Background and Motivation

The approach presented in this paper uses the advances
in Artificial Neural Networks (ANN) that we present
in this section. In particular, we give some background
information on the so-called neural networks and on the
specific type we have used: Long Short-Term Memory
(LSTM), and motivate why they are our choice.

2.1 Introduction to Neural Networks

An ANN can be seen as a structure composed by neu-
rons (also called cells) with directed connections be-
tween them. Each neuron is a mathematical function
that receives a set of values through its input connec-
tions and computes an output value that is transferred
to another neuron through its output connection(s).
Two specific types of neurons are the input and out-
put neurons which do not have input predecessors or
successors respectively and serve only as input and out-
put interfaces of the ANN. Connections have associated
weights (i.e., real numbers) that the neurons use and
that are adjusted during the learning process with the
purpose to increase or decrease the strength of the con-
nection.

A Generic LSTM Neural Network Architecture to Infer Heterogeneous Model Transformations 3

To illustrate all these concepts, Figure 1 shows an
example of the simplest neural network: a perceptron
neuron [14,15] (in green) that receives an input x, which
is a vector with three components, through three input
cells, and generates an output which is a single value.

Fig. 1 Visual representation of a perceptron.

The perceptron propagation rule is given by the fol-
lowing equation (note that θ is a hyperparameter that
needs to be provided):

yi =

{
1 if

∑
wijxj > θi

0 if
∑
wijxj <= θi

Most ANNs are part of a supervised learning pro-
cedure where a set of example input-output pairs are
used to derive a function that can generate or predict
new outputs from completely new inputs. Supervised
learning has two main phases: training and predicting
(transforming in our case). During training, the input
and output pairs from the dataset are used to “teach”
the system until it learns the matching patterns of in-
put/output. Once trained, we can give the ANN an in-
put and it produces its corresponding output.

For instance, in the case of the perceptron, before
training, the weights (wij) are randomly initialized. Dur-
ing training, for each input-output pair (x–y), the weights
are updated according to the following equation:

∆wi = ε(y′i − yi)xi

where ε is a hyperparameter that fixes the learning rate,
y′i is the expected output and yi is the output that the
neural network produces.

These concepts can lead to more powerful neural
networks containing more neurons and layers. For in-
stance, using the same type of neurons, a multi-layer
perceptron [16]—which is an extension and generaliza-
tion of its predecessor—can be built as Fig. 2 shows.

Thus, from a mathematical point of view, ANNs
are complex functions composed by other functions and
equations.

Fig. 2 Visual representation of a Multi-layer Perceptron
with two hidden layers (h1 and h2).

For the training phase, the dataset is split into three
subsets: training, validation and test dataset. The train-
ing dataset contains most of the inputs-output pairs
and is used to train the ANN (i.e., to adjust the weights
of the ANN’s connections). The test dataset is only used
once the training has finished. Its goal is to check the
quality of the ANN’s predictions for inputs it has not
seen before, and hence to study its accuracy. The accu-
racy is calculated as the percentage of predictions our
model gets right out of the total number of predictions.
Thus, it is a number in the range [0; 1]–—the closer to
1, the better.

The validation dataset plays a similar role as the test
dataset, during the training process. Its goal is to con-
trol that the learning process is correct and avoid over-
fitting1. More specifically, the validation dataset is used
to check that during the training process (i.e., while
neural networks’ parameters are being adjusted), any
accuracy increase over the training dataset also yields
to an accuracy increase over the validation dataset (i.e.,
the model is not being overfitted to the data on the
training dataset). Together with the accuracy, the loss
is another metric in charge of monitoring the quality
of the training process and the overfitting. The loss re-
ports the sum of the error made for each example in the
dataset, thus it should be as close as 0 as possible. It is
expected that a decrease in training loss should trigger
a decrease in validation loss.

A more in-depth introduction to neural networks
and all the concepts presented in this section can be
found in [17].

2.2 Long Short-Term Memory

Among all the artificial neural network family types
and configurations [18] we have chosen Recurrent Neu-
ral Networks (RNN) as our subject of study. Unlike its

1 In statistics, overfitting is the situation in which the ANN
is so closely fitted to the training data that it is not able to
generalize and make good predictions for new data.

4 L. Burgueño, et al.

predecessor (feed forward networks, FNN), in RNNs,
the neurons are organized in layers with forward con-
nections (i.e., connections to neurons in the next layers)
as well as back propagation connections (i.e., to neu-
rons in the same layer or previous layers). This back-
propagation mechanism in which the outputs of neurons
are fed back into the network again makes the ANN
“remember” at a step some information received in the
previous steps. This kind of neurons is called a memory
cell and make the ANNs aware of their context.

Long Short-TermMemory (LSTM) neural networks [10]
are a specific kind of RNN composed by LSTM cells
that were specifically created to solve the problem of
the vanishing gradients (used for the backpropagation)
from which their predecessors suffer and which hamper
the learning of long data sequences. Although, compu-
tationally speaking, LSTM neurons are more expensive
due to the increased number of operations and com-
plexity of its propagation function2 they have a longer
“memory” than their predecessors, which makes them
be able to remember better their context throughout
different inputs. For instance, if the operation is to
transform lines of code (one at a time), each line of
code would be an input for the network. At some point
in time, traditional RNNs would be able to remember
only parts of the current input (line of code), while
LSTMs are able to remember previous lines of code
too. Clearly, in our scenario, we may need this long-
term memory to remember previous mappings as part
of a more complex mapping pattern. Therefore, we have
chosen LSTM neural networks as the most suitable net-
works to solve the problem of translation/transforma-
tion.

3 Generic Neural Architecture for Model
Transformations

3.1 Encoder-Decoder Architecture

After exhaustively testing a transformation architec-
ture based on single LSTMs, we realized that not even
LSTMs alone were enough to generate good results. In-
stead, we adopted a more complex framework based
on an encoder-decoder [19] architecture that has been
proven to be the most successful for dealing with trans-
lation problems.

This architecture is composed of two LSTM neu-
ral networks: one that reads the input data (which is of
variable size) and encodes it into a fixed-length numeric
vector (called embedding), and a second one that re-

2 We refer the reader to [10] for details about LSMT cells.

ceives this vector and predicts (transforms in our case)
the output data, which is again of variable size.

In the literature, most works using this encoder-
decoder architecture are applied to sequence-to-sequence
transformations, for example, for natural language trans-
lation. In those cases, the raw input data that needs to
be embedded is a sentence (i.e., a sequence of words).

In our initial experiments, we found out this rep-
resentation to be too simplistic since we were losing
many of the structural information in the models/code.
Therefore, we have settled for a more advanced tree-to-
tree architecture as depicted in Fig. 3. It is composed by
an encoder-decoder enhanced with an attention mech-
anism. As we said above, both the encoder and decoder
are LSTMs. As any supervised learning method, they
need to go through a training phase before they are
ready to use.

This architecture can be used to train neural net-
works for heterogeneous model transformations (i.e.,
model-to-model, model-to-text and text-to-model) with
input-output pairs. Unlike in natural language trans-
lation, we can take advantage of the more restricted
syntax rules of models and/or code to easily derive an
abstract-syntax tree (AST) of our software artifacts to
feed to our neural networks.

During training, we have to embed each AST from
the training dataset into a tree of numeric vectors to
enable their processing by the networks. In the ASTs,
each node contains a word (called token). We use the
one-hot encoding technique3 to transform each token
into a numeric vector. With this, we obtain a tree of
numeric vectors which is the embedding with which
we feed our architecture.

The encoder is a single-layer Tree-LSTM neural
network [20] that takes model embeddings and converts
them into fixed-sized vectors, as needed by the decoder.
As an LSTM is a kind of recursive neural network, it
computes its output recursively by reading the input to-
ken after token. In our work, our architecture does not
deal with sequences of tokens but with trees. There-
fore, the order in which the trees are traversed needs to
be defined. Although trees with an arbitrary number of
nodes can be transformed to embeddings [21], we trans-
formed our trees to binary trees—as Chen [12] proved
that they are more effective for translation purposes—
using the left-child right-sibling representation. Then,
given a binary tree with root nroot and children tl and
tr, the encoding of the tree is recursively calculated as
the concatenation of the encoding of tl, tr and the em-
bedding of nroot. The base case is when a child does not
exist and then the embedding is a vector of zeros.

3 https://www.sciencedirect.com/topics/computer-
science/one-hot-encoding

https://www.sciencedirect.com/topics/computer-science/one-hot-encoding
https://www.sciencedirect.com/topics/computer-science/one-hot-encoding

A Generic LSTM Neural Network Architecture to Infer Heterogeneous Model Transformations 5

Decoder
hidden state

Content

Encoder
outputsEncoder

(Tree-LSTM)
Decoder

(LSTM)

Input Embedding Output Embedding

So
ft

m
ax

A
tt

en
ti

o
n

Input Output

Encoder
hidden state

TRAINING DATASET

Decoder
hidden state

Content

Encoder
outputsEncoder

(Tree-LSTM)
Decoder

(LSTM)

Input Embedding

So
ft

m
ax

A
tt

en
ti

o
n

Encoder
hidden state

OutputInput

TR
A

IN
IN

G
O
PE

RA
TI
N
G

Fig. 3 Neural Network Architecture for Model Manipulation – Components.

The attention mechanism helps the decoder recog-
nise the relevant information in the vectorial represen-
tation of the input AST at each step. This is, each time
the decoder is working on the generation of a node of
the output AST, the attention mechanism locates the
sub-tree in the input AST with useful information to
guide the expansion of the node in which it is working.
For example, if the decoder is generating the type of an
attribute, the attention mechanism helps it by pointing
to the location in which the attribute is defined in the
input AST.

The decoder is a single-layer LSTM network. Dur-
ing training, it takes the vectors generated by the en-
coder and attention mechanism, as well as the output
embeddings4 and generates the vectors that compose
the output AST. These are vectors of real numbers.
This is, the decoder is in charge of performing the ac-

4 Note that these output embeddings are available and used
only during training. Once the training phase is done, they
are neither available nor needed.

tual model transformation. In technical terms, the de-
coder, as another RNN, generates the output token af-
ter token, which in our case is node after node. Our
decoder starts building the target tree iteratively start-
ing from the root node. It receives the encoding of the
root node, computes its value using the softmax layer
and recursively takes the next node as the left child and
the following as the right child. It stops expanding each
branch when it finds the end-of-sequence token (EOS).

As we said before, these vectors are passed through a
neural network for multi-class classification which uses
a softmax activation function [22]. The softmax layer
maps each real number to a number in the (0, 1) range
in such a way that the sum of all of them is up to 1 and
can be interpreted as probabilities. The softmax output
is a vector with as many components as tokens there are
in the output vocabulary. Then, in each iteration, the
component with higher probability is selected and its
corresponding token passes to be part of the output of
the neural network architecture. This way we obtain the

6 L. Burgueño, et al.

actual output representation for a specific input. Note
that this softmax neural network is trained, and works
together, with the decoder.

Once the training phase finishes, the neural net-
works are ready to receive inputs and perform the model
transformation it has been trained for, generating as
output the corresponding expected artifact.

This generic neural architecture must be configured
with a number of hyperparameters to optimize the pre-
diction. Data also needs to be pre-processed and post-
processed to conform to what is expected by the neu-
ral network input layers, and to increase the network’s
performance. In the next sections, we discuss the opti-
mal hyperparameters for the model transformation sce-
nario, and how data is pre and post processed.

3.2 Hyperparameters

In machine learning, hyperparameters are those param-
eters that are not learned during training. Instead, they
are adjusted by experts to improve the learning process.
Choosing the right values has a critical impact on the
success and performance of the network. Since there is
no rule to choose the best hyperparameters for a spe-
cific task [23], using our knowledge of the problem and
some experimentation we provide a hyperparametriza-
tion by default, which we have found out to be the best
for our two cases presented in this paper. For this ex-
perimentation, apart from using these two cases, we ar-
tificially created datasets covering further model trans-
formations with both simple and complex mappings,
small and large input-output examples, small and large
datasets, etc. In the following, we provide a brief de-
scription of each hyperparameter—note that more de-
tailed explanations can be consulted in [17]—and detail
our default hyperparametrization5.

Neural networks learn by repetition, so the same
input-output pairs from the training dataset must be
given to the ANNs several times during training. The
training phase is divided in epochs. An epoch is the
number of times the complete training dataset is passed
through the ANNs. In each epoch, the training dataset
is randomly shuffled and split into batches of input-
output pairs that are passed through the ANN. Each
time a batch is passed, an iteration is completed. The
number of epochs and batch size can be adjusted de-
pending on the size of the dataset to improve the learn-
ing process. Nevertheless, we provide a configuration
by default which trains with 30 epochs (i.e., the train-
ing dataset is passed 30 times through the networks)

5 Different values can be provided as parameters when ex-
ecuting our python implementation

and batches of 64 units, (i.e., 64 input-output pairs are
processed by the neural networks before their internal
parameters are updated).

As we already stated, we have used a shallow LSTM
network with one single layer for the encoder and a
single-layer LSTM network for the decoder. Unlike one
may think, increasing the number of layers more than
needed (i.e., using deep learning) may lead to overfitting
to the training data, resulting in a very poor quality of
results after training.

For the embedding and hidden vector size, we
have selected 256 units. Although always chosen em-
pirically, note that this value needs to always be higher
than the vocabulary size. Thus, it should be increased
if our approach is used in scenarios with larger vocab-
ularies than those that we present in this paper. There
is also a tight relation between the dimensionality of
the vectors and the performance since the higher di-
mensionality, the more operations need to be computed
during training and prediction.

One of the hyperparameters to prevent overfitting
is the dropout. Its mission is to select which weights
are updated and which are not in each iteration. If all
the weights were adjusted in each iteration, overfitting
would be more likely to happen. We have set this pa-
rameter at 0.75, which means that each neuron is up-
dated with a probability of 0.25 or ignored with a prob-
ability of 0.75.

Finally, the learning rate is a hyperparameter in
the range [0, 1] that controls how much the weights are
adjusted, i.e., how much the neural networks learn from
each input-output pair. Empirically, we have chosen a
learning rate of 0.005.

3.3 Data preprocessing and postprocessing

One key issue of training neural networks is the quality
and quantity of data. To meet this requirement, we pre-
process the raw data before feeding it to our networks
to (i) fulfil their input requirements, and (ii) improve
the performance of the system.

First of all, we take advantage of the more restricted
syntax of models and code and represent these artifacts
as abstract-syntax-trees (AST) before feeding them to
our networks. To do this, we create a tree representation
of the models and/or code in JSON format.

For each object in the model, we create a branch
hanging from the root node. Each object has two chil-
dren: one that is always present and captures its iden-
tifier and type, and one to keep track of its features
(e.g., attributes) and its values. When the values are
of primitive types, we store the actual value. On the

A Generic LSTM Neural Network Architecture to Infer Heterogeneous Model Transformations 7

contrary, when values are not an instance of a primi-
tive type—i.e., they are references to other objects—we
store the identifier of the referenced object). We con-
sider associations as first class citizens, too, hence each
link present in the model is represented in the tree as
a branch hanging from the root node. These branches
contain information about: the source object, the tar-
get object and the role name. Bidirectional associations
are represented as two branches hanging from the root
node, each one representing one association role.
A concrete example illustrating how this representation
looks in practice is presented in Section 4.

Our dataset is composed of three files, one contain-
ing the training data, other for the validation data and
other for test data. Each of these files contains an ar-
ray of JSON objects. Each object contains the input
and output model/code of our architecture. Listing 1
shows the structure that a JSON file must follow. The
keywords that our architecture uses to parse the JSON
files and build the tree for its internal representation are
source_ast, target_ast, root, and children. We present
in Section 4 the structure of these files in more detail.

As part of this work, we have built a simple Java
program that receives UML models as input, parses
them using the EMF API and and generates their corre-
sponding tree representation. Seamlessly, other formats
can be supported as long as a driver is created for them.

Listing 1 JSON file structure.

[
{" source_ast " : { . . . } ,
"target_ast " : { . . . }

} ,
. . .
{" source_ast " : { . . . } ,
"target_ast " : { . . . }

}
]

During training, neural networks build a dictionary
with each token in the training dataset. Any word not
present during training will be interpreted as the token
UNK when transforming models. The networks will not
be able to understand its meaning and thus they might
fail performing the transformation. Unlike natural lan-
guages in which the vocabulary is closed, in our case
there is an infinite dictionary because of all the names
a developer can give to the entities. This is known as
the unlimited vocabulary problem. To solve this prob-
lem, and avoid the presence of the UNK token, during
the preprocessing phase, we rename all the tokens that
are not keywords to a closed set of words (for instance,
classes’ names are A, B, C, ..., attribute names are x,
y, z, ..., etc.) and keep track of this renaming to “undo”
it in a postprocessing phase.

Another advantage of this renaming phase is the
reduction of the scarcity of data, which improves the
accuracy of the output artifact. For the case studies
presented in Section 4, we measured the quality of the
result with and without the renaming and observed that
for the same datasets, the renaming of non-keywords
raised the accuracy between 0.25 and 0.4.

In the next section, we show the results given by our
architecture applied on two typical model transforma-
tions.

4 Case Studies

In this section, we show the generality and usefulness
of our architecture and study its feasibility by applying
it on two case studies covering two of the main oper-
ations that are performed on models: model-to-model
transformations and code generation6.

For each case study, we show how the generic archi-
tecture has been successfully instantiated and its eval-
uation in terms of the quality and performance of the
results in each case study.

The experiments that we present in this section use
the PyTorch library7 and have been executed on a ma-
chine with Ubuntu 16.04, an Intel Xeon E5 (2.50GHz)
processor, 32Gb of RAM memory, and no support for
Nvidia CUDA3. Although using the GPU that an Nvidia
Graphic Card provides with CUDA usually speeds up
the training process and improves its scalability, we felt
that it was more realistic to assume that our target user
would not have such specific equipment even if it is be-
coming more and more common. We plan to study the
performance improvements in the near future.

4.1 Model-to-Model Transformations

The model-to-model transformation case study is the
well-known model transformation example Class-to-Re-
lational [24]. This transformation takes as input a model
conform to the Class metamodel and transform it into
a Relational model. Figure 4 presents the input and
output metamodels.

Translation rules. Some examples of translation
rules8 that the neural networks have to learn are:

6 The code and data required to reproduce our exper-
iments are available at: https://github.com/modelia/ai-
for-model-manipulation

7 https://pytorch.org/
8 The ATL implementation of the transformation contains

1 helper and 6 rules – 94 LoC in total (without counting
the ATL file headers). For full transformation details, please,
check [24].

https://github.com/modelia/ai-for-model-manipulation
https://github.com/modelia/ai-for-model-manipulation
https://pytorch.org/

8 L. Burgueño, et al.

– Each Class is transformed into a Table;
– Each DataType is transformed into a Type;
– Each single-valued Attribute of type DataType is

transformed into a Column;
– Each multi-valued Attribute instance of the type

DataType is transformed into a Table.

Listing 2 Input model of Figure 5 as JSON tree.

{
"source_ast " :
{ "root " : "<MODEL>",

"children " : [
{ "root " : "<OBJ>",

"children " : [
{ "root " : "D " ,

"children " : [
{ "root " : "Datatype " ,
"children " : [] } ,
{ "root " : "<ATTR>",

"children " : [
{ "root " : "name " ,

"children " : [
{ "root " : "Integer " ,

"children " : [] }] }] }] }] } ,
{ "root " : "<OBJ>",

"children " : [
{ "root " : "A " ,

"children " : [
{ "root " : "Class " ,

"children " : [] } ,
{ "root " : "<ATTR>",

"children " : [
{ "root " : "name " ,

"children " : [
{ "root " : "x " ,

"children " : [] }] }] }] }] } ,
{ "root " : "<OBJ>",

"children " : [
{ "root " : "B " ,

"children " : [
{ "root " : "Attribute " ,

"children " : [] } ,
{ "root " : "<ATTR>",

"children " : [
{ "root " : "name " ,

"children " : [
{ "root " : "y " ,

"children " : [] }] } ,
{ "root " : "multivalued " ,

"children " : [
{ "root " : "false " ,

"children " : [] }] }] }] }] } ,
{ "root " : "<ASSOC>",

"children " : [
{ "root " : "att " ,

"children " : [] } ,
{ "root " : "A " ,

"children " : [] } ,
{ "root " : "B " ,

"children " : [] }] } ,
{ "root " : "<ASSOC>",

"children " : [
{ "root " : "type " ,

"children " : [] } ,

{ "root " : "B " ,
"children " : [] } ,

{ "root " : "D " ,
"children " : [] }] }] } ,

"target_ast " :
{ . . . }

}

Training dataset. For this example we created a
synthetic dataset in which each example contained an
input model with up to 30 model elements (classes, at-
tributes, datatypes) and its corresponding output model.
Figure 5 shows one of the examples that are part of our
dataset.

The input and output of our architecture, as stated
in Section 3.3, are trees in JSON format. For readability
reasons, Figure 6 presents with a graphical notation
the tree derived from the input model in Figure 5, and
Listing 2 its JSON representation.

We have used this synthetic case study to analyse
how our neural networks perform in terms of correct-
ness (accuracy and loss) and performance, and which
are the factors (number of models, size of models, etc.)
that impact these two properties and how they are re-
lated.

4.1.1 Correctness of the results

As explained in Section 2.1, the correctness of ANNs
is studied through its accuracy and overfitting (the lat-
ter being measured through the validation loss). The
accuracy should be as close as 1 as possible while the
validation loss as close to 0 as possible.

The accuracy is calculated comparing for each in-
put model in the test dataset whether the output model
transformed by the networks corresponds with the ex-
pected expected output model. The formula is:

accuracy =
of correctly transformed models

of input-output models in the test dataset

In Fig. 7, we show how the accuracy grows and
the loss decreases with the size of the dataset, i.e., the
more input-output pairs we provide for training, the
better our software learns and predicts (transforms). In
this concrete case, with a dataset of 1,000 models, we
reached an accuracy of 1 and zero loss (meaning that
no overfitting was taking place), which means that the
ANNs are perfectly trained and ready to use. Note that
we show the size of the complete dataset but, we have
split it using 64% of the pairs for training, 16% for val-
idation, and 20% for testing. It is worth emphasizing
that these results (as little as 750 models to reach a
perfect training) are specific for this concrete example

A Generic LSTM Neural Network Architecture to Infer Heterogeneous Model Transformations 9

NamedElt

+name:String

Classifier

Attribute

+ multivalued :Boolean

type+

DataType Class

super+
* *

att+

*
{ ordered }

owner

+ BooleanisAbstract:

NamedElt

+name:String

Classifier

Attribute

+multivalued :Boolean

type+

DataType Class

super+
*

*

att+

*
{ordered }

owner

+ BooleanisAbstract:

Named

+ name: String

+ owner

+ col

{ ordered }

+ keyOf 1..* + key *

TypeColumn

*

* + typeTable

Fig. 4 Class (left) and Relational (right) metamodels from [24].

name = Integer

D : DataType

name = x

A : Class

name = y
multivalued = false

B : Attribute

att

type

name = B

A : Table

name = objectId

key : Column

name = y

B : Column

col

key

name = Integer

D : Type

type

type

Fig. 5 Input-output example for the Class2Relational case study.

Fig. 6 Input tree corresponding to the input model of Fig-
ure 5.

since the number of models needed depends on different
factors (which cannot be predicted even with heuristics
but discovered empirically) as we will show next9.

ode ataset

ode ataset

0.05

0.66
1 1

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1,000

NUM MODELS IN DATASET

Accuracy

9.5

0.24 0 0
0

2

4

6

8

10

0 200 400 600 800 1,000

NUM MODELS IN DATASET

Loss

Fig. 7 Variation of accuracy and loss during training.

9 For the sake of comparison, in this particular case, we
are inferring the same model-to-model transformation that
we presented in [13]. This time the transformation is learned
with a dataset of only 750 models instead of 1,000.

4.1.2 Performance

There are two performance dimensions we need to con-
sider: how long it takes for the training phase to com-
plete and, once the network has been trained, how long
it takes to transform an input model with it. Note that
the training needs to be performed only once per each
transformation scenario.

Training performance: The two main factors that
impact the training time are the size of the training
dataset (i.e., the number of models that compose the
dataset) and the average size of models in it.

Figure 8 shows the performance of the training phase
for the Class2Relational example depending on (1) the
size of the dataset and (2) the size of the models that
compose it. To avoid as much noise as possible due to
the influence of the transformation or different types
of models, we have reduced the transformation that
we want the neural network architecture to learn to
only one rule: DataType2Type. To do this, we have
created datasets whose input-output pairs only contain
DataTypes and their corresponding Types.

To study the first case (1), each input-output pair
only has one DataType and Type, respectively. Note
that due to the simplicity of the transformation and
the fact that all input models are basically the same,
we are able to reach maximum accuracy by using a
dataset with a very few models (less than 10), never-
theless we built datasets of increasing sizes to test the
performance of our architecture when the complexity of

10 L. Burgueño, et al.

other transformations require larger datasets. The top
of Fig. 8 shows how the training time grows linearly
when increasing the size of the training dataset.

To study the second case (2), we have kept constant
the number of input-output examples to 100 pairs of
models and have varied the number of elements in each
model, we have added models with a different number
of DataTypes and Types. On the right-hand side we
study the impact of growing the average size of the
models (ranging from 1 to 30 DataType-Type pairs).
As shown at the bottom of Fig. 8, there is a quadratic
growth when increasing the size of the models.

Fig. 8 Impact of the size of the training dataset (top) and
of the size of the models (bottom) when training.

Transformation performance: After the train-
ing, we have evaluated the transformation time of the
network on a set of input models. Figure 9 shows that
the transformation time grows linearly with the number
of model elements.

As a reference, we have also compared the execution
time of our ML-based transformation with the execu-
tion time of the ATL version of the same transformation
for our the synthetic models and the model provided
in [24], which contains 2 objects of type Class with 2
and 3 object of type Attribute each and 2 objects of
type Datatype. Though ours was a little bit slower for
the models we tested (for instance for the model in [24]

Fig. 9 Impact of the size of the models when transforming.

ATL takes 0.033 seconds while our approach takes 0.722
seconds), time is within the same order of magnitude:
less than a second for models up to 30 elements to be
transformed. Therefore, we do not see this as a nega-
tive aspect for ML-based transformations. Although a
bit slower, the time in all cases is quite reasonable and
the advantages of our approach may pay off.

4.2 Code Generation

The goal of this case study is to train our networks to
take as input a UML class model and generate its cor-
responding Java code (focusing on the structural part).
The generated code should follow the coding standards
imposed by the project, which we present below.

Translation rules. Due to the abstraction gap be-
tween UML and Java, there are many variability points
in the translation.

Some translation rules can be considered as the de
facto standard because of share object-oriented pro-
gramming concepts that exist both in the UML model
and the Java code. Examples of such translation rules
are:

– UML classes are transformed into Java classes;
– UML attributes into Java attributes and;
– UML associations into Java attributes referencing

the class in the other end of the association.

Other translation rules vary depending on the project
or company’s style, as for example:

– Primitive data type conversions, e.g., a UML at-
tribute whose type is Real could be mapped to a
Java attribute with type double, Double or float ;

– Visibility management. Public UML attributes could
be transformed into Java public attributes or as a
private attributes plus the corresponding getter and
setter public methods;

– UML internal model structure in packages can be
replicated in Java optionally.

A Generic LSTM Neural Network Architecture to Infer Heterogeneous Model Transformations 11

Fig. 10 UML model - Java code example.

This means that there is no universal UML-to-Java
translation but it varies depending on the company
or project. Our network architecture needs to learn
the translation of both standard and project/company-
specific aspects as part of its training in order to obtain
a generator that reflects the specific company choices.
Note that we would face a similar discussion when deal-
ing with the opposite scenario, a Java-to-UML transfor-
mation.

In our particular case, given our training data (which
we present below), our neural network architecture learns
to translate each UML class into a Java class which
contains the same attributes and the same operations,
and that associations are mapped to Java attributes. It
also learns that all these elements must have the same
name. It learns that the UML visibilities private (-),
public (+), and protected (#) are mapped to the Java
visibility keywords private, public, and protected ; and
that the UML visibility package (∼) has no keyword as-
sociated in Java. It also learns that the primitive types
Real, Integer, String, Boolean and UnlimitedNatural are
transformed into the Java keywords double, int, String,
boolean and int, respectively. Finally, our architecture
learns that for each private attribute or association, it
has to generate its getter and setter. Figure 10 shows
an example of an input-output pair that our neural net-
work architecture has learned.

Training dataset. To the best of our knowledge,
there are no public repositories with enough model-
code examples from a single company or project to
train our neural network architecture. Therefore, we
created our own training dataset. We have downloaded

the source code of the Eclipse IDE, which is written
in Java. To obtain the corresponding UML model, we
have reverse-engineered it using MoDisco [25], obtain-
ing a Java model of the code. We transformed this Java
model to a pure high-level UML model by removing all
the “low-level” details such as method implementations.

From these artifacts, we derived the training dataset
(training, validation and test files), which is the set of
pairs (UML-class, Java-class), preprocessed as stated
in section 3.3. For this case study, we have to transform
into JSON trees both models and code. In the previous
subsection, we presented how class diagrams are trans-
formed into trees and how these trees are mapped to
JSON files to be readable by our architecture. For the
code part, which is the value of target_ast, we have
taken the code, built its abstract-syntax tree (AST) and
then transformed those trees to JSON format.

The dataset (D1) contains 25,375 pairs.
We discarded10 some pairs because due to the size

of their classes they fell into one of these known issues:

1. They did not fit into RAM memory. Pytorch, which
is the ML library used in this work, displayed the
message “not enough memory: Buy new RAM!” when
stopping the execution due to an excessive size of
some of the input-output examples that it was un-
able to process. This is a current constraint imposed
by the technology (Pytorch or any other library)
dealing with neural networks.

10 Another solution could have been to slice those classes in
chunks

12 L. Burgueño, et al.

Dataset Size Training time Acc Loss

D2

1,000 21’ 30” (0.36h) 0.43 9.85
5,000 54’ 30” (0.91h) 0.56 3.83

10,000 2h 57’ 15” (2.95h) 0.67 2.62
15,000 4h 28’ (4.47h) 0.69 2.44
20,480 5h 28’ (5.47h) 0.69 2.44

D3

1,000 23’ 30” (0.39h) 0.71 5.08
3,000 1h 1’ 28” (1.02h) 0.88 1.98
5,000 1h 24’ (1.40h) 0.92 1.08
7,000 2h 23’ 41” (2.39h) 0.94 1.37
8,937 3h 8’ (3.13h) 0.94 1.26

Table 1 Training results.

2. Their size led to the problem of long-term depen-
dencies [26], which imposes the constraint that each
input-output cannot be of an arbitrary size because
RNNs cannot deal with examples with hundreds of
elements yet.

The curated dataset (D2) contains 20,840 examples.
A second issue we faced when training the network

with this dataset was that:

3. There were inconsistencies in the training data com-
ing from the original Java code. For instance, when
there is inheritance between classes, the getters and
setters of an attribute are placed arbitrarily in the
class in which the attribute is defined or in any sub-
class. When there is no exact rule saying where
getters/setters should be placed, neural networks
are confused and might fail. Typically, if for the
same input, neural networks receive different out-
puts (which is usually the case when writing code [27]),
they follow the “rule” which they have seen more of-
ten.

In order to measure the impact of this “human fac-
tor” in the accuracy of the translations, we created a cu-
rated version of D2 for comparison purposes. Instead of
accounting for all possible inconsistencies, we decided to
remove all inherited classes as a means to remove many
of them in one single step. As a result, we obtained the
dataset D3, which contains 8,937 examples.

4.2.1 Correctness of the results

For each experiment, we took the complete dataset and
split it into three: 64% for training, 16% for validation
and 20% for testing, which is a popular ratio that, em-
pirically, has worked well in our case.

The results on accuracy and loss, after training our
architecture with the dataset D2 and D3 of increasing
size, are shown in Table 1.

The top chart of Fig. 11 shows the results for D2
(and several subsets of different sizes). Despite feeding
the network with all the data available, the accuracy

0.43 0.67 0.69 0.70

9.85

3.83
2.62 2.44

2.34

0
1
2
3
4
5
6
7
8
9

10

1,000

0.56

6,000 11,000 16,000 21,000

DATASET SIZE (D2)

accuracy loss

0.71 0.88 0.92 0.94 0.94

5.08

1.98

1.08 1.37 1.26

0

1

2

3

4

5

6

1,000 3,000 5,000 7,000 9,000

DATASET SIZE (D3)

accuracy loss

Fig. 11 Training phase – Correctness.

0.36 0.91

2.95

4.47

5.47

0.39

1.02

1.40

2.39

3.13

0

1

2

3

4

5

1,000 6,000 16,000 21,000

T
IM

E
 (

H
O

U
R

S
)

11,000
DATASET SIZE

D2 D3

Fig. 12 Training phase – Performance.

stabilizes around 0.7. In comparison with the results for
D3 (shown in the bottom chart of Fig. 11), we observe
how, even with less data, the accuracy increases up to
0.94. This highlights the importance of the quality (i.e.,
consistency in this case) of the training data.

The accuracy has not reached 1 due to other small
inconsistencies and the presence in the test dataset of
situations not covered during training. A simple exam-
ple of the former issue occurs when the pattern that

A Generic LSTM Neural Network Architecture to Infer Heterogeneous Model Transformations 13

most input-output pairs follow is that attributes of type
Real are transformed into attributes of type float. Nev-
ertheless, there are a few cases in which Real attributes
are transformed into double attributes. Since our neural
networks learn the general pattern during the training
phase, they transform Real into float. Then, during the
testing phase, when it happens that an input-output ex-
ample contains in its output a double, the expected out-
put (i.e., double) and the generated output (i.e., float)
do not coincide and our differencing algorithm marks
it as mistaken, resulting in a decrease in the accuracy.
An example of the latter case occurs when the training
dataset does not contain any example with enumera-
tions. When during the testing phase our architecture
finds an input that contains an enumeration, it fails be-
cause it is a case for which it was not trained and did
not learn how to handle.

Note that, as explained in Section 2.1, the accuracy
is calculated as:

accuracy =
of correct outputs

pairs in the test dataset

and that we use a full tree differencing algorithm to
compare the output produced by the networks (i.e., the
generated code) and the expected output (i.e., expected
code) for each pair input-output pair in the test dataset.
This means that, if a single token fails, we mark the
code generation for that pair as a failure. This can be
regarded as a worst-case scenario as we are sometimes
discarding generated code that it is semantically equiv-
alent to the expected output even if it presents slight
syntactic differences. We could relax this comparison by
evaluating our results with metrics such as word error
rates (WER), BLEU [28] and NIST [29].

4.2.2 Performance

Figure 12 shows the training time for our two datasets
(and subsets). It shows how the training time grows
linearly with the size of the dataset.

Once the networks are trained, the code generation
for a model takes an average time of 18 milliseconds
with a standard deviation of 3 milliseconds. This shows
that the networks are efficient enough to be part of any
continuous software development process.

4.3 Threats to Validity

In this subsection, we elaborate on several factors that
may hinder the validity of our results. We follow the
guidelines proposed in [30].

Internal validity – are there factors which might af-
fect the results in the context the case studies?. Con-
cerning the measurement approach we used in our case
study, ongoing threads within the OS could affect our
performance measurements. To address this issue, we
stopped all possible tasks, including those that are au-
tomatically started. Furthermore, part of the training
data we have used is synthetic due to the shortage of
public data—either artificially created or derived from
real data (i.e., reversed-engineered models). Neverthe-
less, we created it in such a way that it faithfully rep-
resent reality and does not benefit our approach in any
single way. We have also discussed how the characteris-
tics of the training data (quality, quantity and coverage)
impact the results.

External validity – to what extent is it possible to
generalize the findings for other type of model manip-
ulation operations? So far, we cannot claim any cor-
rectness and/or performance results outside the context
of the presented case study. Nevertheless, the evalua-
tion method used in the case study can indeed be ap-
plied on other model manipulation tasks. Since each one
of these manipulations are reduced to pairs of input-
output trees the results will depend on the quality of
the training data (amount of data, coverage, size of the
input-output pairs, etc.) a lot more than on the kind of
manipulation operation itself.

5 Current Limitations and Mitigation Plans

As shown in the previous section, our architecture is a
prominent new way to address model transformations.
The instantiation of the architecture only requires to
provide the input and output models/code encoded as
trees in a textual format. For code, this is straight for-
ward using the AST of the program. For models, there
is not one single way to do it, but all the possible gener-
ated trees would be equally valid, i.e., our architecture
does not impose any restriction on the structure or con-
tent of the trees.

There are some technical limitations related to the
use of neural networks that need to be considered before
choosing our architecture over traditional approaches.
These are:

Size and quality of the training dataset. ANNs
require a considerably amount of data for training. Un-
fortunately, there is no rule that states how much data
is needed. It fully depends on the concrete mapping to
learn, as complex mappings will require more data than
simple mappings.

14 L. Burgueño, et al.

If the models available are not enough11 we face the
risk of getting poor results.

Strategies to mitigate this issue would include data
augmentation techniques (e.g., reusing model mutation
procedures or employing Generative Adversarial Net-
works (GAN) [31] to generate further examples for a
core set) or apply transfer learning12 to avoid starting
the learning process from scratch.

The quality of the training is also tied to the diver-
sity of the dataset. An ANN can only predict scenarios
that follow a pattern that it has seen before. Coverage
metrics for the input-output metamodels [33] and the
use of graph kernel techniques [34] could give feedback
to the user regarding the need for adding more samples
to cover for corner cases.

Operations with values and evaluation of ex-
pressions. ANNs are still a field under heavy develop-
ment. Although the state of the art presents improve-
ment day after day, they are some aspects for which
no solution is available yet. For which it affects our ap-
proach, ANNs are unable to perform operations with
values and evaluation of expressions. For now, our neu-
ral network architecture deals with the mapping from
elements between the input and output domains, but it
is not able to deal with the evaluation of expressions.
For instance, our architecture is not be able to compute
mathematical operations, operations with strings, etc.

Fortunately, given the importance of such challenge
in many domains, this is an active research topic and
we are confident that, at the current innovation pace,
neural networks obstacles will be surpassed in a not-so-
distant future.

Large inputs/outputs.We have reported that neu-
ral networks are not able to deal with large inputs and
outputs. This problem can be addressed by slicing mod-
els and code in order to avoid the problem of running
out of memory and having large models for which neural
network-based approaches performs poorly. This slic-
ing, manipulating and putting the pieces back together
may raise other problems due to the dependencies of
the different chunks. Nevertheless, this is not a new
problem and there are available solutions to deal with
it such as [35].

Apart from these technical limitations, there is an-
other important limitation which is the social accep-
tance. Social factors may also hamper the adoption of

11 The challenge of collecting and curating model reposito-
ries is well-known in our community
12 Transfer learning is the improvement of learning in a new
task through the transfer of knowledge from a related task
that has already been learned [32].

a “gray-box” ML-based approach13. Users may be re-
luctant to trust a piece of software that they are not
able to understand. As done in other AI applications,
adding explanation capabilities to the system will be a
must.

6 Related Work

The typical solution to tackle model manipulations is to
write a transformation program using a specific trans-
formation language [36]. In the model transformation
field, we have plenty of well-known examples of model
transformation languages such as ATL [1], QVT [37]
and ETL [38] that could be use to write such transfor-
mations. Still, the adoption of these languages in the
industry is limited. Model transformation languages are
not very intuitive to non-expert users and their IDEs
usually lack the advanced facilities (e.g., nice debugging
tools) required to develop transformations.

Model Transformation By-Example (MTBE) is an
attempt to simplify the writing of exogenous model
transformations [39–43]. In an MTBE approach, users
have to provide source models, their corresponding tar-
get models as well as the correspondence between them—
for which a correspondence language has to be used.
From this, the MTBE approach generates partial map-
pings that form the basis of the transformation. Al-
though these approaches free users from learning a full
transformation language, they still have to learn a cor-
respondence language and manually build/complete the
generated transformation mappings.

Kessentini et al. [44,45] use search-based techniques
to generate target models even if there is a limited num-
ber of examples available. The basic idea is to find
among the examples the ones that are probably the
closest match to the source model the user is trying to
transform. Nevertheless, similar to the previous MTBE
approaches they require the existence of transformation
traces for the available examples so that they can gen-
erate the optimal solution.

Lano et al. [46] propose a method to infer model
transformation mappings from natural language model
transformation requirements. The method starts by ap-
plying natural language processing (NLP) [47] to obtain
clauses that are either mappings or constraints. Miss-
ing mappings are inferred by using metamodel match-
ing like Data Structure Similarity [48]. While this ap-
proach requires less available data (mappings are fur-
ther enhanced by validating them with MTBEs and cor-
recting them with inductive logic programming [49],
13 Unlike black-box approaches, our contribution is grey-box
since details such as its architecture, (hyper-)parameter val-
ues, training method and training data are available.

A Generic LSTM Neural Network Architecture to Infer Heterogeneous Model Transformations 15

and thus, optimal results still need some examples to
rely on) than ours, it does depend on the availability
of explicit transformation requirements. Moreover, in
our work, by inferring model transformations with neu-
ral networks instead, transformations learn the compa-
ny/project style in the process, which is not typically
collected in natural language requirements.

Baki et al. [50] are able to discover more complex
transformations by splitting the transformations traces
in pools and applying genetic algorithms. Again, trans-
formation traces are needed for the discovery phase.

In contrast to previous works, our approach does not
require any kind of correspondence or tracing informa-
tion to be provided by the user or domain expert and
learns purely from the couples of input/output models.
This enables non-expert users to employ our approach.

Model transformation is only an instantiation of the
more general problem of data transformation, which
shows up across many fields of computer science (e.g.,
databases, XML, modeling, and big data). This topic
has been largely addressed by the (relational) database
community, especially dealing with the heterogeneity
of the data sources and the impedance mismatch prob-
lems [51–53]. Nevertheless, to the best of our knowl-
edge, machine learning based approaches have not been
attempted in said community to address the problem
of schema manipulation. We believe our results can be
replicated in this context as well.

Feature location has some overlapping with model
transformations. Feature location has been thoroughly
explored for source code [54]. For artifacts resembling
models, authors in various studies [55–57] propose fea-
ture location algorithms based on retrieval techniques
(e.g., latent semantic indexing in NLP), rather than ma-
chine learning. In the modeling community, Ho-Quang
et al. [58] encode models to classify UML class dia-
grams, and Marcén et al. [59] propose an ontology-
based model fragment encoding to enable requirement
traceability link retrieval. Although our problem is to
infer any generic model transformation, we share with
the model information retrieval problem the need to
encode models in a computer-exploitable format. For
such a task, encodings used in information retrieval are
domain-specific (e.g., based on an existing ontology).
We use instead model embedding that are specific to the
particular input-output dataset, not the domain knowl-
edge.

So far we have focused on works in the that apply
machine learning to model transformations. There are
other works that apply it to other model-driven engi-
neering problems. As we present in the following, such
works are complementary to ours. For instance, Barriga
et al. [60] uses reinforcement learning [61] for model

repair. In our work, we have used neural networks—
which a form of supervised learning—while reinforce-
ment learning is a different branch of machine learn-
ing in which an agent interacts with an environment
and learns by receiving rewards (i.e., trial and error).
Although a promising field, it remains unclear whether
reinforcement learning would be appropriate to address
our problems. Nguyen et al. [62] propose an approach
to automate the classification of metamodel reposito-
ries with machine learning. The architecture is a feed
forward neural network [63]. Besides the obvious dif-
ference in the task performed (classification), and the
architecture (feed-forward neural network), the mod-
els are encoded as features vectors instead of dedicated
embeddings for model transformation.

Although in the broader software engineering com-
munity machine learning techniques have also been ap-
plied to infer knowledge as models from unstructured
project data (e.g., [64–67]), these tasks are out of the
scope of our work since our approach deals only with
systematic model manipulations whose input and out-
puts are (semi-)structured data that can be represented
as trees.

The programming research community has been much
more active in the area of mixing machine learning and
(code) transformation. In [68], Chen et al. use LL ma-
chines, neural programs and a two-phase reinforcement
learning-based search technique to infer programming
language parsers from input-output pairs. In [69], the
authors propose an algorithm that learns the style of
a codebase, and suggests revisions to improve stylistic
consistency. The Aicodoo tool [70] uses machine learn-
ing to automatically write code.

The main difference between these approaches and
our work resides in the fact that they focus on code,
while we operate on models, which demanded several
adaptations. Although we were inspired by [68] in sev-
eral points such as the encoding of the inputs and out-
puts of the neural networks and the need of pre- and
post-processing steps to better fit model transformation
problems, not only the application domain differs but
also the pre- and post-processing steps are different as
well as the architecture used to solve the problem of
inferring mappings.

7 Conclusions and perspectives

We have explored a novel approach for inferring het-
erogeneous model transformations based on neural net-
works. Our results show the potential of this approach.
The approach has been validated in a classic model-
to-model transformation scenario and on realistic code-
generation entreprise-scale scenario.

16 L. Burgueño, et al.

Throughout our experiments, we have identified im-
portant limitations related to both neural network tech-
nologies and methodology aspects as reported in Sec-
tion 5. Given the current pace of innovation in the ML
community, we are confident that some of them will be
unblocked soon. Nevertheless, we hope that companies,
open source communities and other interested parties
appreciate the value in this approach and decide to take
the necessary steps to integrate it in their development
processes, especially when facing a number of repetitive
projects.

Beyond the directions pointed out in the previous
section, we also plan to extend our approach in other
several directions to make it more enticing.

First of all, we would like to take advantage of the
functioning of the softmax layer and the fact that its
output can be seen as probabilities associated to each
node of the output tree to provide a confidence value as-
sociated to each model/code that our architecture gen-
erates as well as to each element composing it.

In new projects with evolving practices or where the
styling guidelines may be slightly different from exist-
ing projects, our neural network architecture has to be
retrained from scratch. We plan to study how trans-
fer learning (i.e., the reuse or refinement of pre-trained
software artifacts that were trained for a specific task
as starting point for a second task) can decrease the
amount of data needed to train networks and improve
the performance of our architecture.

We will extend the network capabilities to cover the
more complex scenario of the generation of basic behav-
ioral code, too. The general architecture covers already
this case (behavioural code can also be expressed as
trees) but we may need to explore the best hyperpa-
rameters for this scenario.

The use of Transformers [71] has been proven ben-
eficial for tasks involving natural language processing.
Despite its admirers [72] and detractors [73], we would
like to study whether an architecture based on Trans-
formers could impact our results.

Additionally, we would like to continue the valida-
tion of our approach by exploring how it fares when
faced with transformation chains e.g. round-trip syn-
chronization model-code-model [74].

Finally, at the tool level, we plan to provide connec-
tors for models other than EMF, and pretrained net-
works for a variety of simple cases to help companies
kickstart the adoption of our architecture.

Acknowledgements This work is supported by Spanish Re-
search project and TIN2016-75944-R and CEA in the context
of the Modelia initiative.

References

1. F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A
model transformation tool, Science of Computer Pro-
gramming 72 (1-2) (2008) 31–39.

2. Eclipse, Acceleo (2006).
URL http://www.eclipse.org/acceleo/

3. Eclipse, Xtext (2009).
URL https://www.eclipse.org/Xtext/

4. L. Burgueño, J. Cabot, S. Gérard, The future of model
transformation languages: An open community discus-
sion, Journal of Object Technology 18 (3) (2019) 7:1–11.
doi:10.5381/jot.2019.18.3.a7.

5. A. Forward, T. Lethbridge, Problems and opportunities
for model-centric versus code-centric software develop-
ment: A survey of software professionals, Proc. of the In-
ternational Workshop on Models in Software Engineering
(2008) 27–32.

6. B. Selic, What will it take? A view on adoption of model-
based methods in practice, Software and Systems Mod-
eling 11 (4) (2012) 513–526. doi:10.1007/s10270-012-
0261-0.
URL https://doi.org/10.1007/s10270-012-0261-0

7. Y. Wang, B. Zheng, H. Huang, Complying with coding
standards or retaining programming style: A quality out-
look at source code level, Journal of Software Engineering
and Applications 1 (1) (2008) 88–91.

8. Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
J. Klingner, A. Shah, M. Johnson, X. Liu, Łukasz Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith,
J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes,
J. Dean, Google’s neural machine translation system:
Bridging the gap between human and machine transla-
tion (2016). arXiv:1609.08144.

9. D. Bahdanau, K. Cho, Y. Bengio, Neural machine trans-
lation by jointly learning to align and translate (2016).
arXiv:1409.0473.

10. S. Hochreiter, J. Schmidhuber, Long short-term memory,
Neural Comput. 9 (8) (1997) 1735–1780.

11. I. Sutskever, O. Vinyals, Q. Le, Sequence to sequence
learning with neural networks, Advances in Neural Infor-
mation Processing Systems 4 (2014) 3104–3112.

12. X. Chen, C. Liu, D. Song, Tree-to-tree neural networks
for program translation, in: Proc. of the Annual Con-
ference on Advances in Neural Information Processing
Systems (NeurIPS’18), 2018, pp. 2552–2562.

13. L. Burgueño, J. Cabot, S. Gérard, An LSTM-based neu-
ral network architecture for model transformations, in:
Proc. of the 22nd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems
(MODELS’19), 2019, pp. 294–299.

14. M. Minsky, S. Papert, Perceptrons (1969).
15. F. Rosenblatt, The perceptron: A probabilistic model

for information storage and organization in the brain,
Psychological Review 65 (6) (1958) 386—-408. doi:
10.1037/h0042519.

16. D. Rumelhart, G. Hinton, R. Williams, Learning inter-
nal representations by error propagation., Parallel Dis-
tributed Processing: Explorations in the microstrucrures
of cognition 1 (1986).

17. S. Russell, P. Norvig, Artificial Intelligence: A Modern
Approach, Pearson, 2016.

18. J. Schmidhuber, Deep learning in neural networks: An
overview, Neural Networks 61 (2015) 85 – 117.

http://www.eclipse.org/acceleo/
http://www.eclipse.org/acceleo/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://doi.org/10.5381/jot.2019.18.3.a7
https://doi.org/10.1007/s10270-012-0261-0
https://doi.org/10.1007/s10270-012-0261-0
https://doi.org/10.1007/s10270-012-0261-0
https://doi.org/10.1007/s10270-012-0261-0
https://doi.org/10.1007/s10270-012-0261-0
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1409.0473
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519

A Generic LSTM Neural Network Architecture to Infer Heterogeneous Model Transformations 17

19. K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, Y. Bengio, Learning phrase
representations using RNN encoder-decoder for statis-
tical machine translation, in: Proc. of the Conference
on Empirical Methods in Natural Language Processing
(EMNLP’14), 2014, pp. 1724–1734.

20. K. S. Tai, R. Socher, C. D. Manning, Improved seman-
tic representations from tree-structured long short-term
memory networks, in: Proc. of the 53rd Annual Meeting
of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Language
Processing, 2015, pp. 1556–1566.

21. K. S. Tai, R. Socher, C. D. Manning, Improved seman-
tic representations from tree-structured long short-term
memory networks (2015). arXiv:1503.00075.

22. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning,
MIT Press, 2016.

23. L. N. Smith, A disciplined approach to neural network
hyper-parameters: Part 1 - learning rate, batch size,
momentum, and weight decay, CoRR abs/1803.09820
(2018). arXiv:1803.09820.
URL http://arxiv.org/abs/1803.09820

24. AtlanMod (Inria), Class to relational transfor-
mation example, https://www.eclipse.org/atl/
atlTransformations/#Class2Relational.

25. H. Bruneliere, J. Cabot, F. Jouault, F. Madiot, MoDisco:
A generic and extensible framework for model driven re-
verse engineering, in: Proc. of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE’10), 2010, p. 173–174.
URL https://www.eclipse.org/MoDisco/

26. P. Koehn, R. Knowles, Six challenges for neural machine
translation, in: Proc. of the 1st Workshop on Neural Ma-
chine Translation (NMT @ ACL), 2017, pp. 28–39.

27. M. Dorin, S. Montenegro, Coding standards and human
nature, International Journal of Performability Engineer-
ing 14 (2018) 1308–1313.

28. K. Papineni, S. Roukos, T. Ward, W. Zhu, Bleu: a
method for automatic evaluation of machine translation,
in: Proc. of the 40th Annual Meeting of the Association
for Computational Linguistics, 2002, pp. 311–318.

29. G. Doddington, Automatic evaluation of machine trans-
lation quality using n-gram co-occurrence statistics, in:
Proc. of the 2nd International Conference on Human
Language Technology Research (HLT’02), Morgan Kauf-
mann Publishers Inc., 2002, p. 138–145.

30. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell, Experimentation in Software Engineering, Springer,
2012.

31. C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. N. Gunn,
A. Hammers, D. A. Dickie, M. del C. Valdés Hernández,
J. M. Wardlaw, D. Rueckert, GAN augmentation: Aug-
menting training data using generative adversarial net-
works, CoRR abs/1810.10863 (2018). arXiv:1810.10863.

32. E. S. Olivas, J. D. M. Guerrero, M. M. Sober, J. R. M.
Benedito, A. J. S. Lopez, Handbook Of Research On
Machine Learning Applications and Trends: Algorithms,
Methods and Techniques, Information Science Reference
- Imprint of: IGI Publishing, Hershey, PA, 2009.

33. O. Semeráth, D. Varró, Iterative generation of di-
verse models for testing specifications of dsl tools,
in: Proc. of the 21rd International Conference on
Fundamental Approaches to Software Engineering
(FASE’18)", year="2018", x-publisher="Springer Inter-
national Publishing", x-address="Cham", pages="227–
245", x-isbn="978-3-319-89363-1".

34. R. Clarisó, J. Cabot, Applying graph kernels to model-
driven engineering problems, in: Proc. of the 1st Inter-
national Workshop on Machine Learning and Software
Engineering in Symbiosis (MASES@ASE’18), 2018, pp.
1–5.

35. L. Burgueño, M. Wimmer, A. Vallecillo, A Linda-based
platform for the parallel execution of out-place model
transformations, Information & Software Technology 79
(2016) 17–35.

36. L. Burgueño, F. Ciccozzi, M. Famelis, G. Kappel, L. Lam-
bers, S. Mosser, R. F. Paige, A. Pierantonio, A. Rensink,
R. Salay, G. Taentzer, A. Vallecillo, M. Wimmer, Con-
tents for a model-based software engineering body of
knowledge, Softw. Syst. Model. 18 (6) (2019) 3193–3205.
doi:10.1007/s10270-019-00746-9.

37. OMG, MOF QVT Final Adopted Specification, Object
Management Group, OMG doc. ptc/05-11-01 (2005).

38. D. S. Kolovos, R. F. Paige, F. A. C. Polack, The
Epsilon Transformation Language, in: Proc. of the
11th International Conference on Model Transformations
(ICMT’2008), Vol. 5063 of LNCS, Springer, 2008, pp. 46–
60.

39. G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger,
M. Wimmer, Model transformation by-example: A sur-
vey of the first wave, in: Conceptual Modelling and Its
Theoretical Foundations: Essays Dedicated to Bernhard
Thalheim on the Occasion of His 60th Birthday, 2012,
pp. 197–215.

40. D. Varró, Model transformation by example, in: Proc. of
the 9th International Conference on Model Driven En-
gineering Languages and Systems (MODELS’06), 2006,
pp. 410–424.

41. M. Wimmer, M. Strommer, H. Kargl, G. Kramler, To-
wards model transformation generation by-example, in:
Proc. of the 40th Hawaii International International Con-
ference on Systems Science (HICSS’07), 2007, p. 285.

42. I. García-Magariño, J. J. Gómez-Sanz, R. Fuentes-
Fernández, Model transformation by-example: An algo-
rithm for generating many-to-many transformation rules
in several model transformation languages, in: Proc. of
the 2nd International Conference on Model Transforma-
tions (ICMT’09), 2009, pp. 52–66.

43. Z. Balogh, D. Varró, Model transformation by example
using inductive logic programming, Software and System
Modeling 8 (3) (2009) 347–364.

44. M. Kessentini, H. A. Sahraoui, M. Boukadoum, O. Beno-
mar, Search-based model transformation by example,
Software and System Modeling 11 (2) (2012) 209–226.

45. M. W. Mkaouer, M. Kessentini, Model transformation us-
ing multiobjective optimization, Advances in Computers
92 (2014) 161–202.

46. K. Lano, S. Fang, M. A. Umar, S. Yassipour-Tehrani,
Enhancing model transformation synthesis using natural
language processing, in: Proc. of the 23rd ACM/IEEE
International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C’20),
Virtual Event, Canada, 2020.

47. G. G. Chowdhury, Natural language processing, An-
nual review of information science and technology 37 (1)
(2003) 51–89.

48. D. Buttler, A short survey of document structure simi-
larity algorithms, in: Proc. of ICOMP 2004, Las Vegas,
NV, USA, 2004.

49. N. Lavrac, S. Dzeroski, Inductive logic programming, in:
Proc. of WLP 1994, Zurich, Switzerland, 1994.

50. I. Baki, H. A. Sahraoui, Multi-step learning and adap-
tive search for learning complex model transformations

http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1803.09820
https://www.eclipse.org/atl/atlTransformations/#Class2Relational
https://www.eclipse.org/atl/atlTransformations/#Class2Relational
https://www.eclipse.org/MoDisco/
https://www.eclipse.org/MoDisco/
https://www.eclipse.org/MoDisco/
https://www.eclipse.org/MoDisco/
http://arxiv.org/abs/1810.10863
https://doi.org/10.1007/s10270-019-00746-9

18 L. Burgueño, et al.

from examples, ACMTrans. Softw. Eng. Methodol. 25 (3)
(2016) 20:1–20:37.

51. P. A. Bernstein, S. Melnik, Model management 2.0: Ma-
nipulating richer mappings, in: Proc. of the ACM SIG-
MOD International Conference on Management of Data
(SIGMOD’07), 2007, pp. 1–12.

52. J. F. Terwilliger, P. A. Bernstein, A. Unnithan, Au-
tomated co-evolution of conceptual models, physical
databases, and mappings, in: Proc. of the 29th Inter-
national Conference on Conceptual Modeling (ER’10),
2010, pp. 146–159.

53. P. A. Bernstein, J. Madhavan, E. Rahm, Generic schema
matching, ten years later, in: Proc. of 37th International
Conference on Very Large Data Bases (VLDB’11), Vol. 4,
2011, pp. 695–701.

54. B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk, Feature
location in source code: a taxonomy and survey, Journal
of software: Evolution and Process 25 (1) (2013) 53–95.

55. J. Font, L. Arcega, Ø. Haugen, C. Cetina, Feature loca-
tion in model-based software product lines through a ge-
netic algorithm, in: Proc. of the 2016 International Con-
ference on Software Reuse, 2016, pp. 39–54.

56. S. Holthusen, D. Wille, C. Legat, S. Beddig, I. Schaefer,
B. Vogel-Heuser, Family model mining for function block
diagrams in automation software, in: Proc. of the 18th In-
ternational Software Product Line Conference: Compan-
ion Volume for Workshops, Demonstrations and Tools-
Volume 2, 2014.

57. X. Zhang, Ø. Haugen, B. Moller-Pedersen, Model com-
parison to synthesize a model-driven software product
line, in: Proc. of the 15th International Software Product
Line Conference, 2011.

58. T. Ho-Quang, M. R. Chaudron, I. Samúelsson, J. Hjal-
tason, B. Karasneh, H. Osman, Automatic classification
of uml class diagrams from images, in: Proceedings of
the 21st Asia-Pacific Software Engineering Conference,
IEEE, 2014.

59. A. C. Marcén, R. Lapeña, Ó. Pastor, C. Cetina, Trace-
ability link recovery between requirements and models
using an evolutionary algorithm guided by a learning
to rank algorithm: Train control and management case,
Journal of Systems and Software 163 (2020).

60. A. Barriga, A. Rutle, R. Heldal, Personalized and auto-
matic model repairing using reinforcement learning, in:
Proc. of the 22nd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems
Companion (MODELS-C’19), Munich, Germany, 2019.

61. R. S. Sutton, A. G. Barto, Reinforcement learning: An
introduction, MIT press, 2018.

62. P. T. Nguyen, J. Di Rocco, D. Di Ruscio, A. Pierantonio,
L. Iovino, Automated classification of metamodel reposi-
tories: A machine learning approach, in: Proc. of the 22nd
ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS’19), Mu-
nich, Germany, 2019.

63. D. Svozil, V. Kvasnicka, J. Pospichal, Introduction to
multi-layer feed-forward neural networks, Chemometrics
and intelligent laboratory systems 39 (1) (1997) 43–62.

64. F. Gilson, C. Irwin, From user stories to use case
scenarios towards a generative approach, in: Proc. of
the 25th Australasian Software Engineering Conference
(ASWEC’18), 2018, pp. 61–65.

65. M. Elallaoui, K. Nafil, R. Touahni, Automatic transfor-
mation of user stories into uml use case diagrams using
nlp techniques, in: Proc. of the 9th International Con-
ference on Ambient Systems, Networks and Technologies

(ANT 2018) and the 8th International Conference on Sus-
tainable Energy Information Technology (SEIT-2018) -
Affiliated Workshops ANT/SEIT, 2018.

66. C. R. Narawita, K. Vidanage, Uml generator-an auto-
mated system for model driven development, in: Proc. of
the 16th International Conference on Advances in ICT
for Emerging Regions (ICTer’16), 2016.

67. M. Elallaoui, K. Nafil, R. Touahni, Automatic generation
of uml sequence diagrams from user stories in scrum pro-
cess, in: Proc. of the 10th International Conference on In-
telligent Systems: Theories and Applications (SITA’15),
2015.

68. X. Chen, C. Liu, D. Song, Learning neural programs to
parse programs, CoRR abs/1706.01284 (2017).

69. M. Allamanis, E. T. Barr, C. Bird, C. Sutton, Learning
natural coding conventions, in: Proc. of the 22nd Interna-
tional Symposium on Foundations of Software Engineer-
ing (FSE’14), 2014, p. 281–293. doi:10.1145/2635868.
2635883.

70. A. Derksen, aicoodoo, http://aicodoo.com/ (2020).
71. T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. De-

langue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,
Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, A. M. Rush, Huggingface’s trans-
formers: State-of-the-art natural language processing
(2019). arXiv:1910.03771.

72. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Atten-
tion is all you need (2017). arXiv:1706.03762.

73. S. Merity, Single headed attention rnn: Stop thinking
with your head (2019). arXiv:1911.11423.

74. V. C. Pham, S. Li, A. Radermacher, S. Gerard,
C. Mraidha, Fostering software architect and program-
mer collaboration, in: Proc. of the 21st International Con-
ference on Engineering of Complex Computer Systems,
(ICECCS’16), 2016, pp. 3–12.

https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2635868.2635883
http://aicodoo.com/
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1911.11423

	Introduction
	Background and Motivation
	Generic Neural Architecture for Model Transformations
	Case Studies
	Current Limitations and Mitigation Plans
	Related Work
	Conclusions and perspectives

