
An LSTM-Based Neural Network Architecture for
Model Transformations

Abstract—Model transformations are a key element in any
model-driven engineering approach. But writing them is a
time-consuming and error-prone activity that requires specific
knowledge of the transformation language semantics.

We propose to take advantage of the advances in Artificial
Intelligence d and, in particular Long Short-Term Memory
Neural Networks (LSTM), to automatically infer model trans-
formations from sets of input-output model pairs. Once the
transformation mappings have been learned, the LSTM system
is able to autonomously transform new input models into their
corresponding output models without the need of writing any
transformation-specific code. We evaluate the correctness and
performance of our approach and discuss its advantages and
limitations.

Index Terms—MDE, model transformations, LSTM ANN

I. INTRODUCTION

AI is evolving fast thanks to the advances in hardware and
the arrival of the big data era. A recent survey [1] predicts
that “AI will outperform humans in many activities in the next
ten years, such as translating languages, writing high-school
essays, or working as a surgeon”.

AI is also starting to impact the software development pro-
cesses itself.In fact, as of today, there are initiatives claiming
the (prospective) applications of AI in the different phases of
the software development lifecycle [2], from the requirement
analysis and design to the development, testing, deployment,
maintenance, etc. The main goal is always the same: help soft-
ware engineers develop software easier, faster and less error-
prone while being able to manage more complex problems. In
this sense, the concepts of intelligent software and cognified
software engineering [3], [4] have been introduced.

However, few approaches target model-driven engineering
(MDE). Some exceptions are [5], to generate UML class
diagrams from natural language specifications, [6] to col-
laboratively build domain models using chatbots, and [7] to
provide a tool for classifying web images as UML static
diagrams. Still, we are not aware of the existence of any
solution addressing a key element of any MDE approach:
model transformations.

Indeed, writing model transformations is an important but
also time-consuming and error-prone process. And while there
is a myriad of proposals to facilitate the definition of model
transformations, we lack a solution that empowers non-expert
users to autonomously transform new input models into their
corresponding output models without the need of writing any
transformation-specific code.

This work is supported by Spanish Research project and TIN2016-75944-R
and CEA in the context of the Modelia initiative.

This paper proposes such a solution based on Machine
learning (ML). ML, and in particular, its supervised learning
methods, enables machines to learn patterns from existing data
source and make predictions about new data. Given a set of
input-output data, an ML algorithms would be able to learn
the mappings between the sample inputs and the outputs and,
then, predict for new input data, what the output would be.
The simplest example in this context is language translation.
The first attempt to translate text from one language to
another was to translate word by word. Afterwards, companies
hired linguists to create language-specific rules and started
using Statistical Machine Translation (SMT). Currently, big
companies such as Google generate translations by means of
Artificial Neural Networks (ANNs) [8]. We adopt a similar
approach for the model transformation challenge.

In this sense, we suggest a change of paradigm in the way
we approach model transformation problems and propose to
rely on a ML-based framework using a particular type of
ANNs, Long Short-Term Memory (LSTM) ANNs to derive
transformations from sets of input/output models given as
input data for the training phase.

The rest of the paper is organized as follows. Section II
introduces some basic concepts. Section III describes the main
components of our approach, which we evaluate in Section IV.
In Section VI, we discuss the limitations of our approach.
Section VII presents the related work and, finally, Section VIII
concludes our paper.

II. BACKGROUND IN ARTIFICIAL NEURAL NETWORKS

An ANN can be seen as an structure composed by neurons
with directed connections between them. Each neuron is a
mathematical function that receives a set of values through
its input connections and computes an output value that
is taken by another connection and transferred to another
neuron. Two specific types of neurons are the input and output
neurons which do not have input predecessors or successors
respectively and serve only as input and output interfaces to the
ANN. Connections have associated weights (i.e., real numbers)
that the neurons use and that are adjusted during the learning
process with the purpose to increase or decrease the strength
of the connection. Thus, from an analytical point of view,
ANNs are complex mathematical functions composed by other
functions.

Most ANNs are part of a supervised learning procedure
where a tagged set of example input-output pairs are used
to derive a function that can generate or predict new outputs
from completely new inputs. That it, supervised learning has



Fig. 1. Supervised learning: Phases

two main phases: training and predicting (transforming in our
case). Fig. 1 shows both of them. During training, the input and
output pairs from the dataset are used to “teach” the system
until it learns. Once trained, we can give the ANN an input
and it produces its corresponding output.

For the training phase, the dataset is split into three subsets:
training, validation and test dataset. The training dataset
contains most of the inputs-output pairs and is used to train the
ANN (i.e., to adjust the weights of the ANN’s connections).
The test dataset is only used once the training has finished to
check the quality of the ANN’s predictions for inputs it has
not seen before, and hence to study its accuracy1 (correctness).
The validation dataset plays a similar role but during the
training process to control that the learning process is correct.
More specifically, it is used to check that any accuracy increase
over the training dataset also yields to an accuracy increase
over the validation dataset. Otherwise (new training data does
not result in improved accuracy), we say that the ANN is being
overfitted2. The overfitting is measured by means of the metric
called validation loss.

Next sections describes our approach for using ANNs to
predict model transformation, starting by selecting a specific
type of ANN that, in our experiments, performs the best in
this domain.

III. APPROACH

This section introduces our approach. We first address the
global architecture of the ANN framework we propose and
then we talk about its potential configuration and the model
pre and postprocessing steps required to use the ANN in a
model-based seting.

A. Global Architecture

Among all the artificial neural network family types and
configurations [9] we have chosen Recurrent Neural Networks
(RNN) as our subject of study. In RNNs, the neurons are or-
ganized in layers with forward connections (i.e., to neurons in
the next layers) as well as back propagation connections (i.e.,
to neurons of the same layer or previous layers). This back-
propagation mechanism in which the outputs of neurons are
fed back into the network again makes the ANN “remember”
some information from the previous step. This kind of neurons
are called memory cells and make the ANNs be aware of their
context. In our case, this kind of cells are helpful to remember,
for instance, the name of a variable previously declared.

1The accuracy is calculated as the percentage of predictions our model gets
right out of the total number of predictions

2In statistics, overfitting is the situation in which the ANN is so closely
fitted to the training data that it is not able to generalize and make good
predictions for new data.

Long-Short Term Memory (LSTM) neural networks [10]
are a specific kind of RNN which have a longer “memory”
than their predecessors and are able to remember their context
throughout different inputs. For instance, if we were transform-
ing lines of code (one at a time), each line of code would be an
input for the network. At some point in time, traditional RNNs
would be able to remember only parts of the current input (line
of code), while LSTMs are able to remember previous lines
of code too. Clearly, in our transformation scenario, we may
need this long-term memory to remember previous mappings
as part of a more complex mapping pattern. Therefore, we have
chosen LSTM neural networks as the most suitable networks
to solve the problem of data transformation.

Nevertheless, after exhaustively testing a transformation
architecture based on single LSTMs, we realized that not even
LSTMs alone were enough to generate good results. Instead,
we adopted a more complex framework based on an Encoder-
Decoder [11] architecture that has been proven to be the most
effective for dealing with translation problems.

This architecture is composed of two RNN neural networks
(of type LSTM in our case for the reasons described above):
one that reads the input data (which is of variable size) and
encodes it into a fixed-length numeric vector, and a second
one that receives this vector and predicts (transforms in our
case) the output data (which is again of variable size).

In the literature, most of the works using this encoder-
decoder architecture are applied to sequence-to-sequence
transformations, for example, for natural language translation.
In those cases, the raw input data that needs to be embedded
is a sentence (i.e., a sequence of words). In our initial exper-
iments, we found out this representation to be too simplistic
since we were losing many of the structural information of
the models. Therefore, we have settled for a more advanced
tree-to-tree architecture (see Section III-C).

As a consequence, apart from the encoder and decoder, we
need a layer to embed the input tree (representing the model
after the preprocessing phase) into a format readable for the
encoder. This input tree embedding layer is used to transform
our input models in their tree-form into the numeric vectors
which are the input to the LSTM encoder. We also need an
output layer to takes the numeric vectors produced by the
decoder and obtains the predicted (transformed) output model
in its tree-form to be then passed on the postprocessing task
to get the final output model. The output tree extraction layer
does this.

Finally, our ANN architecture also includes an attention
mechanism. Attention mechanisms applied to encoder-decoder
architectures are placed as an intermediate layer between the
encoder and the decoder. This layer allows the decoder pay
more attention to specific parts of the fixed-size vector it
receives. This is, it allows the decoder to assign more value to
specific parts of the model. The most important thing is that
attention mechanisms are fully independent when it comes to
decide which parts of the input models are more important,
i.e., they automatically learn to which parts the decoder has to
pay more attention during the output model generation without



Fig. 2. ANN model transformation architecture

any external guidance.
Fig. 2 shows inside the dotted box the complete picture of

the ANN MT architecture described so far.

B. Configuration

All the components of our architecture have certain param-
eters that need to be configured to optimize the training phase
depending on the specific problem they are going to solve. The
core ones are the number of layers in each ANN, the number of
neurons in each layer, the initial connection weights, the learn-
ing rate, the decay, the optimization algorithm, the dropout
rate and the attention mechanism. Due to space limitations we
cannot provide the full details of each parameter but we do
show here the values we have used for them. Note that, users
could change this default configuration if they wish but they
can just use ours if they want to skip this configuration phase.

Both the encoder and decoder have one layer each with
256 neurons. The connection weights are initialized following
a continuous uniform distribution on the interval [−1, 1]. The
learning rate is 0.01 (i.e., the weights are updated a 1% in each
iteration), with a decay of the 80% when the validation loss
does not decrease (i.e., when we detect that overfitting might
be taking place). We have used the optimization algorithm
Adam [12] to update parameters such as the weights to
accelerate the convergence of the ANNs and thus, the training
process. To avoid the overfitting, we have set a dropout rate of
0.5, which means that 50% of randomly selected the neurons
are ignored in each iteration and thus, the weights of their
connections will not be updated.

The embedding layer contains 256 neurons and receives the
preprocessed models in its one-hot encoding representation.
The output layer contains 256 neurons, too. The attention
mechanism we use is the one proposed by Chen et al. in their
work [13] for tree-to-tree translations.

C. Model pre- and post-processing

As said before, the models have to be preprocessed an
represented as trees before being fed to the ANN. In the
representation we have chosen, each model is represented as
an independent tree. The root contains the keyword MODEL,
and its children are the model elements, which can be either
OBJECTSs or ASSOCIATIONs. Each object has a unique
identifier which is represented as a child, and optionally,
it has another child with the keyword ATTRIBUTES from
where its attributes hang. Each attribute has two children with

the attribute’s name and its value. Each association has two
children, one with the name of the association (if there are
more than two associations in the metamodel with the same
name, they are automatically renamed first), and another child
with the keyword BETWEEN from where the two variables of
the objects the association links. For simplicity, only binary
associations are considered.

For instance, Fig. 3 shows a model and its tree representa-
tion. As a final step, these trees are encoded in a JSON file,
which is the input to our program.

Fig. 3. Class model and its associated tree

After converting the models to trees, we need to apply a
normalization process to overtake two limitations that ANNs
have.

The first one is what we call the dictionary problem. ANNs
are able to “understand” only the words that are present in
the dictionary that they build from the dataset. Thus, each
word not present in the dictionary (i.e., not present in the
models used for training) are not recognized by the network
which treats them as the token UNK (short for unknown).
Note that, when translating natural language, which is the
most common use of the encoder-decoder architecture, this
is not a problem since the dictionary contains all the words
from the source and target languages. In our case, variable
names and attribute values can be arbitrary string, which would
make our dictionary infinite. To solve this problem, both for
training and predicting (transforming), we rename all variables
and attribute values to a closed set of words. For instance:
variables={A, B, C, D, E, ...} and attValues={x, y, z, t, ...}.
Then, the models used for training only contain a minimum set
of tokens which are known by the network. When predicting
(transforming) new models, the inverse operation is performed
as a postprocessing step to the output of the ANN to generate
the proper output models with the right variable and attribute
names.

The second one is an optimization to remove model sym-
metries, and thus, reduce the size of the training dataset. Given
that we represent models as trees, a different ordering of the
model elements in the tree would be considered by the ANN
as a different input model and therefore it would require an
additional training. To avoid this, we remove potential sym-
metries by defining a canonical form for the tree-based model
representation. In particular, we sort the model elements in



alphabetical order according to its pre-order traversal. Again,
this task has to be done as a preprocessing step for every
model both in the training and predicting phases.

IV. EVALUATION

We present a preliminary study of the results of our ap-
proach in terms of correctness and performance. To simplify
the presentation, we use the well-known model transformation
example Class2Relational [14].

The experiments have been executed in a machine with
Ubuntu 16.04, an Intel i7 8th generation processor, 16Gb of
RAM memory and no support for Nvidia CUDA3.

A. Quality

As explained in Section II, the correctness of ANNs is
studied through its accuracy and overfitting (being the latter
measured through the validation loss). The accuracy should be
as close as 1 as possible while the validation loss as close to
0 as possible.

The accuracy is calculated comparing for each input model
in the test dataset whether the output of the network corre-
sponds with the expected output. If it does, the network was
able to successfully predict the target model for the given input
model.

In Fig. 4 we show how the accuracy grows and the loss
decreases with the size of the dataset, i.e., the more input-
output pairs we provide for training, the better our software
learns and predicts (transforms). In this concrete case, with a
dataset with 1000 models, the accuracy is 1 and the loss 0
(meaning that no overfitting was taking place), which means
that the ANNs are perfectly trained and ready to use. Note that
we show the size of the complete dataset but, we have split it
using an 80% of the pairs for training, a 10% for validation
and another 10% for testing.

Fig. 4. Variation of accuracy and loss during training

B. Performance

There are two performance dimensions we need to consider:
how long does it take for the training phase to complete
and, once the network has been trained, how long it takes to
transform an input model with it. Note that the training needs

3Using the GPU that an NVIDIA Graphic Card provides with CUDA
usually speedups the training process and improves its scalability, but we
felt that it was more realistic to assume that our target user would not have
such specific equipment even if it is becoming more and more common

to be performed only once per each model transformation
scenario.

1) Training performance: The two main factors that impact
the training time are the size of the training dataset (i.e., the
number of models that compose the dataset) and the average
size of each models in it.

Fig. 5 shows the performance of the training phase for the
Class2Relational example depending on the size of the dataset
and its models. On the left-hand side we can see how the
training time grows linearly when increasing the size of the
training dataset. Note that we were able to reach maximum
accuracy for this example by using less models than those
used in the figure (precisely we only needed 1000 as shown
in Fig. 4) but we added additional ones to test its scalability
for more complex transformations. On the right-hand side we
study the impact of growing the average size of the models.
We have fixed the size of the training dataset to 100 pairs of
input-output models and have varied the number of elements
in each model (ranging from 1 to 30). As shown in the
figure, there is a quadratic growth when increasing the size
of the models. While this behaviour is worse than the former,
it is less important as, based on our experiments, accuracy
improvements are more linked to larger datasets than to larger
models as ANN learn a lot by intensive repetition.

Fig. 5. Impact of the size of the training dataset (left) and of the size of the
models (right) when training

2) Transformation performance: After the training, we
have evaluated the transformation time of the network on a
set of input models and observed that the time grows linearly
with the number of model elements.

As a reference, we have also compared the execution time of
our ML-based transformation with the execution time of the
ATL version of the same transformation [14]. Thought ours
was a little bit slower for the models we tested, time is within
the same order of magnitude (less than a second for models
up to 30 elements to be transformed) and, therefore, we do not
see this as a negative aspect for ML-based transformations.

V. REPLICABILITY PACKAGE

To facilitate the replication of our study, we provide a Git
repository for researchers interested in repeating or comple-
menting our evaluations. The repository includes the source
code, the trained ANNs, the model dataset used for training



and the Java program that we have used to automatically
generate this dataset 4

VI. DISCUSSION

We believe our results show that a ML-based approach for
MT is feasible but obviously there are a number of open
challenges to be solved before it can actually be used in
practice. Here we discuss the main ones and provide potential
ways to address them in the future.

1) Size of the Training dataset: ANNs require a consid-
erably amount of data for training. In our case, this means
that learning a model transformation may require a sizeable
number of input-output models (the more complex is the
transformation to learn, the more models are needed). While
there is a number of model repositories available, finding
enough model samples for a given domain is still clearly a
challenge that could affect the quality of the results.

Strategies to mitigate this issue would include data augmen-
tation techniques (e.g., reusing model mutation procedures or
employing Generative Adversarial Networks (GAN) [15] to
generate further examples for a core set) or apply transfer
learning5 to avoid starting the learning process from scratch.

Moreover, given the repetitive nature of many model trans-
formations, pre-trained networks for typical transformation
scenarios could be used instead as starting point to generate
an optimal learning model for our use case with less training
data required.

2) Diversity in the training set: Related to the point above,
the quality of the training is also tied to the diversity of the
dataset. An ANN can only predict scenarios that follow a
pattern that it has seen before. Coverage metrics for the in-
put/output metamodels and the use of graph kernel techniques
[17] could give feedback to the user regarding the need for
adding more samples to cover for corner cases.

3) Computational limitations of ANNs: ANNs are still
a field under heavy development with better learning con-
tinuously algorithms presented. However, as of today, they
still have some limitations. One is their inability to perform
mathematical operations. This implies our approach cannot
predict values in the target model that should be the result of
a mathematical computation of values from the input model.
Given the importance of such challenge in many domains, we
are aware of several groups working on this issue and hope to
see new developments soon.

4) Generalization problem: ANNs are not good at gen-
eralizing and predicting output solutions for input models
very different from the training distribution it has learn from.
For instance, ANNs trained on small models typically have
problems to predict well large models. This would require
training the ANN with all possible model sizes for optimal
results. This is not feasible so an alternative solution we have
employed is to train the network with small models (also

4Due to the double blind review, this version of the paper does not contain
the direct link to the repo but it can be provided to the PC Chairs if needed

5Transfer learning is the improvement of learning in a new task through the
transfer of knowledge from a related task that has already been learned [16].

easier to find/generate) and, then, when faced with the need to
predict larger ones split them in chunks, transform the chunks
independently and then put the pieces back together again.
Dependencies between the chunks may complicate this solu-
tion but note that this problem has already been successfully
addressed for the parallel transformation of models [18].

5) Social acceptance: Social factors may also hamper the
adoption of a “black-box” ML-based transformation approach.
Users may be reluctant to trust a piece of software that they
are not able to understand. As done in other AI applications,
adding explanation capabilities to the system will be a must.

6) ML pipelines for MTs: One of the challenges we faced
was putting in place the set of AI libraries and frameworks we
needed and adapt them to understand, read and write models.
We believe our platform and "model-based ML data pipeline"
will, at the very least, facilitate follow-up works (by us or
by other interesting researchers) in this area and speed up the
time it takes to prepare, run and evaluate ML experiments in
MDE.

VII. RELATED WORK

The typical solution to tackle model transformation prob-
lems is to write a transformation program using a specific
transformation language (e.g., just looking at the model trans-
formation field we have plenty of well-known examples such
as ATL, QVT and ETL). Still, the adoption of these languages
in industry is limited. MT languages are not very intuitive to
non-expert users and their IDEs usually lack the advanced
facilities (e.g. nice debugging tools) required to develop trans-
formations.

Model Transformation By-Example (MTBE) is an attempt
to simplify the writing of exogenous model transformations
[19]–[23]. In an MTBE approach, users have to provide source
models, their corresponding target models as well as the
correspondence between them—for which a correspondence
language has to be used. From this, the MTBE approach
generates partial mappings that form the basis of the trans-
formation. Although these approaches free the user from
learning a full transformation language, she has to still learn
a correspondence language and manually build/complete the
generated transformation mappings.

Kessentini et al. [24], [25] use search-based techniques
to generate target models even if there is a limited number
of examples available. The basic idea is to find among the
examples the ones that are probably the closest match to the
source model the user is trying to transform. Nevertheless,
similar to the previous MTBE approaches they require the
existence of transformation traces for the available examples
so that they can generate the optimal solution.

Baki et al. [26] are able to discover more complex trans-
formations by splitting the transformations traces in pools and
applying genetic algorithms. Again, transformation traces are
needed for the discovery phase.

In contrast to previous works, our approach does not require
any kind of correspondence or tracing information to be
provided by the user or domain expert and learns purely from



the couples of input/output models. This enables non-expert
users to employ our approach.

Model transformation is just an instantiation of the more
general problem of data transformation, which shows up across
many fields of computer science (e.g., databases, XML, model-
ing, and big data). This topic has been largely addressed by the
(relational) database community, especially dealing with the
heterogeneity of the data sources and the impedance mismatch
problems [27]–[29]. Nevertheless, ML-based approaches have
not been attempted either in that community. We hope our
results can be replicated in that context as well.

The programming research community has been much more
active in the area of mixing ML and (code) transformation.
In [13], Chen et al. use neural networks to translate code
from one programming language to another. We have learn
a lot from this work. Nevertheless, given that we transform
models and not code, our work has adapted some of the ideas
from [13] in several points such as the encoding for inputs and
outputs, the need of a pre- and postprocessing steps and the
parametrization of the neural networks to better fit the model
transformation problem.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a ML architecture based
on LSTM neural networks for automatically inferring MTs.

We plan to continue this work along a number of different
directions, mainly addressing some of the challenges discussed
above. In particular, we plan to focus on the performance
and usability of our approach (e.g. developing heuristics to
help users configure and optimize the training phase, including
recommendations on the size of the datasets) and study its ap-
plicability to similar domains (like model-to-text transforma-
tions). In parallel, we hope to collaborate with the model trans-
formation community at large to better understand the role
approaches like ours can play in the transformation domain.
ML will not completely replace transformation languages but
could make them redundant in a variety of scenarios. Better
understanding the trade-offs of each transformation strategy
(ML-based, by example, pure MTLs,..) would benefit us all.

REFERENCES

[1] K. Grace, J. Salvatier, A. Dafoe, B. Zhang, and O. Evans, “Viewpoint:
When will AI exceed human performance? Evidence from AI experts,”
J. Artif. Intell. Res., vol. 62, pp. 729–754, 2018.

[2] D. Lo Giudice, “How AI will change software development and appli-
cations,” https://www.nhaustralia.com.au/documents/AI_report.pdf.

[3] T. Xie, “Intelligent software engineering: Synergy between AI and
software engineering,” in Proc. of ISEC’18, 2018, p. 1:1.

[4] J. Cabot, R. Clarisó, M. Brambilla, and S. Gérard, “Cognifying model-
driven software engineering,” in Proc. of the Collocated Workshops @
STAF’17, 2017, pp. 154–160.

[5] M. Ibrahim and R. Ahmad, “Class diagram extraction from textual
requirements using natural language processing (NLP) techniques,” in
Proc. of the 2nd International Conference on Computer Research and
Development, 2010, pp. 200–204.

[6] S. Pérez-Soler, E. Guerra, and J. de Lara, “Collaborative modeling
and group decision making using chatbots in social networks,” IEEE
Software, vol. 35, no. 6, pp. 48–54, 2018.

[7] V. Moreno, G. Génova, M. Alejandres, and A. Fraga, “Automatic
classification of web images as UML diagrams,” in Proc. of CERI’16,
2016, pp. 17:1–17:8.

[8] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s
neural machine translation system: Bridging the gap between human and
machine translation,” CoRR, vol. abs/1609.08144, 2016.

[9] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85 – 117, 2015.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[11] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” in Proc. of
EMNLP’14, 2014, pp. 1724–1734.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR’15, Y. Bengio and Y. LeCun, Eds., 2015.

[13] X. Chen, C. Liu, and D. Song, “Learning neural programs to parse
programs,” CoRR, vol. abs/1706.01284, 2017.

[14] AtlanMod Research Group (Inria), “Class
to relational transformation example,”
https://www.eclipse.org/atl/atlTransformations/#Class2Relational.

[15] C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. N. Gunn, A. Hammers,
D. A. Dickie, M. del C. Valdés Hernández, J. M. Wardlaw, and
D. Rueckert, “GAN augmentation: Augmenting training data using
generative adversarial networks,” CoRR, vol. abs/1810.10863, 2018.

[16] E. S. Olivas, J. D. M. Guerrero, M. M. Sober, J. R. M. Benedito, and
A. J. S. Lopez, Handbook Of Research On Machine Learning Applica-
tions and Trends: Algorithms, Methods and Techniques. Hershey, PA:
Information Science Reference - Imprint of: IGI Publishing, 2009.

[17] R. Clarisó and J. Cabot, “Applying graph kernels to model-driven
engineering problems,” in Proc. of MASES@ASE’18, 2018, pp. 1–5.

[18] L. Burgueño, M. Wimmer, and A. Vallecillo, “A linda-based platform for
the parallel execution of out-place model transformations,” Information
& Software Technology, vol. 79, pp. 17–35, 2016.

[19] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wim-
mer, “Model transformation by-example: A survey of the first wave,”
in Conceptual Modelling and Its Theoretical Foundations: Essays Ded-
icated to Bernhard Thalheim on the Occasion of His 60th Birthday,
2012, pp. 197–215.

[20] D. Varró, “Model transformation by example,” in Proc. of MODELS’06,
2006, pp. 410–424.

[21] M. Wimmer, M. Strommer, H. Kargl, and G. Kramler, “Towards model
transformation generation by-example,” in Proc. of HICSS’07, 2007, p.
285.

[22] I. García-Magariño, J. J. Gómez-Sanz, and R. Fuentes-Fernández,
“Model transformation by-example: An algorithm for generating many-
to-many transformation rules in several model transformation lan-
guages,” in Proc. of ICMT’09, 2009, pp. 52–66.

[23] Z. Balogh and D. Varró, “Model transformation by example using
inductive logic programming,” Software and System Modeling, vol. 8,
no. 3, pp. 347–364, 2009.

[24] M. Kessentini, H. A. Sahraoui, M. Boukadoum, and O. Benomar,
“Search-based model transformation by example,” Software and System
Modeling, vol. 11, no. 2, pp. 209–226, 2012.

[25] M. W. Mkaouer and M. Kessentini, “Model transformation using multi-
objective optimization,” Advances in Computers, vol. 92, pp. 161–202,
2014.

[26] I. Baki and H. A. Sahraoui, “Multi-step learning and adaptive search for
learning complex model transformations from examples,” ACM Trans.
Softw. Eng. Methodol., vol. 25, no. 3, pp. 20:1–20:37, 2016.

[27] P. A. Bernstein and S. Melnik, “Model management 2.0: Manipulating
richer mappings,” in Proc. of SIGMOD’07, 2007, pp. 1–12.

[28] J. F. Terwilliger, P. A. Bernstein, and A. Unnithan, “Automated co-
evolution of conceptual models, physical databases, and mappings,” in
Proc. (ER’10), 2010, pp. 146–159.

[29] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema matching,
ten years later,” in Proc. of VLDB’11, vol. 4, no. 11, 2011, pp. 695–701.


