
A Systematic Approach to Generate
Diverse Instantiations for Conceptual Schemas?

Loli Burgueño1,2, Jordi Cabot3, Robert Clarisó1, and Martin Gogolla4

1 Universitat Oberta de Catalunya, Barcelona, Spain
2 Institut List, CEA, Université Paris-Saclay, France

3 ICREA, Barcelona, Spain
4 University of Bremen, Bremen, Germany

lburguenoc@uoc.edu, jordi.cabot@icrea.cat, rclariso@uoc.edu,
gogolla@uni-bremen.de

Abstract. Generating valid instantiations for a conceptual schema is
instrumental in ensuring its quality by means of verification, validation
or testing. This problem becomes even more challenging when we also
require that the computed instantiations exhibit significant differences
among them, i.e., they are diverse. In this work, we propose an auto-
matic method that guarantees synthesizing a diverse set of instantia-
tions from a conceptual schema by combining model finders, classifying
terms and constraint strengthening techniques. This technique has been
implemented in the USE tool for UML/OCL.

Keywords: Methodologies and tools for conceptual design · Quality of
conceptual models · Integrity constraints

1 Introduction
Verification, validation and testing are different mechanisms to ensure the quality
of a conceptual schema. These approaches typically require the same resource:
creating one or more instantiations of the conceptual schema. With “instantia-
tion” we refer to an example for an information base of a conceptual schema [16].
These instantiations can be used as illustrations to better understand the model,
to explain its behavior or to simulate it; as counterexamples that describe invalid
configurations; and as test cases to capture scenarios that should be checked.

A key property of any set of instantiations to be used in a quality assurance
process is its diversity. That is, the instantiations in the set should cover a broad
spectrum of different configurations and scenarios. Otherwise, relevant corner
cases might be missed, causing faults and/or wrong conclusions.

Asking a domain expert to create instantiations manually can be very time-
consuming and is usually not feasible. Instead, dedicated tools called model find-
ers [12, 18] can be used to automatically compute (valid) instantiations of a con-
ceptual schema that satisfy all its integrity constraints. Model finders rely on
different techniques like constraint solvers, theorem provers or search algorithms
? This work is partially funded by the H2020 ECSEL Joint Undertaking Project
“MegaM@Rt2: MegaModelling at Runtime” (737494) and the Spanish Research
Project TIN2016-75944-R.

2 L. Burgueño et al.

to perform this computation [12]. While model finders automate the generation
process, they do not guarantee diverse solutions.

One approach that helps model finders generate a diverse output is called
classifying terms (CT) [14]. Classifying terms are properties that can be used
to partition the solution space. Intuitively, a CT is an expression or property
defined in such a way that two instantiations yielding different values for the
classifying term will be (very) dissimilar. The partitions induced by classifying
terms can guide the model finder and direct it to select canonical representatives
from each partition, rather than arbitrary instantiations. Thus, a proper choice
of classifying terms ensures a good partition and, thus, model diversity. Never-
theless, proposing suitable classifying terms requires domain knowledge. Thus,
it is not trivial to automate and requires the participation of a domain expert.

To overcome this issue, this work proposes a method for automatically gen-
erating relevant classifying terms for a given conceptual schema. The approach
arises from the observation that classifying terms are typically related to the in-
tegrity constraints in the schema. Therefore, we propose to mutate the schema’s
integrity constraints in a structured way in order to generate classifying terms.
In particular, we extend and adapt the work on constraint strengthening [6] to
produce these mutants of interest. Our approach, combining constraint strength-
ening, classifying terms and model finders, enables the automatic generation of
diverse instantiations from a conceptual schema. This result is useful in many ar-
eas of conceptual modeling beyond information systems. To describe the method,
and without loss of generality, we consider conceptual schemas expressed as UML
class diagrams enriched with OCL constraints to describe integrity constraints.

The paper is structured as follows. Section 2 discusses the state of the art.
Section 3 presents our proposed method for synthesizing classifying terms and
Section 4 its implementation. Section 5 discusses the advantages and shortcom-
ings of this method. Finally, Section 6 concludes and discusses future work.

2 State of the art

Some works on general purpose satisfiability solvers are focused on random sam-
pling [7, 5, 8]), i.e., finding diverse satisfying assignments to boolean formulas.

In the specific context of model finders, there are many approaches for finding
valid instances for a model [12] but only a few consider diversity. Some strategies
that have been used are symmetry breaking [18], distance metrics [9], abstract
graph shapes [17] or random restarts [2]. One of these approaches lets the designer
control diversity by defining classifying terms [14]: relevant boolean or integer
expressions that partition the set of solutions by exhibiting different results for
instantiations that are dissimilar.

Testing methods also rely on model finders to synthesize test cases [1, 3]. This
process may requiremutating constraints, selecting edit operators randomly from
a predefined catalog. Instead, in this paper we modify constraints in a structured
way [6] in order to strengthen them. Besides, we explore the (complex) partitions
defined by classifying terms instead of simply defining ranges of “meaningful
values” for inputs as in [10, 15].

An Approach to Generate Instantiations for Conceptual Schemas 3

Fig. 1. Diverse instantiations through two Boolean classifying terms.

3 Our Generative Method

Our method adapts and combines techniques from two previous works: classify-
ing terms (CT) [14] and the strengthening of integrity constraints [6].

CTs are employed to explore the set of possible correct or incorrect instan-
tiations of a conceptual schema in order to obtain a few diverse instantiations
instead of many similar ones. The approach enables the generation of instanti-
ations that satisfy all constraints (positive test cases) as well as instantiations
in which some constraints fail (negative test cases). However, until now, CTs
had to be manually written by the developer, which limited the usability of the
approach. To address this limitation, this work uses the existing integrity con-
straints in the model as an input and strengthen them (i.e., it mutates them to
generate a more restrictive version of the constraint) for obtaining meaningful
CTs. That is, CTs that generate interesting equivalence classes that can be then
taken as input for the generation of diverse instantiations in which border cases
become clear. For example, one instantiation where a particular constraint holds
and another one where the same constraint fails.

Figure 1 explains the basic idea behind our new approach. As an example,
we consider two invariants invA and invB and assume two strengthened versions
of them invA+ and invB+ have been identified. By considering the strengthened
versions as CTs, one will ideally construct four model equivalence classes and
obtain four diverse instantiations that show different behavior with respect to
the two CTs. The next sections illustrate each step of this process in more detail
using a running example.

3.1 Running example

As a running example throughout the paper we use the simple conceptual schema
depicted in Figure 2, representing a simplified cloud provisioning model. Different
cloud providers offer a number of CloudServices to the potential Customers who
put Orders based on their data volume needs. To ensure the integrity of the
provisioning, a number of constraints are defined on top of the schema. For
instance, we check that orders must be within the Customer budget (constraint
orderWithinBudget) or that premium customers have at least one order with a
data volume higher or equals to 5. Due to space constraints we only show three
invariants below, the rest are available in our Git repository [4].

4 L. Burgueño et al.

context Customer inv orderWithinBudget :
s e l f . ord−>fo rA l l (o |

s e l f . budget >= o . dataVol∗o . s e rv . un i tPr i c e)
context cs1 , cs2 : CloudService inv uniqueProviderMaxDataVol :

cs1<>cs2 imp l i e s
cs1 . provider<>cs2 . prov ide r or cs1 . maxDataVol<>cs2 . maxDataVol

context Customer inv minimumDataVolCompany :
s e l f . premium imp l i e s s e l f . ord−>ex i s t s (o | o . dataVol>=5)

Class diagram

Order

dataVol : Integer

scope : Scope
«enumeration»

Scope

continental

worldwide

Customer

name : String

budget : Integer

premium : Boolean

CloudService

provider : String

maxDataVol : Integer

scope : Scope

unitPrice : Integer

*ord

1 cust serv1

ord*

Fig. 2. A simple cloud provisioning schema

3.2 Derivation of classifying terms via constraint strengthening

Mutation is a technique used in the context of software testing. This process
starts from a software artifact, usually a program or function, and systemat-
ically introduces small changes to produce new versions of the artifact called
mutants. These syntactic changes, called mutation operators, are intended to
mimic frequent developer errors. Then, it is possible to check whether a test
suite is capable of detecting that the original artifacts and the mutants do not
have the same behavior.

In the context of OCL integrity constraints, strengthening [6] is a method
for structured mutation. By construction, strengthening guarantees that any
mutant it produces is more restrictive than the original OCL constraint, taking
into account the semantics of OCL (including OCL’s 4-valued logic [13], which
considers invalid and undefined values). This is achieved by ensuring that this
property holds for each mutation operator.

As an example, below we show sample strengthening candidates (noted us-
ing the + symbol) applied to two expressions including the boolean operator
or (left) and the relational operator >= (right). Note that, when the subexpres-
sions are boolean, potential strengthenings may require to strengthen some of its
subexpressions. A complete list of candidate strengthenings can be found in [6].

[exp1 or exp2]+ → exp1 and exp2

exp1

[exp1]
+

or exp2

[exp1 >= exp2]+ → exp1 > exp2
exp1 = exp2
exp1 > exp2 + 1

Strengthening was originally proposed as a way to suggest fixes for integrity
constraints that were found to be too lax. Here, we adapt this method to gener-
ate classifying terms for a conceptual model. Notice that we are not interested
in classifying terms that are more lax than the integrity constraints: if an instan-
tiation does not satisfy an integrity constraint, it will be discarded as invalid.
On the other hand, stronger versions of integrity constraints will produce valid

An Approach to Generate Instantiations for Conceptual Schemas 5

instances, which is exactly what we need and the reason why we use invariant
strengthening to generate classifying terms.

A first adaptation is that classifying terms are not restricted by a context type
like OCL invariants. Thus, we have to rewrite the OCL constraints to provide
a meaning for the “self” object via allInstances. For instance, the invariant
orderWithinBudget has to be rewritten as:
Customer . a l l I n s t an c e s−>fo rA l l (c |

c . ord−>fo rA l l (o | c . budget >= o . dataVol∗o . s e rv . un i tPr i c e))

Once the invariants are rewritten, we apply the strengthenings to obtain the
classifying terms. As an example, we show below the resulting classifying term
after applying three strengthenings to the three invariants presented above:
-- budget : strengthening '>=' -> '='
Customer . a l l I n s t a n c e s ()−>f o rA l l (c | c . ord−>fo rA l l (o |

c . budget = o . dataVol∗o . s e rv . un i tPr i c e))
-- uniqueness : strengthening 'or ' -> ' and '
CloudService . a l l I n s t a n c e s ()−>fo rA l l (cs1 , cs2 | cs1<>cs2 imp l i e s

cs1 . provider<>cs2 . prov ide r and cs1 . maxDataVol<>cs2 . maxDataVol))
-- minimum : strengthening 'A implies B ' -> 'B '
Customer . a l l I n s t a n c e s ()−>f o rA l l (c | c . ord−>fo rA l l (o | o . dataVol >= 5))

3.3 Constructing diverse instantiations

As stated before and in [14], a classifying term is a closed OCL query expression
that computes a Boolean or an Integer value, i.e., an OCL expression with-
out free variables that, when evaluated in an instantiation, gives a Boolean or
an Integer result. Given a collection of classifying terms CT1, . . . , CTn for a
conceptual model, the model finder internally operates as follows:

1. Compute an instantiation of the model respecting the stated OCL invariants.
2. Evaluate the classifying terms in the current instantiation (values v1, . . . , vn).
3. Internally add a new constraint forbidding that the classifying terms take

the values of the found instantiation: (CT1 <> v1) or . . . or (CTn <> vn).
4. Repeat the process until no more instantiations can be found.

In the running example, the three constructed Boolean classifying terms
budget, uniqueness and minimum will yield eight (23) instantiations where in a
single instantiation each classifying term is either false or true. Figure 3 shows
two of the eight instantiations and the result of evaluating the three classifying
terms in each instantiation.

4 Tool support

Our method has been implemented inside the USE tool [11]. USE is implemented
in Java and provides, among other features: a GUI; packages to load, modify
and inspect models and instantiations; and commands to invoke the KodKod
relational solver [18] for model finding.

The input of our tool is a UML class diagram annotated with OCL invariants.
This model is specified using the textual format employed by USE (.use). The

6 L. Burgueño et al.

budget=false
uniqueness=false
minimum=true

budget=true
uniqueness=false
minimum=true

budget=false
uniqueness=false
minimum=false

budget=false
uniqueness=true
minimum=true

budget=false
uniqueness=true
minimum=false

budget=true
uniqueness=false
minimum=false

budget=true
uniqueness=true
minimum=false

budget=true
uniqueness=true
minimum=true

Fig. 3. Two generated instantiations for the Cloud Provisioning example

output is a set of diverse instantiations of the model, which can be visualized as
object models within USE. Our implementation is divided into three steps:

1. Candidate generation: First, we strengthen each OCL integrity constraint by
means of a post-order traversal of its abstract syntax tree (AST). For each
boolean expression in the AST, we generate the candidate strenghtenings
by combining the strenghtenings of its subexpressions (see Section 3.2). The
list of candidates for the root of the AST is the list of potential classifying
terms for that invariant.

2. Candidate selection: Next, we select the subset of candidates to be used as
classifying terms to compute instantiations. This choice can be performed
in different ways: randomly; using heuristics (e.g. choosing the classifying
terms that involve the more constrained elements in the model); or with the
help of a domain expert (note that choosing classifying terms from a list of
candidates requires much less effort than proposing them).

3. Computation of instantiations: Finally, we provide the classifying terms to
the model finder, which uses them to find representative instantiations in
each of the equivalence classes induced by the partition. This process is auto-
mated within USE using the commandmv -scrollingAllCT <properties_file>,
which receives as parameters the properties file in which the verification
bounds are stated; asks for the classifying terms; and invokes the Kodkod
model finder to generate instantiations.

Our running example has been analyzed using this tool implementation,
which is available for download from [4].

5 Discussion

Correctness and completeness. The classifying terms are always added on
top of the existing integrity constraints in the schema. Therefore, any solution
obtained using classifying terms satisfies all constraints. This guarantees the
correctness of any generated instantiation.

An Approach to Generate Instantiations for Conceptual Schemas 7

Regarding the expressiveness of integrity constraints, our method supports
all features of OCL 2.4 except for ordered collections (Sequence, OrderedSet) or
recursively defined queries. Without loss of generality, we have focused on the
generation of boolean classifying terms but a similar process could be applied
for the generation of integer classifying terms.

Performance. Computing the classifying terms adds a performance overhead
to the solution generation process, but it is negligible. The classifying term gen-
eration time was 151 milliseconds for our running example, which was 1-2 orders
of magnitude faster than the time it took to compute a single valid instantiation.

Given that this second task (computing the instantiation) is the bottleneck,
any approach aiming to reduce the number of times we need to trigger the gener-
ation of a new instantiation to ensure diversity in the result set5, will significantly
reduce the overall computing time.

Heuristics for the selection of classifying terms. The automatic applica-
tion of our method can generate a very large number of potential classifying
terms. Any of them can be used to enforce diverse solutions but a manual ex-
ploration of the generated classifying terms quickly reveals some that seem more
promising than others (in terms of the degree of diversity they could generate).

The definition of a set of heuristics able to filter the set of classifying terms
and propose the best ones is left for further work.

Combination strategies for classifying terms. Given two or more classifying
terms, we could adapt our approach to change the way in which the equivalent
classes are traversed in the solution generation process. For instance, we could
focus first on one of the classifying terms and generate diverse examples only
considering that classifying term alone (i.e. emphasizing local diversity). Or we
could combine all classifying terms and generate solutions that explore equivalent
classes taking into account the value of different classifying terms at the same
time (i.e. emphasizing global diversity).

6 Conclusions

We have presented a new approach to enforce the generation of a diverse set of
instantiations from a given schema. Diversity plays an important role in a va-
riety of scenarios such as model exploration, simulation, testing, validation and
verification. In our approach, diversity is guaranteed by the systematic genera-
tion of classifying terms that partition the solution space of a model into a set
of equivalent classes. Such classifying terms are derived from the strengthening
of existing integrity constraints in the schema.

In principle, all constraints can be used as “seed” constraints to generate
the CTs. Nevertheless, depending on the application scenario, some constraints
are potentially more useful than others. For instance, in a model-based testing
5 Most solvers will generate by default very similar results when repetitively prompted
for new solutions [5, 7, 8]. Rather than (potentially unsuccessful) solver-specific tun-
ings, this work proposes a solver-independent solution to achieve diverse results.

8 L. Burgueño et al.

context, one may want to prioritize constraints over the more restricted parts
of the model to maximize the chances of finding errors. Identification of such
restricted parts/constraints left as future work. As stated in the previous section,
we also plan to work on the definition of strategies to optimally select and
combine different CTs and guide the exploration of model solutions for each
combination. Again, depending on the goal, a breadth-first strategy may be
preferable over a depth-first one (or the other way round). Finally, large case
studies must check the usefulness of our proposal and improve its applicability.

References

1. Aichernig, B.K., Salas, P.A.P.: Test case generation by OCL mutation and con-
straint solving. In: QSIC’05. pp. 64–71 (2005)

2. Ali, S., Zohaib Iqbal, M., Arcuri, A., Briand, L.C.: Generating Test Data from
OCL Constraints with Search Techniques. IEEE TSE 39(10), 1376–1402 (2013)

3. Brucker, A.D., Krieger, M.P., Longuet, D., Wolff, B.: A specification-based test
case generation method for UML/OCL. In: MODELS’10. pp. 334–348 (2010)

4. Burgueño, L., Clarisó, R., Cabot, J., Gogolla, M.: Constraint mutation source code
and examples. http://hdl.handle.net/20.500.12004/1/C/ER/2019/562 (2019)

5. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On parallel
scalable uniform SAT witness generation. In: TACAS’15. pp. 304–319 (2015)

6. Clarisó, R., Cabot, J.: Fixing defects in integrity constraints via constraint muta-
tion. In: QUATIC’18. pp. 74–82 (2018)

7. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: ICSE’18. pp. 549–559 (2018)

8. Ermon, S., Gomes, C., Selman, B.: Uniform solution sampling using a constraint
solver as an oracle. In: UAI’12. pp. 255–264 (2012)

9. Ferdjoukh, A., Galinier, F., Bourreau, E., Chateau, A., Nebut, C.: Measurement
and generation of diversity and meaningfulness in model driven engineering. Inter-
national Journal On Advances in Software 11(1/2), 131–146 (2018)

10. Fleurey, F., Baudry, B., Muller, P.A., Le Traon, Y.: Qualifying input test data for
model transformations. SoSyM 8(2), 185–203 (2007)

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Sci. of Comp. Prog. 69(1-3), 27–34 (2007)

12. González, C.A., Cabot, J.: Formal verification of static software models in MDE:
A systematic review. Information & Software Technology 56(8), 821–838 (2014)

13. Object Management Group: Object Constraint Language specification (version
2.4), https://www.omg.org/spec/OCL/2.4/

14. Hilken, F., Gogolla, M., Burgueño, L., Vallecillo, A.: Testing models and model
transformations using classifying terms. SoSyM 17(3), 885–912 (2018)

15. Jackson, E.K., Simko, G., Sztipanovits, J.: Diversely enumerating system-level ar-
chitectures. In: EMSOFT’13. pp. 1–10 (9 2013)

16. Olivé, A.: Conceptual Modeling of Information Systems. Springer (2007)
17. Semeráth, O., Varró, D.: Iterative Generation of Diverse Models for Testing Spec-

ifications of DSL Tools. In: FASE’18. pp. 227–245 (4 2018)
18. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: TACAS’07. pp.

632–647 (2007)

