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Abstract—The growing need to store and manipulate large
volumes of data has led to the blossoming of various families of
data storage solutions. Software modelers can benefit from this
growing diversity to improve critical parts of their applications,
using a combination of different databases to store the data based
on access, availability, and performance requirements. However,
while the mapping of conceptual schemas to relational databases
is a well-studied field of research, there are few works that target
the role of conceptual modeling in a multiple and diverse data
storage settings. This is particularly true when dealing with the
mapping of constraints in the conceptual schema. In this paper
we present the UMLto[No]SQL approach that maps conceptual
schemas expressed in UML/OCL into a set of logical schemas (ei-
ther relational or NoSQL ones) to be used to store the application
data according to the data partition envisaged by the designer.
Our mapping covers as well the database queries required to
implement and check the model’s constraints. UMLto[No]SQL
takes care of integrating the different data storages, and provides
a modeling layer that enables a transparent manipulation of the
data using conceptual level information.

Index Terms—Database Design, UML, OCL, NoSQL, RDBMS,
constraint, SQL, model partitioning

I. INTRODUCTION

The NoSQL movement [6] is recognized as one of the
main solutions to handle large volumes of diverse data.
NoSQL solutions are based on a flexible schemaless data
model focused on efficiency, horizontal scalability, and high
availability, and can be categorized into four major groups:
key-value stores, document databases, graphs, and column
databases [22]. NoSQL stores complement relational databases
and other hybrid solutions to offer a large number of options
when it comes to decide where to store the data managed
by a software system. In fact, it is not unusual that the
best alternative is to combine several technologies for an
optimal result. E.g., the same application could use a relational
database for transactional data but opt for a key-value store for
event log management.

Unfortunately, current conceptual modeling methods and
tools offer little support for this “multi-store” modeling and
generation challenge. Modelers should be able to easily anno-
tate the model with details on the type of data solution to use as
storage mechanism and to generate from that annotated model
the corresponding implementation in a (semi)automatic way.
Still, only the mapping of conceptual schemas to relational

databases has been widely investigated so far. Very few
solutions targeting NoSQL backends exist and, when they do,
they target individual datastores and typically skip the mapping
of the model constraints.

In this paper, we present UMLto[No]SQL, a new approach
to partition conceptual schemas (including constraints and
business rules) and to map each fragment to a different data
storage solution. Without loss of generality we assume that the
conceptual schema is modeled as a UML class diagram [25]
and its integrity constraints are expressed in OCL [24] (Object
Constraint Language), both OMG standards.

UMLto[No]SQL is based on existing works targeting the
mapping of conceptual schemas to specific datastore technolo-
gies [9], [11] and integrates them in a unique multi-datastore
design method. The main contributions of the paper are:
• A conceptual model partitioning approach integrated as

an UML profile allowing to group model elements in
regions to be persisted in a specific datastore.

• A set of mappings from conceptual schema regions to
datastore-specific models, including a new mapping from
UML class diagrams to document databases.

• A translation approach from constraints and business
rules to database-specific queries, also covering constraint
expressions that require evaluating elements stored in
different and heterogeneous backends.

• A runtime modeling layer that automatically deploys the
modeled application, and provides a high-level API to
manipulate and check constraints on top of the underlying
persistent storage mechanisms transparently.

The rest of the paper is organized as follows: Section II
presents the UMLto[No]SQL approach, Section III introduces
our model partitioning technique, Section IV details the map-
ping of (UML) models to a variety of store metamodels
and Section V does the same for the OCL constraints. Sec-
tion VI introduces the UMLto[No]SQL runtime layer. Finally,
Section VII describes the related works, and Section VIII
summarizes the contributions and draws future work.

II. UMLTO[NO]SQL APPROACH

The MDA standard [23] proposes a structured methodology
to system development that promotes the separation between
a platform independent specification (Platform Independent



Model, PIM), and the refinement of that specification (Plat-
form Specific Model, PSM) adapted to the technical con-
straints of the implementation platform. In this context, a
model-to-model transformation (M2M) generates the PSMs
from the PIMs, while a model-to-text transformation (M2T)
typically takes care of producing the final system implemen-
tation out of the PSM models. This PIM-to-PSM phased
architecture brings two important benefits: (i) the PIM level
focuses on the specification of the structure and functions,
raising the level of abstraction and postponing technical details
to the PSM level; and (ii) multiple PSMs can be generated
from one PIM, improving portability and reusability.

This PIM-to-PSM staged development perfectly fits the
phases of our UMLto[No]SQL approach, where a runtime
modeling layer – able to interact with heterogeneous datas-
tores – is generated out of a conceptual schema expressed in
UML and OCL. Thus, following the MDA approach, Fig. 1
describes a typical UMLto[No]SQL development process to-
gether with the main artifacts involved.

The only actor involved in a UMLto[No]SQL process is
the system modeler, who specifies the conceptual schema of
the system using a UML class diagram and its corresponding
OCL constraints at the PIM level. At this level, the modeler
can manually annotate ii the conceptual schema (see Sec-
tion III-B for more details) to group its entities in different
regions. A region is a logical partition that determines the
conceptual elements that should be persisted in the same
datastore. For example, the Annotated UML class diagram in
Fig. 1 has been annotated specifying two regions: one contains
the elements with horizontal stripes, and the other contains the
elements with vertical stripes. The initial OCL expressions
remain unaffected.

Next, two automatic M2M transformations are executed in
parallel to convert our PIMs into PSMs:
• UmlTo[No]SQL iii transforms each region – and its

elements – of the annotated model at the PIM level,
into a set of datastore-specific models at the PSM level
(the so-called (Datastore Models), precisely representing
the data structures to be used to record the data in that
particular datastore. In Fig. 1, elements annotated with
vertical stripes are transformed to a Datastore model for
the # backend, while elements annotated with horizontal
stripes are transformed to a Datastore model for the D
backend. Note that this transformation also handles the
translation of relationships among elements in different
regions producing cross-Datastore Models relationships
(⇔). These special relationships are discussed in Sec-
tion IV.

• OCLToQuery iiii transforms the OCL constraints at the
PIM level into a set of Query Models adapted to the
selected storage technology. As it can be seen in Fig. 1,
Query Models can contain both elements of the # and
the D backend. This is because the transformation also
handles the translation of queries spanning different data-
stores. Such cross-datastore queries exploit a dedicated
query mechanism presented in Section V.
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Fig. 1. Overview of the UMLto[No]SQL Infrastructure

Finally, the generated Datastore Models and Query Models
are sent to a final set of PSMtoCode M2T transformations.
These transformations generate the database schema defini-
tions (in the case of SQL datastores) and software artifacts (in
all cases) that are capable of retrieving the different entities
of the conceptual schema from their corresponding datastores

iiv . Additionally, the code to evaluate the different queries
and constraints is also generated iv .

The result of these transformations is an integrated Model-
ing Layer that allows interacting with the different databases,
retrieving and modifying the data stored in them, and also
checking the corresponding integrity constraints. All accesses
to the underlying data are done in a transparent way, only using
conceptual level information. This Modeling Layer can be seen
as a runtime model [2] built on top of the storage solutions.
That way, users can query the data by directly referring to the
types and associations they are interested in, instead of having
to know the internal data structure names used to record that
data in each specific datastore.

III. CONCEPTUAL SCHEMA PARTITIONING

As introduced in the previous Section, the first step of our
approach is partitioning the initial conceptual schema into a
set of regions. Each region identifies a group of entity types
in the schema that should be stored together in the datastore
associated to the region. A schema can have one or more
regions. The regions of a schema can be homogeneous (all
regions are linked to a different backends but all backends are
of the same “family”) or heterogeneous (different regions may
be linked to completely different types of backends).

At the PIM level, the modeler only needs to focus on
defining the limits of the region and the desired type of
datastore. Low-level details (e. g., connection information) are
provided later on, in the PSM models, as part of the typical
MDA refinement process (see Section IV).



Fig. 2. Partition Domain Model

Without loss of generality, conceptual schemas are ex-
pressed as UML class diagrams but other conceptual modeling
languages could have been used instead. Still, UML offers a
modeling primitive that is especially useful to implement our
concept of regions, the UML profiling mechanism.

Profiling opens the possibility of extending or restricting
UML to satisfy the modeler needs in a standard way. More-
over, the vast majority of UML tools support this mechanism,
facilitating a quick adoption of profiles like ours.

To construct a technically correct high-quality UML profile,
several steps need to be followed according to the generally
accepted good practices [27]. First, a domain model defining
the additional modeling concepts must be created. In our case,
this domain model should capture the concepts to specify
schema partitions as presented next in Sect III-A. Second, a
profile is defined by mapping the concepts from the domain
model to UML concepts. In our case, each class of the partition
domain model is examined, together with its attributes, associ-
ations and constraints, to identify the most suitable UML base
concepts for it. Based on this, we built the partition profile
presented in Sect. III-B.

A. A domain model for conceptual schemas partitioning

Figure 2 shows our proposed domain model for the par-
titioning of conceptual schemas. In this proposal, a given
conceptual schema (not shown) relates to one Partition Model
containing the Regions for the different datastores the modeler
wants to use. Regions have a name that identifies them,
and a storage attribute indicating the type of data storage
approach that will be used in subsequent steps. Thee possible
data storage approaches can be specified, each one associated
to a different data persistence technique: Graph for graph-
based databases, Document for document-based stores, and
Relational for classical relational databases. Finally, UML
classes from the conceptual schema may be associated to a
specific region via its regionElement association. All UML
classes belonging to the same region should be stored together
at the end of the development process.

B. A profile for conceptual schemas partitioning

In order to put our partition approach in practice, we
have defined the accompanying UML profile as proposed
by Selic [27]. Following the good practices proposed by
Lagarde [18], Figure 3 shows our UML profile for conceptual
schemas partitioning.

As it can be seen, there exists almost a one-to-one mapping
between the concepts of the Partition Domain Model and the
Partition Profile. Now, the link between a Partition Model

Fig. 3. Partition Profile

and a conceptual schema represented as a UML Model is
explicit via the extension relationship. For its part, Regions
extend Namespaces, which typically, are Packages containing
the entity types (e. g., classes) of the conceptual schema.
Finally, the RegionElement stereotype is used to annotate the
Classifiers (typically UML classes) within a Region that will
be persisted.

The Partition Profile is exemplified in Figure 4. The con-
ceptual schema shown in the figure depicts an e-commerce
application that will be used as running example for the rest of
the paper. The schema specifies the Client, Orders, Products,
and Comment concepts and the relationships among them,
organized in three packages Clients, Business, and Comments.

By means of the profile, we have expressed that the
business part of this schema should be stored in a document
database, the clients one should go to a relational database,
and the comments one to a graph database. Therefore, we
have defined three Regions, each one tagged with a different

Fig. 4. Example Schema Partition



target storage solution. Note that in our example Regions are
created based on the domains of their data, but alternative
Partition Models based on performance requirements (e.g.
data proximity) can also be specified through our profile

IV. MAPPING CLASS DIAGRAM FRAGMENTS

The partitioned conceptual schema is the input of our
UMLto[No]SQL transformation component, in charge of gen-
erating the PSMs representing the logical database structure
corresponding to each conceptual region in the partition.

Our approach currently embeds three transformations, each
one associated to a specific data store. Two of them are based
on previous works: UmlToGraphDB covering mappings to
graph databases (taken from [9]) and UmlToSQL that reuses
“classical” works on mapping UML (or ER) to relational
databases (e.g. [11]). The third one is completely new. As it
is also a novel contribution the possibility to have in the same
schema regions linked to heterogeneous backends. As such,
in this section we review the relevant parts of existing UML
to database mappings and show how we adapt them to handle
cross-datastore associations. We also introduce DocumentDB:
a novel metamodel representing the structure of Document
databases, as well as the associated mapping rules to derive
DocumentDB instances from class diagrams.

In the following we denote a partitioned class diagram CD
as a tuple CD = (Cl,As,Ac, I, R), where Cl is the set
of classes, As is the set of associations, and Ac is the set
of association classes. I is a set of pairs of classes such as
(cl1, cl2) represents the fact that c1 is a direct or indirect
subclass of c2, and R is a set of pairs (cl, r) mapping each
class of the conceptual model to a region defined with the help
of our partition metamodel. Note that for the sake of simplicity
attributes of classes and associations are denoted cl.attr (e.g.
cl.name represents the name of a class).

We also define two additional predicates that are reused
across our mappings: reg(cl) = r.storage, (cl, r) ∈ R repre-
sents the storage value of the region containing the class cl,
and parents(c) ⊂ Cl, ∀p ∈ parents(c), (c, p) ∈ I represents
the set of super-classes in the hierarchy of c.

A. Relational Database Mapping

1) RelationalDB Metamodel: Figure 5 presents our Rela-
tionalDB metamodel which is a simplified version of existing
metamodels aiming at representing relational databases. It
contains a top-level Schema that stores a set of named Tables.
Tables contain Columns that store information of a given
DataType. Our metamodel currently supports primitive types,
as well as an UUID type which is used to identify elements
across datastores. A Table also contains a PrimaryKey which
refers to one or multiple Columns. Finally, Tables can contain
ForeignKeys, each one associated to an existing PrimaryKey
and linking a Column to a foreign one stored in another Table1.

1For simplicity purposes, this metamodel does not support foreign keys
spanning over multiple columns

Fig. 5. RelationalDB Metamodel

Fig. 6. RelationalDB Instance

2) Class Diagram to RelationalDB Transformation: We
denote a RelationalDB model RM as a tuple RM =
(S, T, C, P, F ), where S is a schema, T is the set of tables, C
is the set of columns, P is the set of primary keys, and F is the
set of foreign keys that compose the relational model. In the
following we present the mapping from CD to RM. This map-
ping is based on existing approaches from the literature [11],
and adapts them to support cross-datastore queries.
• R1: each relational region r.storage = Relational,
∀cl(cl, r) ∈ R is mapped to a schema s such as s.name
= r.name.

• R2: each class cl ∈ Cl is mapped to a table t ∈ T , where
t.name = cl.name, and added to the schema s mapped
from its containing region such as t ∈ s.tables. In
addition, a column c ∈ C is created such as c.name = id,
c.dataType = UUID, c ∈ t.columns. This column
is set as the primary key pk of t such as pk ∈ P ,
pk.name = cl.name + _pk, c ∈ pk.columns, pk ∈
t.primaryKey.

• R3: each inheritance relationship between two classes cl1,
cl2 ∈ Cl, (cl1, cl2) ∈ I (respectively mapped by R2 to
t1, t2 ∈ T ) such as reg(cl1) = reg(cl2) = Relational
is mapped to a foreign key such as fk ∈ F , fk.name
= cl1.name_parent_fk, fk ∈ t1.foreignKeys such as
fk.primaryKey = t2.primaryKey, fk.ownColumn
= t1.primaryKey.column, fk.foreignColumn =
t2.primaryKey.column. Note that this rule does not
create foreign keys for cross-datastore inheritance links.

• R4: each attribute of a class cl ∈ Cl such as a ∈
cl.attributes is mapped to a column c ∈ C where



c.name = a.name, c.datatype = a.type2, and added
to the column list of its mapped container t such as
c ∈ t.columns.

• R5: each single-valued association assingle ∈ As be-
tween two classes cl1, cl2 ∈ Cl is mapped to a
column c ∈ C, c.name = as.name, c.dataType
= UUID added to the table t1 such as c ∈
t1.columns. If reg(c1) = reg(c2) = Relational,
a foreign key fk ∈ F is also created such as
fk.name = assingle.name + _ + cl2.name + _fk,
fk.primaryKey = t2.primaryKey, f.ownColumn =
c, f.foreignColumn = t2.primaryKey.column and
added to the containing table’s foreign key set such as
f ∈ t1.foreignKeys. This means that cross-datastore
associations are mapped to UUID columns (with no
corresponding foreign key).

• R6: each multi-valued association asmulti ∈ As be-
tween two classes cl1, cl2 ∈ Cl is mapped to a table
t ∈ T , t.name = as.name containing two columns
c1, c2 ∈ C, c1, c2 ∈ t.columns such as c1.name =
cl1.name + _id, c1.dataType = UUID, c2.name =
cl2.name + _id, c2.dataType = UUID. This mapping
rule also creates a primary key pk ∈ P , pk.name
= asmulti.name_pk, pk ∈ t.primaryKeys such as
c1, c2 ∈ pk.columns. Finally, classes involved in the
association such as reg(cln) = Relational are mapped
to a foreign key fk ∈ F , fk.name = asmulti.name +
_cln.name + _fk, fk ∈ t.foreignKeys such as
fk.primaryKey = tn.primaryKey, fk.ownColumn
= cn, fk.foreignColumn = tn.primaryKey.column.

Figure 6 presents the RelationalDB model produced when
applying the mapping rules to our running example. The
produced model defines a top-level Schema element named
clients and containing three Tables. The Table t1 is mapped
from the Client abstract class, and contains three columns to
store the Client’s UUID, name, and address. It also defines
a PrimaryKey pk1 defined over the UUID column. The
Table t2 is mapped from the CorporateCustomer class, and
defines two columns to store its UUID and its contractRef
attributes. It also define a PrimaryKey pk2 over its id column,
and a ForeignKey fk1 associating the CorporateCustomer
id to its parent Client one. Finally, t3 is created from the
order_client association, and contains two Columns (set as
primary key through the pk3 instance) storing the identifiers
of the involved Client and Order instances. This Table contains
a single ForeignKey linking the client_id Column to the id
Column of the Client table. Since Order is not part of the
relational region, the mapping does not produce a foreign key
for this column. Navigation of this cross-datastore association
is detailed in Section V.

B. Graph Database Mapping
1) GraphDB Metamodel: Figure 7 presents the GraphDB

metamodel [9] that defines the possible strutural elements

2We assume that a mapping mechanism is available to convert conceptual
model types to the ones defined in our target metamodels.

Fig. 7. GraphDB Metamodel

in graph databases. This metamodel is compliant with the
Blueprints specification [28], which is an interface designed
to unify graph databases under a common API.

The GraphDB metamodel defines a top-level GraphSpecifi-
cation which contains all the VertexDefinitions and EdgeDef-
inition of the database under design. VertexDefinitions and
EdgeDefinitions can be linked together using outEdges and
inEdges association, meaning respectively that a VertexDefi-
nition has outgoing edges and incoming edges. In addition,
VertexDefinition and EdgeDefinition are both subtypes of
GraphElement, which defines a set of labels describing the
type of the element, and a set of PropertyDefinition through
its properties association. In graph databases properties are
represented by a key (the name of the property) and a type.
The GraphDB metamodel defines 5 primitives types (Object,
Integer, String, Boolean, and our own UUID type).

2) Class Diagram to GraphDB Transformation: Herein we
present the mapping from a partitioned class diagram to the
GraphDB metamodel. This mapping is an adaptation of our
previous work [9].

We denote a GraphDB model GD as a tuple GD =
(G,V,E, P ), where G is a GraphSpecification, V is set of
VertexDefinitions, E the set of EdgeDefinitions, and P the set
of PropertyDefinitions that compose the graph. The mapping
from CD to GD is formalized in the following rules:

• R1: each graph region r.storage = Graph,∀cl(cl, r) ∈
R is mapped to a graph specification g such as g.name =
r.name.

• R2: each class cl ∈ Cl,¬cl.isAbstract is mapped
to a vertex definition v ∈ V , where v.label =
cl.name ∪ parents(cl).name. In addition, a property
p ∈ P, p.key = id, p.type = UUID is added to the prop-
erty list of the created vertex such as p ∈ v.properties.
This property is used to uniquely identify the element and
will be used to retrieve specific instances when navigating
cross-datastore associations.

• R3: each attribute a ∈ (cl ∪ parents(cl)).attributes
is mapped to a property definition p, where p.key =
a.name, p.type = a.type, and added to the property list
of its mapped container v such as p ∈ v.properties. Note
that this rule flattens the inheritance hierarchy by mapping
the attributes of all cl’s parents in the produced vertex.

• R4: each association as ∈ As between two classes
c1, c2 ∈ Cl with reg(c1) = reg(c2) = Graph is mapped



Fig. 8. Mapped GraphDB Instance

to an edge definition e ∈ E, where e.label = as.name,
e.tail = v1, and e.head = v2, where v1 and v2 are
the VertexDefinitions representing c1 and c2. Note
that e.tail and e.head values are set according to the
direction of the association. Aggregation associations
are mapped the same way, but their semantic is handled
differently at the application level. In order to support
inherited associations, EdgeDefinitions are also created
to represent associations involving the parents of c.

• R5: each association as ∈ As between two classes
c1, c2 ∈ Cl with reg(c1) = Graph, reg(c2) 6= Graph is
translated to a property p ∈ P where p.key = as.name,
p.type = UUID and added to the property list of its
mapped container v such as p ∈ v.properties.

Figure 8 shows the result of applying this mapping rules
on our running example. The created model defines a Graph-
Specification mapped from the comments region, and contains
a single VertexDefinition v mapped from the class Comment.
This VertexDefinition is associated to a single EdgeDefinition e
representing the replies association. V contains a single label
representing its class, and a PropertyDefinition p1 holding
its UUID identifier. V also contains two PropertyDefinitions
corresponding to its content and date attributes, and two addi-
tional PropertyDefinitions p4 and p5 representing references
to the Clients and Products classes, respectively stored in a
relational and a document database.

C. Document Database Mapping

1) DocumentDB Metamodel: Figure 9 shows the Docu-
mentDB metamodel, our contribution to represent the internal
structure of document-oriented datastores. A Database is de-
fined by a name, and contains a set of Collections representing
families of DocumentSchemas. DocumentSchemas are low-
level data structures that can be seen as associative arrays
containing a set of Fields. A Field is identified by a key,
and a Type of data it can hold. In our metamodel, Types are
categorized into three groups: (i) PrimitiveTypes representing
primitive type values (including the UUID introduced before),
(ii) DocumentTypes representing document references, (iii)
CollectionTypes representing list of nested elements (contain-
ing an elementType attribute representing the type of the col-

Fig. 9. DocumentDB Metamodel

lection). Note that the DocumentType construct is independent
of the concrete, platform-specific implementation of document
references (e.g. logical link between existing document such as
in MongoDB vs. duplication of its content in a nested copy).

2) Class Diagram to DocumentDB Transformation: A Doc-
ument diagram DD is defined as a tuple DD = (C,D, F ),
where C the set of collections, D is a set of documents, and
F the set of documents’ fields. In addition, we define the
CollectionType and DocumentType constructs that are derived
from the DocumentDB metamodel, and are initialized with a
single parameter, representing respectively their elementType
and referredDocument. Based on these definitions, the map-
ping rules are expressed as:

• R1: each document region r = Document,∀cl(cl, r) ∈
R is mapped to a document database d such as d.name =
r.name

• R2: each class cl ∈ Cl, reg(cl) = Document,
@x(cl, x) ∈ I is mapped to a collection c ∈ C such
as c.name = cl.name. Note that this rule produces a
collection for each superclass in the model.

• R3: each class cl ∈ Cl (including the ones mapped
by R2) are mapped to a document schema d ∈ D
and its containing collection is set as d.collection =
c, where c represents the mapped collection of the
top-level element in cl inheritance hierarchy. As a re-
sult, document schemas mapped from classes in the
same inheritance hierarchy will be contained in the
same collection. This mapping rule also creates a field
fid ∈ F, fid ∈ d.fields, fid.name =′ _id′, fid.type =
UUID representing the unique identifier of the element.
Finally, an additional field fclasse ∈ F, fclasses ∈
d.fields, fclasses.key =′ _classes′, fclasses.type =
String is also created to store the names of the classes
in cl’s hierarchy, and is required to filter concrete sub-
classes from generic super-class collections.

• R4: each attribute a ∈ (c ∪ parents(c)).attributes
is mapped to a field f , where f.key = a.name,
f.type = a.type, and added to the property list of
its mapped container d such as f ∈ d.fields. Multi-
valued attribute are mapped similarly, using the Collec-
tionType construct to represent multiple values: f.type =



CollectionType(a.type).
• R5: each association as ∈ As between two

classes c1, c2 ∈ Cl, reg(c1) = reg(c2) =
Document is mapped to two fields fc1, fc2 ∈
F where fc1 ∈ d1.fields, fc1.key = a.name,
fc2 ∈ d2.fields, fc2.key = a.name, fc1.type =
DocumentType(d2), fc2.type = DocumentType(d1),
where d1 and d2 are the Documents representing c1
and c2. This rule creates Fields in the documents rep-
resenting the classes involved in the association, and
set their type as a DocumentType referring to the other
end of the association. In order to support inherited
associations, Fields are also created to represent associ-
ations involving the parents of c. Note that multi-valued
ends of the associations are mapped as multi-valued
attributes using the CollectionType construct: fc1.type =
CollectionType(DocumentType(d2)).

• R6: each association between two classes from het-
erogeneous datastores c1, c2 ∈ Cl, reg(c1) =
Document, reg(c2) 6= Document is mapped to a
field fc1 ∈ F where fc1 ∈ d1.fields, fc1.key =
a.name, fc1.type = UUID. Multi-valued ends of the
associations are mapped similarly to R5. Note that this
initial version of our mapping does not consider associ-
ations involving more than two classes.

• R7: each association class ac ∈ Ac between classes
cl1...cln is mapped to a document dac such as
dac.collection = c, c ∈ C, c.name = ac.name. As
for a regular class, dac contains the Fields correspond-
ing to the attributes ac.attributes, and a set of Fields
faci ∈ F where faci.key = ci.name, faci.type =
DocumentType(di) linking to each document repre-
senting a class involved in the association. In ad-
dition, an identifier Field fid ∈ F is also pro-
duced such as fid ∈ fac.fields, fid.name =′

_id′, fid.type = UUID and added to the contained
fields. Multi-valued ends are mapped as multi-valued
attributes using the CollectionType construct: fci.type =
CollectionType(DocumentType(dac)).

To better illustrate the different mapping rules, we present
in Listing 1 the output of the UmlToDocumentDB translation
when applied on the running example. For clarity, the resulting
DocumentDB model is shown using a JSON-like concrete syn-
tax derived from the metamodel (abstract syntax) presented in
Figure 9. A Database instance named business contains three
collections representing the classes of the input model: order,
product, and the association class orderLine. The order collec-
tion defines a single document schema orderDoc which con-
tains a set of Fields mapping Order class attributes in the con-
ceptual schema. orderDoc also includes a multi-valued docu-
ment reference to orderLineDoc, as a result of the mapping of
the relationship between Order and the OrderLine association
class, and an external reference to client (materialized as a
UUID), as part of the mapping between Order and the Client
class, located in a different region in the conceptual schema.

Database "business" {
Collection "order" {
DocumentSchema orderDoc {

_id : UUID
_classes : [String]
reference : String
shipmentDate : Date
deliveryDate : Date
paid : Boolean
client : UUID
orderLine : [orderLineDoc]

} }
Collection : "product" {
DocumentSchema productDoc {

_id : UUID
_classes : [String]
name : String
price : Integer
description : String
orderLine : [orderLineDoc]

} }
Collection : "orderLine" {
DocumentSchema orderLineDoc {

_id : UUID
_classes : [String]
quantity : Integer
productPrice : Integer
orderLine_order : orderDoc
orderLine_product : productDoc

} } }

Listing 1. Mapped DocumentDB Model (Textual Syntax)

context Product inv validPrice: self.price ≥ 0
context Comment inv validComment: self.date > self.

repliesTo.date
context Order inv validOrder: if self.paid then self.

orderLine→forAll(o | o.quantity > 0) else false endif
context Client inv maxUnpaidOrders: self.orders→select(o |

not o.paid)→size()< 3

Listing 2. Textual Constraints

V. MAPPING OCL EXPRESSIONS

To complete the PIM-to-PSM transformation process, the
OCL constraints attached to the input conceptual schema
are translated to queries expressed in the query language/s
available in the data stores where the model elements affected
by the query will be mapped.

In this section, we first discuss the translation of OCL
queries local to a single region and, later, how the process
deals with global OCL constraints, i.e. constraints referencing
model elements in different regions. Note that the generated
queries can be manually integrated in an existing database
infrastructure, or wrapped in constraint checking methods
provided by the runtime component presented in Section VI.

To illustrate this section, we will use the four OCL con-
straints of Listing 2 defined on top of our running example
(Figure 4). The first one checks that the price of a Product
is always positive, the second one checks that the date of a
comment is always greater than its parent one, the third one
verifies that once an Order has been paid all its orderLines
have a positive quantity value, and the last one ensures that a
Client has less than three unpaid Orders. Note that constraints
1-3 target a single region, while the last one references
elements from the relational and document datastores.



TABLE I
OCL TO SQL MAPPING

OCL expression SQL Fragment
Type "Type.name"
C.allInstances() select * from C
o.collect(attribute) select attribute from C where id in o.id
o.collect(reference) select reference from C where id in o.id
(single valued)
o.collect(reference) select * from reference where reference_C_id in o.id
(multi valued)
size() count()
col1→union(col2) col1 union col2
col1→including(o) col1 union select * from o.class where id = o.id
col1→excluding(o) col1 except select * from o.class where id = o.id
col→select(condition) select * from o.class where condition
col→reject(condition) select * from o.class where not(condition)
=, >, >=, <, <=, <> ==, >, >=, <, <=, <>
+, -, /, %, * +, -, /, %, *
and, or, not and, or, not
literals literals

select * from product where price < 0

Listing 3. Generated SQL Query from the validPrice Constraint

Currently, UMLto[No]SQL supports three simple mappings:
OCLToGraphDB [9] that complements the UmlToGraphDB
transformation by generating graph queries, OCLToSQL that is
adapted from existing work on UML/OCL translation to rela-
tional models [3], [11], and OCLToMongoDB that maps OCL
constructs to the MongoDB query language [7]. Below we de-
tail this last mapping, which is a new contribution of this paper.

A. Relational Query Mapping

SQL [16] is the obvious target for our translation process on
relational databases. Given the (mostly) universal support for
this standard language, our generated SQL expressions will be
useful no matter what particular RDBMS vendor is used.

Table I shows an excerpt of the OCL to SQL mapping used
in our translation process 3. This mapping is adapted from the
one presented by Demuth et al. [11].

Specifically, attribute and single-valued association naviga-
tions are mapped to projections of the corresponding column
in the table containing instances of the input object. Instance
filtering is performed based on the id field defined in our rela-
tional metamodel. Element selections are mapped into select
statements, with a where clause containing the translation of its
condition. Collection operators (such as union), mathematical
operations, logical operators and literals are direclty translated
to their SQL equivalent.

The created fragments are combined into a query that
retrieves all the records which do not satisfy the constraint,
a common pattern when evaluating OCL constraints over
models [11]. As an example, Listing 3 shows the result of
applying our OCL to SQL translation on the first constraint
of our running example.

3We focus on the mappings applicable to the running example for brevity.

TABLE II
OCL TO GREMLIN MAPPING

OCL expression Gremlin step
Type "Type.name"
C.allInstances() g.V().hasLabel("C.name")
collect(attribute) property(attribute)
collect(reference) outE(’reference’).inV
oclIsTypeOf(C) o.hasLabel("C.name")
col1→union(col2) col1.fill(var1); col2.fill(var2); union(var1, var2);
including(object) gather{it << object;}.scatter;
excluding(object) except([object]);
size() count()
isEmpty() toList().isEmpty()
select(condition) c.filter{condition}
reject(condition) c.filter{!(condition)}
exists(expression) filter{condition}.hasNext()
=, >, >=, <, <=, <> ==, >, >=, <, <=, !=
+, -, /, %, * +, -, /, %, *
and,or,not &&,‖,!
variable variable
literals literals

B. Graph Query Mapping

1) Gremlin Query Language: Gremlin is a Groovy domain-
specific language built over Pipes, a lazy data-flow framework
on top of Blueprints. We have chosen Gremlin as the target
query language for our graph query translation due to its
adoption in several graph databases.

Gremlin is based on the concept of process graphs. A pro-
cess graph is composed of vertices representing computational
units and communication edges which can be combined to
create a complex processing flow. In the Gremlin terminology,
these complex processing flows are called traversals, and are
composed of chains of simple computational units named
steps. Gremlin define four types of steps: transform steps
that map inputs of a given type to output of another one,
filter steps, selecting or rejecting input elements according to
a given condition, branch steps, which split the computation
into several parallel sub-traversals, and side-effect steps that
perform operations like edge or vertex creation, property
update, or variable definition or assignments.

In addition, the step interface provides a set of built-in
methods to access meta information: number of objects in a
step, output existence, or first element in a step. These methods
can be called inside a traversal to control its execution or check
conditions on particular elements in a step.

2) OCL to Gremlin Transformation: Table II presents the
mappings between OCL expressions and Gremlin concepts.
Supported OCL expressions are divided into four categories
based on Gremlin step types: transformations, collection
operations, iterators, and general expressions. As before, we
only present a subset of the OCL expressions we support4.

These mappings are systematically applied on the input
OCL expression, following a postorder traversal of the OCL
syntax tree. Listing 4 shows the Gremlin query generated
from the third OCL constraint of our running example. The v

4A complete version of this mapping is available in our previous work [10]



variable represents the vertex that is being currently checked,
and the following steps are created using the mapping.

C. Document Query Mapping

1) MongoDB Query Language: We have chosen the Mon-
goDB query language as a representative of the family of
query languages for document databases. A similar mapping
could be implemented for other document query languages.
Together with the DocumentDB metamodel presented in the
previous section, this OCL transformation enables a complete
translation of UML/OCL schemas to document databases.
As we said above, this transformation complements other
available transformations from UML to other relational and
NoSQL backends, including mixed solutions.

The MongoDB Query Language is a Javascript-based lan-
guage that defines additional constructs to retrieve documents
within a collection, filter them, or retrieve fields given a spe-
cific condition. This language is embedded in the MongoDB
shell, and can be sent for computation to a MongoDB server.

2) OCL to MongoDB Query Language Transformation: Ta-
ble III shows the OCL to MongoQL mapping (again, focusing
on a number of the most relevant OCL operations; many others
can be easily reexpressed in terms the ones listed here [5]).

In the following, we explain these mappings using the exam-
ple constraints introduced before. Note that we apply a similar
translation process as we did for the SQL mapping, i.e. the
generated queries return the instances violating the constraints.

According to this, Listing 5 shows how the first constraint is
mapped to a db.product.find() method with a where condition
that traverses all documents in the product collection and
returns those with a negative price (if any). Second constraint
includes an if-then construct to first filter out unpaid orders.
For the paid ones, the translation proceeds with a document
lookup (mapped to a nested collection lookup in MongoDB)
to retrieve all the order lines of the order being processed
searching for at least one that violates the forAll condition in
the original OCL expression. If found, the order is returned as
part of the query result. Note that the find operation is one of
the cornerstones of our mapping since it is expressive enough
to be the mapping target of multiple OCL operations.

In addition, we reuse the Javascript native support of the
query language to map general expressions such as arithmetic
and logical operators, comparisons, literals, and variables.
We also define the union, intersection, and set subtraction
operations, that can be called as regular functions. Finally, our
mapping relies on the methods push and splice of Javascript
arrays to translate including and excluding operations.

D. Cross-Datastore Query Mapping

Cross-datastore queries are OCL expressions that reference
elements in separate regions. Typically, they include a naviga-
tion operation from an element in a region to an element in

v.property(’date’)>v.outE(’repliesTo’).inV.property(’date’)

Listing 4. Generated Gremlin Query from the validComment Constraint

db.product.find({$where: "this.price ≤ 0"}) // validPrice
db.order.find({_id: {$where:
"if(this.paid) {
!(db.orderLine.find({_id: {$in : db.order.find({$where:

"_id == this._id"}, {orderLine : 1})}, $where: "
this.quantity ≤ 0"}).hasNext());

} else {false}"}}); // validOrder

Listing 5. Generated MongoDB Queries from the Running Example

Context Client inv maxUnpaidOrders:
// clients region (Relational)
let orders : Sequence(Order) =
self.orders

in
// business region (Document)
orders→select(o | not o.paid)→size()<3

Listing 6. Rewritten OCL Constraint Example

a neighbour region. Our approach handles such queries by: 1)
translating datastore-specific fragments of the input expression
into native database queries, and 2) providing a composition
mechanism to complete their overall evaluation.

To do so, we first perform a simple rewriting of the OCL
expression that encapsulates each datastore-specific opera-
tion sequence in an intermediate variable. This initial step
decouples datastore-specific OCL fragments, and allows to
easily translate the value of each variable using our mappings.
Listing 6 shows the result of this initial processing for the third
query of our running example: a variable orders is created to
store the results of the self.orders navigation (from the
relational region), and the in clause reuses the created variable
to compute the select operation (in the document region).

This refactored OCL expression is then translated into an
instance of our Cross-Datastore Query Metamodel (Figure 10)
that provides primitives to compose native database queries.
Specifically, a cross-datastore script (CDScript) is composed
of an ordered collection of instructions representing Function
calls. A Function takes a set of Variables as parameters and
returns a result which is also stored in a Variable. This first
version of our metamodel supports two kind of Functions:
NativeQueries that are produced by the native translations pre-
sented above, and JoinFunctions that handle the computation
of cross-region associations. Generate NativeQueries take has
parameter the result of the previously executed JoinFunction,
allowing to push most of the data processing to the datastores.
Note that the concrete implementation of JoinFunctions is
discussed in the next section.

Instances of the Cross-Datastore Query Metamodel are
generated by mapping each let source expression to a
NativeQuery, and each in clause to a JoinFunction adapting
the previous query’s results, followed up by a the NativeQuery
generated from its inner expression. Figure 11 shows the
result of this translation for the maxUnpaidOrders constraint
of our running example, which contains an initial SQLQuery
computing the orders navigation, a JoinFunction that adapts
the Orders returned by the relational database to documents,
and a final MongoQuery that computes the Order selection.



TABLE III
OCL TO MONGODB

OCL expression MongoDB Query Fragment
Cl.allInstances() db.Ccl.find()
o.attra db.Ctype(o).find({$where : "_id == o"},{attra: 1})
o.refa db.Ctype(refa).find({_id: {$in: db.Ctype(o).find({$where : "_id == o"},{refa: 1})}})
o.oclIsTypeOf(Cl) db.Ccl.contains(o)
col1->union(col2) union(col1, col2)
col1->intersection(col2) intersection(col1, col2)
col1 - (col2) (set subtraction) subtract(col1, col2)
col->including(o) col.push(o)
col->excluding(o) col.splice(col.indexOf(o), 1)
col->select(condition) db.C.find({_id: {$in: col}, $where : "condition"})
col->reject(condition) db.C.find({_id: {$in: col}, $where : "!(condition)"})
col->exists(expression) db.C.find({_id: {$in: col}, $where : "condition"}).hasNext()
col->forAll(expression) !(db.C.find({_id: {$in: col}, $where : "!(condition)"}).hasNext())
col->size() C.length
col->isEmpty() C.length == 0
if(c) then e1 else e2 endif if(c) { e1} else {e2}
=, >, >=, <, <=, <> ==, >, >=, <, <=, !=
+, -, /, %, * +, -, /, %, *
and, or, not &&, ‖, !
variable variable

Legend — Cl: class; o: object; col: object collection; Ca: database collection containing objects of type a; the :1 suffix is a boolean flag to indicate the
expression should return only the indicated field and not the whole document.

Fig. 10. Cross-Datastore Query Metamodel

Fig. 11. Cross-Datastore Query Instance

VI. CODE GENERATION

As a final step in UMLto[No]SQL, a code generation
process takes as input the previous PSMs and query models
and generates the software artifacts to guarantee the proper
implementation of such models in the chosen data stores.

The concrete artifacts to generate depends on the type of
storage solution. For instance, for relational databases, most of
the code generation focuses on creating the SQL DDL scripts
to setup the database. Instead, for NoSQL databases (which
are mostly schemaless), a large part of the generation process
is devoted to producing application code that integrates and

enforces the designed structures and constraints. To ease this
process, we provide a generic Modeling Layer that defines
primitives to persist, query, and update data in NoSQL data-
stores. The generated application code is then plugged into
this generic infrastructure, and extends it to provide additional
operations derived from the conceptual schema (e.g. getting all
the clients stored in the system).

Figure 12 shows the architecture of our generic Modeling
Layer. The Middleware class is the central component that
allows to create, search, and delete Beans representing the
model elements at the PIM level. It contains a set of Datastores
that are responsible for the raw database initialization and
accesses. Currently, our framework embeds three Datastore
subclasses, that allow to access MongoDB, PostgreSQL, and
Blueprints. The Middleware also embeds a set of QueryPro-
cessors, that are responsible of the constraint computation.
NativeProcessors support the execution of native queries over
their associated Datastore, and CDProcessor handles the com-
putation of cross-datastore queries. The CDProcessor relies on
a set of NativeProcessors that are used to compute the native
fragment of the composite query, and uses the join method
provided by the Datastores to compute the join function
introduced in Section V. This method retrieves the stored
records matching the provided UUIDs and type, that can be
provided as input of the next composite query computation
defined in the CDQuery. Note that these functions do not
return Bean instances, but native objects that can be handled
by the Datastore to compute a query.

The UMLto[No]SQL code generator creates additional
classes that extend the ones shown in Figure 12 (light-grey
nodes). Individual Beans are created, wrapping the classes
defined in the conceptual schema, allowing to natively ma-
nipulate them. In our example, this process generates the



Fig. 12. UMLto[No]SQL Modeling Layer Infrastructure

Client, Order, Product, and OrderLine beans, and creates a
set of methods to access and update their attributes and related
associations by delegating the operation transparently on the
corresponding datastore. Finally, a specific implementation
of the Middleware class containing the generated constraint
Queries, and initialized with the Datastores and QueryPro-
cessors associated to the conceptual schema is also generated.

We would like to remark that an important benefit of this
middleware is that it enables users to access the data using the
same concepts and types they employed when modeling the
domain, regardless of how those model elements have been
refined and transformed to implement them in the data store.
Still, our approach can be used to simply generate standalone
database artifacts, that could then be integrated into separate
solutions.

public class Order extends MongoBean {
public Order(ObjectId id, MongoDatastore mongoDatastore){
super(id, mongoDatastore); }

public Date getShipmentDate() {
Long timestamp = getValue("shipmentDate");
return new Date(timestamp); }

public void setShipmentDate(Date newShipmentDate) {
Long timestamp = newShipmentDate.getTime();
updateField("shipmentDate", timestamp); }

// Cross-datastore reference
public Client getClient() throws ConsistencyException {
ObjectId clientId = getValue("client");
return DemoMiddleware.getInstance().getClient(clientId.

toString()); }
public void setClient(Client newClient) {
if(isNull(newClient))

throw new ConsistencyException("Cannot set null
Client, the association cardinality is 1");

String clientId = newClient.getId();
ObjectId oId = new ObjectId(clientId);
updateField("client", oId); }

}

Listing 7. Generated Order Class

As an example, the Listing 7 shows an excerpt of the code
generated for the class Order. The generated bean extends
the MongoBean class, that provides generic methods such as
getValue and updateField, and is responsible of the connection
to the underlying MongoDatastore. Getters and setters are
generated for all the attributes and associations. The getClient
method shows how cross-datastore associations are handled:
the UUID stored in the the Order document is deserialized into
a String, that is used to retrieve the Client instance thanks to

the Middleware singleton class (which delegate the search to
the relational database managing Client instances). A similar
process is followed to implement the constraints. See the
project repository for a full implementation of the example.

VII. RELATED WORK

UMLto[No]SQL can be related to several works focusing on
the mapping of conceptual schemas to databases. We propose
here a classification of relevant approaches into two families:
generative approaches that translate conceptual schemas to
data storage solutions, and abstraction layers built on top of
existing backends that aim to unify them under a common
model/API that could be used to simplify the mapping.

The mapping of conceptual schemas to relational databases
is a well-studied field of research [20]. A few works also cover
(OCL) constraints. For example, Demuth and Hussman [11]
provide a code generator from UML/OCL to SQL [12]. Simi-
larly, Brambilla et al. [3] propose a methodology to implement
integrity constraints into relational databases recommending
alternative implementations based on performance parameters.
Fewer works address non-relational databases. Zhao et al. [29]
propose an approach to model MongoDB databases starting
from a relational model. Li et al.focus on the transformation
from UML class diagrams into HBase [19] while NoSQL
Schema Evaluator [21] focuses on generating column family
definitions and query implementation plans from a conceptual
schema optimized for a given workload. Nevertheless, none
of these approaches support multiple data stores nor provide
support for the constraint mapping part.

On the other hand, some approaches try to provide some
kind of modeling language or abstraction to simplify the
interaction with NoSQL databases. Bugiotti et al. [4] propose a
design methodology for NoSQL databases based on NoAM, an
abstract data model that aims to represent NoSQL systems in a
system-independent way. NoAM models can be implemented
in several NoSQL databases. Federated data management and
querying approaches can also be related to our work [13].
For instance, CloudMdsQL [17] is a SQL-like query language
capable of querying multiple data stores within a single query.
To do so, the language extends the standard SQL syntax with
additional constructs allowing to call native queries that target
a specific datastore. Apache Drill [15] is a similar framework



that provides an extended SQL syntax to query multiple data
sources including relational databases, Json documents, or
document databases. These approaches could be potentially
useful as intermediate representations in our own mapping
process as a way to enlarge the number of stores that we
could support but we believe our UML-based approach offers
a lower barrier of entry since it allows designers to model their
schemas using well-known notations (and tools, most likely
already part of their standard modeling tool chain) instead of
requiring them to learn new languages and adhoc solutions
from the very beginning.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented UMLto[No]SQL, a MDA-
based framework to partition and map conceptual schemas to
several data storage solutions. Our approach combines model
mapping techniques with a set of rules to translate OCL
constraints into various native query languages, including an
ad-hoc mechanism to compute multi-platform queries. Our
code generator hides all internal details of the chosen data
stores, allowing designers to keep a unified view of the model
regardless the actual data storage.

As future work, we plan to evaluate our approach through
real-world use cases, and benefit from the modular architecture
of our framework to add more data storage options. We also
want to improve the flexibility of our approach by proposing
PSM-level refactoring operations to let designers tune the
mappings according to specific needs (e.g. performance
requirements, availability, data replication, data locality, etc.).
In addition, we plan to benchmark the performance of the
produced queries, especially cross-datastore ones. In this
sense, we also envision to reuse advanced query composition
techniques such as CloudMdsQL [17] or Apache Drill [15].

Another ongoing work is the integration of automatic
schema partitioning techniques according to an expected/mea-
sured workload. This optimization problem has been heavily
studied in the context of relational database physical schema
design [1], [14], and can be adapted to define regions on the
conceptual schema. Finally, we would like to work on the
reverse direction, i.e. the automatic extraction of conceptual
schemas from an existing set of datastores. This is a complex
problem even when targeting a single NoSQL data store (e.g.
see works such as [26] or [8]) that becomes much harder to
tackle when considering the relationships between data across
different data stores.
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