
MODEL-DRIVEN ROUND-TRIP ENGINEERING OF
REST APIS

HAMZA ED-DOUIBI

A thesis submitted for the degree
of Doctor of Philosophy in Net-
work & Information Technologies

Department of Computer Science, Multimedia and Telecommunications

OPEN UNIVERSITY OF CATALONIA

Supervised by
Jordi Cabot and Javier Luis Cánovas Izquierdo

MAY 2019



SUPERVISORS

¦ Dr. Jordi Cabot – Internet Interdisciplinary Institute (IN3) - ICREA,
Barcelona, Spain

¦ Dr. Javier Luis Cánovas Izquierdo – Internet Interdisciplinary In-
stitute (IN3) - Universitat Oberta de Catalunya (UOC), Barcelona,
Spain

THESIS DEFENSE COMMITTEE MEMBERS

¦ Dr. Francis Bordeleau – École de technologie supérieure, Univer-
sité du Québec, Montreal, Canada

¦ Dr. Marco Brambilla – Politecnico di Milano, Milan, Italy

¦ Dr. Robert Clarisó – Universitat Oberta de Catalunya (UOC),
Barcelona, Spain

HAMZA ED-DOUIBI, Model-driven Round-trip Engineering of REST APIs. PhD
Thesis, Network and Information Technologies Doctoral Programme, Universitat
Oberta de Catalunya (UOC), 2019.



‘Something else an academic education will do for you. If you go along with
it any considerable distance, it’ll begin to give you an idea what size mind

you have. [...] After a while, you’ll have an idea what kind of thoughts your
particular size of mind should be wearing. [...] You’ll begin to know your true

measurements and dress your mind accordingly.’

— J. D. Salinger, The Catcher in the Rye (1951)





Acknowledgments

This PhD would not have been possible without the help and sup-
port of many people. The following lines are dedicated to those who
contributed to this achievement.

First of all, I would like to express my sincere gratitude to my supervi-
sors, Jordi Cabot and Javier Luis Cánovas Izquierdo. Jordi, who fought to
get this PhD started, always believed in me and supported me. His direction
and good advice helped me achieve this thesis. Javi, who is wearing two
hats: a supervisor and a friend, has always been there to mentor me, help
me technically, and support me emotionally. Jordi, Javi, I will always be
indebted to you.

In addition, I would like to thank the other members of SOM research
team for providing such a loving working environment. In SOM research,
I have not only found colleagues but also good friends. I owe countless
thanks to Abel Gómez who gave me many advices and helped me fix several
technical issues. My sincere thanks to Gwendal Daniel for joining me during
the break times and providing me technical support. I would like to thank
Lola Burgueño who offered me help and encouraged me during the writing
of this thesis.

There are also a few people in particular whom I would like to thank.
Aljoscha Gruler, who I met at UOC and became a good friend and companion
by sharing similar experiences as PhD student. Amine Benelallam, who is
always there to listen to my problems and to support me. Ayoub Chakib,
my good friend from Morocco, who always encourages me and welcomes me
each time I go back home.

iii



Finally, I am thankful to my family for their love and continued support.
In particular, I would like to thank my parents, Latifa and Ahmed, for their
selfless sacrifices, and supporting me to travel abroad to pursue my own
path in life. I’m thankful to my brother and sisters, Anas, Hanae and Yousra,
for always making smile. Last but not least, I would like to thank my better
half, my wife, Míriam, who has always been by my side to celebrate with
me after a success, comfort me after a failure, and keep me moving forward.

iv



Abstract

Web APIs have increasingly becoming a key asset for businesses, thus
boosting their implementation and integration in companies’ daily
activities. Such importance is reflected by the growing number of

available public Web APIs, listed in a number of catalogs (e.g., APIS.GURU

with more than 800 APIs or PROGRAMMABLEWEB with more 19000 APIs).
In practice, most of these Web APIs are “REST-like”, meaning that they
adhere partially to the Representational State Transfer (REST) architec-
tural style. REST is a technical description which outlines the principles,
properties, and constraints to build Internet-scale distributed hypermedia
systems. Indeed, REST is a design paradigm and does not propose any
standard. Thus, both developing and consuming REST APIs are challenging
and time-consuming tasks for API providers and clients, respectively. In
fact, API providers should have a sound API strategy fostering ease of use
while respecting REST constraints. On the other hand, writing applications
to consume these APIs typically requires sending HTTP requests and using
JSON or XML to represent data. This task is fully manual and developers
are having a hard time integrating Web APIs to their applications due to the
lack of machine-readable definitions. In fact, Web APIs adopted a human-
oriented approach based on informal textual descriptions explaining what
they propose. Recently, and aiming at standardizing the way to describe
REST APIs, a consortium of major actors in the API market has launched
the OpenAPI Initiative (OAI). This initiative has the objective of creating a
vendor-neutral, portable, and open specification for describing REST APIs.
OAI has succeeded in attracting major companies and the OpenAPI specifi-

v



cation has become the choice of reference to describe REST APIs. On the
other hand, Open Data Protocol (OData), is an emerging specification for
Web APIs which is specially useful to expose and query data sources as
REST APIs. The current version of OData (version 4.0) has been approved
as an OASIS standard.

The objective of this thesis is to facilitate the design, implementation,
composition and consumption of REST APIs, targeting specially the Open-
API specification and OData protocol, by relying on Model-Driven Engineer-
ing (MDE). MDE is a methodology that promotes the use of models and
transformations to raise the level of abstraction and automation in soft-
ware development, respectively. This thesis proposes the following contribu-
tions: (i) EMF-REST, an approach to generate REST APIs for models, thus
promoting model management in distributed environments; (ii) APIDIS-
COVERER, an example-based approach to automatically infer OpenAPI
specifications for REST APIs, thus helping developers increase the exposure
of their APIs without fully writing API specifications; (iii) APITESTER, an
approach to generate test cases for REST APIs relying on their OpenAPI
specifications to assess that the behavior of an API conforms to its speci-
fication; (iv) APIGENERATOR, a model-driven approach to automate the
generation of ready-to-deploy OData REST APIs from conceptual models;
and (v) APICOMPOSER, a lightweight model-based approach to automati-
cally compose REST APIs based on their data models. These contributions
constitute an ecosystem which advances the state of the art of automated
software engineering for REST APIs development and consumption. We
believe such contributions to be of a great value to Web APIs developers
who want to bring more agility to their development tasks.

vi



Resumen

Las API Web se han convertido en una pieza fundamental para un
gran número de compañías, que han promovido su implementación
e integración en las actividades cotidianas del negocio. Tal impor-

tancia se refleja en el creciente número de API Web públicas, recogidas en
catálogos como APIS.GURU (con más de 800 API) o PROGRAMMABLEWEB

(con más de 19000 API). En la práctica, estas API Web son “REST-like”, lo
que significa que se adhieren parcialmente al estilo arquitectónico conocido
como Transferencia de Estado Representacional (Representational State
Transfer, REST en inglés). REST es una descripción técnica que define los
principios, propiedades y restricciones para construir sistemas hipermedia
distribuidos en Internet. De hecho, REST es un paradigma de diseño y no
propone ningún estándar. Por ello, tanto el desarrollo como el consumo de
API REST son tareas difíciles y que demandan mucho tiempo de los provee-
dores y los clientes de API. En realidad, los proveedores de API deben tener
una estrategia de API sólida que promueva la facilidad de uso al mismo
tiempo que respete las limitaciones de REST. Por otra parte, implementar
aplicaciones para consumir estas API normalmente requiere del envío de
mensajes HTTP y el uso de JSON o XML para representar datos. Este
proceso es completamente manual y los desarrolladores tienen una gran
dificultad para integrar API Web con sus aplicaciones debido a la falta de
definiciones legibles por máquinas. Así, las API Web adoptaron una aproxi-
mación basada en descripciones informales en lenguaje natural explicando
lo que proponen. Recientemente, con el objetivo de estandarizar la manera
de describir API REST, un consorcio formado por los representantes prin-

vii



cipales del mercado ha lanzado la Iniciativa OpenAPI (OpenAPI Initative,
OAI en inglés). Esta iniciativa tiene como objetivo crear una especificación
neutral, portable y abierta para describir API REST. La OAI ha logrado
atraer a grandes compañías y la especificación OpenAPI se ha convertido
en la elección de referencia para la descripción de API REST. Por otra parte,
OData (del inglés Open Data Protocol) ha emergido como una especificación
para API Web que es especialmente útil para mostrar y consultar fuentes
de datos como API REST. La versión actual de OData (versión 4.0) ha sido
aprobada como una estándar OASIS.

El objetivo de esta tesis es facilitar el diseño, implementación, composi-
ción y consumo de API REST, enfocándose especialmente a la especificación
OpenAPI y el protocolo OData, y apoyándose en el del Desarrollo de Software
Dirigido por Modelos (DSDM) . El DSDM es una metodología que promueve
el uso de modelos y transformaciones para elevar el nivel de abstracción
y automatización en el desarrollo de software, respectivamente. Esta tesis
propone las siguientes contribuciones: (i) EMF-REST, una aproximación
para generar API REST para modelos con el objetivo de promover el manejo
de modelos en ambientes distribuidos; (ii) APIDISCOVERER, una aproxi-
mación para inferir automáticamente especificaciones OpenAPI a partir
de ejemplos de llamadas de API REST, ayudando a los desarrolladores a
facilitar el uso de sus API sin escribir completamente las especificaciones
API; (iii) APITESTER, una aproximación para generar casos de prueba
para API REST apoyándose en sus especificaciones OpenAPI, permitiendo
evaluar si el comportamiento de una API conforma a su especificación; (iv)
APIGENERATOR, una aproximación dirigida por modelos para automatizar
la generación de API REST OData a partir de modelos conceptuales; and
(v) APICOMPOSER, una aproximación basada en modelos para componer
automáticamente API REST dados sus modelos de datos. Estas contribu-
ciones constituyen un ecosistema que avanza el estado del arte en el área
de la ingeniería del software referida a la automatización de las tareas
relacionadas con el desarrollo y consumo de API REST. Además, creemos
que estas contribuciones aportan un alto nivel de agilidad en el desarrollo
de API Web.

viii



Resum

Les API web s’han convertit cada vegada més en un actiu clau per a
les empreses, que han promogut la seva implementació i integració
en les seves activitats quotidianes. Aquesta importància es reflecteix

en la creixent quantitat d’API web públiques disponibles, que figuren a
diversos catàlegs (p. ex., APIS.GURU amb més de 800 API o PROGRAM-
ABLEWEB amb més de 19 000 API). A la pràctica, la majoria d’aquestes
API web són “REST-like”’, el que significa que s’adhereixen parcialment
a l’estil arquitectònic conegut com Transferència d’Estat Representacional
(Representational State Transfer, REST en anglés). REST és una descripció
tècnica que descriu els principis, propietats i restriccions per construir sis-
temes d’hipermèdia distribuïts a Internet. De fet, REST és un paradigma
de disseny i no proposa cap estàndard. Com a conseqüència, tant desen-
volupar com consumir API REST són tasques difícils i costoses per als
proveïdors i clients de l’API. De fet, els proveïdors d’API haurien de tenir
una estratègia API sòlida que afavoreixi la facilitat d’ús, tot respectant les
restriccions REST. D’altra banda, escriure aplicacions per consumir aque-
stes API normalment requereix enviar peticions HTTP i utilitzar JSON o
XML per tal de representar les dades. Aquesta tasca és totalment manual
i els desenvolupadors tenen dificultats per integrar API web a les seves
aplicacions a causa de la manca de definicions que poden ser llegides per les
màquines. De fet, les API web van adoptar un enfocament basat en descrip-
cions textuals informals en llenguatge natural i orientades a ser llegides
per persones. Recentment, i amb l’objectiu d’estandarditzar la manera de
descriure les API REST, un consorci d’actors importants en el mercat de

ix



l’API ha llançat la Iniciativa OpenAPI (OpenAPI Initiative, OAI en anglés).
Aquesta iniciativa té com a objectiu crear una especificació neutral, portable
i oberta per descriure les API REST. L’OAI ha aconseguit atraure empreses
importants, i l’especificació OpenAPI s’ha convertit en l’elecció de referència
per descriure les API REST. D’altra banda, l’Open Data Protocol (OData) és
una especificació emergent per a les API web que és especialment útil per
exposar i consultar fonts de dades emprant API REST. La versió actual de
OData (versió 4.0) ha estat aprovada com un estàndar OASIS.

L’objectiu d’aquesta tesi és facilitar el disseny, la implementació, la
composició i el consum de les API REST, especialment aquelles que
segueixen l’especificació OpenAPI i elprotocol OData, basant-se en tècniques
d’Enginyeria Dirigida per Models (Model-driven Engineering, MDE en an-
glés). MDE és una metodologia que promou l’ús de models i transformacions
per pujar el nivell d’abstracció i automatització en el desenvolupament
de programari. Aquesta tesi proposa les següents contribucions: (i) EMF-
REST, un enfocament per generar API REST a partir de models, promovent
així la gestió de models en entorns distribuïts; (ii) APIDISCOVERER, una pro-
posta per inferir automàticament les especificacions OpenAPI per a les API
REST a partir d’exemples, ajudant així als desenvolupadors a augmentar
l’exposició de les seves API sense escriure completament les especificacions
de les API; (iii) APITESTER, una proposta per generar casos de prova per a
les API REST basant-se en les seves especificacions OpenAPI, i que serveix
per a avaluar que el comportament d’una API s’ajusta a la seva especificació;
(iv) APIGENERATOR, una proposta basada en tècniques de MDE per a au-
tomatitzar la generació d’API REST per a OData directamente desplegables
a partir de models conceptuals; i (v) APICOMPOSER, una solució lleugera
basada en models per permeteix compondre automàticament les API REST
a partir d’els seus models de dades. Aquestes contribucions constitueixen un
ecosistema que avança l’estat de l’art al camp de l’enginyeria de programari
automàtica per al desenvolupament i el consum de les API REST. Creiem
que aquestes contribucions tenen un gran valor per als desenvolupadors de
les API web que volen agilitzar les seves tasques de desenvolupament.

x



Table of Contents

Page

List of Tables xv

List of Figures xvii

List of Algorithms xxiii

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 APIfication . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Modeling and discovering REST APIs . . . . . . . . . . 4
1.1.3 Testing REST APIs . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Generating REST APIs . . . . . . . . . . . . . . . . . . 5
1.1.5 Composing REST APIs . . . . . . . . . . . . . . . . . . 6

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Scientific Production . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Tools Developed . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 15
2.1 REST APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 REST Architectural Style . . . . . . . . . . . . . . . . . 15

xi



TABLE OF CONTENTS

2.1.2 HTTP’s Uniform Interface . . . . . . . . . . . . . . . . . 17
2.2 REST APIs Specifications and Protocols . . . . . . . . . . . . . 18

2.2.1 The OpenAPI Specification . . . . . . . . . . . . . . . . 19
2.2.2 OData Protocol . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Model-Driven Architecture . . . . . . . . . . . . . . . . 31
2.3.3 UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 UML Profiles . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.5 OCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.6 Supporting Frameworks for MDE . . . . . . . . . . . . 35

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Modeling REST APIs 37
3.1 Modeling OpenAPI . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 A Metamodel for OpenAPI . . . . . . . . . . . . . . . . 38
3.1.2 A UML Profile for OpenAPI . . . . . . . . . . . . . . . . 43

3.1.2.1 Mapping UML and OpenAPI . . . . . . . . . 43
3.1.2.2 The OpenAPI Profile . . . . . . . . . . . . . . 46

3.1.3 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.3.1 OpenAPIMM . . . . . . . . . . . . . . . . . . . 51
3.1.3.2 OpenAPIProfile . . . . . . . . . . . . . . . . . 54
3.1.3.3 OpenAPItoUML . . . . . . . . . . . . . . . . . 54

3.2 Modeling OData . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.1 The OData Metamodel . . . . . . . . . . . . . . . . . . . 57
3.2.2 A UML Profile for OData . . . . . . . . . . . . . . . . . 60

3.2.2.1 The Entity Data Model . . . . . . . . . . . . . 60
3.2.2.2 Default Profile Generation . . . . . . . . . . . 64

3.2.3 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 APIfication of Models 67
4.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Mapping EMF and REST . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Identification of Resources . . . . . . . . . . . . . . . . 70
4.3.2 Manipulation of Resources Through Representations 72
4.3.3 Uniform Interface . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Additional EMF-REST Features . . . . . . . . . . . . . . . . . 76
4.4.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xii



TABLE OF CONTENTS

4.4.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 EMF-REST API Architecture . . . . . . . . . . . . . . . . . . . 78

4.5.1 Content Management . . . . . . . . . . . . . . . . . . . 79
4.5.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Code Generation and Tool Support . . . . . . . . . . . . . . . . 81
4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Discovering REST APIs Specifications 85
5.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 The Discovery Process . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Behavioral Discoverer . . . . . . . . . . . . . . . . . . . 89
5.3.2 Structural Discoverer . . . . . . . . . . . . . . . . . . . 91

5.4 The Generation Process . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Validation and Limitations . . . . . . . . . . . . . . . . . . . . . 93
5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Testing REST APIs 101
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Extracting OpenAPI Models . . . . . . . . . . . . . . . . . . . . 103
6.4 Inferring Parameter Values . . . . . . . . . . . . . . . . . . . . 104
6.5 Extracting Test Case Definitions . . . . . . . . . . . . . . . . . 105

6.5.1 The TestSuite Metamodel . . . . . . . . . . . . . . . . . 105
6.5.2 OpenAPI to TestSuite Transformation . . . . . . . . . 107

6.6 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.7 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.8 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.8.1 REST APIs Collection and Selection . . . . . . . . . . 111
6.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.8.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . 114

6.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Generating REST APIs 117
7.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xiii



TABLE OF CONTENTS

7.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3 Specification of OData Services . . . . . . . . . . . . . . . . . . 122
7.4 Database Schema Generation . . . . . . . . . . . . . . . . . . . 124
7.5 OData Service Generation . . . . . . . . . . . . . . . . . . . . . 127

7.5.1 OData Metadata Document Generation . . . . . . . . 127
7.5.2 OData Requests to SQL Statements Transformation 128
7.5.3 OData Serializer and Deserializer Generation . . . . 134

7.6 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Composing REST APIs 139
8.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 API Importer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3 Requests Resolver . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.5 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9 Conclusions and Future Work 147
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2.1 Current Contributions . . . . . . . . . . . . . . . . . . . 149
9.2.2 New Research Lines . . . . . . . . . . . . . . . . . . . . 154

Bibliography 163

xiv



List of Tables

TABLE Page

2.1 OData query options examples. . . . . . . . . . . . . . . . . . . . . 29

3.1 Mapping OpenAPI and UML elements. . . . . . . . . . . . . . . . 44
3.2 The primitive data types defined by the OpenAPI specification . 48
3.3 Rules of the OData profile annotation generator. . . . . . . . . . . 65

4.1 Supported operations in the generated API. . . . . . . . . . . . . 75

5.1 APIDISCOVERER: steps of the behavioral discoverer applied for
each REST API call example. . . . . . . . . . . . . . . . . . . . . . 90

5.2 Transformation rules from UML to Schema . . . . . . . . . . . . . 92

6.1 Wrong data types generation rules. . . . . . . . . . . . . . . . . . . 108
6.2 Violated constraints generation rules. . . . . . . . . . . . . . . . . 108
6.3 Coverage of the test cases in terms of operations, parameters,

endpoints and definitions. . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 Errors found in the test cases. . . . . . . . . . . . . . . . . . . . . . 112

7.1 UML to OData model transformation rules. . . . . . . . . . . . . 123
7.2 ER to OData model transformation rules. . . . . . . . . . . . . . . 124
7.3 Examples of OData requests and the corresponding SQL state-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4 Example of OData request to SQL mapping. . . . . . . . . . . . . 132
7.5 OData System query options and their corresponding SQL rules. 133

xv





List of Figures

FIGURE Page

1.1 The challenges addressed in this thesis and the main Model-
Driven Engineering axes. . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Main contributions of this thesis and the link between them. . . 8

2.1 Class diagram of an online store. . . . . . . . . . . . . . . . . . . . 25
2.2 A simple UML profile for relational databases. . . . . . . . . . . . 33
2.3 A example of a UML Class diagram with a profile. . . . . . . . . 34

3.1 The OpenAPI metamodel: behavioral elements . . . . . . . . . . . 39
3.2 The OpenAPI metamodel: structural elements . . . . . . . . . . . 40
3.3 The OpenAPI metamodel: metadata and documentation elements. 41
3.4 The OpenAPI metamodel: security elements. . . . . . . . . . . . . 42
3.5 The OpenAPI metamodel: serialization/deserialization elements. 42
3.6 OpenAPI model example: (a) an excerpt of the Petstore OpenAPI

definition and (b) an except of the corresponding OpenAPI model. 43
3.7 OpenAPI model example: (a) an excerpt of the Petstore OpenAPI

definition and (b) the corresponding UML model. . . . . . . . . . 45
3.8 OpenAPI profile: the API element. . . . . . . . . . . . . . . . . . . 46
3.9 OpenAPI profile: structural elements. . . . . . . . . . . . . . . . . 47
3.10 OpenAPI profile: behavioral elements. . . . . . . . . . . . . . . . . 48
3.11 OpenAPI profile: metadata Elements. . . . . . . . . . . . . . . . . 49
3.12 OpenAPI profile: security Elements. . . . . . . . . . . . . . . . . . 50
3.13 OpenAPI profile: Petstore example. . . . . . . . . . . . . . . . . . . 52

xvii



LIST OF FIGURES

3.14 The OPENAPITOUML approach. . . . . . . . . . . . . . . . . . . . 55
3.15 The Petstore example: (a) generated UML model, and (b) serial-

ized UML model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.16 A screenshot of the OPENAPITOUML plugin. . . . . . . . . . . . 57
3.17 An excerpt of OData metamodel. . . . . . . . . . . . . . . . . . . . 58
3.18 OData profile: (a) the service wrapper and (b) data types elements. 61
3.19 OData profile: properties and associations stereotypes. . . . . . . 62
3.20 OData profile: annotation and vocabulary stereotypes. . . . . . . 63
3.21 UML class diagram of the running example annotated by the

generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 EMF-REST global approach. . . . . . . . . . . . . . . . . . . . . . 68
4.2 Simple Ecore model of an IFML subset. . . . . . . . . . . . . . . . 69
4.3 IFML model example: (a) object diagram, (b) abstract syntax tree,

(c) concrete IFML syntax. . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Annotations on an excerpt of the example model. . . . . . . . . . 78
4.5 Architecture of the generated application. . . . . . . . . . . . . . . 79
4.6 EMF-REST screenshot: admin view. . . . . . . . . . . . . . . . . . 81
4.7 EMF-REST generation process. . . . . . . . . . . . . . . . . . . . 82

5.1 The APIDISCOVERER approach. . . . . . . . . . . . . . . . . . . . 88
5.2 APIDISCOVERER: the discovered OpenAPI model for the Petstore

API example: (a) behavioral discovery, (b) structural discovery. . 91
5.3 Generated UML model from the API call example. . . . . . . . . 91
5.4 APIDISCOVERER architecture. . . . . . . . . . . . . . . . . . . . . 97
5.5 Screenshot of the UI of APIDISCOVERER. . . . . . . . . . . . . . . 98

6.1 Test cases generation for the OpenAPI specification. . . . . . . . 102
6.2 An excerpt of the extended OpenAPI metamodel. . . . . . . . . . 103
6.3 Excerpt of the OpenAPI model corresponding to the Petstore API

including a parameter example. . . . . . . . . . . . . . . . . . . . . 104
6.4 Excerpt of the TestSuite metamodel. . . . . . . . . . . . . . . . . . 106
6.5 TestSuite model representing nominal and faulty test cases for

the Petstore API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.6 TESTGENERATOR: a screenshot of the generated Maven project

of the Petstore API showing a nominal and a faulty test case. . . 111

7.1 The OData service specification and generation approach. . . . . 118
7.2 UML model of the running example. . . . . . . . . . . . . . . . . . 119
7.3 ER model of the running example. . . . . . . . . . . . . . . . . . . 120
7.4 An excerpt of the generated OData model for the running example.125

xviii



LIST OF FIGURES

7.5 APIGENERATOR: a screenshot of the generated application for
the running example. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1 Overview of the APICOMPOSER approach. . . . . . . . . . . . . . 140
8.2 Composition process. . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3 Excerpt of the binding metamodel. . . . . . . . . . . . . . . . . . . 142
8.4 APICOMPOSER illustrative example. . . . . . . . . . . . . . . . . . 144
8.5 Screenshot of APICOMPOSER: API importer wizard. . . . . . . . 145

xix





Listings

LISTING Page
2.1 A snippet of the OpenAPI definition of the Petstore API in

JSON format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 An example of a request to the Petstore API . . . . . . . . . . 23
2.3 A simple OData Metadata Document for the products service 26
2.4 An example of a request to the online store . . . . . . . . . . . 29
2.5 Simple Object Constraint Language (OCL) example. . . . . . 34
4.1 Partial JSON representation of the example model . . . . . . 73
4.2 Partial XML representation of the example model . . . . . . . 74
4.3 Update the attribute of a concept using EMF generated API. 75
4.4 HTTP request and JSON representation to update the name

of the addressed form. . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Part of the ViewComponent concept. . . . . . . . . . . . . . . . . 80
5.1 JSON representation of a Pet instance. . . . . . . . . . . . . . 86
5.2 A snippet of the OpenAPI definition of the Petstore API show-

ing the getPetById operation. . . . . . . . . . . . . . . . . . . . 87
5.3 The generated OpenAPI definition of the Petstore call example. 94
7.1 A simple OData Metadata Document for the products service. 121
7.2 An example of collection of products in OData JSON format. 122
7.3 A simple DDL file of the running example. . . . . . . . . . . . 127

xxi





List of Algorithms

1 APIGENERATOR: DDL schema generation process. . . . . . . 126
2 APIGENERATOR: Resource path URL transformation. . . . . 131

xxiii





CHAPTER

1
Introduction

The Web was born at CERN in 19891. It started as a software project called
“WordWideWeb” led by Tim Berners-Lee with the goal to facilitate knowledge
sharing. In the first ever Web page created in 19912, Berners-Lee wrote:

“The WorldWideWeb (W3) is a wide-area hypermedia informa-
tion retrieval initiative aiming to give universal access to a large
universe of documents.”

What started as a non-profit project to facilitate knowledge sharing
reached an unexpected success, resulting in millions of Web users within
only few years. However, the Web core protocols were not regulated nor
uniformly implemented and lacked support of caching mechanism [Mas11].
Also, the Web had grown substantially faster than the Internet in terms of
number of hosts [Gra96] and Web traffic was exceeding the capacity of the
Internet infrastructure [Mas11].

In 1993, Roy Fielding, co-founder of the Apache HTTP Server Project3,
became concerned about the scalability issue of the Web. He identified a
set of constraints that should be uniformly satisfied to allow the Web to
expand. These constraints collectively define what was referred to as the
Web’s architectural style.

In order to enforce the Web’s architecture, Fielding, Berbers-Lee and
others wrote a new version of the Hypertext Transfer Protocol (HTTP) (i.e.,

1https://home.cern/topics/birth-web
2http://info.cern.ch/hypertext/WWW/TheProject.html
3http://httpd.apache.org

1

https://home.cern/topics/birth-web
http://info.cern.ch/hypertext/WWW/TheProject.html
http://httpd.apache.org


CHAPTER 1. INTRODUCTION

HTTP/1.1) [Fie+99] and formalized the syntax of the Uniform Resource
Identifier (URI) in RFC 3986 [BFM05]. These new specifications got quickly
adopted and paved the way for the Web to grow. In 2000, and after fixing the
Web scalability crisis, Roy Fielding described the Web’s architectural style
in his Ph.D dissertation [Fie00]. “Representational State Transfer (REST)”
was the name he gave to this description.

Due to its lightweight nature, adaptability to the Web, and scaling
capability, REST has become the preferred style for building Web APIs.
With the emergence of REST, Web APIs have become the backbone of Web,
Cloud, mobile applications and even many Open Data initiatives aiming
at facilitating the access to information using Web APIs rather that the
Resource Description Framework (RDF). In fact, Web APIs are now mission
critical for any number of businesses, and their implementation is increasing
[BW14].

The growing importance of REST APIs has been supported by the pro-
posal of several specification languages aimed at formally describing REST
APIs and therefore facilitating their discovery and integration (e.g., SWAG-
GER4, API BLUEPRINT5, RAML6). Aiming at standardizing the way to
describe REST APIs, a consortium of major actors in the API market has
launched the OpenAPI Initiative (OAI)7. This initiative has the objective
of creating a vendor neutral, portable, and open specification for describing
REST APIs. OAI has succeeded in attracting major companies and the Open-
API specification has become the choice of reference to describe REST APIs.
Open Data Protocol (OData), on the other hand, is an emerging specification
for Web APIs which is specially useful to expose data sources as REST
APIs. OData allows creating resources which are defined according to a data
model and can be queried by Web clients using a URL-based query language
in an SQL-like style. The current version of OData has been approved as
an OASIS standard [PHZ14c].

Model-Driven Engineering (MDE) is a methodology that promotes the
use of models to raise the level of abstraction and automation in software
development [Sel03]. MDE relies on models and model transformations for
the specification and generation of software artifacts, thus hiding the com-
plexity of the target technology. In the last decade, MDE approaches have
been successfully applied in several industries including the automotive
industry, aerospace, and information systems [HRW11; Hut+11].

4http://swagger.io
5https://apiblueprint.org/
6https://raml.org/
7https://www.openapis.org/

2

http://swagger.io
https://apiblueprint.org/
https://raml.org/
https://www.openapis.org/


1.1. PROBLEM STATEMENT

This thesis proposes a model-driven approach to facilitate the design,
implementation, consumption, and composition of REST APIs, targeting
the OpenAPI specification and OData protocol.

1.1 PROBLEM STATEMENT

Web APIs are key assets for a number of businesses, thus their implementa-
tion and integration are increasing [BW14]. Such importance is reflected
by the growing number of public Web APIs, listed in catalogs such as API
HARMONY8 (over 1 000 APIs), MASHAPE9 & RAPIDAPI10 marketplace (over
8 000 APIs), APIS.GURU11 (over 800 APIs), or PROGRAMMABLEWEB (over
19 000 APIs). In practice, most of these Web APIs are “REST-like”, meaning
that they adhere to REST constraints to some extent [Rod+16]. Writing
applications to consume these APIs typically requires sending HTTP re-
quests and using JavaScript Object Notation (JSON) or Extensible Markup
Language (XML) to represent data. This is in theory an easy task but in
practice developers are having a hard time integrating Web APIs to their
applications [EZG15] due to the lack of machine-readable descriptions and
incomplete documentations, among others. On the other hand, developing
REST APIs is a challenging and time-consuming task for API providers who
should have a sound API strategy fostering ease of use while respecting
REST constraints.

In the following we describe the challenges addressed by this thesis,
namely: (i) APIfication, (ii) modeling and discovering REST APIs, (iii) test-
ing REST APIs, (iv) generating REST APIs, and finally (v) composing REST
APIs.

1.1.1 APIfication

Web APIs are the new communication bus of modern organizations,
allowing previously locked systems to integrate with each other without
any human interaction. Thus, approaches that enable API-based access to
these systems are needed. This is what we call APIfication. In the context
of this thesis we target the APIfication of models. In fact, current modeling

8https://apiharmony-open.mybluemix.net/public
9https://market.mashape.com/

10https://rapidapi.com/
11https://apis.guru/openapi-directory/

3

https://apiharmony-open.mybluemix.net/public
https://market.mashape.com/
https://rapidapi.com/
https://apis.guru/openapi-directory/


CHAPTER 1. INTRODUCTION

environments (e.g., XTEXT12, EPSILON13 or EMFTEXT14) and frameworks
(e.g., the plethora of modeling facilities in Eclipse such as Eclipse Modeling
Framework (EMF) or Graphical Modeling Framework (GMF)) have suc-
cessfully contributed to the broad use of MDE techniques. However, these
frameworks are constrained to be used in current heavyweight desktop
environments (e.g., ECLIPSE IDE). Web APIs offer a suitable solution to
enable the portability of modeling environments to the Web, thus facilitating
the collaborative development of model-based applications.

1.1.2 Modeling and discovering REST APIs

Despite their popularity, REST APIs do not typically come with any
specification of the functionality they offer. Instead, REST “specifications”
are typically informal textual descriptions [PZL08] (i.e., documentation
pages), which hampers their integration. Indeed, developers need to read
documentation pages, write code to assemble the resource URIs and en-
code/decode the exchanged resource representations. This manual process
is time-consuming and error-prone and affects not only the adoption of
APIs but also their discovery. This situation triggered the creation of many
specification languages to describe REST APIs (e.g., SWAGGER15, API
BLUEPRINT16, RAML17), which makes choosing a format or another sub-
jective to API providers. To face this situation, the OAI launched a vendor
neutral, portable, and open specification for describing REST APIs. OAI has
succeeded in attracting major companies in the API ecosystem including its
competitors (e.g., MULESOFT18, the creator of RAML; APIARY19, creator
of API BLUEPRINT) and the OpenAPI specification (formally SWAGGER

specification) won the API specification battle. In fact, OpenAPI benefits
from the surrounding ecosystem of tools to help automatize many API de-
velopment tasks such as generating Software Development Kits (SDKs) for
different frameworks (e.g., using APIMATIC20, SWAGGER-CODEGEN21) and

12https://www.eclipse.org/Xtext/
13http://www.eclipse.org/epsilon/
14https://marketplace.eclipse.org/content/emftext
15http://swagger.io
16https://apiblueprint.org/
17https://raml.org/
18https://swagger.io/blog/news/mulesoft-joins-the-openapi-initiative/
19https://blog.apiary.io/We-ve-got-Swagger
20https://apimatic.io/
21https://github.com/swagger-api/swagger-codegen

4

https://www.eclipse.org/Xtext/
http://www.eclipse.org/epsilon/
https://marketplace.eclipse.org/content/emftext
http://swagger.io
https://apiblueprint.org/
https://raml.org/
https://swagger.io/blog/news/mulesoft-joins-the-openapi-initiative/
https://blog.apiary.io/We-ve-got-Swagger
https://apimatic.io/
https://github.com/swagger-api/swagger-codegen


1.1. PROBLEM STATEMENT

generating documentation (e.g., using SWAGGER UI22, REDOC23). There is,
therefore, a need of approaches to automatically discover OpenAPI specifica-
tions for existing Web APIs. The importance of such approaches is supported
by the emergence of new initiatives to infer OpenAPI specifications from,
for instance, other specification formats (e.g., API TRANSFORMER24) or
documentation pages (e.g., [Yan+18], [CFB17]).

1.1.3 Testing REST APIs

Testing Web APIs, and specially REST ones, is a complex task due to
the lack of machine-readable descriptions [BHH13]. Many approaches have
proposed test case generation but mostly for Simple Object Access Protocol
(SOAP)-based Web APIs by relying on their Web Services Description Lan-
guage (WSDL) documents (e.g., [Bai+05; Bar+09; HM08; OX04]). However,
works targeting test cases generation for REST APIs are rather limited
(e.g., [Arc17]). In the last years we have witnessed an increasing number of
open source and commercial tools offering automated API testing for differ-
ent specification formats such as OpenAPI (e.g., READY API!25, DREDD26,
RUNSCOPE27). Nevertheless, these tools only cover nominal test cases (i.e.,
using correct data) and neglect the fault-based ones (i.e., using incorrect
data) which are important when selecting reliable Web APIs for composition
[BHH13]. Furthermore, they require extra configuration and the provision
of input data.

1.1.4 Generating REST APIs

While REST provides a lightweight solution to create Web APIs, design-
ing true REST APIs is not a trivial task. A REST API should adhere to
REST constraints and not any Web API built on HTTP should be called
REST, which Roy Fielding weighed in28. In fact, recent reports showed that
most APIs do not fully conform to Fielding’s definition of REST [Rod+16].
OData29 is a protocol that defines a set of best practices for building and
consuming RESTful APIs. In the last years, OData has evolved to become

22https://swagger.io/tools/swagger-ui/
23https://github.com/Rebilly/ReDoc
24https://apimatic.io/transformer
25https://smartbear.com/product/ready-api/overview/
26http://dredd.readthedocs.io/
27https://www.runscope.com/
28http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-

driven
29http://www.odata.org/

5

https://swagger.io/tools/swagger-ui/
https://github.com/Rebilly/ReDoc
https://apimatic.io/transformer
https://smartbear.com/product/ready-api/overview/
http://dredd.readthedocs.io/
https://www.runscope.com/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.odata.org/


CHAPTER 1. INTRODUCTION

the natural choice for creating data-centric REST APIs (i.e., REST APIs
providing access to data sources), specially for Open Data initiatives aiming
at facilitating the access to information using Web services. As a result,
many service providers have integrated OData in their solutions (e.g., SAP,
IBM WebSphere or JBoss Data Virtualization). There are some SDKs for
developing OData applications (e.g., RESTIER30, APACHE OLINGO31, SDL
ODATA FRAMEWORKS32) and commercial tools for exposing OData ser-
vices from already existing data sources (e.g., CLOUD DRIVERS33, ODATA

SERVER34, SKYVIA CONNECT35), but they still require advanced knowledge
about OData to implement the business logic of the service, and provide
limited support for the OData specification, respectively. Other tools such
as SIMPLE-ODATA-SERVER36 and JAYDATA37 allow generating a basic
OData server from both an entity model expressed in OData format and the
corresponding database, but they only cover a subset of the OData protocol.

1.1.5 Composing REST APIs

By enabling programmatic access to data sources, Web APIs promote
the creation of specialized data-driven applications that combine data from
different sources to offer user-oriented value-added APIs. Creating such
applications requires API discovery/understanding/composition and coding.
Such tasks are not trivial since developers should [EZG14; Aué+18]: (i) know
the operations and data models of the API to compose; (ii) define the com-
position strategy; and (iii) implement an application (usually another Web
API) realizing such strategy. While automatic Web API composition has been
heavily studied for the classical WSDL/SOAP style [She+14], REST API
composition is of broad and current interest specially after the emergence of
new REST API specifications such as the OpenAPI specification and OData.

1.2 APPROACH

We propose an MDE approach to address the challenges described in the
previous section, namely: APIfication of models, discovery of REST API spec-

30https://github.com/OData/RESTier
31https://olingo.apache.org/
32https://github.com/sdl/odata
33http://www.cdata.com/odata/
34https://rwad-tech.com/
35https://skyvia.com/connect/
36https://github.com/pofider/node-simple-odata-server
37https://github.com/jaystack/jaydata

6

https://github.com/OData/RESTier
https://olingo.apache.org/
https://github.com/sdl/odata
http://www.cdata.com/odata/
https://rwad-tech.com/
https://skyvia.com/connect/
https://github.com/pofider/node-simple-odata-server
https://github.com/jaystack/jaydata


1.3. CONTRIBUTIONS

Model-Driven Engineering

Models Transformations Code generation

APIfication Discovery Testing

Generation Composition

Challenges

uses

Figure 1.1: The challenges addressed in this thesis and the main Model-
Driven Engineering axes.

ifications, API testing, REST APIs generation, and REST APIs composition,
as depicted in Figure 1.1.

We created a set of intermediate model-based representations to define
the components of our approach such as: (i) the OpenAPI specification, (ii)
the OData protocol, and (iii) the test cases. These model-based representa-
tions are used throughout this thesis to create our model-driven approach.

1.3 CONTRIBUTIONS

Our model-based representations become the foundations on which we built
the main contributions of this thesis which are depicted in Figure 1.2. The
figure shows how these contributions are linked together to constitute an
ecosystem of tools addressing the challenges described in Section 1.1. In the
following we give a brief description of each contribution. Note that these
contributions are presented in the same order as the challenges addressed
by this thesis.

EMF-REST. One of the objectives of this thesis is to unlock model
management from the silo of desktop modeling environments. We
propose an approach that generates REST APIs from models, thus
promoting model management in distributed environments. As can
be seen in Figure 1.2 (see block a), EMF-REST takes as input an
EMF model and generates a REST API manipulating such model. The

7



CHAPTER 1. INTRODUCTION

JS
O

N
JS

O
N

A
P
I

AP
I

D
iscoverer

AP
I

Tester

AP
I

G
en

erator

AP
I

C
om

p
oser

A
P
I

A
P
I

JS
O

N
JS

O
N

E
M

F M
od

el

O
p
en

A
PI M

o
d
el

C
on

cep
tu

al M
o
d
el

O
D

ata A
PI

O
p
en

A
PI 

d
efin

ition

G
lob

al A
PI

R
E
S
T
 A

PI

G
en

erated
R
E
S
T
 A

PI

JS
O

N

 ...

...
...

A
P
I

test
test
test

test
...

✓✓ ✗✗

O
D

at
a 

to
 O

pe
nA

PI

JS
O

N
JS

O
N

JS
O

N
JS

O
N

JS
O

N

JS
O

N
JS

O
N

JS
O

N
JS

O
N

JS
O

N

call 
exam

p
les

call 
exam

p
les

E
M

F-R
E
S
T

ab

c

d

e

F
igure

1.2:M
ain

contributions
ofthis

thesis
and

the
link

betw
een

them
.

8



1.3. CONTRIBUTIONS

generated REST API relies on well-known libraries with the aim of
facilitating its understanding and maintainability. Adopting a Web-
based approach to manipulate models would promote the collaboration
between modelers, thus facilitating the collaborative development of
new software models. Our solution advances towards the portability of
modeling tools to the Web.

APIDISCOVERER. We propose an example-based approach to allow
developers to automatically infer OpenAPI specifications for REST
APIs, and optionally, store them in a community-oriented directory.
APIDISCOVERER generates OpenAPI specifications for REST APIs
from call examples of such APIs. As can be seen in Figure 1.2 (see
bloc b), APIDISCOVERER takes as input a set of call examples of an
existing or generated REST API, then discovers the OpenAPI model
corresponding to the API. The later is finally transformed to an Open-
API definition in JSON format. Our approach is an example-driven
approach, meaning that the OpenAPI specification is derived from a set
of examples showing its usage. The use of examples is a well-known
technique in several areas such as Software Engineering [Lóp+15;
Nie+07] and Automatic Programming [Fra+16]. From the user’s point
of view, our approach facilitates the discovery and integration of ex-
isting APIs, favouring software reuse. From the API builder’s point
of view, our approach helps increase the exposure of the API with-
out the need to learn and fully write the API specifications or alter
the API code, thus allowing fast-prototyping of API specifications and
leveraging on several existing tool sets featuring API documentation
generation (e.g., using SWAGGER UI38) or API monitoring and testing
(e.g., using RUNSCOPE39).

APITESTER. We propose an approach to generate test cases for REST
APIs relying on their specifications, in particular the OpenAPI one,
with the goal to ensure a high coverage level for both nominal (i.e.,
correct input data) and fault-based (i.e., incorrect input data) test cases.
APITESTER takes as input an OpenAPI specification, then generates
a set of test cases for the API under scrutiny, as depicted in Figure 1.2
(see block c). We define a set of parameter inference rules to generate
the input data required by the test cases. We follow a model-driven

38http://swagger.io/swagger-ui/
39https://www.runscope.com/

9

http://swagger.io/swagger-ui/
https://www.runscope.com/


CHAPTER 1. INTRODUCTION

approach, thus favoring reuse and automation of test case generation.
Therefore, we define a TestSuite metamodel to represent test case
definitions for REST APIs. Models conforming to this metamodel are
created from REST API definitions, and later used to generate the
executable code to test the API.

APIGENERATOR. We propose a model-driven approach to automate
the generation of ready-to-deploy REST APIs. As can be seen in Figure
1.2 (see block d), APIGENERATOR takes as input a Unified Modeling
Language (UML) class diagram (or Entity Relationship (ER) model),
then generates an OData API reflecting the data model. Our approach
derives all the artifacts required to have the OData API up and running
on top of a relational database conforming to the model definition,
including the transformation of OData requests to Structured Query
Language (SQL) queries and complying with OData protocol. We rely
on the OData metamodel, which is used to represent and generate the
OData API; thus allowing us to leverage on the plethora of existing
modeling tools and therefore enabling our approach to use other input
models or target technologies.

APICOMPOSER. We propose a lightweight model-based approach to
automatically compose data-oriented REST APIs. As can be seen in
Figure 1.2 (see block e), APICOMPOSER takes as input a set of Open-
API definitions, then generates a global API composing the input APIs.
The input OpenAPI definitions can be: (i) provided by the API provider,
(ii) generated by tools such as APIDISCOVERER, or (iii) derived from
other formats (e.g., from OData40). In our approach, the data schema
behind the global API is generated during the composition process
based on the discovery of matches between the individual data schema
of each single API. All these schemas are represented as models and
their manipulations (e.g., concept matching or composition) are im-
plemented as model transformations. As a result of the composition,
we obtain a global API that hides the complexity of the composition
process to the user. Indeed, a user queries the global API and, in a
transparent way, the global query triggers a fully automatic process
that accesses the individual APIs and combines their data to generate
a single response. To facilitate the consumption of the global API, we
expose it as an OData service, thus allowing the use of OData query
language to interact with the APIs.

40https://oasis-tcs.github.io/odata-openapi/

10

https://oasis-tcs.github.io/odata-openapi/


1.4. RESULTS

As depicted in Figure 1.2 and explained above, the contributions of this
thesis can be used together or separately to automate different tasks related
to REST APIs development, consumption, and composition. We believe
our contributions bring more agility to REST APIs development tasks and
advance the state of the art of automatic software engineering for REST
APIs.

1.4 RESULTS

This section presents what has been produced in the context of this thesis
including: (i) the scientific publications, and (ii) the tools implementing the
contributions.

1.4.1 Scientific Production

The contributions of this thesis have been published in the following papers:

¦ International conferences (full research papers):

– Ed-Douibi, H., Cánovas Izquierdo, J. L., Cabot., J. (2018, Oc-
tober). Automatic Generation of Test Cases for REST APIs: A
Specification-Based Approach. In Proceedings of the IEEE Inter-
national Enterprise Distributed Object Computing Conference
(EDOC), (pp. 181-190).

– Ed-Douibi, H., Cánovas Izquierdo, J. L., Cabot., J. (2018, May).
Model-Driven Development of OData Services: An Application
to Relational Databases. In Proceedings of the 12th Interna-
tional Conference on Research Challenges in Information Science
(RCIS), (pp. 1-12).

– Ed-Douibi, H., Cánovas Izquierdo, J. L., Cabot., J. (2017, July).
Example-Driven Web API Specification Discovery. In Proceedings
of the 13th European Conference on Modelling Foundations and
Applications (ECMFA), (pp. 267-284).

– Ed-Douibi, H., Cánovas Izquierdo, J. L., Gómez, A., Tisi, M.,
Cabot., J. (2016, April). EMF-REST: Generation of RESTful APIs
from Models. In Proceedings of the 31st Annual ACM Symposium
on Applied Computing (SAC), (pp. 1446-1453).

¦ International conferences (short and demo papers):

11



CHAPTER 1. INTRODUCTION

– Ed-Douibi, H., Cánovas Izquierdo, J. L., Cabot., J. (2018, Septem-
ber). APIComposer: Data-Driven Composition of REST APIs. In
Proceedings of the European Conference on Service-Oriented and
Cloud Computing (ESOCC), (pp. 161-169).

– Ed-Douibi, H., Cánovas Izquierdo, J. L., Cabot., J. (2018, June).
OpenAPItoUML: A Tool to Generate UML Models from OpenAPI
Definitions. In Proceedings of the International Conference on
Web Engineering (ICWE), (pp. 487-491).

– Ed-Douibi, H., Cánovas Izquierdo, J. L., Cabot., J. (2017, June).
A UML Profile for OData Web APIs. In Proceedings of the Inter-
national Conference on Web Engineering (ICWE), (pp. 420-428).

¦ National Conferences:

– Ed-Douibi, H., Cánovas Izquierdo, J. L., Cabot., J. (2018, Septem-
ber). Una Propuesta para Componer APIs Orientadas a Datos.
Las Jornadas de Ingeniería del Software y Bases de Datos (JISBD).

1.4.2 Tools Developed

All the tools developed in the context of this thesis are listed below.

OPENAPIMM. https://github.com/SOM-Research/openapi-
metamodel
An Eclipse plugin which includes the OpenAPI metamodel and a
de/serializer to generate OpenAPI models from JSON files and vice
versa.

OPENAPIPROFILE. https://github.com/SOM-Research/openapi-
profile
An Eclipse plugin which includes a UML profile for OpenAPI and an
editor based on PAPYRUS41 which enables the annotation of UML
models with OpenAPI stereotypes.

ODATAPROFILE. https://github.com/SOM-Research/odata
An Eclipse plugin which includes a UML profile for OData protocol and
an editor based on PAPYRUS enabling the annotation of UML models
with OData stereotypes.

41https://www.eclipse.org/papyrus/

12

https://github.com/SOM-Research/openapi-metamodel
https://github.com/SOM-Research/openapi-metamodel
https://github.com/SOM-Research/openapi-profile
https://github.com/SOM-Research/openapi-profile
https://github.com/SOM-Research/odata
https://www.eclipse.org/papyrus/


1.5. THESIS OUTLINE

OPENAPITOUML. https://github.com/SOM-Research/openapi-
to-uml
An Eclipse plugin which allow the generation of UML models from
OpenAPI definitions.

EMF-REST. http://emf-rest.com
An Eclipse plugin which allows the generation of REST APIs to manage
EMF models.

APIDISCOVERER. https://github.com/SOM-Research/
APIDiscoverer
A Web application which allows the generation of OpenAPI definitions
from API call examples.

APITESTER. https://github.com/SOM-Research/test-generator
An Eclipse plugin which allows the generation of test cases from Open-
API definitions.

APIGENERATOR. https://github.com/SOM-Research/odata-
generator
An Eclipse plugin which allows the generation of REST APIs following
OData protocol from UML models. The plugin also includes the OData
metamodel.

APICOMPOSER. https://github.com/SOM-Research/api-
composer
A Web application which allows the composition of REST APIs by
relying on their OpenAPI definitions.

1.5 THESIS OUTLINE

The remainder of this thesis is structured as follows:

CHAPTER 2 describes the basic concepts that are used as the founda-
tions of this thesis. We start by introducing REST architectural style
and REST APIs. Later, we introduce the OpenAPI specification and
OData protocol. Finally we present the MDE paradigm and its main
standards.

CHAPTER 3 presents a set of model representations to manipulate
OpenAPI definitions and OData entity models. For each specifica-
tion we provide a metamodel and a UML profile as well as a set of

13

https://github.com/SOM-Research/openapi-to-uml
https://github.com/SOM-Research/openapi-to-uml
http://emf-rest.com
https://github.com/SOM-Research/APIDiscoverer
https://github.com/SOM-Research/APIDiscoverer
https://github.com/SOM-Research/test-generator
https://github.com/SOM-Research/odata-generator
https://github.com/SOM-Research/odata-generator
https://github.com/SOM-Research/api-composer
https://github.com/SOM-Research/api-composer


CHAPTER 1. INTRODUCTION

tools to manipulate them. These model representations are used in the
following chapters to achieve the intended model-based solutions.

CHAPTER 4 details EMF-REST, our approach to APIfy models by de-
riving REST APIs from EMF models.

CHAPTER 5 presents APIDISCOVERER, our approach to generate Open-
API definitions from API call examples.

CHAPTER 6 presents APITESTER, our approach to generate test cases
from OpenAPI definitions in order to assess that such definitions
conform to their back-end implementations

CHAPTER 7 presents APIGENERATOR which provides an approach to
generate REST APIs from conceptual models.

CHAPTER 8 presents APICOMPOSER, our approach to compose data-
centric REST APIs by relying on their OpenAPI definitions.

CHAPTER 9 concludes this thesis by summarizing its main contribu-
tions and introducing some ideas for future work.

14



CHAPTER

2
Background

This chapter presents some of the concepts, technologies, and tools used
as foundations for this thesis. We first present REST APIs which covers
the REST architecture style and the REST APIs definition initiatives tar-
geted by this thesis, namely: the OpenAPI specification and OData protocol.
Next, we introduce MDE and its main components which are used in the
contributions of this thesis.

2.1 REST APIS

A REST or RESTful API is a Web Application Programming Interface
(API) which follows the Representational State Transfer architectural style.
REST is a technical description of how the World Wide Web works. It has
been described by Roy Fielding in 2000 [Fie00] and has become a popular
approach to design Web APIs. REST outlines the architectural principles,
properties, and constraints to build Internet-scale distributed hypermedia
systems. This section presents a brief introduction of REST APIs.

2.1.1 REST Architectural Style

In the year 2000, Roy Fielding described the Web’s architectural style in
his Ph.D dissertation [Fie00]. “Representational State Transfer” was the
name he gave to this description which is now referred to as REST. REST
became the prominent architectural style to design Web APIs mainly due to

15



CHAPTER 2. BACKGROUND

its adaptability to Web as it allows creating Web APIs by relying only on
URIs and HTTP messages.

The REST architectural style describes six constraints, namely: Client-
Server, Stateless, Cache, Uniform Interface, Layered System, and Code on De-
mand. In general, Web APIs cover the constraints: Client-Server, Stateless,
Cache, and Uniform Interface. In the following we give a brief description of
each of the above constraints.

CLIENT-SERVER. This constraint states that a client should send a
request to the server, then the server either rejects or performs the
request, and then sends a response back to the client.

STATELESS. This constraint sates that the server cannot hold the state
of the client beyond the current request. A client only exists when
he/she is making a request to the server. Therefore, the client must
include all the required contextual information in each request to the
Web server.

CACHE. The cache constraints instructs a server to declare the cacheabil-
ity of each response data (i.e., whether a client can reuse previous
response data). A client can locally match its requests to the previously
received responses, thus saving a round trip communication with the
server.

UNIFORM INTERFACE. This is an umbrella term for four interface con-
straints defined by Fielding, namely: identification of resources, manip-
ulation of resources through representations; self-descriptive messages;
and, hypermedia as the engine of application state. Together, these
constraints define a “uniform interface” which allow Web components
to interoperate consistently. These four interface constraints are briefly
explained below.

IDENTIFICATION OF RESOURCES. A URI identifies a resource.
Thus, a resource is anything that can be identified by a URI. Also,
a URI identifies a resource and not its state. While the state of a
resource changes, its URI stays the same.

MANIPULATION OF RESOURCES THROUGH REPRESENTATIONS.
Representations are transferred between REST components to
manipulate resources. A representation is a “sequence of bytes”

16



2.1. REST APIS

which captures the current or intended state of a resource. It
consists of an encapsulation of the information (data or metadata)
of the resource, encoded using a format (e.g., XML, JSON).

SELF-DESCRIPTIVE MESSAGES. REST enables intermediate
processing by constraining messages to be self-descriptive. A mes-
sage must contain all the necessary information to understand
the representation of the resource it describes.

HYPERMEDIA AS THE ENGINE OF APPLICATION STATE.
Resources should link to each other in their representations
using hypermedia links and forms.

Section 2.1.2 will describe the uniform interface of HTTP which is the
mostly used in the design of REST APIs.

LAYERED SYSTEM. This constraint allows adding proxy and gateway
components to the client-server architecture. A proxy receives requests
from components (i.e., clients, proxies, or gateways) and it does not han-
dle the request. Instead, it transfers the request to another component
(i.e., a server, a proxy, or a gateway) and waits for a response. When
a response is received, the proxy sends it back to the component that
sent the request. Layered System is more important to the deployment
of Web APIs than to their design [RAR13].

CODE ON DEMAND. This constraint indicates that a server can extend
the functionality of a client on runtime by sending executable code
(e.g., Java Applets or JavaScript). The Code on Demand constraint is
optional and not generally used in the context of Web APIs [RAR13].

2.1.2 HTTP’s Uniform Interface

HTTP is an application-level protocol that defines operations for trans-
ferring representations between clients and servers. Although REST is
protocol-agnostic, in practice most REST APIs use HTTP as a transport
layer. Therefore, HTTP’s uniform interface is generally applied to design
REST APIs. In fact, the list of methods and their semantics is fixed in HTTP
and these semantics are independent of the resources. Ideally, REST APIs
map HTTP methods with CRUD operations (i.e., Create, Read, Update, and
Delete) as follows:

17



CHAPTER 2. BACKGROUND

GET is used to retrieve a representation of a resource. It is a read-only,
idempotent and safe operation.

PUT is used to update a resource on the server. It is idempotent as well.

PATCH is similar to PUT but instead of updating the entire resource’s
representation, this method allows the client to send only the change
he/she intends to make. PATCH method was added to HTTP in 2010
and defined in RFC 57891.

POST is used to create a resource on the server based on the data
included in the body request. It is nonidempotent and unsafe.

DELETE is used to remove a resource on the server. It is idempotent
as well.

The following HTTP methods are also used in REST APIs:

HEAD is similar to GET but returns only a response code and the
header associated with the request.

OPTIONS is used to request information about the communication
options of the addressed resource (e.g., security capabilities such as
Cross-Origin Resource Sharing (CORS) [W3C14a]).

2.2 REST APIS SPECIFICATIONS AND PROTOCOLS

REST is an architectural style but does not provide any specification or stan-
dard to describe REST APIs. The Web Application Description Language
(WADL) [Had06], a specification language for REST APIs, was first proposed
to describe REST APIs but failed to get adoption due to its complexity and
limitations to fully describe REST APIs. Thus, at the beginning, most REST
APIs adopted a human-oriented approach based on informal textual de-
scriptions explaining what they propose (i.e., documentation pages) [PZL08].
Hence, to consume Web APIs, developers needed to read the different docu-
mentation pages, manually write the code to assemble the resource URIs
and encode/decode the exchanged resource representations. This manual
process is time-consuming and error-prone which hinders the automatic
discovery and integration of REST APIs. This situation has triggered the

1https://tools.ietf.org/html/rfc5789

18

https://tools.ietf.org/html/rfc5789


2.2. REST APIS SPECIFICATIONS AND PROTOCOLS

creation of languages and protocols to describe REST APIs in a way that
both humans and machine can understand, and to define methods for build-
ing and consuming REST APIs, respectively. In the following we introduce
the specifications targeted by this dissertation, namely: the OpenAPI speci-
fication and OData protocol.

2.2.1 The OpenAPI Specification

The OpenAPI specification2 is “a standard, programming language-agnostic
interface description for REST APIs”. It has been created and is main-
tained by the OpenAPI Initiative which is a consortium of API contributers
(members of 3SCALE, APIGEE, CAPITAL ONE, GOOGLE, IBM, INTUIT,
MICROSOFT, PAYPAL, RESTLET and SMARTBEAR) which aims at standard-
izing the way to describe REST APIs. The purpose of OpenAPI is to allow
both humans and machines to discover and understand the capabilities of
the API without the need to check the source code, read the documentation,
or inspect the network traffic.

The first version of the OpenAPI specification (version 2) is identical
to SWAGGER which was donated by SMARTBEAR3 to OAI. This version is
still widely used even after the release of the third version of the OpenAPI
specification. For instance, APIS.GURU4, a public repository of OpenAPI
definitions, lists more than 800 OpenAPI 2 definitions. In this thesis we rely
on the OpenAPI 2.

The OpenAPI specification allows the description of an API in terms of:

¦ Available endpoints,

¦ operations on each endpoint organized using HTTP methods,

¦ parameters and responses of each operation,

¦ data structures manipulated by the API,

¦ authentication methods,

¦ metadata information: contact, license, terms of use and other infor-
mation.

The files describing an API conforming to the OpenAPI specification
can be written either in JSON or YAML Ain’t Markup Language (YAML).

2https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.
0.0.md/

3https://smartbear.com/
4https://apis.guru/openapi-directory/

19

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md/
https://smartbear.com/
https://apis.guru/openapi-directory/


CHAPTER 2. BACKGROUND

As a reference example for the specification, the OpenAPI community has
released the Petstore API5 which provides a description of a pet store REST
service. The Petstore API allows users to manage pets (e.g., add a pet to the
store, find pets, delete a pet), orders (e.g., place an order for a pet, delete an
order), and users (e.g., create a user, delete a user).

Listing 2.1 shows a partial representation of the OpenAPI definition
of the Petstore API in JSON format. As can be seen, the root object of the
definition includes: (i) the version of the OpenAPI specification (i.e., swagger
field6), (ii) the metadata description of the API (i.e., info field), (iii) the host
serving the API (i.e., host field), (iv) the base path which is relative to the
host and serving the API (i.e., basePath field), (v) the transfer protocol of the
API (i.e., schemes field, e.g., http), (vi) the list of MIME types the API can
consume and produce (i.e., consumes and produces fields, respectively. e.g.,
application/json), (vii) the available paths and operations of the API (i.e.,
paths field), (viii) the data types produced and consumed by the operations
of the API (i.e., definitions field), and (ix) the security scheme definitions
that can be used by the operations of the API (i.e., securityDefinitions
field).

The Info object provides metadata about the API. It includes fields to de-
scribe the title of the API (i.e., title field), a description (i.e., description
field), contact information (i.e., contact field), license (i.e., license field),
and version of the API (i.e., version filed).

The Paths object is a container which holds the relative paths to individ-
ual endpoints (e.g., /pet/findByStatus, /pet/findByTags). Each relative
path is appended to the base path in order to construct a full URL. A Path
object includes fields to describe the available operations on a single path,
such as a field name describes an HTTP method (e.g., get for a GET opera-
tion), while its value defines an operation on this path for the corresponding
HTTP method.

An Operation object describes a single API operation on a path. The
operation getPetsByStatus, for instance, includes an operation ID (i.e.,
operationId field, e.g., findPetsByStatus), the MIME type it produces
(i.e., produces field), its parameters (i.e., parameters field), and the list of
possible responses which can be returned after executing this operation,
(i.e., responses field).

A Parameter object describes a single operation parameter. The parame-
ter status of the operation findPetsByStatus include its name, its location

5http://petstore.swagger.io/
6It must be 2.0 in OpenAPI 2

20

http://petstore.swagger.io/


2.2. REST APIS SPECIFICATIONS AND PROTOCOLS

Listing 2.1: A snippet of the OpenAPI definition of the Petstore API in JSON
format

1 {" swagger ":"2.0" ,
2 "info ":{
3 "title ": " Swagger Petstore ",
4 " description ": "This is a sample server Petstore server ..." ,
5 " contact ": {...} , " license ": {...} , " version ": "1.0.0"
6 },
7 "host ":" petstore . swagger .io",
8 " basePath ":"/ v2"," schemes ":[" http "],
9 " consumes ": [" application /xml", " application /json "],

10 " produces ": [" application /xml", " application /json "] ,...
11 "paths ":{
12 "/ pet/ findByStatus ":{
13 "get ":{
14 " operationId ":" findPetsByStatus ",
15 " produces ":[" application /xml "," application /json "],
16 " parameters ":[{
17 "name ":" status ",
18 "in ":" query",
19 " description ":" Status values that need to be considered for

filter ",
20 " required ":true ,
21 "type ":" array",
22 "items ":{
23 "type ":" string ",
24 "enum ":[" available "," pending "," sold "],
25 " default ":" available "},
26 " collectionFormat ":" multi "}],
27 " responses ":{
28 "200":{
29 " description ":" successful operation ",
30 " schema ":{ type ":" array",
31 "items ":{" $ref ":"#/ definitions /Pet "}}}}}} ,
32 "/ pet/ findByTags ":{ },
33 "/ pet /{ petId }":{ },
34 ...
35 },
36 " definitions ":{
37 "Pet ":{
38 "type ":" object ", " required ":[" name "," photoUrls "],
39 " properties ":{
40 "id ":{
41 "type ":" integer ",
42 " format ":" int64"
43 },
44 " category ":{...} ,
45 "name ":{...} ,
46 " photoUrls ":{...} ,
47 "tags ":{..} ,
48 " status ":{..}}
49 },
50 " Category ":{...} , "Tag ":{...} ,
51 ...} ,
52 " securityDefinitions ":{
53 " petstore_auth ": { "type ": " oauth2 ",..},
54 " api_key ": { "type ": " apiKey " ,..}}}

21



CHAPTER 2. BACKGROUND

(i.e., in field), a description, a flag indicating whether such parameter is
required (i.e., required field) and a type (i.e., type field). Since the status
parameter is of type array, the specification includes the definition of its
items (i.e., items field).

OpenAPI defines five types of parameters, namely:

¦ path: the parameter value is part of the path. For example in
/pet/{petId}, the path parameter is petId.

¦ query: the parameter value is appended to the URL. For example in
/pet/findByStatus?status=###, the query parameter is status.

¦ header: the parameter value is defined as custom headers that are
expected as part of the request.

¦ body: the parameter value is the payload of the HTTP request.

¦ form: the parameter value is the payload when
application/x-www-form-urlencoded, multipart/form-data
are used as the content type of the request.

The Responses object is a container which lists the possible responses
expected of an operation. The container maps an HTTP response code to
the expected response. A Response object describes a single response of an
API operation. The Response object associated with the status code 200
of the operation findPetsByStatus includes a description and a definition
of the response data structure (i.e., schema field) which indicates that the
operation returns an array of pets.

The Definitions object holds the data types produced and consumed
by the operations of the API. The Schema object allows the definition of
a data type based on a subset of the JSON Schema Specification Draft
47. JSON Schema describes the structure of a JSON document (e.g., list
of properties, constraints). However, OpenAPI does not support all JSON
Schema features (e.g., OneOf is not supported) and adapts other constraints
to the specification (e.g., items and allOf). Apart from the JSON Schema
subset fields, the OpenAPI specification defines other fields for further
schema documentation (e.g., discriminator to add support for polymor-
phism, readOnly to declare a property as ‘read only’). Schema definitions
can be used to validate instances (i.e., check that constraints are met) or
collect instances such that the constraints are satisfied. As can be seen, the
Definitions object of the Petstore API includes the Schema definitions Pet,
Category and Tag. The Pet definition indicates that a valid instance of pet

7http://json-schema.org/

22

http://json-schema.org/


2.2. REST APIS SPECIFICATIONS AND PROTOCOLS

Listing 2.2: An example of a request to the Petstore API
1 curl -H Accept : application /json -i http :// petstore . swagger .io/v2/

pet/ findByStatus ? status = available
2 HTTP /1.1 200 OK
3 ...
4 [
5 {
6 "id ": 545646663 ,
7 " category ": {
8 "id": 0,
9 "name ": " string "

10 },
11 "name ": " doggie ",
12 " photoUrls ": [
13 " string "
14 ],
15 "tags ": [
16 {
17 "id": 0,
18 "name ": " string "
19 }
20 ],
21 " status ": " available "
22 },
23 ...
24 ]

should be of type object and include the properties id, category, name, name,
photoUrls, tags and status, such as name and photoUrls are mandatory.
The findPetsByStatus operation, for instance, returns an array of pets
instances respecting this definition.

The SecurityDefinitions object includes the security schemes avail-
able to be used by the specification. The OpenAPI specification supports
three security schemes, namely: Basic, API Key, and OAuth 2. The OpenAPI
definition of the Petstore API includes the security schemes petsore_auth
and api_key for OAuth 2 and API Key authorizations, respectively. The
complete Petstore API definition can be found in OpenAPI website8.

Listing 2.2 shows an example of a request targeting the findPetsByStatus
operation using CURL tool9. As can seen, the URL of the request is con-
structed from the protocol scheme (i.e., http), the host (i.e., petstore.swagger.io),
the base path (i.e., v2) and the relative path associated with the findPetsByStatus
operation (i.e., /pet/findByStatus). The URL includes also the query pa-
rameter status with the value available. The request includes the header

8http://petstore.swagger.io/
9https://curl.haxx.se/

23

http://petstore.swagger.io/
https://curl.haxx.se/


CHAPTER 2. BACKGROUND

Accept:application/json to request the response in JSON format. The
API returns a response with the status code 200 including an array of pets
having the status available.

2.2.2 OData Protocol

The Open Data Protocol (OData) is a protocol for creating data-oriented
REST APIs with query and update capabilities. It is specially adapted
to expose and access information from a variety of data sources such as
relational databases, file systems and content management systems. In the
last years, OData has evolved to become the natural choice for creating
data-centric Web services, specially for Open Data initiatives aiming at
facilitating the access to information using Web services rather than RDF
[W3C14b] or text based formats. As a result, many service providers have
integrated OData in their solutions (e.g., SAP10, IBM WEBSPHERE11 or
JBOSS DATA VIRTUALIZATION12). The current version of OData (version
4.0) has been approved as an OASIS standard [PHZ14c].

Some of the specifications defined by the OData protocol are the follow-
ing:

COMMON SCHEMA DEFINITION LANGUAGE XML REPRESENTATION.
It defines an XML representation of the data model exposed by an
OData service [PHZ14b].

COMMON SCHEMA DEFINITION LANGUAGE JSON REPRESENTATION.
It defines a JSON representation of the data model exposed by an
OData service [PHZ14a].

URL CONVENTIONS It defines a set of rules for constructing URLs to
queries the data [PHZ14d].

ODATA JSON FORMAT. It defines the JSON format of the resource
representations that are exchanged using OData [HPB14].

ODATA ATOM FORMAT. It defines the Atom format of the resource
representations that are exchanged using OData [ZPH14].

10https://www.sap.com
11https://www.ibm.com/cloud/websphere-application-platform
12https://developers.redhat.com/products/datavirt/overview/

24

https://www.sap.com
https://www.ibm.com/cloud/websphere-application-platform
https://developers.redhat.com/products/datavirt/overview/


2.2. REST APIS SPECIFICATIONS AND PROTOCOLS

Product

+ ID: Integer [1]
+ Name: String [0..1]
+ Description: String [0..1]
+ ReleasedDate: Date [1]
+ DiscountinuedDate: Date [0..1]
+ Rating: Integer [1]
+ Price: Real [1]

FeaturedProduct Advertisement

+ ID: Integer [1]
+ Name: String [0..1]
+ AirDate: Date [1]

Category

+ ID: Integer [1]
+ Name: String [0..1]

Supplier

+ ID: Integer [1]
+ Name: String [0..1]
+ Address : Address [0..1] 

Products Supplier
* 1

«dataType»
Address

+ Street: String [0..1]
+ City: String [0..1]
+ State: String [0..1]
+ ZipCode: String [0..1]
+ Country: String [0..1]

Categories
* Products

*

FeaturedProduct
1 Advertisements

*

Figure 2.1: Class diagram of an online store.

To illustrate the OData protocol, we use as running example the UML
class diagram shown in Figure 2.1 representing a data model to manage an
online store. This example is inspired by the official reference example re-
leased by the OData community to illustrate the OData protocol. The model
includes the classes: Product to represent products; Supplier to represent
the supplier of a product; Category to classify products; FeaturedProduct
for premium products to be featured in commercials; and Advertisement
which records the data about these commercials. The address of a supplier
is defined using the data type Address.

OData protocol supports the description of data models and the editing
and querying of data according to these models. Data models are described
using an Entity Data Model (EDM) [PHZ14c] which borrows some concepts
from the ER model and defines an abstract conceptual model of the data
exposed by an OData service. An OData Metadata Document is a representa-
tion of this data model exposed for client consumption. This document can be
retrieved by appending $metadata to the root URL of the host of the service.

Listing 2.3 shows an except of the metadata document of the running
example in Common Schema Definition Language (CSDL) XML format
[PHZ14b]. The edmx:Edmx element is the root element of the document and
includes the version of the OData protocol (i.e., version attribute) and an
edmx:DataServices element. The edmx:DataServices element contains a
schema (i.e., Schema element) which defines the data model exposed by the
service.

The schema includes attributes to define a namespace (e.g.,
com.example.ODataDemo) and an alias (e.g., ODataDemo), and contains the

25



CHAPTER 2. BACKGROUND

Listing 2.3: A simple OData Metadata Document for the products service
1 <edmx:Edmx xmlns:edmx="http :// docs.oasis -open.org/odata/ns/edmx"

Version ="4.0">
2 <edmx: DataServices >
3 <Schema xmlns="http :// docs.oasis -open.org/odata/ns/edm"

Namespace ="com. example . ODataDemo " Alias=" ODataDemo ">
4 <EntityType Name=" Product ">
5 <Key ><PropertyRef Name="ID"/></Key >
6 <Property Name="ID" Type="Edm.Int32" Nullable ="false"/>
7 <Property Name="Name" Type="Edm. String "/>
8 <Property Name=" Description " Type="Edm. String "/>
9 <Property Name=" ReleasedDate " Type="Edm. DateTimeOffset "

Nullable ="false"/>
10 <Property Name=" DiscontinuedDate " Type="Edm. DateTimeOffset "

/>
11 <Property Name=" Rating " Type="Edm.Int16" Nullable ="false"/>
12 <Property Name="Price" Type="Edm. Double " Nullable ="false"/>
13 <NavigationProperty Name=" Supplier " Type=" ODataDemo .

Supplier " Partner =" Products "/>
14 <NavigationProperty Name=" Categories " Type=" Collection (

ODataDemo . Cotegory )" Partner =" Products "/>
15 </ EntityType >
16 <EntityType Name=" Category ">
17 <Key ><PropertyRef Name="ID"/></Key >
18 <Property Name="ID" Type="Edm.Int32" Nullable ="false"/>
19 <Property Name="Name" Type="Edm. String "/>
20 <NavigationProperty Name=" Products " Type=" Collection (

ODataDemo . Product )" Partner =" Categories "/>
21 </ EntityType >
22 <EntityType Name=" FeaturedProduct " baseType =" Product ">... </

EntityType >
23 <EntityType Name=" Advertisement ">... </ EntityType >
24 <EntityType Name=" Supplier ">
25 <Key ><PropertyRef Name="ID"/></Key >
26 <Property Name="ID" Type="Edm.Int32" Nullable ="false"/>
27 <Property Name="Name" Type="Edm. String "/>
28 <Property Name=" Address " Type=" ODataDemo . Address "/>
29 <NavigationProperty Name=" Products " Type=" Collection (

ODataDemo . Product )" Partner =" Supplier " />
30 </ EntityType >
31 <ComplexType Name=" Address ">
32 <Property Name=" Street " Type="Edm. String "/>...
33 </ ComplexType >
34 <EntityContainer Name=" ODataDemoService ">
35 <EntitySet Name=" Products " EntityType =" ODataDemo . Product ">
36 <NavigationPropertyBinding Path=" Categories " Target ="

Categories "/>
37 <NavigationPropertyBinding Path=" Supplier " Target ="

Suppliers "/>
38 </ EntitySet >
39 ...
40 </ EntityContainer >
41 </ Schema >
42 </edmx: DataServices >
43 </edmx:Edmx >

26



2.2. REST APIS SPECIFICATIONS AND PROTOCOLS

data model elements defined by the service. These data model elements are
organized into entity types (i.e., EntityType elements) and complex types
(i.e., ComplexType). On the one hand, entity types are named structured
types with a key. They define the properties and relationships of an entity
and may derive by inheritance from other entity types. On the other hand,
complex types are keyless named structured types consisting of a set of
properties. The schema in the example includes the entity types Product,
Category, FeaturedProduct, and Supplier; and the complex type Address.
Each entity type includes a name (i.e., name attribute) and may specify a
base type (i.e., BaseType attribute) if such entity type inherits from another
entity type (e.g., the entity type FeaturedProduct inherits from the entity
type Product). It also contains an identifier defined using the Key element,
a set of properties (i.e., Property elements), and one or more relationships
(if any) (i.e.; NavigationProperty element). The Product entity type, for
instance, includes the properties ID, Name, Description, ReleasedData,
DiscountinuedDate, Rating, and Price; and the navigation properties
Supplier and Categories.

A property includes a name (i.e., Name attribute) and a type (i.e., Type
attribute), and may contain facet attributes (e.g., Nullable attribute). The
type of a property is either primitive13 (e.g., Edm.String), complex (e.g.,
ODataDemo.Address), enumeration (the example does include an enumera-
tion), or a collection of one of these types (e.g., Collection(Edm.String)). A
property may contain type facets which modify or constrain its valid values.
For instance, the ID property of the Product entity type includes the type
facet Nullable which specifies that a value is required. OData defines other
types facets such as default value, max value, and max length.

A navigation property allows the navigation to related entities. It con-
tains a name (i.e., Name attribute), a type (i.e., Type attribute), and optionally
includes extra attributes (e.g., Partner). The type of a navigation property
is an entity type within the schema (e.g., ODataDemo.Supplier) or a col-
lection of entity types (e.g., Collection(ODataDemo.Categories)). It may
also contain other optional attributes, namely: Nullable to specify that
the declaring entity type may have no related entity, Partner to define the
opposite navigation property for bidirectional relationships (e.g., the navi-
gation property Supplier of the entity type Product defines the Products
as the opposite navigation property), and containsTargets to declare the

13The complete list of the supported primitive types by OData is available
at http://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/cs01/odata-csdl-
xml-v4.01-cs01.html#sec_PrimitiveTypes

27

http://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/cs01/odata-csdl-xml-v4.01-cs01.html#sec_PrimitiveTypes
http://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/cs01/odata-csdl-xml-v4.01-cs01.html#sec_PrimitiveTypes


CHAPTER 2. BACKGROUND

relationship as containment.
The schema also includes an entity container (i.e., EntityContainer

element) which defines the entity sets (i.e., EntitySet element), singletons
(i.e., Singleton element), function and action imports (i.e., FunctionImport
and ActionImport, respectively) exposed by the service. An entity set gives
access to a collection of entity type instances (e.g., the entity set Products
allows access to Product entity type instances). If an entity type declares
navigation properties, the corresponding entity set includes navigation
property bindings (i.e., NavigationPropertyBinding element) describing
which entity set will contain the related entity (i.e., Target attribute). A
singleton, on the other hand, allows addressing a single entity, while a
function import and an action import is used to expose a function and an
action, respectively.

The OData specification defines standard rules to query data via HTTP
GET requests and perform data modification actions via HTTP POST, PUT,
PATCH, and DELETE requests. OData defines a set of recommended rules for
constructing URLs to identify the data and metadata exposed by an OData
service, and a set of URL query string operators. A URL of an OData request
has three parts [PHZ14d]: (1) the service root URL, which identifies the root
of an OData service; (2) a target resource path, which identifies a resource
to query or update (e.g., products, a single product, supplier of a product);
and (3) a set of query options.

GET︸︷︷︸
HTTP method

http://example.com/service︸ ︷︷ ︸
service root URL

/Products(1)/Categories︸ ︷︷ ︸
target resource path

?$top=2&orderby=Name︸ ︷︷ ︸
query options

(2.1)
The Expression 2.1 shows an example of an OData request to retrieve

the first two records of the categories of the product having the ID 1, ordered
by name. This request employs the query operators $top and $orderby.
OData defines other query options, for instance, to filter data. Table 2.1
shows some examples of OData queries using the query options defined by
OData.

OData defines representations for the OData requests and response
using JSON format and XML atom format. Listing 2.4 shows the request
2.1 and its response in JSON format using CURL. As can be seen, the value
array includes the first two categories of the product having the ID 1, ordered
by name.

28



2.3. MODEL-DRIVEN ENGINEERING

Table 2.1: OData query options examples.

OPTION DEFINITION QUERY EXAMPLE DESCRIPTION

$filter
Filter a collection of resources
that are addressable by a re-
quest URL

http://host/
service/
Products?
$filter=Name
eq ’Milk’

The products with name
equals to Milk

$expand Include relative resource in
line with retrieved resources

http://host/
service/
Suppliers(1)
?$expand=
Products

Supplier with ID 1 and his
products

$select Request a specific set of prop-
erties

http://host/
service/
Products?
$select=Name,
Price

The name and price of the
products in the collection

$count Request a count of the re-
sources

http://host/
service/Product?
$count

The number of products in
the collection

$search Request entities matching a
free text search

http://host/
service/Product?
$search=’Milk’

The products with a text
field equals to Milk

Listing 2.4: An example of a request to the online store
1 curl -H Accept : application /json -i https :// services .odata.org/V4/

OData/OData.svc/ Products (1)/ Categories ?$top =2& $orderby =Name
2 HTTP /1.1 200 OK
3 ...
4 {
5 " @odata . context ": "https :// services .odata.org/V4/OData/OData.

svc/ $metadata # Categories ",
6 "value ": [
7 {
8 "ID": 1,
9 "Name ": " Beverages "

10 },
11 {
12 "ID": 0,
13 "Name ": "Food"
14 }
15 ]
16 }

2.3 MODEL-DRIVEN ENGINEERING

The Model-Driven Engineering paradigm emphasizes the use of models
to raise the level of abstraction and to automate the development of soft-
ware. Abstraction is a primary technique to cope with complexity, whereas
automation is the most effective method for boosting productivity and qual-

29

http://host/service/Products?$filter=Name
http://host/service/Products?$filter=Name
http://host/service/Products?$filter=Name
http://host/service/Products?$filter=Name
eq
'Milk'
http://host/service/Suppliers(1)?$expand=Products
http://host/service/Suppliers(1)?$expand=Products
http://host/service/Suppliers(1)?$expand=Products
http://host/service/Suppliers(1)?$expand=Products
http://host/service/Suppliers(1)?$expand=Products
http://host/service/Products?$select=Name,Price
http://host/service/Products?$select=Name,Price
http://host/service/Products?$select=Name,Price
http://host/service/Products?$select=Name,Price
http://host/service/Products?$select=Name,Price
http://host/service/Product?$count
http://host/service/Product?$count
http://host/service/Product?$count
http://host/service/Product?$search='Milk'
http://host/service/Product?$search='Milk'
http://host/service/Product?$search='Milk'


CHAPTER 2. BACKGROUND

ity [Sel03]. We apply MDE techniques in this thesis to the context of REST
APIs. This section gives a brief introduction of MDE and its technologies.

2.3.1 History

Since the early ages of computing, software developers have been using
abstractions to help them program in their design intent instead of the
underlying computing environments, thus hiding the complexity of such
environments. These abstractions included both language and platform
technologies. For instance, early programming languages, such as assembly
languages and FORTRAN, allowed developers to hide the complexity of
programming directly with machine code. Similarly, early operating systems,
such as OS/360 and Unix, allowed developers to hide the complexity of
programming directly with hardware devices [Sch06].

The emergence of Computer Aided Software Engineering (CASE) tech-
nology in the 80s was considered to be the first move toward the support
of MDE. These tools allowed developers to express their design intents
in terms of graphical notations such as structural diagrams, whilst also
generating software artifacts. However, CASE technology did not gain a
wide adoption due to the lack of standarizations and its limited capability
to express system designs using graphical representations as well as the
transformation of such representations to software artifacts.

Languages and platforms have evolved during the last years to provide
high abstraction levels for software development, thus making the devel-
opment of increasingly complex systems possible. For instance, nowadays
developers typically rely on high level object-oriented languages, such as
C++, Java or C# instead of low level programing languages such as FOR-
TRAN or C. However, the evolution and maintenance of software systems
has become a hard and time consuming task in such evolving field.

MDE is a methodology that applied the lessons learned from early
attempts to build CASE tools. MDE aims at organizing software and system
artifacts in different abstraction levels, advocating the use of models as
the first class artifacts throughout the entire system development cycle. A
model consists of a set of elements that provide an abstract description of
a system from a particular perspective. In an MDE approach, a system is
initially described using one or more models which capture its requirements
regardless of the target platform or implementation technology. A series of
refinements and transformations of models are then performed to decrease
the abstraction level in each step. The final step is a transformation which

30



2.3. MODEL-DRIVEN ENGINEERING

generates code from the most refined model.
Next section describes Model-Driven Architecture (MDA), a methodology

that supports MDE and provides a set of standards to describe models and
transformations.

2.3.2 Model-Driven Architecture

The Object Management Group (OMG)14 launched the MDA initiative
[OMG14a] as a guideline for structuring software specifications that are
expressed as models. MDA places models at the heart of the software de-
velopment process and separates business and application logic from the
underlying platform technology. In such approach, Platform-Independent
Models (PIMs) which represent a system from the platform independent
viewpoint are expressed using an associated OMG modeling standard such
as UML [OMG17]. These PIMs are later transformed to Platform-Specific
Models (PSMs) which are adapted to a target platform of language. Finally,
these PSMs need to be eventually transformed into software artifacts such
as code, deployment specifications, reports, documents, etc. The MDA ap-
proach proposes also to automate model transformation, thus resulting in
software development tasks to be focused on modeling instead of coding.

MDA relies on several OMG standards to achieve its goal. Some of these
standards are the following:

META-OBJECT FACILITY (MOF) is the meta-metamodel used to de-
scribe metamodels in the MDA approach, and therefore new vocabular-
ies [OMG16b]. It is used for instance to create the UML metamodel.

UML is a family of modeling notations unified by a common metamodel
covering multiple aspects of business and systems modeling [OMG17].
UML will be introduced in Section 2.3.3.

UML PROFILES provide an extension mechanism of UML language to
specific requirements in a unified tooling environment [OMG17]. UML
profiles will be introduced in Section 2.3.4.

OCL is a declarative language which expresses queries and describes
constraints over UML and other MOF-based metamodels and models
[OMG14b]. It will be introduced in Section 2.3.5.

14https://www.omg.org/

31

https://www.omg.org/


CHAPTER 2. BACKGROUND

QUERY/VIEW/TRANSFORMATION (QVT) is a standard to describe
model transformations and equivalence relationships among MOF-
based models [OMG16a]. It uses OCL to express queries over the
candidate models.

XML METADATA INTERCHANGE (XMI) defines an XML-based inter-
change format for UML and other MOF-based metamodels and models
[OMG15].

2.3.3 UML

UML [OMG17] defines a graphical language for visualizing, specifying,
constructing, and documenting system artifacts. The UML specification
describes a common MOF-based metamodel that specifies the abstract
syntax of UML and its semantics. It also defines a specification of the
human-readable notation for representing the individual UML modeling
concepts as well as rules for combining them into a variety of different
diagram types corresponding to different aspects of system modeling.

UML defines 14 different diagrams, namely: Activity Diagram, Class
Diagram, Communication Diagram, Component Diagram, Composite Struc-
ture Diagram, Deployment Diagram, Interaction Overview Diagram, Object
Diagram, Package Diagram, Profile Diagram, State Machine Diagram, Se-
quence Diagram, Timing Diagram, Use Case Diagram. In practice, the
mostly used diagrams in software development are: Use Case Diagrams,
Class diagrams, and Sequence diagrams. In this thesis, we will be using
Class diagrams, Object diagrams, and Profile diagrams for the specification
and illustration of our contributions. Figure 2.1 showed an example of a
Class diagram for managing an online store.

2.3.4 UML Profiles

To define domain-specific knowledge, we can either create a new meta-
model from scratch or extend an existing modeling language such as UML.
UML profiles provide a fast way to describe a new language and allow the
reuse of the tooling infrastructure of UML. In fact, UML profiles tailor the
UML language to a particular domain (e.g., Service Oriented Architecture)
or platform (e.g., JEE, .Net).

A UML Profile is defined using a Profile Diagram which includes custom
stereotypes, tag definitions, and constraints that are applied to specific UML
elements (e.g., Class, Operation) in order to enrich such elements with
custom vocabulary needed in a particular domain.

32



2.3. MODEL-DRIVEN ENGINEERING

«Metaclass» 
Class

«Stereotype»
Table

+ name: String [0..1]

«Stereotype»
Column

+ name: String [0..1]
+ type: RDBType [1]
+ isPrimaryKey: Boolean [1]

«Metaclass» 
Property «enumeration»

RDBType

- BOOLEAN
- INT
- DECIMAL
- DATE 
- DATETIME
- VARCHAR
....

«profile»
DDL

Figure 2.2: A simple UML profile for relational databases.

Figure 2.2 shows a simple UML profile to extend Class diagram vocab-
ulary to support relational databases. As can be seen, this profile defines
the stereotypes Table and Column which extend the metaclasses Class and
Property, respectively. The Table stereotype includes the property name,
which defines the name of the table corresponding to a Class element. The
Column stereotype includes the properties name, type and isPrimaryKey
to define a column name, its type, and whether such column is a primary
key, respectively. Figure 2.3 shows an example of this profile application
on the Class Product of the online store example showed in Figure 2.1. As
can be seen, the the Class Product has the stereotype Table which defines
the name of the table associated with this Class (i.e., product). Each class
attribute has the stereotype Column which provides the details of the cor-
responding column in the table. For instance, the stereotype Column of the
attribute ID defines the column name (i.e., id) and its type (i.e., INT), and
specifies that this column is a primary key (i.e., isPrimaryKey=true). This
profile could be used for example to generate a Data Definition Language
(DDL) script to create the database.

2.3.5 OCL

A UML diagram, such as a class diagram, does not typically provide
all the relevant aspects of a specification. While UML profiles provide an
extension mechanism to tailor UML models to a specific requirement, there
is still a need to describe additional constraints about the elements in the
model. OCL has been created to fill this gap by offering a standard language

33



CHAPTER 2. BACKGROUND

«Table» 
Product

«Column» ID: Integer [1] 
«Column» Name: String [0..1] 
«Column» Description: String [0..1] 
«Column» ReleasedDate: Date [1] 
«Column» DiscountinuedDate: Date [0..1] 
«Column» Rating: Integer [1] 
«Column» Price: Real [1] 

                 «Table»
 name=product

               «Column»
 name=id
 type = RDType:INT
 isPrimary = true

Figure 2.3: A example of a UML Class diagram with a profile.

to define expressions on model elements. OCL is a general-purpose formal
language which can be used to define several kinds of expressions comple-
menting UML models or any kind of MOF-based models. The language is
typed (i.e., each expression is conform to a type), declarative (i.e., expres-
sions define the desired operation not how to perform them), and side-effect
free (i.e., an expression does not change the state of a system).

OCL can be used for different purposes such as specifying invariant con-
ditions that must hold for the modeled system, creating queries over model
elements, specifying type invariants for stereotypes, and describing guards
for model transformation. Listing 2.5 shows an example of an OCL expres-
sion specifying an invariant on the Class Product of the online store exam-
ple showed in Figure 2.1. The expression validDiscountinuedDate speci-
fies that the value of the attribute DiscountinedDate of the Class Product
(if exists) should be higher that the value of the attribute ReleasedDate of
the same Class.

Listing 2.5: Simple OCL example.
1 context Class
2 ivr discountinuedConst : self. DiscountinuedDate .

oclIsUndefined ().not () implies
3 self. DiscountinuedDate > self. ReleasedDate

34



2.3. MODEL-DRIVEN ENGINEERING

2.3.6 Supporting Frameworks for MDE

The Eclipse platform15 provides a wide ecosystem of projects and tools
to support MDE and its associated standards (e.g., MDA, MOF, UML).
This section presents the most relevant projects and tools that provide
support to the different standards that are used in the implementation of
the contributions of this thesis.

Eclipse Modeling Framework. The EMF provides modeling, metamod-
eling, and code generation capabilities within the Eclipse platform. EMF
uses Ecore to describe metamodels which can be considered as an implemen-
tation of the EMOF specification proposed by OMG16. EMF relies on the
OMG standard XMI to persist Ecore models. It also provides a generative
solution which constructs Java APIs out Ecore models to facilitate their
management, thus promoting the development domain-specific applications.

Model Development Tools. The Model Development Tools (MDT) project
is an Eclipse project which aims at providing an EMF-based implementa-
tion of industry standards models, most of which are OMG specifications,
and tools for developing models based on those metamodels. Some of the
metamodels and tools which are used in the implementation of this thesis
are:

OCL, which provides an implementation of OCL for EMF-based models
and metamodels.

UML2, which implements the UML metamodel using Ecore and pro-
vides a Java API to manipulate UML models.

PAPYRUS, which provides diagramming tool facilities for many OMG
standards such as UML, SysML, and MARTE. In particular, it provides
diagram editors for EMF-based modeling languages and offers an
advanced support for the definition of UML profiles. In this thesis, we
rely on PAPYRUS for the creation of UML diagrams and UML profiles.

Model Transformations. There are different ways to define model trans-
formations within the Eclipse platform for EMF-based models. For instance,

15https://www.eclipse.org/
16OMG has defined two compliance points for MOF: EMOF for Essential MOF and

CMOF for Complete MOF.

35

https://www.eclipse.org/


CHAPTER 2. BACKGROUND

model transformations could be expressed in Java using the generated Java
API from EMF models. They could also be expressed using a dedicated
Domain Specific Language (DSL) such the ATL Transformation Language
(ATL) language [Jou+08]. ATL is a Model-to-Model (M2M) transformation
language and a toolkit created initially by the ATLANMOD team (initially
ATLAS GROUP) but is maintained actually by OBEO17. An ATL transfor-
mation is composed of rules that define how source model elements are
matched and navigated to create and initialize the elements of the target
models. ATL provides a hybrid language (imperative/declarative) to perform
Ecore model transformations.

Code Generation. As explained before, EMF provides a facility to generate
Java APIs from Ecore models. The EMF code generation engine uses a
language called JET18, which relies on JSP-like template files, to generate
Java code. JET is typically used to customize the generated Java APIs from
Ecore models, as we will see in Chapter 4. However, JET is not used to define
new code generators due to its complexity and lack of tooling supporting
it. In this thesis, we will rely on ACCELEO19 language, which provides an
implementation of the OMG Model-to-Text (M2M) standard, to create new
code generators for our approaches.

2.4 SUMMARY

This chapter shed some light on the technological background used as the
foundations of this thesis. We presented first REST architectural styles
and the two specifications we focus on our contributions, namely: the Open-
API specification and OData protocol. Later, we presented MDE and the
technologies used for the implementation of the contributions of this thesis.

17https://www.obeo.fr/en/
18https://www.eclipse.org/modeling/m2t/?project=jet
19https://www.eclipse.org/acceleo/

36

https://www.obeo.fr/en/
https://www.eclipse.org/modeling/m2t/?project=jet


CHAPTER

3
Modeling REST APIs

This chapter presents the different model-based representations we created
for modeling REST APIs. In particular, we created a metamodel and a
UML profile for OpenAPI and OData. On one hand, metamodels give more
freedom to create a syntax closer to OpenAPI and OData domains, and
therefore ease reverse/forward engineering. On the other hand, profiles
rely on the well-known UML standard and allow the reuse of its tooling
infrastructure to define OpenAPI and OData editors. These artifacts will
become the foundations of our approach and help us integrate REST APIs
into our model-driven approach as we will present in the next chapters.

This chapter is organized as follows. Section 3.1 is dedicated to the
OpenAPI specification and presents (i) the OpenAPI metamodel, (ii) a UML
profile for OpenAPI, and (iii) tool support. Similarly, Section 3.2 is dedicated
to OData protocol and presents (i) a metamodel to describe OData, (ii) a
UML profile we developed for OData, and (iii) tool support.

3.1 MODELING OPENAPI

This section describes the different modeling artifacts we created for the
OpenAPI specification. These artifacts will facilitate the integration of Open-
API into model-driven development techniques such as transformations and
code generation.

We will start this section by presenting the OpenAPI metamodel. Later,
we will describe the UML profile for OpenAPI. Finally, we will present the

37



CHAPTER 3. MODELING REST APIS

tools we created to support theses representations.

3.1.1 A Metamodel for OpenAPI

The OpenAPI metamodel is derived from the concepts and properties
described in the OpenAPI specification document1. In the following, we
will explain its main parts, namely: (i) behavioral elements, (ii) structural
elements, (iii) metadata elements, (iv) serialization/deserialization elements,
and finally (v) security elements.

Behavioral Elements. Figure 3.1 shows the behavioral elements of the
OpenAPI metamodel. An API definition is represented by the API element,
which is the root element of our metamodel. This element includes attributes
to specify the host serving the API, the base path of the API, the transfer
protocol/s supported by the API (i.e., schemes attribute) and the list of
MIME types the operations of the API can consume/produce (i.e., consumes
and produces attributes, respectively). The transfer protocols supported
by the OpenAPI specification are http, https, ws, and wss. The MIME
type definitions should comply with RFC 68382 (e.g., application/json for
JSON content). The API definition also includes references to the available
paths, the data types used by the operations (i.e., definitions reference)
and the possible responses of the API calls.

The Path element contains a relative path to an individual endpoint and
the operations for the HTTP methods (e.g., get and put references). The
description of an operation (i.e., Operation element) includes an identifier
operationId, the MIME types the operation can consume/produce, and
the supported transfer protocols for the operation (i.e., schemes attribute).
The MIME types and schemes declared at this level will override the ones
declared at the API level. An operation includes also the possible responses
returned from executing the operation (i.e., responses reference).

API, Path and Operation elements inherit from ParameterContext,
which allow them to define parameters at API level (applicable for all
API operations), path level (applicable for all the operations under this
path) or operation level (applicable only for this operation).

The Response element defines the possible responses of an operation
and includes the HTTP response code, a description, the list of headers
sent with the response, and optionally an example of the response message.

1https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.
0.md

2http://tools.ietf.org/html/rfc6838

38

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
http://tools.ietf.org/html/rfc6838


3.1. MODELING OPENAPI

paths 

API

host: String 
basePath: String 
schemes: SchemeType [0..*] 
consumes: String [0..*] 
produces: String [0..*] 

0..*

Operation

operationId: String
schemes: SchemeType [0..*] 
summary: String
description: String 
consumes: String[0..*] 
produces: String [0..*] 
deprecated: Boolean 

get
   0..1

post

delete

head

patch

put

options

Schema

 

ParameterContext

 

Parameter

 

Response

 

parameters

Example

 

0..*

SchemaContext

 

description: String
code: String

1..*responses

examples

0..*
mimeType: String
value: String

Header

 

headers 0..*

«Enumeration» 
SchemeType

http
https
ws
wss

0..1

0..1

0..1

0..1

0..1 0..1

definitions 0..* responses
0..*

schema 0..1

Path

relativePath: String

Figure 3.1: The OpenAPI metamodel: behavioral elements

Response and Parameters elements inherit from SchemaContext thus al-
lowing them to add the definition of the response structure and the data
type (schema reference) used for the parameter, respectively. Parameter and
Schema elements will be explained while presenting the structural elements.

Structural Elements. Figure 3.2 shows the structural elements used in
a REST API, namely: the Schema element, which describes the data types;
the Parameter element, which defines the parameter of an operation; the
ItemsDefinition element, which describes the type of items in an array;
and the Header element, which describes a header sent as part of a response.
These elements use an adapted subset of the JSON Schema Specification
defined in the super class JSONSchemaSubset3.

A parameter definition includes a name and two boolean properties to
specify whether the parameter is required and if empty values are accepted4.

The location of the parameter is defined by the location attribute. The
possible locations are:

¦ path, when it is part of the URL (e.g., petId in /pet/{petId}),

¦ query, when it is appended to the URL (e.g., status in
/pet/findByStatus?status="sold"),

3More information about the schema information can be found at http://json-
schema.org/latest/json-schema-validation.html

4Required parameters are parameters which should be included in the request, but
they may only have a name and no value. When setting allowEmptyValues to false,
required parameters should include a value as well.

39

http://json-schema.org/latest/json-schema-validation.html
http://json-schema.org/latest/json-schema-validation.html


CHAPTER 3. MODELING REST APIS

JSONSchemaSubset

type: JSONDataType
format: String
description: Sting
maximum: Double
exclusiveMaximum: Boolean
minimum: Double
exclusiveMinimum: Boolean
maxLength: Integer
minLength: Integer
pattern: String
maxItems: Integer
minIntems: Integer
uniqueItems: Boolean
enum: String [0..*]
default: String
multipleOf: Double

Parameter

name: String
location: ParameterLocation
required: Boolean
allowEmptyValues: Boolean

ItemsDefinition

 

Schema

name: String 
title: String
maxProperties: Integer
minProperties: Integer
required: String [0..*]
example: String
discriminateur: String
readOnly: Boolean

Header

SchemaContext

 

XMLElement

name: String
namespace: String
prefix: String
description: String
attribute: Boolean
wrapped: Boolean

«Enumeration» 
JSONDataType

integer
number
string
boolean
object
array
file
null

«Enumeration» 
CollectionFormat

csv
ssv
tsv
pipes
multi

«Enumeration» 
ParameterLocation

path 
query
header
body 
formData

ArrayContext

collectionFormat: CollectionFormat 

items 0..1

xml 0..1
schema

0..1

properties

additonalProperties
allOf

items 0..*
0..1

0..1
0..*

Figure 3.2: The OpenAPI metamodel: structural elements

¦ header, for custom headers,

¦ body, when it is in the request payload,

¦ formData, for specific payloads5.

Parameter and Header elements inherit from ArrayContext to allow
them to specify the collection format and the items definition for at-
tributes of type array. Additionally, the Parameter element inherits from
SchemaContext to define the data structure when the attribute location
is of type body (i.e., Schema reference).

The Schema element defines the data types that can be consumed and
produced by operations. It includes a name, a title, and an example. Inheri-
tance and polymorphism is specified by using the allOf reference and the
discriminator attribute, respectively. Furthermore, when the schema is of
type array, the items reference makes possible to specify the values of the
array.

Metadata Elements. Figure 3.3 describes the metadata and documenta-
tion elements of the OpenAPI metamodel. As can be seen, an API definition
includes the description of the global information about the API (i.e., info

5application/x-www-form-urlencoded or multipart/form-data

40



3.1. MODELING OPENAPI

ExternalDocsExternalDocsContext

API

 

Operation

 tagReference: String

Schema

 
tags

0..*

description String
url: String

Info

title: String
description: String
termsOfService: String
version: String

Tag

name: String
description: String

License

name: String
description: String

Contact

name: String
url: String
email: String

license 0..1

contact 0..1

externalDocs
0..1

info 0..1

Figure 3.3: The OpenAPI metamodel: metadata and documentation ele-
ments.

reference). The description (i.e., Info element) includes: the title of the API,
a short description, the terms of service to use the API, the API version, and
a list of tags (tags reference). It also includes references to represent contact
and license information (contact and license references, respectively). On
the one hand, a contact description includes a name, a URL, and an email
address. On the other hand, a license description includes the name of the
license and is URL.

Additionally, API, Tag, Operation, and Schema elements inherit from
the ExternalDocsContext which allows the definition of external documen-
tation (externalDocs reference).

Security Support. Figure 3.4 shows the security elements of the OpenAPI
metamodel. As can be seen, an API definition may include a set of security
definitions (i.e., securityDefinitions reference). The SecurityScheme el-
ement allows the definition of a security scheme that can be used and
includes a name to identify the scheme; a description; a type, which can
be basic for basic authentication, apiKey, or oauth2 for OAuth2 common
flows; and a location, which can be either query (i.e., as a query parameter
in the URL of the request) or header (i.e., as part of the header of the re-
quest). For schemes of type oauth2, the definition also includes the flow type,
the authorization and the token URLs to be used for the flow. Additionally,
OAuth2 security schemes include the available scopes (scopes reference).
The SecurityScope element defines a scope of an OAuth2 security scheme
and includes a name and a short description.

The API and Operation elements inherit from the SecurityContext
element, thus allowing the specification of security schemes that can be
used to authenticate the requests (i.e., securityRequirements reference).
While the security schemes declared in the API level are applied for the
API as a whole, the ones declared in an operation level are only applicable

41



CHAPTER 3. MODELING REST APIS

<<enumeration>> 
SecuritySchemaType

basic
apiKey
oauth2

«enumeration» 
APIKeyLocation

query
header

«enumeration» 
OAuth2FlowType

impclicit
password
application
accessCode

API

 

Operation

 

SecurityContext

 

SecurityScheme

type: SecuritySchemaType
descrpition: String
name: String
location: APIKeyLocation
flow: OAuth2FlowType
authorizationURL: String
tokenURL: String

SecurityScope

name: String
description: String

SecurityRequirement

scopes 0..*

0..*

securityRequirements

securityDefinitions
0..*

securityScopes

0..*

securityScheme1

Figure 3.4: The OpenAPI metamodel: security elements.

JSONPointer

/ref: String

API

ParameterDeclaringContext

 

SchemaDeclaringContext

 0..1

declaringContext

Parameter Operation SchemaPath Response

ResponseDeclaringContext

 

declaringContext
0..1

declaringContext
0.1

Figure 3.5: The OpenAPI metamodel: serialization/deserialization elements.

for such operation. The SecurityRequirement element allows the declara-
tion of a security requirement and includes the targeted security scheme
(i.e., securityScheme reference) and, if applicable, the required scope (i.e.,
securityScopes reference).

Serialization/Deserialization Support. Figure 3.5 shows the elements
of the metamodel to support serialization and deserialization of Open-
API models in JSON (or YAML) format. As explained before, a param-
eter can be defined at the API level, path level, or operation level.
To specify this, API, Path, and Operation elements inherit from the
ParameterDeclaringContext element which is referenced in each param-
eter (i.e., declaringContext reference). A similar strategy is followed by
the Schema element (the schema can be declared in the API level, parame-
ter level, response level, or inside a schema) and the Response element (a

42



3.1. MODELING OPENAPI

Petstore:API

host = "petstore.swagger.io"
basePath = "/v2"
schemes = [SchemeType::http]
...

:Path

relativePath= "/pet/findByStatus"

findPetsByStatus:Operation

operationId = "findPetsByStatus"
produces = ["application/xml",
"application/json"]

status:Parameter

name= "status"
location = ParameterLocation::query
type = JSONDataType::array
required = true
...

paths

:ItemsDefinition

type = JSONDataType::string
enum = ["available", "pending", "sold"]
default = "available"

:Response

code = "200"
description = "Sucess..."

operations

:Schema

type = JSONDataType::array

Pet:Schema

name = "Pet"
type = JSONDataType::object

id:Schema

name = "id"
type = JSONDataType::integer
format = "int64"

items

responses

schemaitems

properties

definitions

param
eters

{"swagger"  :"2.0",

 "host"     : "petstore.swagger.io", "basePath": "/v2"

 "schemes   : ["http"]

 "paths"    : {

   "/pet/findByStatus" : { 

    "get" : {

      "operationId" : "findPetsByStatus",

      "parameters"  : [

        { "name" : "status", 

           "type" : "array",

          "items": {

            "type" : "string",

            "enum" : ["available", "pending", "sold"],

            ....},}],

      "responses":{  

         "200": { "schema" : 

                  { "type" : "array", 

                    "items": {"$ref" : "#/definitions/Pet"}}}

      }}},

 "definitions":{ 

   "Pet":{

     "type" : "object",

     "required" : ["name", "photoUrls"],

     "properties" : {

       "id" : { 

             "type" : "integer", 

             "format": "int64"}

       "tags": {

"type": "array",

"items": { 

               "$ref": "#/definitions/Tag"

                }}, ...}, ...}}}}

(a)

(b)

Figure 3.6: OpenAPI model example: (a) an excerpt of the Petstore OpenAPI
definition and (b) an except of the corresponding OpenAPI model.

response can declared at the API level or operation level).
All behavioral elements inherit from the JSONPointer element which

defines a JSON reference for each element. This element includes a derived
attribute called ref which is dynamically calculated depending on its declar-
ing context. This attribute specifies the path of the element within a JSON
document following the RCF 69016, which can be used to reference a JSON
object within the JSON document.

Figure 3.6 shows an excerpt of the OpenAPI definition the Petstore API
presented in Chapter 2 (see Section 2.2) and the corresponding OpenAPI
model.

3.1.2 A UML Profile for OpenAPI

This section presents the UML profile we created to extend UML class
diagrams in order to support OpenAPI definitions. We will explain first how
we map OpenAPI elements and UML concepts. Later, we will present the
stereotypes we created to manage OpenAPI definitions.

3.1.2.1 Mapping UML and OpenAPI

We opted to use UML class diagrams as the basis of our OpenAPI profile
6https://tools.ietf.org/html/rfc6901

43

https://tools.ietf.org/html/rfc6901


CHAPTER 3. MODELING REST APIS

Table 3.1: Mapping OpenAPI and UML elements.

OPENAPI
ELEMENT

CONDITION UML ELEMENT DETAILS

Schema
A Schema definition of object Class

A Schema property of type
primitive or array of primi-
tives

Property A class property

A Schema property of type ob-
ject or array of objects Property Association end

Operation - Operation
Parameter - Parameter direction = in
Response - Parameter direction = return

given the semantic similarities between class diagrams and the OpenAPI
specification. Particularly, we rely on UML class diagrams to represent the
data model (i.e., schema definitions) and operations of OpenAPI definitions.

Table 3.1 shows how we map OpenAPI elements to UML concepts.
Columns one and two show an OpenAPI element and a specific condition to
meet (if any), respectively. Columns three and four show the corresponding
UML element and the initialization details of such element, respectively.
As explained before, Schema definitions allow the definition of data types
in the OpenAPI specification. They are also used to define the structure
(i.e., properties and associations) of other Schema definitions of type Object.
Thus, depending of the role of a Schema definition, we associate the adequate
UML element (i.e., class, attribute, association end) as shown in the table.
Furthermore, the Operation concept in OpenAPI is mapped to the UML
concept Operation. Finally, both Parameter and Response concepts of an
API are mapped to the UML concept Parameter as mentioned in the table.

UML is used to provide the details of OpenAPI definitions when the
corresponding semantic meaning can be represented in a Class diagram.
The rules below are applied to represent the supported OpenAPI properties
in UML.

¦ The required property is represented by the lower bound cardinality
of the corresponding UML element,

¦ array types are represented by the upper bound cardinality of the
corresponding UML element,

¦ enum property is represented by Enumeration in the Class diagram,

44



3.1. MODELING OPENAPI

{"swagger"  :"2.0",

 "host"     : "petstore.swagger.io", "basePath": "/v2"

 "schemes   : ["http"]

 "paths"    : {

   "/pet/findByStatus" : { 

    "get" : {

      "operationId" : "findPetsByStatus",

      "parameters"  : [

        { "name" : "status", 

           "type" : "array",

          "items": {

            "type" : "string",

            "enum" : ["available", "pending", "sold"],

            ....},}],

      "responses":{  

         "200": { "schema" : 

                  { "type" : "array", 

                    "items": {"$ref" : "#/definitions/Pet"}}}

      }}},

 "definitions":{ 

   "Pet":{

     "type" : "object",

     "required" : ["name", "photoUrls"],

     "properties" : {

       "id" : { 

             "type" : "integer", 

             "format": "int64"}

       "tags": {

"type": "array",

"items": { 

               "$ref": "#/definitions/Tag"

                }}, ...}, ...}}}}

(a)

(b)

Pet

id: Long [0..1]
name: String [1]
...

findPetsByStatus(status: PetStatus[*]): Pet[*]
...

Tags

id: Long [0..1]
name: String [1]

«Enumeration»
PetStatus

available
pending
sold

tags *

Figure 3.7: OpenAPI model example: (a) an excerpt of the Petstore OpenAPI
definition and (b) the corresponding UML model.

¦ The default property is represented by the default value of the
corresponding UML element,

¦ The discriminator and allOf properties (used to define hierarchy
in OpenAPI) are represented by inheritance in a Class diagram,

¦ The operationId property is represented by the name of the corre-
sponding UML operation,

¦ The name property is represented by the name of the corresponding
UML element,

¦ The readOnly property is represented by the isReadOnly property of
the corresponding UML element.

Figure 3.7.b shows the Class diagram corresponding to the excerpt of the
Petstore definition shown in Figure 3.7.a. As can be seen, the schema defini-
tion Pet and its properties are represented by the Class Pet which includes
the corresponding attributes following the rules we described before. The
API operation findPetsByStatus is represented by the corresponding class
operation which includes the required parameters. The class diagram also

45



CHAPTER 3. MODELING REST APIS

«Stereotype»
API

host: String [1]
basePath: String [1]
schemes: SchemeType [*]
consumes: String [*]
produces: String [*]

«Metaclass» 
Model

«Enumeration»
SchemeType

http
https
ws
wss

Figure 3.8: OpenAPI profile: the API element.

includes the Class Tag, to represent the schema Tag; and the enumeration
PetStatus, to represent the enum property of the parameter status. The
property tags of the schema Pet is represented by an association between
the classes Pet and Tag. Next we will present the profile we created to
extend the definition of class diagrams in order to complete the definition of
the OpenAPI specification.

3.1.2.2 The OpenAPI Profile

This section describes the UML profile we defined for OpenAPI. This
profile includes a set of stereotypes, properties and data types which enable
modeling OpenAPI definitions using UML class diagrams. We present next
the main parts of the OpenAPI profile, namely: (i) the API element, (ii)
the structural elements, (iii) the behavioral elements, (iv) the metadata
elements, and finally (v) the security elements.

The API Element. The root of an OpenAPI definition includes the global
details of an API such as host, base type, and the supported transfer pro-
tocol of the API. We consider that an API definition is represented by the
element Model of a UML class diagram. Thus, API stereotype extends the
metaclass Model as shown in Figure 3.8. This stereotype defines similar
properties to those included in the OpenAPI metamodel. It includes a host,
a base type, the transfer protocols the API supports (i.e., schemes prop-
erty), the MIME types the API consumes and produces (i.e., consumes and
produces properties, respectively). The possible values for the transfer
protocol are: http, https, ws, and wss. The MIME types consumed and pro-

46



3.1. MODELING OPENAPI

«Stereotype»
Schema

title: String [0..1]
maxProperties: Integer [*]
minProperties: Integer [*]
example: String [0..1]
discriminator: String [0..1]
additonalPropertiesAllowed: Boolean [0..1]

«Metaclass» 
Class 

«Metaclass» 
Property 

«Stereotype»
APIProperty

title: String [0..1]
description: String [0..1]
xml: XMLFormat [0..1]
constraints: JSONSchemaConstraints [0..1]

«DataType»
JSONSchemaConstraints

maximum: Real [0..1]
exclusiveMaximum:  Boolean[0..1
minimum: Real [0..1]
exclusiveMinimum: Boolean [0..1]
maxLength: Integer [0..1]
minLength! Integer [0..1]
pattern: String [0..1]
maxItems: Integer [0..1]
minItems: Integer [0..1]
uniqueItems: Boolean [0..1]

«Stereotype»
APIDataType

type: JSONDataType[1]
format: String [0..1]

«Metaclass» 
PrimitiveType 

«Metaclass» 
Enumeration 

«Enumeration»
JSONDataType

boolean
integer
number
string
file

«DataType»
XMLFormat

name: String [0..1]
namespace: String [0..1]
prefix: String [0..1]
attribute: Boolean [0..1]
wrapped: Boolean [0..1]

Figure 3.9: OpenAPI profile: structural elements.

duced by the API should comply with RFC 68387 (e.g., application/json,
application/xml).

Structural Elements. Figure 3.9 shows the stereotypes related to Open-
API data types and their mapping with UML concepts. As can be seen,
the stereotypes Schema, Property, and APIDataType allow the extension
of the UML metamodel to support data types according to the OpenAPI
specification.

The stereotype Schema extends the metaclass Class and allows the
definition of schema objects. It includes a title, the maximum/minimum
number of properties of the schema (i.e., maxProperies and minProperties
properties, respectively), an example of an instance for this schema, a
schema property name to know the concrete type of an instance (i.e.,
discriminator property), and whether additional properties are allowed
(i.e., additionalPropertiesAllowed property).

The stereotype APIProperty extends the metaclass Property and al-
lows the definition of a schema property. It includes a title, a description,
the metadata to describe the XML representation format of the property
(i.e., xml property), and a set of constraints related to the property (i.e.,
constraints property). The XMLFormat data type allows the definition of
the XML representation of the property (e.g., namespace, prefix), while
the JSONSchemaConstraints data type describes additional validation con-
straints for the property (e.g., maximum, minimum). More information about
these constraints can be found in JSON Schema Core8 and Validation9.

7https://tools.ietf.org/html/rfc6838
8https://tools.ietf.org/html/draft-zyp-json-schema-04
9https://tools.ietf.org/html/draft-fge-json-schema-validation-00

47

https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://tools.ietf.org/html/draft-fge-json-schema-validation-00


CHAPTER 3. MODELING REST APIS

«Metaclass» 
Parameter 

«Stereotype»
APIParameter

description: String [0..1]
location: ParameterLocation [1]
allowEmptyValue: Boolean [0..1]
collectionFormat: CollectionFromat [0..1]
constraints: JSONSchemaConstraints [0..1]

«Stereotype»
APIResponse

description: String [0..1]
code: String [0..1]
headers: Header [*]
examples: Example [*]

«Stereotype»
APIOperation

relativePath: String [0..1]
method: HTTPMethod [0..1]
produces: String [*]
consumes: String [*]
schemes: SchemeType [*]
summary: String [0..1]
description: String [0..1]

«Enumeration»
HTTPMethod

get
post
put
patch
options
delete

«Metaclass» 
Operation 

«DataType»
Example

mimeType: String [0..1]
value: String [0..1]

«DataType»
Header

name: String [1]
description: String [0..1]
type: JSONDataType [0..1]
format: String [0..1]
array: Boolean [0..1]
collectionFormat: CollectionFromat [0..1]
constraints: JSONSchemaConstraints [0..1]

«Enumeration»
CollectionFormat

csv
ssv
tsv
pipes

«Enumeration»
ParameterLocation

query
header
path
formData
body

Figure 3.10: OpenAPI profile: behavioral elements.

The stereotype APIDataType extends the metaclasses PrimitiveType
and Enumeration to add support for the primitive types defined by the
OpenAPI specification. It includes a type and a format such as the possible
values for type are boolean, integer, number, string, and file; while type
format is an open string-valued property to define the format of the data
type being used (e.g., email and date). Table 3.2 lists the primitive types
defined by the OpenAPI specification. The primitive type file is reserved
for parameters and responses to set the parameter type or the response as
being a file.

Behavioral Elements. Figure 3.10 shows the stereotypes which allow ex-
tending the UML class diagram in order to define the behavior of the API
(i.e., operations and inputs/outputs). The stereotype APIOperation extends
the metaclass Operation and allows the definition of an API operation. This
stereotype includes the relative path of the operation (i.e., relativePath
property), the HTTP method of the operation, the MIME types the operation

Table 3.2: The primitive data types defined by the OpenAPI specification

COMMON NAME TYPE FORMAT
integer integer int32
long integer int64
float number float
double number double
string string
byte string byte
binary string binary
boolean boolean
date string date
dateTime string date-time
password string password

48



3.1. MODELING OPENAPI

«Stereotype»
APIInfo

title: String
description: String
termsOfService: String
version: String
licenseName: String
licenseDescription: String
contactName: String
contactURL: String
contactEmail: String

«Stereotype»
ExternalDocs

description: String
url: String

«Metaclass» 
Model

«Metaclass» 
Operation

«Metaclass» 
Class

Figure 3.11: OpenAPI profile: metadata Elements.

consumes and produces (i.e., consumes and produces properties, respec-
tively), the supported transfer protocol schemes (i.e., schemes property), a
summary, and a description. As can be seen, the definition of the supported
MIME type and the transfer protocol can also be declared at the operation
level. Similar to the OpenAPI metamodel, this will override their definition
at the API level (if any). Note also that the concept path is not present in
the OpenAPI profile. Thus, the information of the path and the appropriate
HTTP method are included in the APIOperation stereotype.

The stereotypes APIParameter and APIResponse extend the the meta-
class Parameter and allow the definition of an API operation parameter
and an operation response, respectively. The stereotype APIParameter
includes a description, the location of the parameter in the API request (i.e.,
location property), a flag to specify whether empty values are allowed (i.e.,
allowEmptyValues property), the format of the collection if the parameter
is multivalued (i.e., collectionFormat property), and a set of constraints
regarding the values of the parameter (i.e., constraints property). The
possible values for parameter location are query, header, path, formData,
and body.

The stereotype APIResponse defines an API response and includes a de-
scription, the HTTP status code related to the response (i.e., code property),
a list of headers that are sent with the response, and a list of examples
of the response message. The datatype Header allows the definition of a
header sent with the response, while the datatype Example allows the defi-
nition of an example for a response message. As can be seen, the stereotypes

49



CHAPTER 3. MODELING REST APIS

«Datatype» 
SecurityScheme

name: String 
type: SecuritySchemeType
descrpition: String
location: APIKeyLocation
flow: OAuth2FlowType
authorizationURL: String
tokenURL: String
scopes: SecurityScope [0..*] 

«Enumeration» 
SecuritySchemeType 

basic
apiKey
oauth2

«Enumeration» 
APIKeyLocation 

query
header

«Enumeration» 
OAuth2FlowType 

implicit
password
application
accessCode

«Datatype» 
SecurityScope

name: String
description: String

«Metaclass» 
Model

«Metaclass» 
Operation

«Stereotype»
SecurityDefinitions

securitySchemes: SecurityScheme [1..*]

«Stereotype»
SecurityRequirements

securityRequirements: SecurityRequirement [1..*]

«Datatype» 
SecurityRequirement

name: String
scope: String

Figure 3.12: OpenAPI profile: security Elements.

APIParameter and APIResponse do not include information about the data
types associated with the parameter or the response. Such information is
defined by the type of the UML parameter.

Metadata Elements. Figure 3.11 shows the stereotypes allowing to asso-
ciate metadata and documentation information to UML model. The stereo-
type APIInfo extends the metaclass Model and defines the metadata infor-
mation of the API. It includes the title of the API, a description, the terms
of service, the version of the API, license information (i.e., licenseName and
licenseURL), and contact information (i.e., contactName, contactURL, and
contactEmail properties). The stereotype ExternalDocs extends the meta-
classes Model, Class, and Operation and allows the definition of additional
documentation regarding the extended element. It includes a description
and the URL of the documentation.

Security Elements. Figure 3.12 shows the stereotypes with allow
the definition of the security details of a REST API. The stereotype
SecurityDefinitions extends the metaclass Model and allows the defi-
nition of the scheme definitions that can be used across the specification.
The datatype SecurityScheme allows the definition of a security scheme
and includes the type of the security scheme which can be basic, apiKey,
and oauth2; and a description. Fore API key authorizations, the security
scheme allows the definition of the name of the key and its location. For

50



3.1. MODELING OPENAPI

OAuth2 authorizations, the security schema allow the definition of the flow
used by the scheme, the authorization URL used by this flow, the token
URL to be used, and a list of scopes. The definitions of SecurityScope,
APIKeyLocation and OAuth2FlowType elements are similar to the ones of
the OpenAPI metamodel.

The stereotype SecurityRequirements extends the metaclasses Model
and Operation and allows the declaration of the possible authorization
methods for such model or operation, respectively. This stereotype includes
a list alternative security schemes that can be used for the API as a whole
when applied to the model element, or a particular operation when applied
to an operation. The data type SecurityRequirement allows the declaration
of a security requirement and includes a name corresponding to a security
scheme which is declared in the security scheme definitions and a list of
scope names in case of an OAuth authorization.

Figure 3.13 shows an excerpt of the UML model of the Petstore API
including the applied OpenAPI stereotypes. As can be seen, the stereotypes
API, APIInfo, and SecurityDefinitions are applied to the model element
to include information about the API as a whole (e.g., host and basePath),
metadata (e.g., version), and security definitions, respectively. The stereo-
type Schema is applied to the classes Pet and Tag to mark them as schema
definitions. The stereotype APIProperty is applied to the properties of the
classes Pet and Tag. The stereotype APIOperation is applied to the opera-
tion findPetsByStatus to specify the details of the operation (e.g., the relative
path, the HTTP method). The stereotypes APIParameter and APIResponse
are applied to the parameter status and the returned Pet list to add infor-
mation about the operation parameter (e.g., location of the parameter) and
the API response (e.g., code of the response), respectively.

3.1.3 Tool Support

This section presents the tool support for OpenAPI which consists of a
set of Open Source Eclipse plugins, namely: (1) OPENAPIMM, a plugin for
the OpenAPI metamodel; OPENAPIPROFILE, a plugin for the UML profile
for OpenAPI; and (3) OPENAPITOUML, a plugin to generate UML models
from OpenAPI definitions.

3.1.3.1 OpenAPIMM

OPENAPIMM is an Open Source Eclipse plugin we created to provide an
implementation of the OpenAPI metamodel and manage OpenAPI models.

51



CHAPTER 3. MODELING REST APIS

«API, APIInfo, 
SecurityD

efintions»
Petstore

«Schem
a»

Pet

«APIProperty» id: Long [0..1]
«APIProperty» nam

e: String [1]
...«APIO

peration» findPetsByStatus (status: PetSatus [*]): Pet [*]

«Schem
a»

Tag

«APIProperty» id: Long [0..1]
«APIProperty» nam

e: String [1]

«Schem
a»

xm
l = {nam

e = "Pet"}

tags
«Enum

eration, APID
ataType»

PetStatus

available
pending
sold

«APID
ataType»

type = JSO
N

D
ataType::string

*

«APIProperty»

exam
ple = "doggie"

«APIO
peration»

relativePath = "/pet/findbystatus" 
m

ethod = H
TTPM

ethod::get 
sum

m
ary = "Finds Pets by status" 

... 

«APIParam
eter»

location = Param
eterLocation::query 

description = "M
ultiple status ..." 

... 

«APIR
esponse»

description = "successful operation" 
code = "200" 

«Prim
itiveType, APID

atatype»
Long

«APID
ataType»

type = JSO
N

D
ataType::integer 

form
at = "int64" 

«API»
host = "petstore.sw

agger.io" 
basePath = "/v2" 
... 

«APIInfo»
version = 1.0.0 
... 

«SecurityD
efintions»

securitySchem
es= [{nam

e = "petstore_auth", ...},  
{nam

e = "api_key", ...}] 

F
igure

3.13:O
penA

P
I

profile:Petstore
exam

ple.

52



3.1. MODELING OPENAPI

The plugin relies on EMF10, de facto modeling framework in Eclipse. Thus,
the OpenAPI metamodel has been implemented as an Ecore model which
has been used to generate a Java API to manage OpenAPI models. The
metamodel implementation has been enriched with a set of OCL constraints
to enable the validation of OpenAPI models against the OpenAPI specifica-
tion. The generated Java API has been extended to add a set of methods to
facilitate the traversal of models (e.g., find operations, find definitions) and
to validate models by executing the executing the OCL queries.

To facilitate the extraction and serialization of OpenAPI models, the
plugin includes also a contextual menu to: (1) generate OpenAPI models
from JSON files and (2) generate JSON files from OpenAPI models. The
support for JSON relies on the framework google-gson11.

The model extractor generates an OpenAPI model from an OpenAPI-
compliant JSON file. Such process is rather straightforward, as our meta-
model mirrors the structure of the OpenAPI specification. Only special atten-
tion had to be paid to resolve JSON references (e.g., #/definitions/Pet).
Thus, the root object of the JSON file is transformed to an instance of the
API model element, then each JSON field is transformed to its correspond-
ing model element. Figure 3.6.b shows an excerpt of the generated OpenAPI
model of the Petstore API including the findPetsByStatus operation and a
partial representation of the Pet schema.

The JSON serializer creates a OpenAPI-compliant JSON file from an
OpenAPI model by means of a model-to-text transformation. The root object
of the JSON file is the API model element, then each model element is
transformed to a pair of name/value items where the type for the value is (i)
a string for primitive attributes, (ii) a JSON array for multivalued element
or (iii) a JSON object for references. Serialization/deserialization model ele-
ments are used to resolve references. As said in Section 3.1.1, elements such
as Schema, Parameter, and Response can be declared in different locations
and reused by other elements. While the declaringContext reference is
used to define where to declare the object, the ref attribute (inherited form
JSONPointer class) is used to reference this object from another element.

OPENAPIMM will be used in Chapters 5, 6, and 8 to discover OpenAPI
definitions, generate test cases for REST APIs, and compose REST APIs,
respectively. OPENAPIMM is available in our GitHub repository12.

10https://www.eclipse.org/modeling/emf/
11https://github.com/google/gson
12https://github.com/SOM-Research/openapi-metamodel

53

https://www.eclipse.org/modeling/emf/
https://github.com/google/gson
https://github.com/SOM-Research/openapi-metamodel


CHAPTER 3. MODELING REST APIS

3.1.3.2 OpenAPIProfile

OpenAPIProfile is an Open Source Eclipse plugin which provides the
implementation of the OpenAPI profile and an editor to use the profile with
UML Class diagrams. The plugin extends PAPYRUS modeling editor13, an
Open Source UML modeling editor in Eclipse, in order to integrate the
OpenAPI profile with Papyrus UI. The instructions on how to install and
use the plugin are described in our GitHub repository14.

3.1.3.3 OpenAPItoUML

This section presents OPENAPITOUML, a tool which generates UML
models from OpenAPI definitions. Targeting the well-known UML standard,
which has been successfully adopted in the industry15, allows our tool to be
useful in a variety scenarios. For instance, it can be used for documentation
purposes by offering a better visualization of the capabilities of REST APIs
using the well-known UML class diagram. To the best of our knowledge,
current documentation tools for OpenAPI (e.g., ReDoc16 and Swagger UI17)
display the operations and data structures of the definitions in HTML pages
using only text and code samples, which complicate the understanding and
visualization of REST APIs. Only JSONDiscoverer [CC16] allows visualizing
the data schema of JSON-based REST APIs but focus on the inputs/outputs
of the operations and does not model the operations themselves. OPENAPI-
TOUML can also be used to ease the integration of REST APIs in all kinds
of model-based processes.

OPENAPITOUML follows a model-based approach to visualize OpenAPI
definitions as UML Class diagrams. Given an input OpenAPI definition,
the OPENAPITOUML approach extracts first an OpenAPI model which
is then transformed into a UML model (i.e., Class diagram) showing the
data structure and operation signatures of the API. While the intermediate
OpenAPI model is useful to perform other kinds of advanced analysis on
the OpenAPI definition, it is more convenient to generate a UML model for
visualization and comprehension purposes. Being a standard UML model,
our result can be automatically rendered and modified using any of the
plethora of UML modeling tools (e.g., PAPYRUS or UML DESIGNER).

13https://www.eclipse.org/papyrus/
14https://github.com/SOM-Research/openapi-profile
15https://www.uml.org/uml_success_stories/index.htm
16http://rebilly.github.io/ReDoc/
17https://swagger.io/swagger-ui/

54

https://www.eclipse.org/papyrus/
https://github.com/SOM-Research/openapi-profile
https://www.uml.org/uml_success_stories/index.htm
http://rebilly.github.io/ReDoc/
https://swagger.io/swagger-ui/


3.1. MODELING OPENAPI

 

OpenAPI 
definition

OpenAPI 
model

OpenAPI 
metamodel

UML
metamodel

UML model

 OpenAPI to UML

UML Designer

Extractor

Papyrus

 ...

......

 ...

......M2M

2
Serializer

31

JSON XMI
UML

model

Figure 3.14: The OPENAPITOUML approach.

The OPENAPITOUML process is depicted in Figure 3.14. As can be seen,
the process takes as input an OpenAPI definition, which can be (i) provided
by the API provider; (ii) generated by tools such as APIDISCOVERER, which
allows discovering OpenAPI definitions from API call examples as we will
present in Chapter 5; or (iii) derived from other API definition formats (e.g.,
API Blueprint, RAML) using tools such as API TRANSFORMER18, which
allows converting API definitions.

The OPENAPITOUML process generates UML models in three steps
(see the steps 1, 2, and 3 in Figure 3.14), which we will illustrate with
the Petstore API example. Figure 3.6.a showed an excerpt of the Petstore
OpenAPI definition including the operation findPetsByStatus and the
schema definition Pet.

The first step (see step 1 in Figure 3.14) extracts a model conforming
to our OpenAPI metamodel from the input OpenAPI definition. This step
relies on the OPENAPIMM presented in Section 3.1, which provides the
implementation of the OpenAPI metamodel and the support to extract
OpenAPI models from OpenAPI definitions. The second step (see step 2 in
Figure 3.14) performs a model-to-model transformation to generate a model
conforming to the UML metamodel from the previously extracted OpenAPI
model. This transformation iterates over the operations and definitions of
the OpenAPI model in order to generate classes, properties, operations, data
types, enumeration, and parameters, accordingly. This process relies on a
set of heuristics to identify the most adequate UML class to attach each
OpenAPI operation to. Heuristics are based on the analysis of the tags,
parameters and responses of the operation19. The full list of heuristics can

18https://apimatic.io/transformer
19When no class is a good fit for the operation, an artificial class is created to host the

operation.

55

https://apimatic.io/transformer


CHAPTER 3. MODELING REST APIS

a. UML model b. Serialized model

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001" ...>
  <packagedElement xmi:type="uml:Class" 
  name="Pet">
    <ownedAttribute xmi:type="uml:Property"
     name="id">
      ....
    </ownedAttribute>
    <ownedOperation xmi:type="uml:Operation"  
    name="findPetsByStatus" ...>
      <ownedParameter xmi:type="uml:Parameter" 
      name="status"/>
      ...
      </ownedParameter>
    </ownedOperation>
  <packagedElement xmi:type="uml:Class" 
   name="Tag">
    ...
  </packagedElement>
  <packagedElement xmi:type="uml:Enumeration"  
   name="PetStatus">
    ...
  </packagedElement>
  ...
</uml:Model>
 

(a)

(b)

Pet

id: Long [0..1]
name: String [1]
...

findPetsByStatus(status: PetStatus[*]): Pet[*]
...

Tags

id: Long [0..1]
name: String [1]

«Enumeration»
PetStatus

available
pending
sold

tags *

Figure 3.15: The Petstore example: (a) generated UML model, and (b) seri-
alized UML model.

be found in the tool repository20.
Figure 3.15.a shows an excerpt of the generated UML model for the

Petstore API. As can be seen, the OpenAPI schema Pet is transformed
to the UML class Pet, while the OpenAPI operation findPetsByStatus is
transformed into the UML operation findPetsByStatus in the Pet class.

The last step of the process (see step 3 in Figure 3.14) serializes the
generated UML model as an XMI file (standard XML format for UML tool
interoperability). Figure 3.15.b shows an excerpt of the serialized UML
model for the Petstore API. Users can rely on tools such as PAPYRUS and
UML DESIGNER to open and visualize such file.

OPENAPITOUML has been implemented in Java as a plugin for the
Eclipse platform21. The plugin extends the platform to provide a contextual
menu to obtain a UML model from an OpenAPI definition (using its JSON
representation format). Figure 3.16 shows a screenshot of our plugin inclu-
ding the created contextual menu (on the left side) and the generated Class
diagram for the Petstore API displayed using PAPYRUS modeling editor. The
OpenAPI metamodel has been implemented using EMF as shown before,

20https://github.com/SOM-Research/openapi-to-uml#notes
21https://github.com/SOM-Research/openapi-to-uml

56

https://github.com/SOM-Research/openapi-to-uml#notes
https://github.com/SOM-Research/openapi-to-uml


3.2. MODELING ODATA

Figure 3.16: A screenshot of the OPENAPITOUML plugin.

while UML models rely on UML222, an EMF-based implementation of the
UML 2.5 OMG metamodel.

3.2 MODELING ODATA

This section presents the model-based representations we created for OData
protocol. In particular, Section 3.2.1 describes the OData metamodel we
created to specify OData entity models and Section 3.2.2 presents the UML
profile for OData entity models. Finally, Section 3.2.3 presents the tool
support for OData.

3.2.1 The OData Metamodel

This section presents the OData metamodel, a metamodel we created to
specify OData services. The OData metamodel is aligned with the OData
CSDL specification [PHZ14e], which defines the main concepts to be exposed
by any OData service. Figure 3.17 shows an excerpt of this metamodel.

The top part of the metamodel comprises the ODService element, which
includes a set of schemas (i.e., schemas reference). One or more schemas
define the data model of an OData service. A schema is represented by
the ODSchema element which includes the namespace of the schema (e.g.,
com.example.ODataDemo) and an alias for the schema namespace (e.g.,
ODataDemo). It also includes references to the data structures defined by the
schema which comprise enumerations (i.e., enumTypes reference), complex
types (i.e., complexTypes reference) and entity types (i.e., entityTypes

22https://wiki.eclipse.org/MDT/UML2

57

https://wiki.eclipse.org/MDT/UML2


CHAPTER 3. MODELING REST APIS

F
igure

3.17:A
n

excerpt
ofO

D
ata

m
etam

odel.

58



3.2. MODELING ODATA

reference). All data structures in the metamodel are subtypes of the ODType
element which describes the structure of an abstract data type.

An enumeration is represented by the ODEnumType element which is a
subtype of the ODPrimitiveType element and includes a name (inherited
from ODNamedElement), an attribute indicating whether the enumeration
allows multi-selection (i.e., isFlags attribute), an underlying primitive
type (i.e., underlyingType reference), and a list of members (i.e., members
reference). The element ODMember defines the options for the enumeration
type and includes a name (inherited from ODNamedElement) and a value.

Entity types are named structured types with a key, while complex
types are keyless named structured types. Entity types and complex types
are represented by the ODEntityType and ODComplexType elements, re-
spectively. Both elements are subtypes of the ODStructuredType abstract
element which represents a structured type. The ODStructuredType ele-
ment is a subtype of the ODType element and includes a name (inherited
from ODNamedElement), an attribute indicating whether the structural type
cannot be instantiated (i.e., abstract attribute), and an attribute indicating
whether undeclared properties are allowed (i.e., openType property23). A
structured type is composed of structural properties (i.e., properties ref-
erence) and navigation properties (i.e., navigationProperties reference)
and may define a base type (i.e., baseType reference). Additionally, the
ODEntityType element includes a key (i.e., key reference) which indicates
the properties identifying an entity (i.e., property reference of the element
ODPropertyKeyRef) and an alias name for each property.

The ODProperty and ODNavigationProperty elements represent a
structural property and a navigation property, respectively. While the
ODProperty element defines an attribute of a structured type, the element
ODNavigationProperty defines an association between two entity types.
Both elements are subtypes of the ODElement abstract element which de-
fines the common features of structural properties. This element includes
a name (inherited from ODNamedElement), an attribute indicating whether
the element can be null (i.e., nullable property), a type (i.e., type reference
inherited from ODTypedElement), and a cardinality (i.e., the multivalued
property inherited from ODTypedElement). Additionally, the ODProperty
element includes several attributes to provide additional constraints about
the value of the structural property (e.g., maxLength and precision prop-
erties). The ODNavigationProperty element, on the other hand, includes
a containment attribute (i.e., containsTarget reference) and an opposite

23Open types entities allows clients to persist additional undeclared properties.

59



CHAPTER 3. MODELING REST APIS

navigation property (i.e., partner reference).
The ODSchema element also includes an entity container (i.e.,

entityContainer reference) defining the entity sets and singletons
queryable and updatable by the service. The ODEntityContainer element
defines an entity container and includes a set of entity sets (i.e., entitySets
reference) and singletons (i.e., singleton reference). An entity set allows
addressing a collection of entities, while a singleton allows addressing a
single entity directly from the entity container. The two concepts are mate-
rialized by the ODEntitySet and ODSingleton elements, respectively. Both
elements are subtypes of the ODExposedEntity abstract element which in-
cludes a reference to the target entity type (i.e., entityType reference), a
name (inherited from ODNamedElement), and a set of navigation properties
bindings (i.e., navigationPropertyBindings reference).

OData metamodel also includes elements to define annotations and
vocabularies which provide an extension mechanism to add additional char-
acteristics or capabilities of OData elements. The complete metamodel is
available in our GitHub repository24.

3.2.2 A UML Profile for OData

This section presents the UML profile for OData Web APIs. This profile
extends the UML class diagram which share similar concepts with OData.
We organized the OData profile into two parts, namely: (i) the EDM which
describes the data exposed by an OData Web service, and (ii) the advanced
configuration model, which defines additional characteristics or capabilities
of OData Web APIs (i.e., what parts of the EDM can be modified, what
permissions are needed,...). Next, we present the OData profile. Later, we
will present the rules we defined to apply and initialize this profile.

3.2.2.1 The Entity Data Model

OData Service Wrapper. An OData Web service exposes a single entity
model which may be distributed over several schemas, and should include
an entity container that defines the resources exposed by the Web service.
Figure 3.19a shows the extension of UML to define these elements. We
consider that the entity model is defined in one schema, represented by the
element Model of a UML class diagram. Thus, ODService stereotype extends

24https://github.com/SOM-Research/odata-generator/tree/master/
metamodel/som.odata.metamodel

60

https://github.com/SOM-Research/odata-generator/tree/master/metamodel/som.odata.metamodel
https://github.com/SOM-Research/odata-generator/tree/master/metamodel/som.odata.metamodel


3.2. MODELING ODATA

«Stereotype»
ODStructuralType

N name: String [0..1]
N abstract: Boolean [0..1]
N openType: Boolean [0..1]

«Stereotype»
ODataPrimitiveType

N name: ODataPrimitiveTypes [0..1]

«Stereotype»
ODataEntityType

N hasStream: Boolean [0..1]

«Stereotype»
ODataComplexType

«Stereotype»
ODEnumType

N name: String [0..1]
N isFlags: Boolean [0..1]
N underlyingType: ODataPrimitiveTypes [0..1]

«Metaclass»
Class

«Metaclass»
PrimitiveType

«Stereotype»
ODEntitySet

N name: String [0..1]
N includesInServiceDocument: Boolean [0..1]

«Enumeration»
ODataPrimitiveTypes

Boolean
Byte
Date
DateTimeOffset

«Stereotype»
ODSingleton

N name: String [0..1]

«Metaclass»
DataType

N basetype

N subtypes*

0..1 «Metaclass»
Enumeration

«Stereotype»
ODService

N version: String [0..1]
N entityContainerName: String [0..1]
N schemaNamespace: String [0..1]
N schemaAlias: String [0..1]

«Metaclass»
Model

b

....

a

Figure 3.18: OData profile: (a) the service wrapper and (b) data types
elements.

the metaclass Model and includes: the version the OData specification, the
namespace of the schema (e.g., com.example.ODataDemo), an alias for the
schema namespace (e.g., ODataDemo), and the name of the entity container
(e.g., ODataService).

Data Types. An OData entity model defines data types in terms of struc-
tural types, enumerations, and primitive types. There are two kinds of
structural types: entity types and complex types. An entity type is a named
structured type which defines the properties and relationships of an entity.
Entity types are mapped to the concept Class in a UML model. A complex
type is a named structural type consisting of a set of properties. Complex
types are mapped to the concept DataType in a UML model.

Figure 3.18b shows the stereotypes related to data types and their
mapping with UML concepts. The abstract stereotype ODStructuralType
defines the common features of all the structural types and includes a name,
a property indicating whether the structural type cannot be instantiated
(i.e., abstract property), and a property indicating whether undeclared
properties are allowed (i.e., openType property25).

ODStructuralType supports also the concept of inheritance by al-
lowing the declaration of a base structural type (i.e., basetype associ-
ation). The stereotypes ODEntityType and ODComplexType inherit from
ODStructureType and extend the metaclasses Class and DataType, re-
spectively. Additionally ODEntityType includes the hasStream property,
indicating if the entity is a media entity (e.g., photograph). The stereo-

25Open types entities allows clients to persist additional undeclared properties.

61



CHAPTER 3. MODELING REST APIS

«Metaclass»
Property

«Stereotype»
ODNavigationProperty

A name: String [x))V]
A containsTarget: Boolean [x))V]
A nullable: Boolean [x))V]

«Stereotype»
ODNavigationPropertyBinding

A path: String [x))V]
A target: String [x))V]

ODNavigationPropertyConstraint
{{OCL} not self)base_Property)oclAsType}UML::Propertyf)
association)oclIsUndefined}f}

ODNavigationPropertyBindingConstraint
{{OCL} not self)base_Property)oclAsType}UML::Propertyf)
association)oclIsUndefined}f}

ODPropertyConstraint

«context»

A partner

V

«context» «context»
«Stereotype»
ODProperty

A name: String [x))V]
A nullable: Boolean [x))V]
A maxLength: Integer [x))V]
A precision: Integer [x))V]
A scale: Integer [x))V]
A unicode: Boolean [x))V]
A srid: Integer [x))V]
A defaultValue: String [x))V]

«Stereotype»
ODKey

{{OCL} self)base_Property)oclAsType}UML::Propertyf)
association)oclIsUndefined}f}

Figure 3.19: OData profile: properties and associations stereotypes.

type ODPrimitiveType extends the metaclass PrimitiveType and includes
a name which corresponds to the associated OData primitive type (e.g.,
Binary, Boolean, etc.). The stereoType ODEnumType extends the metaclass
Enumeration and includes a name, a boolean property indicating whether
more than one member may be selected at a time (i.e., IsFlags property),
and the corresponding OData type.

The profile also allows modeling the entity sets and singletons exposed by
the OData service. While an entity set can expose instances of the specified
entity type, a singleton allows addressing a single entity directly from the
entity container. These two concepts are materialized with the stereotypes
ODEnititySet and ODSingleton which extend the metacalass Class.

Properties and Associations. Properties define the structure and the re-
lationships in OData. Structural properties define the attributes of an entity
type or a complex type whereas navigation properties define associations be-
tween entity types. In UML, the element Property is a StructuralFeature
which, when related by ownedAttribute to a Classifier (other than
Association), represents an attribute, and when related by memberEnd
of an Association, represents an association end. Both structural proper-
ties and navigation properties are mapped to the concept Property in a
UML model.

Figure 3.19 shows the stereotypes defining properties and associations.
The stereotypes ODProperty and ODnavigationProperty represent a struc-
tural property and a navigation property, respectively. They both extend
the metaclass Property. The stereotype ODProperty includes a name and
several attributes to provide additional constraints about the value of the
structural property (e.g., nullable, maxLength properties). Additionally, the
stereotype ODKey inherits from ODProperty and defines a property as the

62



3.2. MODELING ODATA

«Stereotype»
ODAnnotations

InsertRestrictions

E insertable: Boolean [0MM1]
E nonInsertableNavigationProperties: String [C]

FilterFunctions

E values: String [C]

*

FilterRestrictions

E Filterable: Boolean [0MM1]
E RequiresFilter: Boolean [0MM1]
E RequiredProperties: String [C]
E NonFilterableProperties: String [C]

LongDescription

E value: String [1]

Permissions

E values: Permission [1MMC]

Scale

E value: Integer [1MMC]

Unit

E value: String [1]

ISOCurrency

E value: String [0MM1]

«Enumeration»
Permission
None
Read
ReadWrite

Description

E value: String [1]

SkipSupported

E value: Boolean [1]

IsLanguageDependent

E value: Boolean [1]

«Metaclass»
Class

«Metaclass»
Model

«Metaclass»
Property

ODCore

ODVocabulary

ODCapabilities ODMeasures

terms

TopSupported

E value: Boolean [1]

Figure 3.20: OData profile: annotation and vocabulary stereotypes.

key of the entity type (required for a an OData entity type). The stereotype
ODNavigationProperty includes a name, a containment property, and a
nullable property. The stereotype ODNavigationPropertyBinding extends
also the metaclass Property and defines a navigation binding for the cor-
responding entity set.

To ensure the validity of the applied stereotypes, we have enriched the
profile with a set of constraints written using OCL [CG12]. For instance,
since the stereotypes related to properties and navigations properties ex-
tend all the metaclass Property, ODPropertyConstraint ensures that the
stereotype ODProperty is applied to a UML property element representing
an attribute.

Advanced Configuration of OData Services. OData defines annota-
tions to specify additional characteristics or capabilities of a metadata
element (e.g., entity type, property) or information associated with a par-
ticular result (e.g, entity or property). For example, an annotation could
be used to define whether a property is read-only. Annotations consist of a
term (i.e., the namespace-qualified name of the annotation), a target (the
element to which the term is applied), and a value. A set of related terms in
a common namespace comprises a vocabulary. Our profile supports the three
standardized vocabularies defined by OData, namely: the core vocabulary,
capacity, and measures.

Figure 3.20 shows an excerpt of the profile defined for representing
annotations. The stereotype ODAnnotations extends the metaclasses Model,
Class, and Property, and has an association with ODVocabulary, thus al-
lowing adding annotations according to the vocabularies. ODVocabulary is
the root class of the hierarchy of vocabularies supported by the OData
profile (i.e., core, capabilities, and measures vocabularies). OData pro-
file defines (i) the ODCore hierarchy which includes the core vocab-
ularies such as documentation (e.g., the class Description), permis-

63



CHAPTER 3. MODELING REST APIS

«ODService»

«ODService»
version=4b0

schemaNamespace=combexamplebODataDemo
schemaAlias=ODataDemo

entityContainerName=ODataDemoService

«ODEntitySetF ODEntityType»
Product

«ODKey» R ID: Integer [1]
«ODProperty» R Name: String [0bb1]
«ODProperty» R Description: String [0bb1]
«ODProperty» R DiscountinuedDate: Date [0bb1]
«ODProperty» R Rating: Integer [1]
«ODProperty» R ReleasedDate: Date [1]
«ODProperty» R price: Real [1]

«ODEntitySetF ODEntityType»
Category

«ODKey» R ID: Integer [1]
«ODProperty» R Name: String [0bb1]

«ODEntitySetF ODEntityTbbb
FeaturedProduct

«ODEntitySetF ODEntityType»
Advertisement

«ODKey» R ID: Integer [1]
«ODProperty» R Name: String [0bb1]
«ODProperty» R AirDate: Date [1]

«ODEntitySet»
name=Products
includesInServiceDocument=false

«ODEntityType»
hasStream=false
name=Product
abstract=false
openType=false

«ODEntitySet»
name=Categories
includesInServiceDocument=false

«ODEntityType»
hasStream=false
name=Category
abstract=false
openType=false

«ODEntitySet»
name=FeaturedProducts
includesInServiceDocument=false

«ODEntityType»
hasStream=false
name=FeaturedProduct
abstract=false
openType=false
basetype=Product

«ODEntityType»
hasStream=false

abstract=false
openType=false

«ODEntitySet»

name=Advertisement

includesInServiceDocument=false

FeaturedProduct
Advertisements1

]

Products
Categories]

]

ODataDemo

name=Advertisements

Figure 3.21: UML class diagram of the running example annotated by the
generator.

sions (i.e., the class Permissions, and localization (i.e., the data type
IsLanguageDependent); (ii) the ODCapabilities hierarchy which is used to
explicitly specify Web API capabilities (e.g., TopSupported for query capabil-
ities or InsertRestriction for data modification); and (iii) the ODMeasures
hierarchy to describe monetary amounts and measured quantities (e.g.,
ISOCurrency).

3.2.2.2 Default Profile Generation

Our OData profile can be used to annotate any new or preexisting
UML class diagram. Nevertheless, to simplify the application of our profile,
we have also developed a model-to-model transformation that given an
standard UML model, returns an annotated one by relying on a set of
default heuristics that embed our knowledge on typical uml-to-odata design
decisions. This annotated model can be regarded as just an initial option to
bootstrap the process that the designer can then modify at will.

Table 3.3 summarizes our mapping strategies. From left to right, the
columns of the table show (i) the involved UML element; (ii) the conditions
to apply an stereotype (if any), (iii) the stereotype to be applied; and (iv) the
values of the stereotype properties. In a nutshell, each class is mapped to
an entity type and is exposed as entity set, each attribute is mapped to a
property, and each navigable association is mapped to a navigation property.
Figure 3.21 shows the running example including some of the generated
OData profile annotations. This first version of the class diagram can later
be customized and used in other model-driven processes to fast prototyping

64



3.2. MODELING ODATA

Table 3.3: Rules of the OData profile annotation generator.

UML
ELE-

MENT
CONDITION STEREOTYPE VALUE

m:
Model - ODService s

- s.version = "4.0"
- s.entityContainerName=
m.name+"Service"
- s.schemaNamespace =
"com.example."+m.name
- s.schemaAlias = m.name

c: Class - ODEntityType
et

-et.name = c.name
-if c.abstract == true then
et.abstract = true
-if c.generalization contains t then
et.basetype=ot (ot is the entity type
of t)

ODEntitySet
es - es.name = the plural form of c.name

p: Property

p is an class
attribute OR a
data type at-
tribute

ODProperty
op

- op.name = p.name
- if p.lower == 1 then op.nullable =
false
-op.defaultValue = p.default

p is an class
attribute
marked as key

ODKey ok - ok.name = p.name

p is an naviga-
ble association
end

ODNavigationProperty
np

- np.name = p.name
- if p.lower == 1 then np.nullable =
false
- if p.aggregation == composite then
np.containsTarget = true

ODNavigationProperty
Binding npb

- npb.path = p.name
- npb.target = the name of the corre-
sponding entity set of the association end

dt:
DataType - ODComplexType

ct

- ct.name = dt.name
- if dt.abstract == true then
ct.abstract = true
- if dt.generalization contains t then
ct.base=ot (ot is the complex type of t)

pt:
PrimitiveType - ODPrimtiveType

opt
- opt.value = the corresponding primi-
tive type of pt.name

e:
Enumeration - ODEnumType

oe
- oe.name = e.name

65



CHAPTER 3. MODELING REST APIS

OData Web APIs.

3.2.3 Tool Support

We created two Open Source Eclipse plugins for OData, namely: (1)
ODATAMM, which provides an implementation for the OData metamodel;
and (2) ODATAPROFILE, which provides an editor for the OData profile.

ODATAMM. The ODATAMM plugin provides the tools and SDK for
the OData metemodel. Similar to the the OpenAPI metamodel, OData
metamodel relies on the EMF framework to define the metamodel
and to generate an OData SDK. Thus, OData metamodel has been
implemented as an Ecore model which has been used to generate a
Java API to manage OData models. The plugin includes also menu
which allow exporting an OData model as a Metadata document. As
you will see in Chapter 7, we rely on the the ODATAMM plugin and
OData metamodel to generate OData services. The ODATAMM plugin
can be found in our GitHub repository26.

ODATAPROFILE. Similar to OPENAPIPROFILE, the ODATAPROFILE

plugin provides an editor based on PAPYRUS allowing to annotate UML
class diagrams with OData stereotypes. The plugin provides also a
contextual menu allowing to apply and initialize the OData profile
following the rules described before. The ODATAPROFILE plugin can
be found in our GitHub repository27.

3.3 SUMMARY

In this chapter we have presented a set of modeling resources for the
OpenAPI specification and OData protocol. For both, we have presented a
metamodel and UML profile, thus giving more flexibility to the modeler in
order to choose which technique suits him/her best. We have also presented
the tools which implement these resources and help manipulate them. This
is the first step to boost the model-based development of REST APIs with
OpenAPI or OData, offering developers the opportunity to leverage on the
plethora of modeling tools to define forward and reverse engineering to
generate, visualize and manipulate REST APIs.

26https://github.com/SOM-Research/odata-generator/tree/master/
metamodel

27https://github.com/SOM-Research/OData

66

https://github.com/SOM-Research/odata-generator/tree/master/metamodel
https://github.com/SOM-Research/odata-generator/tree/master/metamodel
https://github.com/SOM-Research/OData


CHAPTER

4
APIfication of Models

This chapter presents EMF-REST, an approach that leverages on MDE
techniques to APIfy EMF models (i.e., provide REST APIs for EMF mo-
dels). EMF, de facto modeling framework in ECLIPSE, is the backstone of a
plethora of modeling environments and frameworks. However, most of these
environments and frameworks are usually bound to desktop-based scenar-
ios, thus restricting their usage. EMF-REST tries to elevate this situation
by promoting model management in distributed environments using REST
APIs and therefore advancing towards the portability of modeling tools to
the Web. EMF-REST takes advantage of model and Web-specific features
such as model validation and security, respectively.

This chapter is structured as follows. Section 4.1 presents the EMF-
REST approach. Section 4.2 describes the running example we will use to
illustrate our approach. Section 4.3 describes how we devised the mapping
between EMF and REST principles, while Section 4.4 describes the addi-
tional EMF-REST features. Section 4.5 presents the technical architecture
of the generated REST API. Section 4.6 describes the steps we followed to
generate the API. Section 4.7 discusses some related work. Finally, Section
4.8 summarizes this chapter.

4.1 OUR APPROACH

Figure 4.1 shows an overview of the EMF-REST approach. As can be seen,
EMF-REST takes as input a metamodel (i.e., Ecore model) and relies on

67



CHAPTER 4. APIFICATION OF MODELS

Web Server
REST clientsMetamodel 

(Ecore model)

EMF-REST API

Web features
generator

Extended EMF
generator

Extended EMF API

Extra Web features

Figure 4.1: EMF-REST global approach.

two generators to derive an EMF REST API, namely: the extended EMF gen-
erator and the Web features generator. On the one hand, the extended EMF
generator extends the EMF generation facility in order to adapt the gener-
ated Java API to the Web. On the other hand, the Web features generator
generates extra Web features to enable the encapsulation of the generated
API as a REST API. The result of the generation process is a-ready-to-deploy
REST API where users can use HTTP requests to manage instances of the
input metamodel. The mapping between EMF with REST will be presented
in Section 4.3, while the technical details of the generated API and the
generation process will presented in Sections 4.5 and 4.6, respectively.

In the following we will present the running example which we will use
to illustrate the EMF-REST approach.

4.2 RUNNING EXAMPLE

To illustrate our approach, we will use a running example to create a
REST API aimed at managing Interaction Flow Modeling Language (IFML)
models. IFML is an OMG standard language designed for expressing the
content, user interaction and control behavior of the front-end applications
developed for systems such as computers and mobile phones [BF+14].

Figure 4.2 shows an excerpt of the IFML metamodel. As can be seen,
an IFML model is represented by the IFMLModel element. This element
contains an interaction flow model (i.e., interactionFlowModel reference)
which defines the user view of an application. The InteractionFlowModel
represents an interaction flow model and includes a set of inter-
action flow elements (i.e., interactionFlowElements reference). The
InteractionFlowElement element represents an abstract interaction flow
element. The elements Event, ViewElement, ViewComponentPart are spe-
cializations of this element and allow the definition of an event, a view
element, and a view component part, respectively. The OnSubmitEvent is

68



4.2. RUNNING EXAMPLE

IFMLModel

name: String

Event

InteractionFlowModel

name: String

InteractionFlowElement

name: String

ViewElement ViewComponentPart Field

type: String

ViewComponent SimpleField SelectionFieldViewContainer

isLandMark: Boolean
isDefault: Boolean

ViewElementEvent

Detail Form ListWindow

isModal: Boolean

OnSubmitEvent

1 interactionFlowModel

1

*

interactionFlowElements

viewElementEvents

*

viewElements
*

* viewComopenentParts

Figure 4.2: Simple Ecore model of an IFML subset.

a specialization of ViewElementEvent (a specialization of Event) and al-
lows the definition of a submission event. The elements ViewContainer and
ViewComponent are two specializations of ViewElement and allow the defini-
tion of a view container and a view component, respectively. The Window ele-
ment is a specialization of ViewContainer and allows the definition of a win-
dow container. The elements Detail, Form, and List are specializations of
ViewComponent and allow the definition of a component to represent the de-
tails of an element, a form, and a list of elements, respectively. A view compo-
nent may contain a set of view component parts (i.e., viewComponentParts
reference). Finally, the elements SimpleField and SelectionField are spe-
cializations of Field (a specialization of ViewComponentPart) and allow the
definitions of the fields in a form.

Figure 4.3 shows an IFML model for a form to add a movie to a collection.
Figure 4.3.a. shows the object diagram of the model, while Figures 4.3.b. and
4.3.c. show the Eclipse tree view of the model and the concrete IFML model
using IFML syntax, respectively. The model is composed of: (i) a Window
container named AddMovieWindow, (ii) a Form component named Ad-
dMovieForm, (iii) a list of fields of types SimpleField and SelectionField
representing the elements of the form, and finally (iv) a ViewElementEvent
of type OnSubmitEvent allowing to submit the form. In what follows we will
see how we would allow creating the AddMovieForm form by calling a REST
API generated from the IFML model following the REST architecture style.

69



CHAPTER 4. APIFICATION OF MODELS

«Window» AddMovieWindow

«SimpleField» picture : Image

«SimpleField» title : String

«SimpleField» year : Integer

«SelectionField» genre : String

«Form» AddMovieForm

add

:IFMLModel

name = addMovieModel

:InteractionFlowModel

name = AddMovieInteractionFlowModel

AddMovieWindow:Window

name = AddMovieWindow

AddMovieForm:Form

name = AddMovieForm

add:OnSubmitEvent

name = add

genre:SelectionField

name = genre
type = String

year:SimpleField

name = year
type = integer

title:SimpleField

name = title
type = String

picutre:SimpleField

name = picture
type = Image

interactionFlowModel

interactionFlowElements
viewElements

viewComponenetParts

viewElementEvents

(a)

(b)

(c)

Figure 4.3: IFML model example: (a) object diagram, (b) abstract syntax
tree, (c) concrete IFML syntax.

4.3 MAPPING EMF AND REST

The first step to build EMF-REST is to align EMF with REST. We rely on
EMF to represent the models from which the REST APIs are generated.
As models and their instances are managed by the corresponding APIs
provided by the framework (i.e., Ecore and EObject APIs, respectively), we
need to define a mapping between such APIs and REST. In the following
we explain how we map EMF with REST. In particular, we will explain
how to address model elements, how to represent them, and how the use
HTTP’s uniform interface to manipulate them. REST architectural style
was presented in Section 2.1.

4.3.1 Identification of Resources

Models in EMF are addressed via a URI, which is a string with a well-
defined structure as shown in Expression (4.1). This expression contains
three parts specifying: (1) a scheme, (2) a scheme-specific part and (3) an
optional fragment. The scheme is the first part separated by the ":" character

70



4.3. MAPPING EMF AND REST

and identifies the protocol used to access the model (e.g., platform, file or
jar). In Eclipse we use platform for URIs that identify resources in Eclipse-
specific locations, such as the workspace. The scheme-specific part is in
the middle and its format depends on the scheme. It usually includes an
authority that specifies a host, the device and the segments, where the latter
two constitute a local path to a resource location. The optional fragment is
separated from the rest of the URI by the # character and identifies a subset
of the contents of the resource specified by URI, as we will illustrate below.
Expression (4.2) shows an example of a platform-specific URI which refers
to the AddMovie model, represented as a file AddMovie.xmi contained in a
project called project in Eclipse workspace. It is important to note that in
EMF model instances include a reference to the Ecore model they conform
to.

[scheme:][scheme-specific-part][#fragment] (4.1)
platform:/resource/project/AddMovie.xmi (4.2)

We map the previous URI to a Uniform Resource Locator (URL) as follows.
The base URL pattern of a model instance is defined by Expression (4.3).
In the pattern, the part https://[application-Link]/rest is the URL of the
Web application, modelId is the identifier of the model (i.e., the Ecore model)
and ModelInstanceId is the identifier of the model instance being accessed
(the XMI file). The URL (4.4) represents an example to retrieve the IFML
model used in the example. As can be seen, while the URI can address a
file representing a model instance (where a reference to the Ecore model
is included), the URL requires indicating the identifier of both the Ecore
model and the model instance.

https://[applicationLink]/rest/[ModelId]/[ModelInstanceId]
(4.3)

https://example.com/rest/IFMLModel/AddMovie (4.4)

This URL acts as the entrypoint for a particular model instance and points
to its root element, which is normally the case in EMF. When the model
instance has more than one root, we point at the first.

Once pointing to the root of a model instance, addressing a particular
element of the model in the EMF is done by using the part fragment in
Expression (4.1). The navigation is done using the reference names in
the Ecore model. For instance, the concept IFMLModel has the reference
interactionFlowModel to access the InteractionFlowModel. Using the EMF

71



CHAPTER 4. APIFICATION OF MODELS

API, the URI is shown in Expression (4.5), while using the Web API, the
URL is shown in Expression (4.6).

platform:/resource/project/AddMovie.xmi#//@interactionFlowModel
(4.5)

https://example.com/rest/IFMLModel/AddMovie/interactionFlowModel
(4.6)

Depending on the cardinality of the reference this will return a specific
element – if it is single-valued (like in the case of interactionFlowModel) –
or a collection of elements – if it is multi-valued. Accessing a specific element
contained in a collection can be done using (i) the identifier of the element
or (ii) its index in the list. Also, when navigating through the references
contained in elements being subclasses of a hierarchy, the appropriate
filtering is done on the fly. For instance, the URI in Expression (4.7) retrieves
the element representing title in EMF, while in EMF-REST it is done using
the request in Expression (4.8). Note how the latter navigates through the
reference viewElements, which is only included in ViewContainer element.
To identify an element, we rely on the identifier flag provided by Ecore,
which allows setting the attribute acting as identifier for a given class1.

platform:/resource/project/AddMovie.xmi#title (4.7)
https://example.com/rest/IFMLModel/AddMovie/

interactionFlowElements/AddMovieWindow/viewElements/
AddMovieForm/viewComponentsParts/title

(4.8)

On the other hand, the request in Expression (4.9) will retrieve the first
element of the collection of viewComponentsParts in the EMF API. In our
approach, it is done by adding the parameter index in the URL as illustrated
in the request in Expression (4.10).

platform:/resource/project/AddMovie.xmi\#//.../@
viewComponentsParts.0 (4.9)

https://example.com/rest/IFMLModel/AddMovie/
interactionFlowElements/AddMovieWindow/viewElements/

AddMovieForm/viewComponentsParts?index=0
(4.10)

4.3.2 Manipulation of Resources Through Representations

By default, EMF persists models using the XMI representation format.
Our approach relies also on XMI to save the models internally, however,

1When the identifier flag is not used, the fallback behavior looks for an attribute called
id, name or having the unique flag activated.

72



4.3. MAPPING EMF AND REST

Listing 4.1: Partial JSON representation of the example model
1 {
2 "form ":{
3 "name ":" addMovieForm ",
4 " viewComponentParts ":{
5 " simpleField ":[{
6 "uri ":" https :// example .com/rest/ IFMLModel / AddMovie /

interactionFlowElements / AddMovieWindow / viewElements /
AddMovieForm / viewComponentsParts / picture "},{

7 "uri ":" https :// example .com/rest/ IFMLModel / AddMovie /
interactionFlowElements / AddMovieWindow / viewElements /
AddMovieForm / viewComponentsParts /title "} ,...] ,

8 ...
9 },

10 " viewElementEvents ":{
11 " onsubmitevent ":{" uri ":" https :// example .com/rest/ IFMLModel /

AddMovie / interactionFlowElements / AddMovieWindow /
viewElements / AddMovieForm / viewelementevents /add "}

12 }
13 }
14 }

models are offered to clients using both JSON and XML formats in order to
comply with the representation-oriented constraint of the REST architecture
(see Section 2.1 in Chapter 2).

For JSON, we adhere to the following structure. Model concepts are
represented as JSON objects containing key/value pairs for the model at-
tributes/references. Keys are the name of the attribute/reference of the
concept and values are their textual representation in one of the data types
supported in JSON (i.e., string, boolean, numeric, or array). For attributes,
their values are mapped according to the corresponding JSON supported
data type or String when there is not a direct correspondence (e.g., float-
typed attributes). When the attribute is multi-valued, its values are repre-
sented using the array data type. For references, the value is the URI of the
addressed resource within the server (if the reference is multi-valued, the
value will be represented as an array of URIs). Listing 4.1 shows an exam-
ple of the content format in JSON. Note that references containing a set
of elements from model hierarchies are serialized as a list of JSON objects
corresponding to their dynamic type (see viewComponentParts reference
including SimpleField and SelectionField JSON objects).

In XML, model concepts are represented as XML elements including
an XML element for each model attribute/reference. Attribute values are
included as string values in the XML element representing such attribute,
references are represented according to their cardinality. If the reference

73



CHAPTER 4. APIFICATION OF MODELS

Listing 4.2: Partial XML representation of the example model
1 <form >
2 <name >AddMovieForm </name >
3 <viewComponentParts >
4 <simpleField >
5 <uri >https :// example .com/rest/ IFMLModel / AddMovie /

interactionFlowElements / AddMovieWindow / viewElements /
AddMovieForm / viewComponentsParts / picture </uri >

6 </ simpleField >
7 <simpleField >
8 <uri >https :// example .com/rest/ IFMLModel / AddMovie /

interactionFlowElements / AddMovieWindow / viewElements /
AddMovieForm / viewComponentsParts /title </uri >

9 </ simpleField >
10 ...
11 </ viewComponentParts >
12 <viewElementEvents >
13 <onSubmitEvent >
14 <uri >https :// example .com/rest/ IFMLModel / AddMovie /

interactionFlowElements / AddMovieWindow / viewElements /
AddMovieForm / viewElementEvents /add </uri >

15 </ viewElementEvents >
16 </ viewElementEvents >
17 </form >

is single-valued, the resulting XML element will include only the URI of
the addressed resource in the server. On the other hand, if the reference is
multi-valued, the resulting XML element will include a set of XML elements
including the URIs addressing the resources. Listing 4.2 shows an example
of the content format in XML format.

4.3.3 Uniform Interface

EMF supports loading, unloading and saving model instances after
their manipulation. In our approach, these operations are managed by
the application server. Models are loaded (and unloaded) dynamically as
resources when running the application managing the Web API, and they
are saved after each operation, thus conforming to the REST statelessness
behavior.

To manipulate model instances, EMF enables the basic CRUD (i.e.,
Create, Read, Update and Delete) operations over model instances by means
of either the EMF generated API or the EObject API. We map the same
CRUD operations into the corresponding HTTP methods (POST, GET,
PUT, and DELETE). For instance, Listing 4.3 shows the code to modify
the name of the form called AddMovieForm using EMF generated API for

74



4.3. MAPPING EMF AND REST

Listing 4.3: Update the attribute of a concept using EMF generated API.
...
addMovieFormObj . setName ("toto"); // addMovieFormObj is of type Form
...

Listing 4.4: HTTP request and JSON representation to update the name of
the addressed form.

1 PUT https :// example .com/rest/ IFMLModel / AddMovie /
interactionFlowElements / AddMovieWindow / viewElements / AddMovieForm

2 {" form ":{
3 name :" toto"
4 }
5 }

the AddMovie model. The same operation can be done on our Web API by
sending the PUT HTTP request containing the JSON representation of the
new Form model element, as shown in Listing 4.4.

Table 4.1 shows how each CRUD operation is addressed along with sev-
eral URL examples. The first column of the table describes the operations.

Table 4.1: Supported operations in the generated API.

OPERATION
HTTP URL MODELMETHOD

CREATE and add ele-
ment to the collection

POST .../a/bs

A

B C

bs 0..* c 0..1

READ all the ele-
ments from the
collection

GET

READ the element
(1) identified by <id>,
(2) in the <i> position
of the collection, or
(3) the element c

GET

UPDATE the element
(1) identified by <id>,
(2) in the <i> position
of the collection, or
(3) the element c

PUT
(1) .../a/bs/<id>
(2) .../a/bs?index=<i>
(3) .../a/c

DELETE the element
(1) identified by <id>,
(2) in the <i> position
of the collection, or
(3) the element c

DELETE

75



CHAPTER 4. APIFICATION OF MODELS

As can be seen, the first two rows represent operations over collections,
enabling adding new elements (see first row) and reading their content (see
second row). The rest of the rows describe operations over either individual
elements of a collection (see cases 1 and 2 of these operations) or elements
contained in a single-valued reference (see case 3). The second column shows
the correspondent HTTP method for each operation while the third column
presents the corresponding URL for each case. Finally, the last column
includes a small model to better illustrate the cases considered in the table.

4.4 ADDITIONAL EMF-REST FEATURES

We provide also support for validation and security aspects in the generated
REST Web API.

4.4.1 Validation

Support for validating the API data calls is pretty limited in current Web
technologies. The most relevant one for our scenario would be the Bean
Validation specification to enforce the validation of Java Beans. However,
this specification can only ensure that fields follow certain constraints (e.g.,
a field is not null) and cannot satisfy complex validation scenarios for model
integrity (e.g., a form must have at least one field). To cope with this issue,
we rely on OCL [WK99] to define constraints as annotations in the model
elements. OCL, which was presented in Chapter 2 (see Section 2.3), provides
a declarative language to create queries and constraints over MOF-based
models. We employ OCL to define constraints as annotations in the model
elements.

OCL annotations can be attached to concepts in the model as invariants.
An example on the IFML example model is shown in Figure 4.4. As can be
seen, concepts include a set of invariants inside the annotation OCL plus
the annotation Ecore/constrains which specifies the invariants to execute.
Invariants are checked each time a resource is modified (i.e., each time
the Web API is called from a Web-based client using the POST, PUT or
DELETE methods). This validation scheme is imposed to comply with the
stateless property of REST architectures, however, it may involve some
design constraints when creating the model. In those cases where models
cannot be validated each time they are modified (e.g., creating model ele-
ments requires several steps to fulfill cardinality constraints), we allow this
validation process to be temporary deactivated. The results of the validation

76



4.4. ADDITIONAL EMF-REST FEATURES

process are mapped into the corresponding HTTP response messages (i.e.,
using status codes).

4.4.2 Security

While there is little support for security definition and enforcement from
the MDE side, we have plenty of support from web technologies. In particu-
lar, our approach allows designers to provide some security annotations on
the model that are then translated into security restrictions as described
below. As part of the generation, we also create a separated admin view
where additional security information (like users and passwords) can be
maintained.

In order to secure a Web application, we have to: (i) ensure that only
authenticated users can access resources, (ii) ensure the confidentiality and
integrity of data exchanged by the client/server, and (iii) prevent unautho-
rized clients from abusing data. In order to address the previous require-
ments, we rely on a set of security protocols and services provided by Java
EE which enable encryption, authentication and authorization in Web APIs,
as we will explain in the following.

ENCRYPTION: The Web defines Hypertext Transfer Protocol Secure
(HTTPS) protocol to add the encryption capabilities of Secure Sockets
Layer (SSL)/Transport Layer Security (TLS) to standard HTTP com-
munication. We enforce the use to HTTPS to communicate with the
API.

AUTHENTICATION: We rely on basic authentication to provide the au-
thentication mechanism since it is simple, widely supported, and se-
cure by using HTTPS. The basic authentication involves sending a
Base64-encoded username and password within the HTTPS request
header to the server.

AUTHORIZATION: While the authentication is enabled by the proto-
col/server, the authorization is generally provided by the application,
which knows the permissions for each resource operation. We use a
simple role-based mechanism to support authorization in the gener-
ated Web API. Roles are associated to users (i.e., authentication) and
operations in the Web API (i.e., authorization). In our approach roles
are assigned to resources by adding annotations to the model. Fig-

77



CHAPTER 4. APIFICATION OF MODELS

Figure 4.4: Annotations on an excerpt of the example model.

ure 4.4 illustrates the use of these annotations (e.g., see annotation
Ecore/roles in the Form concept).

4.5 EMF-REST API ARCHITECTURE

To implement the features described in the previous sections, we devised
the application architecture presented in Figure 4.5. This architecture can
then be seamlessly accessed with a variety of clients.

The Web application is split into three main components according to the
functionality they provide: (1) content management, (2) validation and (3)
security. The application relies on EMF as modeling framework and uses the
following additional frameworks/specifications for each component, respec-
tively: (1) Java Architecture for XML Binding (JAXB) to enable the content
format support, (2) Eclipse OCL framework to provide validation before up-
dating the model, (3) Java Persistence API (JPA) to provide security support
by storing the system users and their permissions in an embedded database.
The Web application also leverages on Enterprise Java Bean (EJB), Context
Dependency Injection (CDI) and Java API for Representational State Trans-
fer (JAX-RS) specifications. EJBs enable rapid and simplified development
of distributed, transactional, secure and portable applications. They are
in charge of loading the EMF resources from the persistent storage and
providing the necessary methods to manage the resources (e.g., obtaining
objects from the resource, removing objects) in a secure and transactional
way. These EJBs are then injected into JAX-RS services using CDI technol-
ogy. Thus, JAX-RS is used to expose EMF resources as Web services. In the
remaining of the section we describe how all these technologies are used in
each component.

78



4.5. EMF-REST API ARCHITECTURE

JAXB OCL JPA

Content Management

EMF

EJB/CDI

JAX-RS

Content Format Navigation / Operation
Validation Security

Web Application

JavaScript API

REST Client

Web Client

Browser

Figure 4.5: Architecture of the generated application.

4.5.1 Content Management

This component addresses the mapping between EMF and REST. It is in
turn split into two subcomponents: (i) content format, and (ii) navigation/op-
eration.

Regarding the content format, we enrich the EMF generated API with
JAXB2 annotations, which enable the support for mapping Java classes to
XML/JSON (i.e., marshalling/unmarshalling Java object into/from XML/J-
SON documents). Listing 4.5 shows an example of the use of JAXB anno-
tations to produce the corresponding representation in JSON (as shown in
Listing 4.1) and XML (as shown in Listing 4.2). As can be seen, each concept
class is mapped to an XmlRootElement element, while either XmlElement
or XmlElementWrapper elements are used to map the attributes or refer-
ences of the class, respectively. Other annotations are used to deal with
the references and inheritance. For instance, XmlJavaTypeAdapter and
XmlAnyElement are used to associate a reference of an element with the
corresponding representation.

Navigation and operations are enabled by using JAX-RS, which provides
a set of Java APIs for building Web services conforming to the REST style.
Thus, this specification defines how to expose POJOs as Web resources,
using HTTP as network protocol. For each concept (e.g., IFMLModel) a re-
source will be created (e.g., IFMLModelResource) annotated with @Path (e.g.,
@Path("IFMLModel")). The @Path annotation has the value that represents
the relative root URI of the addressed resource. For instance, if the base URI
of the server is http://example.com/rest/, the resource will be available

2https://jaxb.java.net/

79

https://jaxb.java.net/


CHAPTER 4. APIFICATION OF MODELS

Listing 4.5: Part of the ViewComponent concept.
1 @XmlRootElement (name=" viewcomponent ")
2 @XmlSeeAlso ({ ViewComponentProxy .class ,// ...
3 })
4 public class ViewComponentImpl extends ViewElementImpl
5 implements ViewComponent {
6 // ...
7 @XmlElementWrapper (name = " viewComponentParts ")
8 @XmlAnyElement (lax=true)
9 @XmlJavaTypeAdapter (value= ViewComponentPartAdapter .class)

10 public EList < ViewComponentPart > getViewComponentParts () {
11 if ( viewComponentParts == null) {
12 viewComponentParts = new

EObjectContainmentWithInverseEList < ViewComponentPart >(
ViewComponentPart .class , this ,
IfmlPackage . VIEW_COMPONENT__VIEW_COMPONENT_PARTS ,
IfmlPackage . VIEW_COMPONENT_PART__VIEW_COMPONENT );

13 }
14 return viewComponentParts ;
15 }
16 // ...
17 }

under the location http://example.com/rest/IFMLModel. To produce a
particular response when a request with GET, PUT, POST and DELETE is
intercepted by a resource, resource methods are annotated with @GET, @PUT,
@POST and @DELETE what are invoked for each corresponding HTTP verb.

4.5.2 Validation

Our approach leverages on Eclipse OCL3 to validate the data by means
of annotations including the constrains to check the model elements. The
generated API relies on the provided APIs for parsing and evaluating OCL
constraints and queries on Ecore models. When constraints are not satisfied,
the validation process will fire an exception that will be mapped by JAX-RS
into an HTTP response including the corresponding message indicating the
violated constraint.

4.5.3 Security

We rely on the combination of Java EE and JAX-RS for the authenti-
cation and authorization mechanisms by using the concept of role, while
encryiption is provided by using HTTPS. To enable authentication, the
deployment descriptor of the WAR file (i.e., WEB-INF/web.xml) has been
modified to include the security constraints (i.e., <security-constraint>)

3http://www.eclipse.org/modeling/mdt/?project=ocl

80

http://www.eclipse.org/modeling/mdt/?project=ocl


4.6. CODE GENERATION AND TOOL SUPPORT

Figure 4.6: EMF-REST screenshot: admin view.

defining the access privileges. Assigning permissions for HTTP operations
based on the roles provided in the model is done by using the @RolesAllowed
annotation. For example, as shown before, Figure 4.4 shows that the role al-
lowed for the Form concept is admin.This will restrict access to the resource
to the users having the role ADMIN. To express this in the generated API, the
annotation @RolesAllowed({"ADMIN"}) is placed on top of FormResource.
If no role is assigned to a concept, a @PermitAll annotation is placed on the
resource class meaning that all security roles are permitted to access this
resource. Note that security roles assigned to a resource are not inherited
by its sub-resources.

To manage the list of users and their roles, we generate an admin view
that allows the manager of the API to add, edit and remove users. All created
users have a default role (i.e., user) allowing them to access unannotated
concepts. The manager can assign more roles to a user in order to grant
him/her access to a specific resource. Figure 4.6 shows a screenshot of the
generated admin view to manage users and roles.

4.6 CODE GENERATION AND TOOL SUPPORT

In order to generate the REST APIs we created a Java tool available as an
Open Source Eclipse plugin4. Figure 4.7 shows the steps followed by the
tool to generate the application starting from an initial Ecore model.

4https://som-research.uoc.edu/tools/emf-rest/

81

https://som-research.uoc.edu/tools/emf-rest/


CHAPTER 4. APIFICATION OF MODELS

Ecore 
model

Maven 
generator

Genmodel JET

Maven project

pom.xml

JAX-RS, CDI, EJB

Admin view 

Javascript API

- EMF Java API
- JAXB
- OCL validation

Enriched EMF API

EMF 
generator

Epsilon

Epsilon

Epsilon

MTC 

1

2

3

Model 
instance

Config 
file

Tem
plateTemp-

late

g file
TemplateTransfor-

mation

2..a
2..b

3.a

3.b

3.c

co
nf

or
m

 to

Maven generator

Extended EMF generator

Web features generator

Figure 4.7: EMF-REST generation process.

Step 1 of the process generates a Maven-based5 project that serves as
a skeleton of the application. Maven allows a project to be built by using
the Project Object Model (POM) file, thus providing a uniform build system.
The POM is initialized with the required library dependencies described in
the previous section.

Step 2 describes the extended EMF generator. The EMF code genera-
tion facility has been extended to include the required support for JAXB
and validation. In particular, the JET templates used by EMF to generate
Java code have been extended to produce the code corresponding to the
JAXB annotations and the required methods to execute the OCL validation
process.

Step 3 describes the extended EMF generator. This step performs a set
of model-to-text transformations using Epsilon Generation Language (EGL)
to generate the required Web features elements, including: (1) the JAX-RS,
CDI and EJB implementation classes, (2) the admin view developed and (3)

5http://maven.apache.org/

82

http://maven.apache.org/


4.7. RELATED WORK

a simple JavaScript API to facilitate Web developers to build clients for the
generated Web API. For each part of the application (e.g., JAX-RS resources,
etc.), an EGL transformation template has been implemented to generate
the appropriate behavior according the input Ecore class. Since this step
requires several transformations, the MTC tool [AC13] has been used to
orchestrate the flow of the EGL templates.

4.7 RELATED WORK

Several efforts have been made to bring together MDE and Web Engineer-
ing. This field is usually referred to as Model Driven Web Engineering
(MDWE) and proposes the use of models and model transformations for the
specification and semiautomatic generation of Web applications [SWK06;
KK12; QN10; CFB00; MCG10]. Mainly, data models, navigation models and
presentations models are used for this purpose.

Some of these works provide support for the generation of Web services
as well, but support for generation of REST APIs is limited [Riv+13a; TV13a;
Max+07; Zol+17; Hau+14; Ter+17]. Moreover, these approaches require the
designer to specifically model the API itself using some kind of tool-specific
DSL from which then the API is (partially) generated. To the best of our
knowledge, only TEXO6 provides an extension to EMF in order to support the
creation of REST APIs but providing a proprietary solution which requires
extending the user’s metamodel with meta-data to drive the API generation.
Instead, our approach is able to generate a complete REST API from any
metamodel.

4.8 SUMMARY

In this chapter we have presented EMF-REST, an approach to generate
REST APIs out of EMF models which we illustrated using the IFML meta-
model. We described how we map EMF concepts to REST and the process
of generating REST APIs to manage EMF models. The generated APIs
rely on well-known libraries and standards, and also provide extra features
such as validation and security. We believe our approach fills an important
gap between modeling and Web technologies. In particular, our approach
enables MDE practitioners to add new capabilities to their modeling process
such as collaboration.

6https://wiki.eclipse.org/Texo

83

https://wiki.eclipse.org/Texo




CHAPTER

5
Discovering REST APIs
Specifications

In the previous chapter we have presented an approach to APIfy EMF
models by generating REST APIs to manage such models. These gener-
ated APIs do not provide a specification to describe its features but rely on
their Ecore definitions. In fact, despite their popularity, REST APIs do not
typically come with any specification of the functionality they offer, thus
hindering their integration. This chapter aims at improving this situation by
presenting APIDISCOVERER, an approach to automatically discover REST
API specifications, in particular the OpenAPI one, from API call examples.

The remainder of this chapter is structured as follows. Section 5.1 de-
scribes the running example. Section 5.2 presents the overall approach and
then Sections 5.3 and 5.4 describe the discovery process and the generation
process, respectively. Section 5.5 describes the validation process and limi-
tations of the approach. Section 5.6 presents the related work. Section 5.7
describes the tool support, and finally, Section 5.8 summarizes this chapter.

5.1 RUNNING EXAMPLE

This section introduces the running example we will use to illustrate our
approach. The example is based on the Petstore API introduced in Chapter
2 (see Section 2.2). The Expression 5.1 shows the request to retrieve the pet
with the identifier 123 while Listing 5.1 shows the returned response with

85



CHAPTER 5. DISCOVERING REST APIS SPECIFICATIONS

Listing 5.1: JSON representation of a Pet instance.
1 {
2 "id": 123,
3 " category ": {
4 "id": 1,
5 "name ": "dogs"
6 },
7 "name ": " doggie ",
8 " photoUrls ": [" http :// example .com "],
9 "tags ": [

10 {
11 "id": 1,
12 "name ": "black"
13 }
14 ],
15 " status ": " available "
16 }

status code 200 including that pet information.

GET︸ ︷︷ ︸
HTTP method

http︸ ︷︷ ︸
protocol

://petstore.swagger.io︸ ︷︷ ︸
host

/v2︸︷︷︸
basePath

/pet/123︸ ︷︷ ︸
relativePath

(5.1)

A request includes a method (e.g., GET), a URL (e.g.,
http://petstore.swagger.io/v2/pet/123) and optionally a mes-
sage body (empty for this example). The URL in turn includes: (i) the
transfer protocol, (ii) the host, (iii) the base path, (iv) the relative path, and
(v) the query (indicated by the first question mark, empty for this example).
The relative path and the query are optional. A response includes a status
code (e.g., 200) and optionally a JSON response message.

Listing 5.2 shows a snippet of the OpenAPI definition of the Petstore API
showing the operation getPetById which corresponds to this call example.
As can be seen, the specification indicates that the GET operation of the path
/pet/{petId} allows retrieving a pet by his ID. This operation includes one
path parameter (i.e., petId) and returns an instance of Pet. Our goal is to
analyze the call example 5.1 to infer the OpenAPI definition reflecting the
behavior the Petstore API.

86



5.2. OUR APPROACH

Listing 5.2: A snippet of the OpenAPI definition of the Petstore API showing
the getPetById operation.

1 {
2 " swagger ":"2.0" ,
3 "host ":" petstore . swagger .io",
4 " basePath ":"/ v2",
5 " schemes ": [" http "],
6 "paths ":{
7 "/ pet /{ petId }"":{
8 "get ":{
9 " parameters ":[

10 {" name ":" petId",
11 "in ":" path"
12 ,...}] ,
13 " responses ":{
14 "200":" schema ":{
15 "$ref ":"#/ definitions /Pet "},
16 ...} ,
17 } ,...
18 } ,...
19 },
20 " definitions ":{
21 "Pet ":{
22 "type ":" object ",
23 " properties ":{
24 "id ":{
25 "type ":" integer ",
26 ...} ,
27 " category ":{
28 "$ref ":"#/ definitions / Category "},
29 "name ":{
30 "type ":" string ",
31 ...} ,
32 ...
33 } ,...
34 },
35 ...
36 }
37 }

5.2 OUR APPROACH

We define a two-step process to discover OpenAPI definitions from a set of
API call examples. Figure 5.1 shows an overview of our approach.

The process takes as input a set of API call examples. For the sake of
simplicity, we assume examples are provided beforehand and later in Section
5.7 we describe how we devised a solution to provide them both manually
and relying on other sources. These examples are used to build an OpenAPI
model (see Figure 5.1a) in the first step of the process. Each example is

87



CHAPTER 5. DISCOVERING REST APIS SPECIFICATIONS

OpenAPI metamodel

OpenAPI JSON
filesJSONDiscoverer

Structural discoverer

Behavioral discoverer

Response

Request

API
Resources

infoypathsyops

a b

UML model UML2Schema

a b

API call
examples OpenAPI

generator

www

HAPI

API API API

API API API

OpenAPI model

APIDiscoverer

{2request2:{
2method2:2GET2T
2url2:2http:yypetstore...2T
2body2:{}

}T
2response2:{
2status2:2}}T
2body2:{...}2

}
}

Figure 5.1: The APIDISCOVERER approach.

analyzed with two discoverers, namely: (i) behavioral and (ii) structural;
targeting the corresponding elements of the API definition. The output of
these discoverers is merged and added incrementally to an OpenAPI model,
conforming to the OpenAPI metamodel presented in Section 3.1. The second
step transforms these OpenAPI models to valid OpenAPI JSON documents
(see Figure 5.1b).

To represent the API call examples, we rely on a JSON-based represen-
tation of the request/response details. Both, the request and the response
messages are represented as JSON objects (i.e., request and response
fields in left upper box of Figure 5.1). The request object includes fields
to set the method, the URL and the JSON message body; while the res-
ponse object includes fields for the status code and the JSON response
message. This JSON format helps simplify the complexity of directly us-
ing raw HTTP requests and responses (which would require to perform
HTTP traffic analysis) and facilitate the provision of examples. As we will
discuss later, we also provide tool support to provide API call examples and
even to (semi)automatically derive them from other sources, like existing
documentation.

As a final step, the resulting OpenAPI documents may optionally be
added to HAPI, our community-driven hub for REST APIs, where develop-
ers can search and query them. In the following sections we describe the
discovery process. The example providers, APIs importers, and HAPI will
be explained in Section 5.7.

88



5.3. THE DISCOVERY PROCESS

5.3 THE DISCOVERY PROCESS

The discovery process takes as input a set of API call examples and incremen-
tally generates an OpenAPI model conforming to our OpenAPI metamodel
using two types of discoverers: (i) behavioral and (ii) structural. The former
generates the behavioral elements of the model (e.g., paths, operations)
while the latter focuses on the data types elements. In the following we
explain the steps followed by these two discoverers.

5.3.1 Behavioral Discoverer

The behavioral discoverer analyzes the different elements of the API call
examples (i.e., HTTP method, URL, request body, response status, response
body) to discover the behavioral elements of the metamodel.

Table 5.1 shows the applied steps. Target elements column displays the
created/updated elements in the OpenAPI model while Source column shows
the elements of an API call example triggering those changes. The Action col-
umn describes the applied action at each step and the Notes column displays
notes for special cases. These steps are applied in order and repeated for each
API call example. A new element is created only if such element does not
already exist in the OpenAPI model. Otherwise, the element is retrieved and
enriched with the new discovered information. Note that the discovery of the
schema structure will be assessed by the structural discoverer (see step 6).

Figure 5.2 shows the generated OpenAPI model for the API call in the
running example. The discovery process is applied as follows. Step 1 creates
an API element and set its attributes (i.e., schemes to SchemeType::http,
host to petstore.swagger.io, and basePath to /v2). Step 2 creates a
Path element, sets its only attribute realtivePath to /pet/{petId} (the
string ’123’ was detected as identifier), and adds it to the paths refer-
ences of the API element. Step 3 creates an Operation element, sets its
produces attribute to application/json, and adds it to the get reference
of the previously created Path element. Step 4 creates a Parameter ele-
ment, sets its attributes (i.e., name to petId, location to path, and type to
JSONDataType::integer), and adds it to the parameters reference of the
previously created Operation element. Step 5 creates a Response element,
sets its attributes (i.e., code to 200 and description to OK), and adds it
to the response reference of the previously created Operation element.
Finally step 6 creates a Schema element, sets only its name to Pet, and adds
it to the definitions reference of the API element. The rest of the Schema

89



CHAPTER 5. DISCOVERING REST APIS SPECIFICATIONS

Table 5.1: APIDISCOVERER: steps of the behavioral discoverer applied for
each REST API call example.

STEP Source Target
elements ACTION NOTES

1
<host>,

<basePath>,
<protocol>

a:API
-a.schemes= protocol
-a.host= host
-a.basePath= basePath

If the path contains many sec-
tions (e.g., /one/two/...) the
base path is set to the first sec-
tion (e.g., /one) otherwise it is set
to "/".

2 <relativePath> pt:Path
-Add pt to a.paths
-pt.relativePath= rela-
tivePath.

If relative path contains an identi-
fier, it is replaced with a variable
in curly braces to use path param-
eters.
A pattern-based approach is used
to discover identifiers.a.

3

<httpMethod>,
<Request-

Body>,
<Response-

Body>

o:Operation

-pt.{httpMethod}= o
-If requestBody is of type JSON
then add "application/json"
to o.consumes otherwise keep
o.consumes empty.
-If responseBody is of type JSON
then add "application/json"
to o.produces o.produces oth-
erwise keep o.consumes empty.

{httpMethod} is the reference of
pt which corresponds to <http-
Method> (e.g., get or post).

4

<query>,
<rela-

tivePath>,
<request-

Body>

pr:Parameter

-Add pr to o.parameters
-Set pr.type to the inferred
typeb

-Set pr.location to:
(i) path if parameter is in rela-
tivePath
(ii) query if parameter is in query
(iii) body if parameter is in re-
questBody

Apply this rule for all the de-
tected parameters.
The discovery of the schema of
the body parameter is launched
in step 6

5 <ResponseCode>r:Response
-Add r to o.responses
-r.code= responseCode
-r.description= correspondent
description of the response.

The discovery of the schema of
the response body is launched in
step 6.

6
<RequestBody>,
<Response-

Body>
s:Schema

-Add s to a.definitions.
-Set the s.name= the last mean-
ingful section of the path.
-If the schema is in <Request-
Body>, set pr.schema to s where
pr is the body parameter created
in step 4.
-If the schema is in <Response-
Body>, set r.schema to s where
r is the response created in step
5.
-Launch the structural discov-
erer.

We apply this rule only if request-
Body or responseBody contains a
JSON object.

aWe apply an algorithm which detects if a string is a UID (e.g., hexadecimal strings, integer).
bWhen a conflict is detected (e.g., a parameter was inferred as integer and then as string), the

most generic form is used (e.g., string).

90



5.3. THE DISCOVERY PROCESS

PetStrore:API

swagger = "2.0"
host = "petstore.swagger.io"
basePath = "/v2"
schemes = [SchemeType::http]

pet: Schema

name = "pet"
type = JSONDataType::object

id: Schema

name = "id"
type = JSONDataType::integer

name: Schema

name = "name"
type = JSONDataType::string

photoUrls: Schema

name = "photoUrls"
type = JSONDataType::array

photoUrl: Schema

name = "photoUrl"
type = JSONDataType::string

status: Schema

name = "status"
type = JSONDataType::String

category: Schema

name = "category"
type = JSONDataType::object

tags: Schema

name = "tags"
type = JSONDataType::array

tag: Schema

name = "tag"
type = JSONDataType::object

pet: Path

relativePath = "/pet/{petId}"

GetPet: Operation

produces= ["application/json"]

GetPet: Parameter

name = "petId"
location = ParameterLocation::path
type = JSONDataType::integer

schema

200: Response

code= "200"
description= "OK"

paths

get

parameters

responses

definitions

items

items

properties

(a) (b)

Figure 5.2: APIDISCOVERER: the discovered OpenAPI model for the Pet-
store API example: (a) behavioral discovery, (b) structural discovery.

Tag

id: integer
name: String

Pet

id: integer
name: String
photoUrls: String [0.*]
status: String

Category

id: integer
name: String

0..*
tags

0..1
category

Figure 5.3: Generated UML model from the API call example.

element will be completed by the structural discoverer.

5.3.2 Structural Discoverer

The structural discoverer instantiates the part of the OpenAPI model
related to data types and schema information. This process is started after
the behavioral discovery when the API call includes a JSON object either

91



CHAPTER 5. DISCOVERING REST APIS SPECIFICATIONS

Table 5.2: Transformation rules from UML to Schema

SOURCE
TARGET:
CREATE

TARGET: UPDATE ATTRIBUTES INITIALIZATION

Class c:
Schema - Add c to the api.definitions.

- c.type = Object
- c.name = The corresponding
class name

Attribute
(1)

a:
Schema

-Add a to c.properties where
c is the correspondent schema
of the class containing the at-
tribute.

- a.type = the JSONDataType cor-
respondent to the type of the at-
tribute
- a.name = the attribute name

Attribute
(*)

a:
Schema,

i:
Schema

-Add a to c.properties where
c is the correspondent schema
of the class containing the at-
tribute.

- a.type = array
- a.items= i
- i.type= the JSONDataType cor-
respondent to the type of the at-
tribute
- i.name = the attribute name

Association
(1) -

-Add tc to c.properties where
c is the correspondent schema of
the source class of the association
and tc the correspondent schema
of the target class of the associa-
tion.

-

Association
(*)

a:
Schema

-Add a to sc.properties where
sc is the correspondent schema
of the source class of the associ-
ation

- a.type = array
- a.items= tc where tc is the cor-
respondent schema of the target
class of the association.

in the request body or the response message that will be used to enrich the
definition of the discovered Schema elements.

We devised a two-step process where we first obtain an intermediate
UML-based representation from the JSON objects and then we perform a
model-to-model transformation to instantiate the actual schema elements of
the OpenAPI metamodel. This intermediate step allows us to benefit from
JSONDISCOVERER [CC16], which is the tool used to build a UML class
diagram, and to use this UML-based representation to bridge easily to other
model-based tools if needed. Then, classes, attributes, and associations of the
UML class model are transformed to Schema elements. Table 5.2 shows the
transformation rules applied to transform UML models to Schema elements.
Source column shows the source elements in a UML model while Target:
create and Target: update columns display the created/updated elements
in the OpenAPI model. The Attribute initialization column describes the
transformation rules.

Note that elements are updated/enriched when they already exist in the
OpenAPI model. This particularly happens when different examples repre-
sent the same schema elements, as JSON schema allows having optional

92



5.4. THE GENERATION PROCESS

parts in the examples.
Figure 5.3 shows the UML class model discovered by JSONDISCOVERER

for the API response shown in Listing 5.1. This class model is transformed to
actual Schema elements applying the discovery process as follows. Tag, Pet,
and Category classes are transformed to schema elements of type Object.
Single-valued attributes (e.g., name, id) are transformed to Schema elements
where type is set to the corresponding primitive type. The photoUrls mul-
tivalued attribute and tags multivalued association are transformed to
Schema elements of type array having as items a Schema element of type
String and Tag, respectively. Finally, attributes and associations are added
to the properties reference of the corresponding Schema element.

5.4 THE GENERATION PROCESS

The generator creates an OpenAPI-compliant JSON file from an OpenAPI
model by means of a model-to-text transformation. This generator was pre-
viously presented in Chapter 3 alongside the OpenAPI metamodel. As said
in Section 3.1, elements such as Schema, Parameter, and Response can be
declared in different locations and reused by other elements. While the
declaringContext reference is used to define where to declare the object,
the ref attribute (inherited form JSONPointer class) is used to reference
this object from another element. By default the discovery process sets the
declaring context to the containing class of the element (e.g., parameters
in operations).

Listing 5.3 shows the generated JSON file for the OpenAPI model shown
in Figure 5.2. Note that the declaring context of the Pet schema element
is set to API, which resulted in listing the Pet element in the definitions
object. Consequently, the attribute ref is set to #/definitions/Pet and
will be used to reference Pet from any another element (as in the response
object).

5.5 VALIDATION AND LIMITATIONS

To ensure the quality of the OpenAPI definitions we generate, we have first
enriched the OpenAPI metamodel with a set of well-formedness constraints
written in OCL (e.g., to guarantee the uniqueness of the parameters in a
call). These constraints are checked during the discovery process to validate
the generated OpenAPI specification against the constraints published in
the official OpenAPI specification document. Note that this is in itself a

93



CHAPTER 5. DISCOVERING REST APIS SPECIFICATIONS

Listing 5.3: The generated OpenAPI definition of the Petstore call example.
1 { " swagger ":"2.0" ,
2 "info ":{} ,
3 "host ":" petstore . swagger .io",
4 " basePath ":"/ v2",
5 "tags ":[ "pet" ],
6 " schemes ":[ "http" ],
7 "paths ":{
8 "/ pet /{ petId }":{
9 "get ":{

10 " produces ":[" application /json "],
11 " parameters ":[{" name ":" petId ","in ":" path "," type ":"

integer "}],
12 " responses ":{
13 "200":{
14 " description ":" OK",
15 " schema ":{" $ref ":"#/ definitions /Pet"
16 }}}}
17 }
18 },
19 " definitions ":{
20 "Pet ":{
21 "type ":" object ",
22 " properties ":{
23 "id ":{" type ":" integer "},
24 " category ":{
25 "$ref ":"#/ definitions / Category "
26 },
27 "name ":{
28 "type ":" string "
29 },
30 " photoUrls ":{
31 "type ":" array",
32 "items ":{
33 "type ":" string "
34 }
35 },
36 "tags ":{
37 "type ":" array",
38 "items ":{
39 "$ref ":"#/ definitions /Tag"
40 }
41 },
42 " Status ":{
43 "type ":" string "
44 }
45 }
46 },
47 ...
48 }
49 }

94



5.5. VALIDATION AND LIMITATIONS

useful contribution with regard to other syntax checkers for API documents
that offer a limited support in terms of constraint checking.

Additionally, we have validated our approach by manually comparing
the results of our generated OpenAPI with the original specification for a
number of APIs providing already such information. This has been an itera-
tive process but we would like to highlight the latest tests, comprising the
following five APIs: (i) REFUGE RESTROOMS1, a web application that seeks
to provide safe restroom access for transgenders; (ii) OMDB2, an API to
obtain information about movies; (iii) GRAPHHOPPER3, a route optimization
API to solve vehicle routing problems; (iv) PASSWORDUTILITY4, an API to
validate and generate passwords using open source tools; and finally (v) the
Petstore API. Several factors influenced the choice of these APIs to serve
for our testing purposes. Beside having an OpenAPI specification, these
APIs did not involve fees or invoke services (e.g., SMS APIs), they managed
JSON format (to test our structural discoverer) and were concise (to keep
limited the number of examples required).

For these APIs, our approach was able to generate on average 80%
of the required specification elements and did not generate any incorrect
result. Mainly, the missing information was due to the structure of the call
examples which cannot cover advanced details such as: (i) the enumerations
used for some parameters, (ii) the optionality or not of the parameters, (iii)
form parameters, and (iv) the headers used in some operations. Furthermore,
the quality of the results depend on the number and the variety of the API
call examples used to discover the specification. Our experience so far shows
that the number of examples should be higher than the number of operations
of an API covering all the parameters. However, more experiments are
required to identify the ideal balance between the quality of the result and
the number of needed experiments.

Note that even if the result is not complete, it is still useful. Even
for APIs that do provide an OpenAPI as starting point. For instance, for
Refuge Restrooms, we were able to discover both the operations and data
model of the API even if the latter was not part of the original specification.
The complete set of examples and generated APIs are available in our
repository5.

1http://www.refugerestrooms.org/api/docs/
2http://www.omdbapi.com/
3https://graphhopper.com/
4http://passwordutility.net
5https://github.com/SOM-Research/APIDiscoverer

95

http://www.refugerestrooms.org/api/docs/
http://www.omdbapi.com/
https://graphhopper.com/
http://passwordutility.net
https://github.com/SOM-Research/APIDiscoverer


CHAPTER 5. DISCOVERING REST APIS SPECIFICATIONS

5.6 RELATED WORK

Several tools supporting the OpenAPI initiative have been developed, thus
making making the OpenAPI specification a more valuable artifact. Tools
such as SWAGGER UI6 and REDOC7 can be used to generate document
pages. Other tools such as SWAGGER EDITOR8 and RESTLET STUDIO9 helps
developers manually design APIs with visual tools and generate SDKs
for different platforms. Regarding the discovery, SMARTBEAR has recently
released a commercial tool called API INSPECTOR10 which generates Open-
API definitions from historical calls. While their approach is similar to ours,
it only focuses on the behavioral level (e.g., paths, operations, parameters)
and neglects the data structures, thus making most of the generated defini-
tions incomplete. Our approach may join this tool ecosystem by inferring
the OpenAPI definitions not only on the behavioral level, but also on the
structural one.

Research-wise, there is a limited number of related efforts and barely
any targeting specifically REST or Web APIs in general. Some research
efforts (i.e., [Mot+11; Ser+08]) focus on the analysis of service interaction
logs to discoverer message correlation in business processes. Other works
(i.e., [Rod+15; SP04; QBC13]) are more proactive and try to suggest possi-
ble compositions based on a WSDL (or similar) description of the service.
Nevertheless, they all focus on the interaction patterns and do not generate
any description of Web APIs specification (or the initial WSDL document
for previous approaches) themselves. SPYREST [SAM15] is a closer work
to ours. It proposes a proxy server to analyze HTTP traffic involved in API
calls to generate API documentation. Still, the generated documentation is
intended to be read by humans and therefore does not adhere to any formal
API specification language.

Other research efforts limit themselves to discover the data model un-
derlying an API, specially by analyzing the JSON documents it returns. For
instance, the works in [Kle+15] and [RMM15] analyze JSON documents
in order to generate their (implicit) schemas. However, they are specially
bounded to NoSQL databases and are not applicable for Web APIs. On the
other hand, JSONDISCOVERER [CC16] generates UML class diagrams from
the JSON data returned after calling a Web API. We use this tool in our

6https://swagger.io/tools/swagger-ui/
7http://rebilly.github.io/ReDoc/
8https://editor.swagger.io/
9https://studio.restlet.com

10https://swagger.io/tools/swagger-inspector/

96

https://swagger.io/tools/swagger-ui/
http://rebilly.github.io/ReDoc/
https://editor.swagger.io/
https://studio.restlet.com
https://swagger.io/tools/swagger-inspector/


5.7. TOOL SUPPORT

JSF/Primefaces

APIDiscoverer UI

Mashape extractor

Selenium

B
ac
k-
en
d

F
ro
n
t-
en
d

REST agent

Unirest

APIDiscoverer

OCL Ex2OpenAPI
JSON

Discoverer
UML2Schema

EMF

JSONGen

...

Figure 5.4: APIDISCOVERER architecture.

structural discoverer phase.

5.7 TOOL SUPPORT

Figure 5.4 shows the underlying architecture of our discovery tool. Our
tool includes a front-end, which allows users to collect and run API call
examples to trigger the launch of the core APIDISCOVERER process (see
APIDiscoverer UI); and a back-end, which includes all the components to
parse the calls and responses, generate the intermediate models, etc. Our
tool has been implemented in Java and is available as an Open Source
application11.

More specifically, APIDISCOVERER is a Java Web application that can be
deployed in any Servlet container (e.g., APACHE TOMCAT12). The application
relies on JavaServer Faces (JSF), a server-side technology for developing
Web applications; and Primefaces13, a UI framework for JSF applications.
Figure 5.5 shows a screenshot of the APIDISCOVERER interface. The central
panel of APIDISCOVERER contains a form to provide API call examples
either by sending requests or using our JSON-based representation for-
mat. The former requires providing the request and obtaining a response
from the API. As result, a JSON-based API call example is shown on the

11https://github.com/SOM-Research/APIDiscoverer
12http://tomcat.apache.org/
13http://www.primefaces.org

97

https://github.com/SOM-Research/APIDiscoverer
http://tomcat.apache.org/
http://www.primefaces.org


CHAPTER 5. DISCOVERING REST APIS SPECIFICATIONS

Figure 5.5: Screenshot of the UI of APIDISCOVERER.

right. The latter only requires providing the JSON-based API call example.
API call examples are then used by APIDISCOVERER to obtain/enrich the
corresponding OpenAPI model. The example history is shown on the left
panel and an intermediate OpenAPI model is shown on the right panel. The
OpenAPI model is updated after each example with the new information
discovered by the last request. Finally, a button in the top panel allows the
user to download the final OpenAPI description file.

The main components of the back-end are (1) a REST agent and (2)
the core APIDISCOVERER. The REST agent relies on UNIREST14, a REST
library to send requests to APIs to build and collect API call examples.
APIDISCOVERER relies on a plethora of web/modeling technologies, namely,
(i) EMF15 as a modeling framework to implement the OpenAPI metamodel,
(ii) the Eclipse OCL to validate models and (iii) the JSONDISCOVERER to
discover models from JSON examples. Additionally, we have implemented
the required components (i) to discover OpenAPI elements from API call
examples (see Ex2OpenAPI in Figure 5.4), (ii) to transform UML models
to a list of schema elements using model-to-model transformations (see
UML2Schema in Figure 5.4), and (iii) to generate an OpenAPI description
file from an OpenAPI model by using model-to-text transformations (see
JSONGen in Figure 5.4).

14http://unirest.io
15http://www.eclipse.org/modeling/emf/

98

http://unirest.io
http://www.eclipse.org/modeling/emf/


5.8. SUMMARY

Beyond these key components, we have also developed MashapeDiscov-
erer, a proof-of-concept to show how the API call examples can be derived
from other sources like available examples in the API documentation (in this
specific case, from APIs in the MASHAPE marketplace16, a documentation
portal with over 2,000 APIs) by using SELENIUM17 to crawl the documenta-
tion pages and extract the relevant examples information (i.e, entrypoints,
parameters, response examples).

Additionally, we have created HAPI18, a public REST Web API directory
and an open source community-driven project, which stores the discovered
Web APIs. Besides allowing users to download the Web API specifications,
this directory invites developers to contribute using the well-known pull-
request model of GitHub. In order to enrich HAPI, we have also created two
OpenAPI importers for APIS.GURU and APIS.IO that use their dedicated
Web APIs19. This allows easily adding APIs with an already predefined
specification to HAPI.

5.8 SUMMARY

This chapter presented a model-driven approach to discover OpenAPI defini-
tions for REST APIs. From a set of API call examples, our approach relies on
two discoverer (i.e., the behavioral discoverer, the structural discoverer) to
generate an OpenAPI model describing the operations and data types of the
target API. At the end of the process, our approach generates a valid JSON
OpenAPI definition from the intermediate OpenAPI model. The generated
OpenAPI definitions are stored in a shared directory where anybody can
access and contribute.

16https://market.mashape.com
17http://docs.seleniumhq.org/projects/webdriver/
18https://github.com/SOM-Research/hapi
19https://apis.guru/api-doc/ and http://www.apis.io/apiDoc

99

https://market.mashape.com
http://docs.seleniumhq.org/projects/webdriver/
https://github.com/SOM-Research/hapi
https://apis.guru/api-doc/
http://www.apis.io/apiDoc




CHAPTER

6
Testing REST APIs

In the previous chapter we have presented an approach to generate Open-
API definitions from API call examples, thus benefiting from the different
advantages of the OpenAPI specification presented previously. One aris-
ing problem is how to ensure that API specifications reflect correctly the
behavior of their corresponding APIs. This problem is not only related to
generated specifications but also to official ones which should reflect their
API implementations. This chapter tries to solve this problem by presenting
a model-driven approach to generate test cases for REST APIs relying on
OpenAPI specification, with the goal to ensure that API implementations
conform to their specifications. Unlike existing approaches which mainly
focus on nominal test cases (i.e., using correct input) while neglecting fault-
based ones (i.e., using incorrect input) and require parameter inputs, our
approach covers both test cases scenarios and provides parameter inputs.

This chapter is organized as follows. Sections 6.1 presents the back-
ground. Section 6.2 describes our approach. Sections 6.3, 6.4, 6.5, and 6.6
present the different steps of the test case generation process for the Open-
API specification, namely: extracting OpenAPI models, inferring parameter
values, generating test case definitions, and generating executable code,
respectively. Section 6.7 describes the tool support. Section 6.8 presents the
validation process. Section 6.9 presents related work and, finally, Section
6.10 presents a summary of the chapter.

101



CHAPTER 6. TESTING REST APIS

 

1

2

3 4
code

Test cases

Model
Extraction

Model
Transformation

Code
Generation

OpenAPI metamodel

OpenAPI model

TestSuite metamodel

TestSuite model

Model Extension

OpenAPI 
definition

JSON

Figure 6.1: Test cases generation for the OpenAPI specification.

6.1 BACKGROUND

API testing is a type of software testing that aims to validate the expec-
tations of an API in terms of functionality, reliability, performance, and
security. Specification-based API testing is the verification of the API using
the available functionalities defined in a specification document [BHH13]. In
specification-based REST API testing, test cases consist of sending requests
over HTTP/S and validating that the server responses conform to the speci-
fication, such as the OpenAPI one. For instance, a test case could be created
for the operation findPetsByStatus of the Petstore example (see Figure 3.6
in Chapter 3) by sending a GET request to http://petstore.swagger.io/
v2/pet/findByStatus?status=available and expecting a response hav-
ing the HTTP status code 200 and a JSON array conforming the schema
defined in the specification. Automated specification-based API testing in-
volves generating such test cases.

Fault-based testing is a special type of testing which aims to demonstrate
the absence of pre-specified faults [Mor90]. Instead of detecting unknown
faults, the aim of fault-based test cases is to prove that known faults do
not exist, thus promoting reliability. For instance, the parameter status of
the operation findpetsByStatus is of type enumeration and restricted to
the values: available, pending, and sold. Therefore, a test case could be
created for the operation findPetsByStatus using an incorrect value for the
parameter status by sending a GET request to http://petstore.swagger.
io/v2/pet/findByStatus?status=test and expecting a response having
the status code 400 BAD REQUEST.

102

http://petstore.swagger.io/v2/pet/findByStatus?status=available
http://petstore.swagger.io/v2/pet/findByStatus?status=available
http://petstore.swagger.io/v2/pet/findByStatus?status=test
http://petstore.swagger.io/v2/pet/findByStatus?status=test


6.2. OUR APPROACH

paths 

API

swagger: String
host: String 
basePath: String 
schemes: SchemeType [0..*] 
consumes: String [0..*] 
produces: String [0..*] 

0..*

Operation

operationId: String
schemes: SchemeType [0..*] 
summary: String
description: String 
consumes: String[0..*] 
produces: String [0..*] 
deprecated: Boolean 

get
   0..1

post

delete

put

ParameterContext

parameters

0..*

SchemaContext

1..* responses

examples

0..*

0..1

0..1

0..1

definitions
0..*

schema0..1

Path

pattern: String

Schema

name: String 
title: String
required: String [0..*]
example: String

Response
description: String
code: String

Parameter

name: String
location:
ParameterLocation
example: String
required: Boolean

Example

mimeType: String
value: String

ItemsDefinition

0..1
options

0..1head 0..1
patch

Figure 6.2: An excerpt of the extended OpenAPI metamodel.

6.2 OUR APPROACH

We define an approach to automate specification-based REST API testing,
which we illustrate using the OpenAPI specification, as shown in Figure 6.1.
Our approach relies on model-based techniques to promote the reuse and
facilitate the automation of the generation process. OpenAPI definitions are
represented as models conforming to the OpenAPI metamodel (see Section
3.1), while test case definitions are stored as models conforming to the
TestSuite metamodel. This metamodel allows creating test case definitions
for REST API specifications and is inspired by the best practices in testing
REST APIs.

Our approach has four steps. The first step extracts an OpenAPI model
from the definition document of a REST API, by parsing and processing the
JSON (or YAML) file. The second step enriches the created OpenAPI model
with parameter examples, which will be used as input data in the test cases.
The third step generates a TestSuite model from the OpenAPI model by
inferring test case definitions for the API operations. Finally the last step
transforms the TestSuite model into executable code (JUNIT in our case).
In the following sections, we explain each step in detail.

6.3 EXTRACTING OPENAPI MODELS

The OpenAPI metamodel and extraction of OpenAPI models from OpenAPI
definitions have been already addressed in Chapter 3. For the context of
this approach, we extended the OpenAPI metamodel in order to support

103



CHAPTER 6. TESTING REST APIS

Petstore:API

host = "petstore.swagger.io" 
basePath = "/v2" 
schemes = [SchemeType::http]
...

:Path

relativePath= "/pet/findByStatus"

findPetsByStatus:Operation

operationId = "findPetsByStatus"
produces = ["application/xml",
"application/json"]

status:Parameter

name= "status"
location = ParameterLocation::query
type = JSONDataType::array
required = true
example = "available"
...

paths

:ItemsDefinition

type = JSONDataType::string
enum = ["available", "pending", "sold"]
default = "available"

:Response

code = "200"
description = "Sucess..."

operations

:Schema

type = JSONDataType::array

Pet:Schema

name = "Pet"
type = JSONDataType::object

id:Schema

name = "id"
type = JSONDataType::integer
format = "int64"

items

responses

schemaitems

properties

definitions

parameters

Figure 6.3: Excerpt of the OpenAPI model corresponding to the Petstore
API including a parameter example.

the definition of parameter value examples. Such feature is not provided
out-of-the-box in OpenAPI 21. Therefore, we added the attribute example to
the element Parameter in the OpenAPI metamodel to allow the definition
of examples as depicted in Figure 6.2.

Figure 6.3 shows an excerpt of the generated OpenAPI model of the
Petstore API including the findPetsByStatus operation. Note that this model
also includes an inferred value for the parameter status (i.e., example =
available). We present the inference rules in the next section.

6.4 INFERRING PARAMETER VALUES

The goal of this step is to enrich OpenAPI models with the parameter values
needed to generate test cases for an operation. Definition 1 describes a
testable operation and PR 1, PR 2, and PR 3 are the applied rules to infer
parameter values ordered by preference.

Definition 1 (Testable Operation). An API operation can be tested if all
the values of its required parameters can be inferred.

1Parameter examples in the OpenAPI specification 2 should be added as vendor ex-
tensions (i.e., using the prefix x-). This was clearly a limitation in this version of the
specification and has be fixed in version 3

104



6.5. EXTRACTING TEST CASE DEFINITIONS

PR 1 (Simple parameter value inference). A value of a parameter p could
be inferred from: (1) examples (i.e., p.example and p.schema.example), (2)
default values (i.e., p.default or p.items.default if p of type array) or (3)
enums (i.e., the first value of p.enum or p.items.enum if p is of type array).

PR 2 (Dummy parameter value inference). A value of a parameter p could
be set to a dummy value (respecting the type) if a request to the operation
of p including that value returns a successful response (i.e., a 2xx response
code class).

PR 3 (Complex parameter value inference). A value of a parameter p could
be inferred from the response of an operation o if: (1) o is testable; (2)
o returns a successful response r; and (3) r.schema contains a property
matching p2.

The previous rules are applied in sequence to infer a parameter value.
For instance, PR 1 was applied to the parameter status of the operation
findPetsByStatus of the Petstore API since items.default = available
(see Figure 3.6 in Chapter 3). PR 3 was applied to the parameter petId of
the operation getPetById since a petId example can be inferred from the
operation findPetsByStatus. Note that PR 2 and PR 3 stress the API (i.e.,
they involve sending several requests to the API) and may lead to biased
results as the very own API under test is used to infer the values. Thus, the
three rules are applied to infer the required parameters while only the first
rule is used for the optional ones.

6.5 EXTRACTING TEST CASE DEFINITIONS

In the following we explain the generation process of test case definitions
from OpenAPI models. We start by introducing the TestSuite metamodel,
used to represent test case definitions; and then we present the transforma-
tion rules to create test cases.

6.5.1 The TestSuite Metamodel

The TestSuite metamodel allows creating test case definitions for REST
APIs. Figure 6.4 shows an excerpt of this metamodel. The TestSuite ele-
ment represents a test suite and is the root element of the metamodel. This

2Some basic heuristics are applied in the parameter matching process (e.g., petId
parameter is inferred from the id property of the schema Pet.)

105



CHAPTER 6. TESTING REST APIS

TestSuite

api: String
description: String

TestCase

description: String

TestStep

APIRequest

+ operationId: String
+ contentType: String
+ accept: String
+ scheme: SchemeType

Parameter

location: ParameterLocation
name: String
value: String

Authorization

Basic

username: String
password: String

OAuth2

token: String

testCases testSteps
 

assertions

authorizations

NamedElement

 name: String

**

parameters

*

*

*

Assertion

errorMessage: String

HeaderAssertion

 key: String

StatusAssertion

 codes: String [1..n]

ResponseMessageAssertion

SchemaComplianceAssertionInvalidStatusCodeAssertion

HeaderEqualsAssertion

 value: String

ValidStatusCodeAssertion

HeaderExistsAssertion

APIKey

name: String
location: ParameterLocation
value: String

Figure 6.4: Excerpt of the TestSuite metamodel.

element includes a name, the URL of the REST API definition (i.e., api
attribute), and a set of test case definitions (i.e., testCases reference).

The TestCase element represents a test case definition and includes
a name, a description, and a set of test steps (i.e., testSteps references).
The APIRequest element is a specialization of the TestStep element which
represents the details of an API request to be sent and the logic to validate
the returned response. It includes the target operation (i.e., operationId at-
tribute), the content type (e.g., application/json), the accepted MIME type
(i.e., accept attribute, e.g., application/json), and the transfer protocol
of the request (i.e., scheme attribute, e.g., http). The values for the content
type and accepted MIME type should adhere to RFC68383. The APIRequest
element also includes the parameters of the request (i.e., parameters refer-
ence), the request authorization method (i.e., authorizations reference),
and the assertions to be validated for this API request (i.e., assertions
reference).

A parameter of an API request is represented by the Parameter ele-
ment and includes its location (i.e., location attribute), name, and value.
Parameter elements are mapped to parameters of the REST API definition
by their name and location.

The Authorization element represents an abstract authorization method
in a REST API. It has three specializations, namely: APIKey for API key
authorizations, Oauth2 for OAuth 2.0 authorization using a client token,
and Basic for basic authentication using a username and a password.

The Assertion element represents the root element of the hierarchy of
assertions supported by the TestSuite metamodel. As can be seen assertions

3https://tools.ietf.org/html/rfc6838

106

https://tools.ietf.org/html/rfc6838


6.5. EXTRACTING TEST CASE DEFINITIONS

are organized in three categories which define validations regarding: (1) the
HTTP status code of the received HTTP response (i.e. the abstract element
StatusAssertion); (2) the header of the received HTTP response (i.e., the
abstract element HeaderAssertion); and (3) the message of the received
HTTP response (i.e., the abstract element ResponseMessageAssertion).

The ValidStatusCodeAssertion and InvalidStatusCodeAssertion
elements are specializations of the StatusAssertion element and allow
checking that the HTTP status of the received response is within the
defined list of codes, or not, respectively. The HeaderEqualsAssertion
and HeaderExistsElement elements are specializations of the element
HeaderAssertion and allow checking that the value of an HTTP header in
the response is equals to the expected value, and whether an HTTP header
exists in the response, respectively.

The SchemaComplianceAssertion element is a specialization of the
ResponseMessageAssertion element which allows checking whether
the the response message is compliant with the schema defined by the
definition (e.g., check that the returned Pet instance is compliant with the
Pet definition).

6.5.2 OpenAPI to TestSuite Transformation

We present now the generation rules we have defined to test that REST
APIs conform to their OpenAPI definitions. We define two rules (i.e., GR 1
and GR 2) to generate test case definitions in order to assess that the REST
APIs behave correctly using both correct and incorrect data inputs. GR 1
generates nominal test case definitions which assess that given correct input
data, the API operations return a successful response code (i.e., 2xx family
of codes) and respect their specification. GR 2 generates faulty test case
definitions which assess that given incorrect input data, the API operations
return a client error response code (i.e., 4xx family of codes).

GR 1 (Nominal test case definition). If an operation o is testable then one
TestCase testing such operation is generated such as APIRequest includes
the inferred required parameter values (if any). Additionally, if o contains
inferable optional parameters then another TestCase testing such opera-
tion is generated such APIRequest as includes the inferred required and
optional parameter values. In both cases APIRequest includes the following
assertions:

¦ ValidStatusCodeAssertion having a successful status code (i.e., 2xx
family of codes)

107



CHAPTER 6. TESTING REST APIS

Table 6.1: Wrong data types generation rules.

PARAMETER TYPE GENERATION RULE

object an object violating the object
schema

integer/int32
a random string or a number
higher than 231 −1

integer/int64
a random string or a number
higher than 263 −1

number/float number/double
string/byte string/datetime
string/date

a random string

boolean a random string different from
true and false

Table 6.2: Violated constraints generation rules.

CONSTRAINT GENERATION RULE

enum a string or a number outside of
the scope of the enumeration

pattern a string violating the regEx
maximum/exclusiveMaximum a number higher than maximum
minimum/exclusiveMinimum a number lower than minimum

minLength a string with the length lower
than minLength

maxLength a string with the length higher
than maxLength

maxItems an array having more items than
maxItems

minItems an array having less items than
minItems

uniqueItems an array with duplicated values

mutlipleOf a number not divided by
multipleOf

¦ SchemaComplianceAssertion, if o.responses contains a response r
such as r.code is a successful status code (i.e., 2xx family of codes)
and r.schema = s

¦ HeaderExistsAssertion having key = h, if o.responses contains
a response r such as r.code is a successful code (i.e., 2xx family of
codes) and r.headers contains h

GR 2 (Faulty test case definition). For each parameter p in an operation o,
a TestCase testing such operation is generated for the following cases:

¦ Required missing: If p is required and not located in the path then
APIRequest will not include a value of p.

¦ Wrong data types: If o is testable and p is not of type string then
APIRequest will include the inferred required parameter values (if
any) and a wrong value of p as described in Table 6.1.

108



6.6. CODE GENERATION

:TestCase

name = "NominalFindPet..." 
description = "..." 

:APIRequest

operationId = "findPetsByStatus"
accept = "application/json"
scheme = SchemeType::http 

:TestSuite

api = "./petsore.oas"
name = "petstoreTestSuite" 
description = "..." :ValidStatusCodeAssertion

codes = [200]
errorMessage = "Valid..." 

:Parameter

name= "status" 
location = ParameterLocation::query 
value = "available"

:TestCase

name = "FaultyFindPet..." 
description = "..." 

:SchemaComplianceAssertion

errorMessage = "Schema...":APIRequest

operationId = "findPetsByStatus"
accept = "application/json"
scheme = SchemeType::http :ValidStatusCodeAssertion

errorMessage = "Valid..."
codes = [400]

:Parameter

name= "status" 
location = ParameterLocation::query 
value = "test"

testCases
testSteps

testSteps
parameters

assertions

parameters

assertions

Figure 6.5: TestSuite model representing nominal and faulty test cases for
the Petstore API.

¦ Violated constraints: If o is testable and p includes a constraint
then APIRequest will include the inferred required parameter values
(if any) and a value of p violating such constraint as described in Table
6.2.

In all cases APIRequest includes the following assertion:

¦ ValidStatusCodeAssertion having a client-error code (i.e., 4xx fam-
ily of codes).

Figure 6.5 shows an example of nominal and faulty test cases for the
operation findPetsByStatus of Petstore represented as a model conforming
to our TestSuite metamodel. Note that our approach does not consider
dependencies between operations since such information is not provided
in OpenAPI 2. With no knowledge about dependencies it is not possible to
undo the changes and therefore each operation is treated in an isolated
mode (i.e., test case side-effects are ignored, e.g, creating resource, deleting
resources). Heuristics could be defined to detect such dependencies, however,
they would assume that API providers follow the best practices in the design
of their REST APIs and respect the semantics of HTTP protocol, which in
practice is generally not the case [Rod+16]. This situation does not affect
read-only APIs (e.g., Open Data APIs) but could affect updateable APIs.
Thus, we created two generation modes: safe (i.e., only GET operations
are considered to generate test cases), and unsafe (i.e., all operations are
considered to generate test cases).

6.6 CODE GENERATION

The final step of the process consists on generating test cases for a target
platform. Since the test case definitions are platform-independent, any

109



CHAPTER 6. TESTING REST APIS

programing language or testing tool could be considered. In Section 6.7
we will illustrate our approach for Java programming language and JUnit
templates.

6.7 TOOL SUPPORT

We created a proof-of-concept plugin implementing our approach. The plugin
extends the Eclipse platform to generate: (1) OpenAPI models from OpenAPI
definition files; (2) TestSuite models from the generated OpenAPI models;
and (3) Maven projects including the JUNIT templates implementations for
the test case definitions in the TestSuite models. The plugin has been made
available in our GitHub repository4.

The OpenAPI and TestSuite metamodels are implemented using EMF.
We created a set of Java classes to infer the parameter values as described in
Section 6.4. We defined an ATL transformation to derive a TestSuite model
from an input OpenAPI model following the generation rules described in
Section 6.5. Finally, we used ACCELEO5 to generate the JUNIT test cases.

Figure 6.6 shows a screenshot of the generated Maven project for the
Petstore API including the corresponding tests for test cases showed in
Figure 6.5. The generated classes rely on JUNIT6 to validate the tests and
UNIREST framework7 to call the REST API. To test the schema compliance
we infer the JSON schema from the API description and use the framework
JSON SCHEMA VALIDATOR8 to validate the entity-body of the response
against the inferred schema. The actual implementation of the tool supports
the authentication methods Basic and API Key.

6.8 VALIDATION

In order to validate our approach and the companion tool implementation,
we address the following research questions:

RQ1 What is the coverage level of the generated test cases? Test cases
cover a set of endpoints, operations, parameters and data definitions of
the OpenAPI definition. Our goal is to provide high coverage degrees.

4https://github.com/SOM-Research/test-generator
5https://www.eclipse.org/acceleo/
6https://junit.org/
7http://unirest.io/
8https://github.com/java-json-tools/json-schema-validator

110

https://github.com/SOM-Research/test-generator
https://www.eclipse.org/acceleo/
https://junit.org/
http://unirest.io/
https://github.com/java-json-tools/json-schema-validator


6.8. VALIDATION

Figure 6.6: TESTGENERATOR: a screenshot of the generated Maven project
of the Petstore API showing a nominal and a faulty test case.

RQ2 What are the main failing points in the definitions and implemen-
tation of real world REST APIs? We use our approach to study how
current REST APIs perform and when they usually fail.

To answer these questions we ran our tool on a collection of OpenAPI
definitions. We describe next how we created this collection and addressed
the research questions.

6.8.1 REST APIs Collection and Selection

We created a collection of REST APIs by querying APIS.GURU, a site
including 837 REST APIs described by OpenAPI definitions. To build our
collection, we performed a two-phased filtering process to (1) select free,
open and available REST APIs which are not services (i.e., they provide
access to data models) and (2) remove those REST APIs with incorrect or
invalid OpenAPI definitions. Next we detail these phases.

The first phase performs the selection process relying on the metadata of
each API provided in the OpenAPI definition or in its external documenta-
tion. The selection criteria in this phase removes: (1) APIs providing access
to functionalities and services (mostly applying fees) to manage specific
environments such as IoT, Cloud, and messaging which are normally tested
in controlled environments (654 APIs); (2) deprecated and/or unreachable
APIs (15 APIs); and (3) APIs with restricted access (e.g., available for part-

111



CHAPTER 6. TESTING REST APIS

Table 6.3: Coverage of the test cases in terms of operations, parameters,
endpoints and definitions.

ELEMENTS COUNT
COVERAGE COVERAGE (%)

ALL NOMINAL FAULTY ALL NOMINAL FAULTY
OPERATIONS 367 320 303 233 87% 82% 63%
PARAMETERS 949 595 485 476 62% 51% 50%
ENDPOINTS 356 289 81%

DEFINITIONS 313 239 76%

Table 6.4: Errors found in the test cases.

TOTAL
NOMINAL TEST CASES FAULTY TEST CASES
4XX/500 SCHEMA 500 2XX

NUMBER OF APIS 37 9 11 11 20
% 40% 25% 30% 30% 55%

ners only, rate limited, etc.) (21 APIs). At the end of this phase our collection
included 147 APIs.

The second phase analyzes each OpenAPI definition of the previously
selected REST APIs and removes (1) APIs which showed semantic errors
(i.e., validation failed against the OpenAPI specification) (21 APIs); (2) APIs
relying on OAuth as authentication mechanism (15 APIs); (3) big APIs
including more than 100 parameters to avoid biased results (14 APIs); and
(4) not REST-friendly APIs (e.g., using formData, appending body to GET
methods) (6 APIs). At the end of this phase, our collection included 91
OpenAPI definitions9 belonging to 32 API providers. Most of the APIs in the
collection provide support for text processing (25 APIs) and Open Data (21
APIs). Other APIs target other domains such as transport (6 APIs), media
(5 APIs), and entertainment (4 APIs). The REST APIs described by these
definitions have on average 4 operations and 10 parameters. The collection
included 71 REST APIs that require authentication, thus API keys were
requested to use them. Furthermore, the OpenAPI definitions of 51 of the
selected APIs were polished to follow the security recommendations (i.e.,
using the SecurityDefinition element provided by the specification instead
of parameters).

To minimize the chances of subjectivity when applying this process, we
applied a code scheme as follows. The process was performed by one coder,
who is the author of this thesis. Then a second coder, who is the second
adviser of this thesis, randomly selected a sample of size 30% (251 Web

9The full list of collected APIs, including the application of the selection process, and
the results for answering the research questions are available at http://hdl.handle.
net/20.500.12004/1/C/EDOC/2018/001.

112



6.8. VALIDATION

APIs) and performed the process himself. The intercoder agreement reached
was higher than 92%. All disagreement cases were discussed between the
coders to reach consensus.

6.8.2 Results

Once we built our collection, we ran our tool for each REST API to
generate and execute the test cases.

RQ1. Coverage of the generated test cases. For the 91 APIs, we gener-
ated 958 test cases (445 nominal / 513 faulty). We analyzed these test cases
to determine their coverage in terms of operations, parameters, endpoints
and definitions. We defined the coverage as follows: an operation is covered
when at least one test case uses such operation; a parameter is covered
when at least one test case includes an operation targeting such parameter;
an endpoint is covered when all its operations are covered; and a definition
is covered when it is used in at least one test case. We report the coverage
for both the total test cases and the nominal/faulty ones.

Table 6.3 summarizes our results. As can be seen, we obtain high cov-
erage levels except for parameters. The value for nominal test cases for
parameters is low since this kind of test cases relies on required parameters
(i.e., testable operations) and only 30% of the parameters were required. On
the other hand, the nature of the parameters and poor OpenAPI definitions
affected the coverage of faulty test cases. Most of the parameters were of
type String and do not declare constraints to validate their values, thus
hampering the generation of faulty test cases. Richer OpenAPI definitions
would have helped us to tune our inference technique and therefore increase
the coverage for operations and parameters. Further analysis shown that
many APIs provide constraints regarding their parameters in natural lan-
guage instead of the method provided by the OpenAPI specification. For
instance, the data at work API10 includes a parameter named limit and
described as “Maximum number of items per page. Default is 20 and cannot
exceed 500”. Instead, using the tags default and maximum defined by the
OpenAPI specification would have helped us generate more test cases for
this parameter.

RQ2. Failing points in the definitions and implementation in real
world REST APIs. To answer this question we analyzed the errors found
when executing the generated test cases. Table 6.4 shows the results. As
can be seen, 37 of the 91 selected REST APIs (40% of the APIs) raised

10https://api.apis.guru/v2/specs/dataatwork.org/1.0/swagger.json

113

https://api.apis.guru/v2/specs/dataatwork.org/1.0/swagger.json


CHAPTER 6. TESTING REST APIS

some kind of errors, which we classified into two categories (nominal/faulty).
The nominal test case errors included: those regarding the status code (i.e.,
obtaining an error status code when expecting a successful response, see
column 3) and those regarding schema compliance (i.e., the object returned
in the body of the response is not compliant with the JSON schema defined
in the specification, see column 4). The faulty test case errors included
two kind of errors regarding the status code where a client error response
(i.e., 4xx code) was expected but either a server error response code (i.e.,
500 code, see column 5) or a successful response code (i.e., 2xx code, see
column 6) was obtained. The errors regarding nominal test cases are mainly
related to mistakes in the definitions, while the faulty ones are related to
bad implementations of the APIs.

The errors in the definitions vary from simple mistakes such a miss-
ing required field for a parameter (e.g., the parameter q in the operation
GET action/organization_autocomplete of the BC Data Catalogue API11) to
complex ones such as having a wrong JSON schema (e.g., Data at Work API).

The errors in the implementation of the APIs are characterized by send-
ing 500 (i.e., internal server error) or 2xx (i.e., successful) status codes on
an error condition instead of a 4xx status code. On the one hand, the 500 in-
ternal server error tells the client that there is a problem on the server side.
This is probably a result of an unhandled exception while dealing with the re-
quest. Instead, the server should include a validation step which checks the
client’s input and sends a client side error code (e.g., 400 wrong input) on vio-
lated constraints with a text explaining the reasons. On the other hand, send-
ing 200 status code on an error condition is a bad practice [RAR13]. Further-
more, four errors were linked to the limitation of OpenAPI to define mutually
exclusive required parameters (e.g., The Books API12), resulting in inconsis-
tent definitions. Such limitation is confirmed by Oostvogels et al. [ODD17].

Even though we do not consider links between operations and side effects,
we believe our approach may help developers to identify the main error-
prone points in REST API development. Thus, our experiments showed that
extra attention should be paid when dealing with data structures and return-
ing the proper HTTP error code to allow the client to recover and try again.

6.8.3 Threats to Validity

Our work is subjected to a number of threats to validity, namely: (1)

11https://api.apis.guru/v2/specs/gov.bc.ca/bcdc/3.0.1/swagger.json
12https://api.apis.guru/v2/specs/nytimes.com/books_api/3.0.0/swagger.

json

114

https://api.apis.guru/v2/specs/gov.bc.ca/bcdc/3.0.1/swagger.json
https://api.apis.guru/v2/specs/nytimes.com/books_api/3.0.0/swagger.json
https://api.apis.guru/v2/specs/nytimes.com/books_api/3.0.0/swagger.json


6.9. RELATED WORK

internal validity, which is related to the inferences we made; and (2) external
validity, which discusses the generalization of our findings. Regarding the
internal validity, many definitions in APIS.GURU have been created or
generated by third-parties which may have consequences on the quality of
such definitions. Therefore, different results can be expected if all definitions
are provided by the API owners. Furthermore, some providers are over-
represented in APIS.GURU which may lead to biased results. As for the
external validity, note that the nature and size of the sample may not be
representative enough to generalize the findings of the experiments.

6.9 RELATED WORK

Many approaches proposed both nominal (e.g., [Bai+05; Bar+09; HM08;
OX04]) and faulty (e.g., [XOL05; ZZ05]) specification-based test cases gener-
ation for the classical SOAP Web APIs by relying on their WSDL definitions.
Research works targeting test cases generation for REST APIs, on the other
hand, are relatively limited. For instance, [FB15], [CK09], and [Ben+14]
propose different approaches for automated test case generation, but relying
on manual definition of a model, a test specification DSL, and a JSON
schema, respectively, thus making their approaches bound to their ad-hoc
specifications. [Arc17] proposes an approach to generate white-box integra-
tion test cases for REST APIs using search algorithms and relying on the
OpenAPI specification. However, in such scenario, the developer must have
full access to the code of the API to generate the test cases. On the other
hand, our approach does not require providing any model or definition other
than OpenAPI.

Beyond the research context, several commercial and open source tools
provide testing facilities for REST APIs. Some of these tools propose auto-
mated testing for REST API specifications, such as the OpenAPI specifica-
tion. These tools can be divided into three categories, namely: (1) integrated
environments, (2) command line tools, and (3) development frameworks.
The integrated environment testing tools provide a GUI which can be used
to create and run test cases (e.g., SOAPUI/READYAPI!13, RUNSCOPE, or
APIFORTRESS14). Command line tools propose a command line interface
for configuring and running the test cases (e.g., DREDD or GOT-SWAG15).
Finally, development frameworks provide testing facilities for different

13https://www.soapui.org/
14http://apifortress.com/
15https://github.com/mobilcom-debitel/got-swag

115

https://www.soapui.org/
http://apifortress.com/
https://github.com/mobilcom-debitel/got-swag


CHAPTER 6. TESTING REST APIS

programming languages (e.g., HIPPIE-SWAGGER16, SWAGGER REQUEST

VALIDATOR17, or SWAGGER TESTER18). Certainly, these tools prove the
importance of specification-based testing for REST APIs, but they all re-
quire a considerable effort to configure them and to provide input data.
Furthermore, these tools do not provide fault-based testing out the box.

6.10 SUMMARY

In this chapter we have presented a model-driven approach to automate
specification-based REST API testing by relying on OpenAPI. We used the
OpenAPI metamodel presented in Chapter 3 and created the TestSuite
metamodel to define test cases for REST APIs. Models conforming to these
metamodels are used to generate the test cases. The TestSuite metamodel
is reusable, thus allowing defining test suites for any REST API. As a
proof-of-concept, we created a plugin implementing our approach for the
Eclipse platform. Our experiments show that the generated test cases cover
on average 76.5% of the elements included in the definitions and that
40% of the tested APIs contain bugs either in their specification or server
implementation.

16https://github.com/CacheControl/hippie-swagger
17https://bitbucket.org/atlassian/swagger-request-validator
18https://swagger-tester.readthedocs.io/en/latest/

116

https://github.com/CacheControl/hippie-swagger
https://bitbucket.org/atlassian/swagger-request-validator
https://swagger-tester.readthedocs.io/en/latest/


CHAPTER

7
Generating REST APIs

In Chapter 4 we covered the APIfication of models by enabling model man-
agement using REST APIs. Models also play a fundamental role in the
design and conception of Web APIs. In this Chapter we present a model-
driven approach to generate REST APIs from conceptual data models. We
rely on OData protocol for the realization of the API due to its adaptability to
data-centric REST APIs and its querying capability. In fact, the OData proto-
col enables the creation of data-centric Web services, where URL-accessible
resources are defined according to an entity model and can be queried by
web clients using standard HTTP messages. However, designing OData
services is tedious and time-consuming, specially for relational databases
where extra effort is needed to align the service with the database query
capabilities. While Chapter 3 covered the specification of OData services
(using a metamodel and a UML profile), in this chapter we present a model-
driven approach to (semi)automate the generation of ready-to-deploy REST
APIs targeting relational databases.

This chapter is structured as follows. Section 7.1 describes our approach
and Section 7.2 shows the running example used to illustrate our approach.
Section 7.3 describes how we drive OData models from UML models. Sec-
tions 7.4 and 7.5 show the database schema generation process and the
OData service generation process, respectively. Section 7.6 describes the
tool support. Section 7.7 presents the related work. Finally, Section 7.8
summaries this chapter.

117



CHAPTER 7. GENERATING REST APIS

UML class model

Database schema

SQL

Web Server

Database

OData clients

 
 

OData metamodel

OData model

OData service

OData2SQL

XML

EDM

PSMPIM

ER model

ER2OData

DatabaseGen

ODataGen
UML2OData 

Metadata
Document

ODataSerializer

Figure 7.1: The OData service specification and generation approach.

7.1 OUR APPROACH

We propose a model-driven approach where OData models drive the gen-
eration of OData services using a relational database as storage solution.
These OData models could be directly specified but typically they will be
derived from an input UML or ER model describing the domain. Figure 7.1
shows an overview of our approach.

On the left-hand side of Figure 7.1, and following the MDA terminology
of OMG (see Chapter 2, Section 2.3), we have the UML and ER models at
the PIM level while the OData metamodel would belong to the PSM level
as a refinement of the previous one. The mapping between the PIM and
PSM level is rather straightforward, as we will show. We will focus on UML
models (see UML2OData transformation) and ER models (see ER2OData
transformation) but a similar approach can be followed for another kind of
PIM model.

On the right-hand side of Figure 7.1, we see how OData models are
used to generate: (1) an OData service wrapped in a Web application to be
deployed in a server (see ODataGen transformation); and (2) the correspond-
ing database schema to initialize the database (see DatabaseGen transfor-
mation). The OData service includes: (a) the OData metadata document,
which defines the Entity Data Model (EDM) for the data exposed by the
service [PHZ14e]; (b) the logic to transform OData requests into SQL state-
ments according to the query language defined by OData protocol [PHZ14d]
(see OData2SQL component); and (c) an OData serializer, which defines
the serialization mechanism according to OData JSON format [HPB14] and

118



7.2. RUNNING EXAMPLE

Figure 7.2: UML model of the running example.

OData Atom format [ZPH14] (see ODataSerializer component).
OData defines three levels of conformance for an OData Service, namely:

minimal, intermediate and advanced (cf. OData protocol [PHZ14c], Section
13). Each level defines a set of requirements and recommendations that a
service should fulfill in order to conform to this level. The OData service
generated with our approach fully conforms to the OData Intermediate
Level and partially to the OData Advanced Conformance Level, as we will
present later.

The elements generated in each step could be customized by the user
in order to either include other details not captured in our generation
process or remove extra generated elements. For instance, an OData model
generated from a PIM model could be enriched by adding other OData
elements (e.g., OData annotations) or remove unwanted generated elements
(e.g., an OData entity type generated from an unwanted UML class). Also,
the generated application could be refined in order to customize the OData
service or integrate other web functionalities not related to OData such as
authentication.

7.2 RUNNING EXAMPLE

To illustrate our approach, we use as running example the UML class
diagram shown in Figure 7.2 representing a data model to manage online
stores. This example is inspired by the official reference example of OData1.
The model includes two classes, namely: Product, which represents products;
and Supplier, which represents the supplier of a product. The address of a
supplier is defined using the data type Address. The bidirectional association
between products and suppliers allows navigating from a product to a
supplier (the association end supplier), and from a supplier to a list of
products (the association end products).

1http://services.odata.org/V4/OData/OData.svc/$metadata

119

http://services.odata.org/V4/OData/OData.svc/$metadata


CHAPTER 7. GENERATING REST APIS

Product

IDDescription

ReleasedDate

DiscountinuedDate
Rating

Price

Supplier

ID Name

Supplied_by Address

city
street

State

country

ZipCode

N 1

Name

Figure 7.3: ER model of the running example.

We will also illustrate our approach using an ER model. Figure 7.3 shows
the ER model representing the data model of the online store using the
widely adopted Elmarsi & Navathe’s notation [EN10] which is close to the
classical notation defined by Chen. This model includes two entities, namely:
Product, which represents products; and Supplier, which represents the
supplier of a product. Supplied_by represents a binary relationship be-
tween the entities Product and Supplier meaning that a product is supplied
by one supplier and a supplier can provide many products. Given either a
UML or an ER model, our approach generates a ready-to-deploy OData Ser-
vice exposing the OData metadata document representing the data model
and serving client requests for both querying and updating data, which
requires transforming OData requests to SQL statements and representing
the data according to OData protocol (i.e., OData JSON [HPB14] and OData
Atom [ZPH14] formats).

The OData metadata document is expressed using CSDL [PHZ14e].
Listing 7.1 shows an excerpt of the generated metadata document for the
data model shown in Figure 7.3. The Schema element describes the entity
model exposed by the OData Web service and includes the entity types
Product and Supplier, and the complex type Address. Each type includes
properties and navigation properties to describe attributes and relation-
ships, respectively. The Schema element includes also an EntityContainer
element defining the entity sets exposed by the service and therefore the
entities that can be accessed. Web clients use this document to under-
stand how to query and interact with the service. For instance, the re-
quest GET http://host/service/Products?$filter=Price le 2.6 inc-
luding the $filter option, should retrieve the list of products having the
price less or equals to 2.6. Listing 7.2 shows the result of this request in
OData JSON format.

Next sections will describe how our approach can be used to go from
the original model to the deployed OData services following a model-driven
approach.

120



7.2. RUNNING EXAMPLE

Listing 7.1: A simple OData Metadata Document for the products service.
1 <edmx:Edmx xmlns:edmx="http :// docs.oasis -open.org/odata/ns/edmx"

Version ="4.0">
2 <edmx: DataServices >
3 <Schema xmlns="http :// docs.oasis -open.org/odata/ns/edm"

Namespace ="com. example . ODataDemo " Alias=" ODataDemo ">
4 <EntityType Name=" Product ">
5 <Key ><PropertyRef Name="ID"/></Key >
6 <Property Name="ID" Type="Edm.Int32" Nullable ="false"/>
7 <Property Name="Name" Type="Edm. String "/>
8 <Property Name=" Description " Type="Edm. String "/>
9 <Property Name=" ReleasedDate " Type="Edm. DateTimeOffset "

Nullable ="false"/>
10 <Property Name=" DiscontinuedDate " Type="Edm. DateTimeOffset "

/>
11 <Property Name=" Rating " Type="Edm.Int16" Nullable ="false"/>
12 <Property Name="Price" Type="Edm. Double " Nullable ="false"/>
13 <NavigationProperty Name=" Supplier " Type=" ODataDemo .

Supplier " Partner =" Products "/>
14 </ EntityType >
15 <EntityType Name=" Supplier ">
16 <Key ><PropertyRef Name="ID"/></Key >
17 <Property Name="ID" Type="Edm.Int32" Nullable ="false"/>
18 <Property Name="Name" Type="Edm. String "/>
19 <Property Name=" Address " Type=" ODataDemo . Address "/>
20 <NavigationProperty Name=" Products " Type=" Collection (

ODataDemo . Product )" Partner =" Supplier " />
21 </ EntityType >
22 <ComplexType Name=" Address ">
23 <Property Name=" Street " Type="Edm. String "/>...
24 </ ComplexType >
25 <EntityContainer Name=" DemoService ">
26 <EntitySet Name=" Products " EntityType =" ODataDemo . Product ">
27 <NavigationPropertyBinding Path=" Supplier " Target ="

Suppliers "/>
28 </ EntitySet >
29 <EntitySet Name=" Suppliers " EntityType =" ODataDemo . Supplier "

>
30 <NavigationPropertyBinding Path=" Products " Target ="

Products "/>
31 </ EntitySet >
32 </ EntityContainer >
33 </ Schema >
34 </edmx: DataServices >
35 </edmx:Edmx >

121



CHAPTER 7. GENERATING REST APIS

Listing 7.2: An example of collection of products in OData JSON format.
1 {
2 " @odata . context ": " $metadata # Products ",
3 "value ": [
4 {
5 "ID": 1,
6 "Name ": "Milk",
7 " Description ": "Fresh milk",
8 " ReleasedDate ": "1992 -01 -01" ,
9 " DiscountinuedDate ": null ,

10 " Rating ": 4,
11 "Price ": 2.40
12 },
13 {
14 "ID": 2,
15 ...
16 "Price ": 2.25
17 }
18 ]
19 }

7.3 SPECIFICATION OF ODATA SERVICES

This section describes the specification of OData services using the OData
metamodel presented in Chapter 3 (see Section 3.2). OData models can
be automatically derived from UML models by means of a model-to-model
transformation (see UML2OData transformation in Figure 7.1). We rely on
plain UML models to generate OData models, thus no knowledge of OData
is to be required. A similar approach, relying on the UML profile for OData
presented in Chapter 3 (see Section 3.2), could also be followed to drive a
custom transformation for enriched UML models.

Table 7.1 shows a subset of the main transformation rules from UML
metamodel elements to OData metamodel elements where the second col-
umn displays the source UML elements, third column shows the condi-
tions to trigger the transformation, firth column shows the created/updated
OData elements, and the last column shows the initialization values for the
OData elements. Similarly, Table 7.2 shows a subset of the main transforma-
tion rules from ER metamodel elements (i.e., entities, attributes, relation-
ships) to OData metamodel elements where the first column displays the
ER elements (using the ER notation for the sake of clarity), second column
shows the created/updated OData elements, and the last column shows the
initialization values for the OData elements. In both scenarios, instances
of the elements ODEntityType, ODComplexType, and ODEnumType are added

122



7.3. SPECIFICATION OF ODATA SERVICES

Table 7.1: UML to OData model transformation rules.

REF. SOURCE
ELEMENTS

CONDITIONS TARGET ELEMENTS INITIALIZATION DETAILS

1 c: Class - et: ODEntityType
es: ODEntitySet

- et.name = c.name
- if c.abstract = true then et.abstract
← true
- if c.generalizations contains a class cc
then et.baseType ← t where t is the cor-
responding EntityType of cc
- et.properties ← (cf. rules to transform
attributes, rows 3 and 4)
- et.navigationProperties ← (cf. rule to
transform navigable association ends, i.e.,
row 5)
- es.name ← the plural form of c.name
- es.entityType ← et
- es.navigationPropertyBindings ← (cf.
rule to transform navigable association ends,
i.e., row 5)

2 dt:
DataType - ct: ODComplexType

- ct.name ← dt.name
- if ct.abstract = true then
dt.abstract ← true
- if dt.generalizations contains a data
type dd then ct.baseType ← t where t is
the corresponding ODComplexType of dd
- ct.properties ← (cf. rules to transform
attributes, i.e., rows 3 and 4)

3

p:
Property

p is a class
attribute or
a data type
attribute

op: ODProperty

- op.name ← p.name
- op.type ← t where t is the corresponding
type of the attribute
- if p is multivalued then op.multivalued
← true

4
p is a class
attribute
marked as
ID

pk:
ODPropertyKeyRef - pk.property = op

5
p is a navi-
gable associ-
ation end

np:
ODNavigationProperty
npb: ODNavigation-
PropertyBinding

- np.name ← p.name
- np.type ← t where t is the corresponding
entity type of p.type
- if p.aggregation = Composite
then np.containsTarget ← true
- if p is multivalued is then np.multivalued
← true
- npb.path ← p.name
- npb.target ← t.name where t is the cor-
responding entity set of p.type

6
e:
Enumeration - oe: ODEnumType

- oe.name ← e.name
- oe.members ← (cf. rule to transform liter-
als, i.e., row 7)

7 el:
EnumerationLiteral- om: ODMember - om.name ← el.name

123



CHAPTER 7. GENERATING REST APIS

Table 7.2: ER to OData model transformation rules.

ER CONSTRUCTORS TARGET ELEMENTS INITIALIZATION DETAILS

Entity
et: ODEntityType,
es: ODEntitySet

- et.name = "Entity"
- es.name = "Entities"
- es.entityType = et

Attribute p: ODProperty
- p.name = "Attribute"
- p.type = t (t is the corresponding primi-
tive type of the attribute)

ID
p: ODProperty
pk: ODPropertyKeyRef

- p.name = "ID"
- p.type = t (t is the corresponding primi-
tive type of the attribute)
- pk.property = p

Attribute p: ODProperty
- p.name = "Attribute"
- p.type = t (t is the corresponding primi-
tive type of the attribute)
- p.multivalued = true

EntityA

EntityB

relationship

a

b

nb:
ODNavigationProperty,
na: ODNavigationProperty

- nb.name = "EntityB" (nb is a property of
the corresponding entity type of EntityA)
- nb.type = t1 (t1 is the corresponding
entity type of EntityB
- if b==N then nb.multivalued = true
- na.name = "EntityA" (na is a property of
the corresponding entity type of EntityB)
- na.type = t2 (t2 is the corresponding
entity type of EntityA
- if a==N then na.multivalued = true

Composite

AttributeA

AttributeB

c: ODComplexType - c.name = "Composite"

EntityA EntityB b: ODEntityType - b.baseType = t where t is the correspond-
ing EntityType of EntityA

to the element ODSchema once they are created, and likewise instances of
ODEntitySet are added to the element ODEntityContainer. Furthermore,
each instance of the elements ODProperty and ODNavigationProperty are
added to its corresponding ODEntityType, ODComplexType element, and
likewise each instance of ODNavigationPropertyBinding is added to its
corresponding ODEntitySet. Figure 7.4 shows an excerpt of the generated
OData model for the Product entity (with only the ID attribute) of our
running example (see Figures 7.2 and 7.3).

7.4 DATABASE SCHEMA GENERATION

OData is designed to work on a variety of data stores. In particular, the
protocol does not necessarily assume a relational data model. We defined

124



7.4. DATABASE SCHEMA GENERATION

Figure 7.4: An excerpt of the generated OData model for the running exam-
ple.

an algorithm to generate a relational database schema from an OData data
model, which we describe in this section (see DatabaseGen transformation in
Figure 7.1). This algorithm is heavily inspired by the typical transformation
rules to derive database schemas from UML models (e.g., GENMYMODEL2,
UMLTOX3) or ER models (e.g. see Fidalgo et al. [Fid+12], ER2SQL4).

Algorithm 1 illustrates the OData data model to database schema gener-
ation process. As can be seen, the algorithm takes as input an instance of
ODSchema and returns a DDL script representing the data model. The first
part of the algorithm (i.e., from line 1 to line 37) iterates over the contained
entity types and complex types then generates a CREATE command for each
element not having a super type (i.e., baseType = null). The algorithm
adds an extra column id for each complex type to define a primary key
(cf. line 5) and an extra column discriminator for each complex or entity
type having subtypes to identify the concrete type of the element (cf. line
8). Furthermore, for each single valued property or navigation property
the algorithm generates a column statement (cf. line 12). Moreover, the
algorithm generates a CREATE command for each multivalued property (cf.
line 21) and many to many navigation property (cf. line 29). The second
part of the algorithm (i.e., from line 38 to line 46) iterates over the navi-
gation properties of each entity type and complex type then generates an
ALTER TABLE command to declare a foreign key. The algorithm relies on the
functions TABLENAME, COLUMNTYPE, COLUMNNAME, GETNULL and REF-
ERENCE (see footnotes on Algorithm 1). Note that for the sake of simplicity,
the algorithm assumes that the key of each entity type is represented by a
single property. Listing 7.3 shows an excerpt of the DDL script to create the

2https://www.genmymodel.com/
3https://github.com/jcabot/UMLtoX
4http://er2sql.sourceforge.net/

125

https://www.genmymodel.com/
https://github.com/jcabot/UMLtoX
http://er2sql.sourceforge.net/


CHAPTER 7. GENERATING REST APIS

Algorithm 1 APIGENERATOR: DDL schema generation process.
Input:

s where s is an instance of ODSchema
Output:

q where q is the DDL script of the database
1: S ← s.entityT ypes∪ s.complexT ypes
2: for i = 1 to S.length do
3: if S[i] does not have a super type then
4: q ← q+ "CREATE TABLE" + TABLENAME(S[i]) + "("
5: if S[i] is instance of ODComplexType then
6: q ← q+ "id INT not null,"
7: end if
8: if S[i] is a super type then
9: q ← q+ "discriminator VARCHAR(255),"
10: end if
11: P ← S[i].properties∪S[i].navigationProperties
12: for j = 1 to P.length do
13: if P[ j] is single valued then
14: q ← q+ COLUMNNAME(P[ j]) + COLUMNTYPE(P[ j]) + GETNULL(P[ j]) + ","
15: end if
16: end for
17: q ← q+ "PRIMARY KEY (" + PRIMARY(S[i]) + "));"
18: end if
19: for j = 1 to S[i].properties.length do
20: if S[i].properties[ j] is multivalued then
21: q ← q+ "CREATE TABLE" + TABLENAME(S[i].properties[ j])
22: +"(id INT not null," + COLUMNNAME(S[i].properties[ j])
23: +COLUMNTYPE(S[i].properties[ j]) +","
24: +TABLENAME(S[i]) + "_id" + PRIMARYTYPE(S[i]) +","
25: +"PRIMARY KEY (id));"
26: end if
27: end for
28: for j = 1 to S[i].navigationProperties.length do
29: if S[i].navigationProperties[ j] is many to many then
30: q ← q+ "CREATE TABLE"
31: +TABLENAME(S[i].navigationProperties[ j]) + "(" + "id INT not null,"
32: +TABLENAME(S[i]) + "_id," + PRIMARYTYPE(S[i])+","
33: +TABLENAME(S[i].navigationProperties[ j].partner)+"_id,"
34: +PRIMARYTYPE(S[i].navigationProperties[ j].partner)+"," + "PRIMARY KEY (id));"
35: end if
36: end for
37: end for
38: for i = 1 to S.length do
39: for j = 1 to S[i].navigationProperties.length do
40: if S[i].navigationProperties[ j] is single valued then
41: q ← q+ "ALTER TABLE" + TABLENAME(S[i]) +"ADD FOREIGN KEY"
42: +COLUMNNAME(S[i].navigationProperties[ j])
43: +"REFERENCES" + REFERENCE(S[i].navigationProperties[ j]) + ";"
44: end if
45: end for
46: end for

TABLENAME gets a table name according to database recommendations represent-
ing the input element.

COLUMNTYPE gets a database primitive type representing the type of the input ele-
ment.

COLUMNNAME gets a column name according database recommendations represent-
ing input element.

GETNULL generates NOT NULL statement if the input parameter is required.
PRIMARY gets the key column of the input element
PRIMARYTYPE gets the type of the key column of the input element
REFERENCE generates the target of REFERENCES statement of the input element.

126



7.5. ODATA SERVICE GENERATION

Listing 7.3: A simple DDL file of the running example.
1 CREATE TABLE product (
2 id INT not null ,
3 name VARCHAR (255) ,
4 description VARCHAR (255) ,
5 releaseddate DATE not null ,
6 discountinueddate DATE ,
7 rating INT not null ,
8 price DECIMAL (10 ,2) not null ,
9 supplier_id INT ,

10 PRIMARY KEY (id));
11 CREATE TABLE supplier (
12 id INT not null ,
13 name VARCHAR (255)
14 address_id INT ,
15 PRIMARY KEY (id));
16 CREATE TABLE address (
17 id INT not null ,
18 street VARCHAR (255) ,...
19 PRIMARY KEY (id));
20 ALTER TABLE product
21 ADD FOREIGN KEY ( supplier_id ) REFERENCES supplier (id);
22 ALTER TABLE supplier
23 ADD FOREIGN KEY ( address_id ) REFERENCES address (id);

database schema corresponding to the running example after applying the
algorithm.

7.5 ODATA SERVICE GENERATION

In this section we describe the generation process of OData services from
OData models (see the ODataGen transformation in Figure 7.1). Our process
includes the generation of (1) the metadata document, (2) the mapping
between OData requests and SQL statements (see OData2SQL component
in Figure 7.1), and (3) the de/serialization process (see ODataSerializer
component in Figure 7.1).

7.5.1 OData Metadata Document Generation

This process transforms an OData model into an OData metadata document
by means of a model-to-text transformation. This document helps clients
discover the data schema exposed by the service and therefore build OData
queries.

127



CHAPTER 7. GENERATING REST APIS

The generation process is nearly straightforward as our metamodel fol-
lows the OData CSDL specification and only special attention had to be
paid when generating references among elements. Thus, the transformation
iterates over OData model elements and generates their XML represen-
tation (e.g., Schema for the element ODSchema, EntityContainer for the
ODEntityContainer, etc.) taking into account its specification (e.g., name,
type, etc.). The resulting document is an XML file represented using the
CSDL language [PHZ14e] and can be retrieved by appending $metadata
to the root URL of an OData service. An example of this file has been
previously shown in Listing 7.1.

7.5.2 OData Requests to SQL Statements Transformation

The OData specification defines standard rules to query data via
HTTP GET requests and perform data modification actions via HTTP POST,
PUT, PATCH, and DELETE requests. A URL of an OData request has three
parts [PHZ14d]: (1) the service root URL, which identifies the root of an
OData service; (2) a target resource path, which identifies a resource to
query or update (e.g., products, a single product, supplier of a product); and
(3) a set of query options.

GET︸︷︷︸
HTTP method

http://host/service︸ ︷︷ ︸
service root URL

/Suppliers(1)/Products︸ ︷︷ ︸
target resource path

?$top=2&orderby=Name︸ ︷︷ ︸
query options

(7.1)

To transform OData requests to SQL statements we consider the HTTP
method, which specifies whether the request is either a query or a data
modification action; the resource path, and the query options part. In the fol-
lowing we describe how these elements drive the SQL statement generation
process, in particular, how we deal with the target resource paths, query
options, and data modification actions.

Target Resource Path URL Transformation. The target resource path
in an OData request can address (1) a collection of entities, (2) a single entity,
(3) and a property, which we will illustrate by means of examples. Table
7.3 shows a set of examples of requests relying on our running example
for all the CRUD operations. The second column shows the used HTTP
methods. The third column explains the type of the request. The fourth and
fifth columns show an example of the OData request including the resource
path and request body, and the corresponding SQL query to the database,
respectively.

Example 1 illustrates a request to access to a collection of entities (i.e.,

128



7.5. ODATA SERVICE GENERATION

Table 7.3: Examples of OData requests and the corresponding SQL state-
ments.

REF
HTTP
METHOD

DESCRIPTION RESOURCE PATH EXAMPLE SQL QUERY

1

GET

Request a col-
lection of enti-
ties

GET http://host/service/
Products

SELECT * FROM product p

2 Request a sin-
gle entity by
ID

GET http://host/service/
Products(1)

SELECT * from product p
WHERE p.id = 1

3
Request an in-
dividual prop-
erty

GET http://host/service/
Products(1)/Price

SELECT p.price from
product p
WHERE p.id = 1

4

Request an en-
tity collection
by following
a navigation
from an entity
to another
related entity

GET http://host/service/
Suppliers(1)/Products

SELECT p.* from product p
JOIN supplier s on
p.supplier_id = s.id
WHERE s.id = 1

5 POST Create a new
entity

POST http://host/
service/Products
{

texttt"ID": 1;
"Name": "Milk",
"Description": "Fresh
milk",...}

INSERT INTO product (id,
name, description, ...)
VALUES (1, ’Milk’, ’Fresh
milk’, ...)

6 PATCH Update an en-
tity

PATCH http://host/
service/Products(1)
{
"Description": "Very
fresh milk"
}

UPDATE product
SET description = ’Very
fresh milk’
WHERE id = 1

7 PUT
Update a
navigation
property

PUT http://host/service/
Products(1)/Supplier/
$ref
{
"@odata.id":
"http://host/service/
Suppliers(2)"
}

UPDATE product
SET supplier_id = 2
WHERE id = 1

8 DELETE Delete an en-
tity

DELETE http://host/
service/Products(1)

DELETE FROM product WHERE
id = 1

129

http://host/service/Products
http://host/service/Products
http://host/service/Products(1)
http://host/service/Products(1)
http://host/service/Products(1)/Price
http://host/service/Products(1)/Price
http://host/service/Suppliers(1)/Products
http://host/service/Suppliers(1)/Products
http://host/service/Products
http://host/service/Products
http://host/service/Products(1)
http://host/service/Products(1)
http://host/service/Products(1)/Supplier/$ref
http://host/service/Products(1)/Supplier/$ref
http://host/service/Products(1)/Supplier/$ref
http://host/service/Products(1)
http://host/service/Products(1)


CHAPTER 7. GENERATING REST APIS

collection of products), which is transformed into a SELECT SQL statement
for the corresponding table of the entity exposed by the addressed entity
set. Example 5 also illustrates a request to add a new entity into the target
collection of entities.

Example 2 shows how a single entity can be accessed by adding the entity
key as path segment (i.e., the product of ID 1), which requires adding a
WHERE clause to the SELECT statement. Likewise, examples 6 and 8 illustrate
how to update and delete a single entity, respectively.

Example 3 shows how to access an entity property (i.e., the price of
the product), which requires adding the corresponding column name to the
SELECT statement.

Finally, example 4 illustrates a request to access to a collection of en-
tities by navigating from an entity to another one (i.e., the collection of
products of a specific supplier), which requires adding one or more JOIN
clauses to the SELECT statement depending on the cardinalities of the navi-
gation properties (i.e., one to many, many to many) and the hierarchy of the
resource.

To perform the transformation of the target resource path into the corre-
sponding SQL statement we devised Algorithm 2. The algorithm takes as
input the set of entity types referenced in the URL, the set of the proper-
ties used to navigate from one entity to another in the path, a set of path
segments to specify the key of a particular entity and the name of the final
property to retrieve. Last two parameters are optional.

The algorithm is divided into three parts. The first part (i.e., from line
1 to line 4) retrieves the database tables corresponding to each entity. The
second part (i.e., from line 5 to line 31) iterates over the entities and con-
structs the SELECT statement and the JOIN clauses depending on the number
and the type of the navigations (i.e., one-to-one, one-to-many, many-to-one,
many-to-many). Finally, the third part (i.e., from line 32 to line 38) con-
structs the WHERE clause. The algorithm relies on the functions TABLENAME,
TABLEALIAS, COLUMNNAME, and HASNEXT (see footnotes on Algorithm 2).

The first row of Table 7.4 illustrates the execution of this algorithm for
the URL shown on the left. This URL identifies the price of the product
1 belonging to the supplier 1. The corresponding input parameters are:
E = {E1 : Supplier,E2 : Product}, N = {N1,2 : Products}, x = {x1 : 1, x2 : 3},
and p = Price. The resulting SQL query is shown on the right.

Query Transformation. OData allows querying data via HTTP GET re-
quests to the resources addressed by a resource path (as shown before).
OData queries can include a set of options which are string parameters

130



7.5. ODATA SERVICE GENERATION

Algorithm 2 APIGENERATOR: Resource path URL transformation.
Input:

E = {E1,E2, ...,En} where E i is the entity at the index i and n is the total number of entities
N = {N1,2, N2,3, ..., Nn−1,n} where Ni−1,i is the navigation property from E i−1 to E i .
x = {x1, x2, ..., xn} where xi is the key of the entity E i if presented in the URL or ∅ otherwise
p where p corresponds to the name of a particular property to retrieve or ∅

Output:
q where q is an SQL query representing the resource of the input

1: for i = 1 to n do
2: Ti ← TABLENAME(E i )
3: A i ← TABLEALIAS(E i )
4: end for
5: if p <>∅ then
6: q ← +"SELECT" + An +"." + COLUMNNAME(p) + "FROM" + Tn + An
7: else
8: q ← + "SELECT" + An + ".* FROM" + Tn + An
9: end if
10: i ← n
11: while i <> 1 do
12: if Ni−1,i is many to one then

13: Let C
i f k
i−1 be the column representing the foreign key of Ti in Ti−1 and Cpk

i the primary key
of Ti

14: q ← q + "JOIN" + Ti−1 + A i−1 + "ON" + A i−1 +"." + C
i f k
i−1

15: + "=" + A i + "." + Cpk
i

16: else
17: if Ni−1,i is one to many then

18: Let C
i−1 f k
i be the column representing the foreign key of Ti−1 in Ti and Cpk

i−1 the primary
key of Ti−1

19: q ← q + "JOIN" + Ti−1 + A i−1 + "ON" + A i + "." + C
i−1 f k
i + "=" + A i−1 + "." + Cpk

i−1
20: else
21: if Ti,i−1 is many to many then
22: Let Ji,i−1 be the association table between Ti and Ti−1, A i,i−1 the alias name Ji,i−1,

C
i f k
i,i−1 the column representing the foreign key of Ti in Ji,i−1, and C

i−1 f k
i,i−1 the column representing

the foreign key of Ti−1 in Ji,i−1
23: q ← q + "JOIN" + Ji,i−1 A i,i−1 + "ON" + A i,i−1 +"."

24: + C
i f k
i,i−1 "=" + A i + "." + Cpk

i "JOIN" + Ti−1 A i−1

25: + "ON" + A i,i−1" + "." + C
i−1 f k
i,i−1 "=" + A i−1 + "."

26: + Cpk
i−1

27: end if
28: end if
29: end if
30: i ← i−1
31: end while
32: q ← q+"WHERE"
33: for i = 1 to n do
34: q ← q+ Ae + "." + Cpk

e + "=" + xe
i

35: if HASNEXT(xe
i ) then

36: q ← q+"AND"
37: end if
38: end for

TABLENAME gets a table name according to database recommendations represent-
ing the input element.

TABLEALIAS gets an alias name for the input element.
COLUMNNAME gets a column name according database recommendations represent-

ing input element.
HASNEXT returns true if there is a key in the queue and false otherwise.

131



CHAPTER 7. GENERATING REST APIS

Table 7.4: Example of OData request to SQL mapping.

ODATA QUERY SQL QUERY

http://host/service/Suppliers(1)/Products(1)/Price SELECT p.price

FROM product p

JOIN supplier s ON p.supplier_id = s.id

WHERE p.id = 1 AND s.id = 1

http://host/service/Products? SELECT p.name, p.price

$select=Name,Price FROM product p

&$filter=contains(Name,’i’) and Price le 2.6 WHERE p.name LIKE ’%i%’ AND p.price <= 2.6

&$orderby=Name desc ORDER BY p.name DESC

&$skip=5&$top=10 LIMIT 5,10

prefixed by a $ symbol that control the amount and order of the returned
data for a resource. Query options can be used to refine the result of an
OData request and therefore are also considered in our transformation.
Table 7.5 shows the query options provided by OData and the corresponding
mapping rules to generate the SQL code. For each query option, the table
provides a small description, the mapping rule with SQL, an example, and
the corresponding SQL query.

OData also defines (1) logical and arithmetic operators (e.g., eq for equals
or add for addition) to use with the $filter query option, (2) utility func-
tions for string, date and time management (e.g., concat, hour() or now()),
and (3) combining query options to create advanced queries. Our approach
covers the operators and functions supported by MySQL database5.

The second row of Table 7.4 shows an example of query option mapping.
On the left, the Table shows a URL example to retrieve 10 records after the
position 5 ordered by name from the collection of products which have a
name containing the character i and a price less or equals to 2.6; while on
the right, the Table lists the corresponding SQL query.

Data Modification Transformation. To perform data modification ac-
tions, OData relies on the HTTP POST, PUT, PATCH and DELETE requests. To
support data modification actions, we generate a set of controllers which
process the client requests and generate the corresponding SQL statements
according to the specification.

Table 7.3 shows the usage of HTTP methods in OData illustrated with
examples. To create an entity, the client must send a POST request contain-

5More details can be found at https://github.com/SOM-Research/odata-
generator.

132

https://github.com/SOM-Research/odata-generator
https://github.com/SOM-Research/odata-generator


7.5. ODATA SERVICE GENERATION

Table 7.5: OData System query options and their corresponding SQL rules.

OPTION DESCRIPTION SQL RULE
QUERY OPTION

EXAMPLE
SQL EXAMPLE

$filter

Filter a collection of
resources that are
addressable by a re-
quest url

Add a WHERE clause
including the corre-
sponding operator
to the filter expres-
sion

http://host/
service/
Products?
$filter=Name eq
’Milk’

SELECT * FROM
product p
WHERE p.name
LIKE ’Milk’

$expand

Include relative
resource in line
with retrieved
resources

For each retrieved
resource, create a
SELECT statement
to retrieve the
relative resource

http://host/
service/
Suppliers(1)
?$expand=
Products

SELECT *
FROM product
p WHERE
supplier_id
= 1

$select Request a specific
set of properties

Add the correspond-
ing column names
to the SELECT state-
ment

http://host/
service/
Products?
$select=Name,
Price

SELECT p.name,
p.price FROM
product p

$orderby

Request resources
in either ascending
order using asc or
descending order
using desc

Add the ORDER
BY clause to the
SELECT statement

http://host/
service/
Products?
$orderby=
’Name’desc

SELECT * FROM
product p
ORDER BY
p.name DESC

$top
$skip

$top requests the
number of items
to be included and
$skip requests the
number of items to
be skipped

Add the supported
clause by the
database system
(e.g., LIMIT for
MySQL)

http://host/
service/
Products?$top=
10$skip=5

SELECT * FROM
product p
LIMIT=5,10

$count Request a count of
the resources

Add the COUNT func-
tion to the SELECT
statement

http://host/
service/
Product?$count

SELECT
COUNT(*) FROM
product

$search
Request entities
matching a free
text search

Add a set of LIKE
operators to the
WHERE clause to
much the search
text with all the
text columns of the
corresponding table

http://host/
service/
Product?
$search=’Milk’

SELECT * FROM
product p
WHERE p.name
LIKE ’Milk’ OR
p.description
LIKE ’Milk’

ing a valid representation of the new entity to the URL of a collection of
entities (i.e., EntitySet, e.g., Products). This request is transformed to an
INSERT statement (see example 5). To update an entity, the client must send
a PATCH request containing a valid representation of the properties to update
to the URL of a single entity (e.g., Products(1)). This request is transformed
to an UPDATE statement (see example 6). To update a navigation property,
the client must send a PUT request containing the URL of the new related

133

http://host/service/Products?$filter=Name
http://host/service/Products?$filter=Name
http://host/service/Products?$filter=Name
http://host/service/Products?$filter=Name
eq
'Milk'
http://host/service/Suppliers(1)?$expand=Products
http://host/service/Suppliers(1)?$expand=Products
http://host/service/Suppliers(1)?$expand=Products
http://host/service/Suppliers(1)?$expand=Products
http://host/service/Suppliers(1)?$expand=Products
http://host/service/Products?$select=Name,Price
http://host/service/Products?$select=Name,Price
http://host/service/Products?$select=Name,Price
http://host/service/Products?$select=Name,Price
http://host/service/Products?$select=Name,Price
http://host/service/Products?$orderby='Name' desc
http://host/service/Products?$orderby='Name' desc
http://host/service/Products?$orderby='Name' desc
http://host/service/Products?$orderby='Name' desc
http://host/service/Products?$orderby='Name' desc
http://host/service/Products?$top=10$skip=5
http://host/service/Products?$top=10$skip=5
http://host/service/Products?$top=10$skip=5
http://host/service/Products?$top=10$skip=5
http://host/service/Product?$count
http://host/service/Product?$count
http://host/service/Product?$count
http://host/service/Product?$search='Milk'
http://host/service/Product?$search='Milk'
http://host/service/Product?$search='Milk'
http://host/service/Product?$search='Milk'


CHAPTER 7. GENERATING REST APIS

entity to the URL of the reference6 of a single-valued navigation property
(e.g., Products(1)/Supplier/$ref ). This request is transformed to an UPDATE
statement (see example 7). Finally to remove an entity, the client must
send a DELETE request to the URL of an individual entity (e.g., Products(1)).
This request is transformed to a DELETE statement. Next, we explain the
serialization and deserialization mechanisms of the requests.

7.5.3 OData Serializer and Deserializer Generation

This process generates a serializer and a deserializer for OData objects
supporting both the OData JSON [HPB14] and Atom [ZPH14] formats.

The serializer applies a model-to-text transformation to the result of
OData requests (i.e., entity collection, entity and property) in order to gener-
ate the textual representation according to OData format conventions. For
instance, in the case of JSON, an entity collection is transformed to a JSON
array holding the entities while an entity is represented by a JSON object
containing a list of key/value pairs representing its properties. A similar pro-
cess is followed for the Atom representation format. OData representation
formats also support different levels (and content) of metadata (i.e., full,
minimal or none) [HPB14; ZPH14], which can be configured in the header
of any OData request. The generated serializer also takes into account this
setting and generates the JSON or Atom representation accordingly. An
example of a collection of products in OData JSON format was previously
shown in Listing 7.2. As can be seen, apart from the properties of the entity,
the JSON object also includes as metadata the annotation odata.context
which indicates the root context URL of the payload.

The deserializer processes and parses the body of the OData requests
POST, PUT and PATCH in order to generate the details of the INSERT and
UPDATE SQL statements, accordingly. For instance, in the case of JSON (see
the examples 5, 6 and 7 in Table 7.3), each key and value in the JSON object
are transformed to the corresponding field in the corresponding table and
the value for such field, respectively, in the generated SQL statement. A
similar process is followed for the Atom representation format.

7.6 TOOL SUPPORT

Our approach is available as a proof-of-concept plugin for the Eclipse plat-
form7. The plugin extends the platform to provide contextual menus to

6A reference is specified by adding $ref to the resource path of the navigation property
7https://github.com/SOM-Research/odata-generator

134

https://github.com/SOM-Research/odata-generator


7.6. TOOL SUPPORT

Figure 7.5: APIGENERATOR: a screenshot of the generated application for
the running example.

obtain OData models from existing UML models and, given an OData model
instance: (1) generate the metadata document conforming to OData specifi-
cation; (2) generate the DDL of the database; and (3) generate an OData
service based on a Maven-based project.

The UML to OData model transformation relies on UML28 which pro-
vides an EMF-based implementation of the UML 2.5 OMG metamodel;
while the code generators are based on ACCELEO9, an implementation of
the MOF Model-To-Text Transformation Language (MTL) specification from
OMG, to define the logic and generate the different OData artifacts.

The generated Web application includes a properties file with the con-
figuration of the database. The OData service implementation relies on
APACHE OLINGO10 to provide support for OData query language and se-
rialization; and JOOQ11 which provides a DDL to build SQL queries. The
implementation includes controllers to analyze and deserialize the requests,
transform them into SQL queries, execute the queries, and serialize the
result to be sent back to the client.

Figure 7.5 shows a screenshot of the generated application for the run-
ning example. The figure includes the structure of the Maven project (see left
panel) and a browser showing the result of request in Atom format (see right
panel). The service currently implements the support for: (1) resource path

8https://wiki.eclipse.org/MDT/UML2
9https://www.eclipse.org/acceleo/

10http://olingo.apache.org
11https://www.jooq.org

135

https://wiki.eclipse.org/MDT/UML2
https://www.eclipse.org/acceleo/
http://olingo.apache.org
https://www.jooq.org


CHAPTER 7. GENERATING REST APIS

URL transformation; (2) data querying using the query options $filter,
$top, $skip and $orderby; and (3) data modification as described in the pre-
vious section. The generated application returns 501, “Not Implemented”
for any unsupported functionality as required by the protocol. The complete
generated application can be found in our repository12. The repository in-
cludes also the steps to install the plugin, generate the OData service, and
deploy the generated application in a Servlet container.

7.7 RELATED WORK

Model-driven approaches have been widely used in the Web Engineer-
ing field to generate different kinds of web applications (e.g., [Sch+08;
VP11; Fra99; SCL14; Hau+14; Riv+14; Rod+13; Val+07]). While existing
approaches already provide methodologies and tools to cover a variety of
technologies (e.g., web services, ubiquitous applications), specific support for
Web APIs is rather limited. For instance, Porres et al. [PR11] and Tavares et
al. [TV13b] propose to model REST APIs using UML and a REST metamodel,
respectively, but only generate a WADL document [Had06] describing the
behavior of a REST API and do not generate the API implementation. A few
exceptions to generate REST APIs are: (1) EMF-REST presented in Chapter
4 (but for generating web modeling environments); (2) ODAAS [SCL14] (for
the exploitation of existing Open Data and social media streams); (3) ELEC-
TRA [Riv+14] and MOCKAPI [Riv+13b] (for fast prototyping of mockup
APIs); (4) the work by Rodríguez-Echeverría et al. [Rod+13] (deriving REST
APIs from legacy Web applications); and (5) MicroBuilder [Ter+17] and the
work by Haupt et al. [Hau+14] (using ad-hoc DSLs for the specification
and the realization of REST APIs). None of them, though, have explicit
support neither for modeling OData nor for automatically generating OData
Services from high-level models.

Some SDKs provide support for developing OData applications for a
target platform (e.g., RESTIER13, APACHE OLINGO14, SDL ODATA FRAME-
WORKS15). These frameworks are handy for developers but require knowl-
edge to deal with the intricacies of their architecture16 to create OData
applications.

12https://github.com/SOM-Research/odata-generator
13https://github.com/OData/RESTier
14https://olingo.apache.org/
15https://github.com/sdl/odata
16There are 129 open issues in GitHub regarding RESTIER and StackOverFlow lists

396 questions regarding OLINGO.

136

https://github.com/SOM-Research/odata-generator
https://github.com/OData/RESTier
https://olingo.apache.org/
https://github.com/sdl/odata


7.8. SUMMARY

Support for generating OData applications is so far limited to commer-
cial tools like CLOUD DRIVERS17, ODATA SERVER18 or SKYVIA CONNECT19.
Still, these solutions only offer ways to expose OData services from already
existing data sources such as databases but not to create new OData ser-
vices from scratch nor to configure the full support to OData specification.
In fact, OData services generated from relational databases just mirror
the data structure (i.e., tables and relationships to entities and navigation
entities, respectively), thus not leveraging on OData protocol which supports
richer data structures (e.g., hierarchies, complex type or multivalued prop-
erties) and capabilities. For instance, we tested the trial version of ODATA

SERVER to create an OData server for the MySQL database of our running
example. Besides the limitation regarding the use of richer data structures
(e.g., Address was transformed to an Entity and not a ComplexType), we
also detected other issues related to Open API capabilities: (1) there is no
entity container and therefore clients are not able to query the data; (2) the
foreign keys are plain properties instead of navigation properties; (3) data
is read-only.

Other tools such as SIMPLE-ODATA-SERVER20 and JAYDATA21 allow
generating a basic OData server but require providing both an OData Entity
model of the desired application and the corresponding database. Also, they
only support a subset of the query options offered by OData protocol. On
the other hand, our approach has advanced support for OData protocol and
provides the database implementation of the data model out of the box.

7.8 SUMMARY

In this chapter we have presented a model-driven approach to specify and
generate OData services. UML and ER models are used to generate the
required artifacts to deploy OData services relying on a relational database
as storage solution. The generation process covers the specification of the
OData metadata document, the database schema, the resolution of URL
requests into SQL statements and a de/serialization mechanism for the
exchanged messages.

17http://www.cdata.com/odata/
18https://rwad-tech.com/
19https://skyvia.com/connect/
20https://github.com/pofider/node-simple-odata-server
21https://github.com/jaystack/jaydata

137

http://www.cdata.com/odata/
https://rwad-tech.com/
https://skyvia.com/connect/
https://github.com/pofider/node-simple-odata-server
https://github.com/jaystack/jaydata




CHAPTER

8
Composing REST APIs

In this chapter we present APICOMPOSER, a lightweight model-driven
approach to automatically compose data-oriented REST APIs (i.e., REST
APIs exposing data). APICOMPOSER completes the picture of our model-
driven approach and enables the composition of REST APIs by relying on
the their definitions. EMF-REST and APIGENERATOR could be used to
provide the input APIs, while APIDISCOVERER could be used to discover
API definitions, and APITESTER could be used to ensure the correctness of
such definitions. APICOMPOSER takes as input a set of OpenAPI definitions
which are then processed to create a global API exposed as an OData
application.

The rest of this chapter is organized as follows. Section 8.1 describes
our approach, while Sections 8.2 and 8.3 explain its main steps. Section
8.4 illustrates our approach using an example. Section 8.5 presents our
tool support. Section 8.6 discusses some related works. Finally, Section 8.7
summarizes this chapter.

8.1 OUR APPROACH

We propose a model-driven approach to compose data-driven REST APIs.
From a set of initial REST APIs, our approach creates a global API exposing
a unified data model merging the data models of the initial APIs. The global
model is exposed as an OData application, thus allowing end-users to use
the OData query language to get the information they need in an easy and

139



CHAPTER 8. COMPOSING REST APIS

API

API

API

API

OpenAPI 
definition

API importer
OData request

OData response

End-usersEnd-users
OData 

Entity model

Requests resolver

APIComposer Discovery

API
Discoverer

Figure 8.1: Overview of the APICOMPOSER approach.

standard way. Each OData query is translated into a combined sequence
of requests to the underlying APIs which are then executed, combined and
sent back to the user in OData format.

Figure 8.1 shows an overview of our approach. APICOMPOSER takes
as input the OpenAPI definitions of the REST APIs to be composed. Such
definitions may be (i) supplied by the API provider, (ii) generated using
tools such as APIDiscoverer (see Chapter 5) which is able to infer OpenAPI
definitions from API call examples; or (iii) derived from other API definition
formats (e.g., API Blueprint or RAML) using tools such API Transformer1.

Our approach relies on a model-based infrastructure which includes
two components, namely: (i) API importer, in charge of integrating a new
REST API to the global API; and (ii) Requests resolver, responsible for pro-
cessing the user requests and returning the queried data. We explain each
component in the following sections.

8.2 API IMPORTER

Figure 8.2 shows the API importer process. For each input OpenAPI defini-
tion, the API importer first generates an equivalent model conforming to our
OpenAPI metamodel (see step 1 in Figure 8.2). We previously introduced
this metamodel alongside the extraction process in Chapter 3.

The second step of the process (see step 2 in Figure 8.2) performs a model-
to-model transformation to generate a UML model, which emphasizes the
data schema of the input API to facilitate the matching process later on.
This process consists on iterating over the data structures in the OpenAPI
model (i.e., the schema elements) to generate the adequate UML elements
(i.e. classes, properties and associations elements). This process relies on
our tool OPENAPITOUML2 presented in Chapter 3.

1http://apimatic.io/transformer
2https://github.com/SOM-Research/openapi-to-uml

140

http://apimatic.io/transformer
https://github.com/SOM-Research/openapi-to-uml


8.2. API IMPORTER

UML 
model

1 Model 
generation

M2M 
transformation
2

 

Open API 
model

Open API 
model

UML model
+ OData profile

1 Model 
generation

M2M 
transformation

2Binding 
discovery 

3
API ImporterI  

OData 
Entity model

OData 
interpretation

4

Open API 
definition

Data
binding model

Input

AB
CD

B
CD
AA =

AB

A
CD

Figure 8.2: Composition process.

The third step (see step 3 in Figure 8.2) analyzes the UML models to
discover matching elements and creates bindings to express the matches
between them. The binding model conforms to the binding metamodel which
allows creating traceability and binding elements for the data elements in
the UML models.

Figure 8.3 shows an excerpt of the binding metamodel. The BindingModel
element is the root element of the binding metamodel and includes a set
of binding elements (i.e., bindingElments reference). The ClassBinding,
PropertyBinding, and AssociationBinding elements allow defining bind-
ings to Class, Property, and Association elements in a UML model, re-
spectively. Each element includes a preferred name (i.e., the preferredName
attribute inherited from the BindingElement element) and a set of binded
elements (i.e., the binded references).

We currently support a simple two-step matching strategy to define the
bindings between elements. The first step finds matching candidates based
on their names and types. Then, the second step validates the matches by
calling the REST APIs and comparing data related to each candidate. Our
experience showed that such strategy is sufficient for APIs coming from
the same provider/domain, which share the same concept names across
their APIs. However, our approach can be extended in order to support more
advanced matching strategies specially for cross-domain composition by
relying on, for instance, database schema integration approaches [Bor+07]
or the new approaches to add semantic descriptions to OpenAPI [CD17;
Mus+16]. Also, a designer can manually curate the initial automatic result.

141



CHAPTER 8. COMPOSING REST APIS

BindingModel BindingElement

preferredName: String

PropertyBindingClassBinding

Class Property Association

AssociationBinding

bindingElements
*

binded binded binded* * *

UML metamodel

Figure 8.3: Excerpt of the binding metamodel.

Finally, the last step creates an OData metadata document from: (i) the
generated UML models, and (ii) the binding model. This document includes
an OData entity model created by merging all the data models of the input
REST APIs and resolving the bindings between them. Thus, the creation
process iterates over all the data elements in the UML models and creates
a new element in the entity model if there is not a binding linking such
element to another element, or merging both elements otherwise. The OData
metadata document is the standard way OData provides to let end-users
know how to query data using the OData query language.

8.3 REQUESTS RESOLVER

The Requests resolver is an OData application exposing the created metadata
document, and in charge of processing the end-user queries and building
the query response based on the bindings and OpenAPI models generated
during the import phase. Such process involves two steps, namely: query
resolution and response resolution.

The query resolution phase interprets first the OData query in order
to determine the target resource to retrieve (i.e., a collection of entities, a
single entity or a property) and the options associated with the query (e.g.,
filter or ordering). The resolver transforms then the query into a set of API
calls by tracing back the origin of each element thanks to the binding model.
From the binding model we navigate first to the UML models then to the
OpenAPI models. These OpenAPI models contain all the necessary details

142



8.4. EXAMPLE

to generate the actual calls3 as they contain the same information as the
original OpenAPI definitions.

On the other hand, the response resolution phase is in charge of provid-
ing the result to the end-user by combining the different API answers in a
single response conforming to the OData entity model defined in the OData
metadata document. In the next section we will illustrate our approach
using an example.

8.4 EXAMPLE

To illustrate our approach, we consider the following REST APIs: BATTUTA4,
which allows retrieving the regions and cities of a country; and RESTCOUN-
TRIES5, which allows getting general information about countries such as
their languages, currencies and population. Our goal with this example is
to create a global API combining both APIs. Thanks to the global API, users
will be able to query both kinds of country information (either geographical,
general or both) in a transparent way, (i.e., without having to specify in each
OData query what API/s the query should read from). As a preliminary
step, we generated the OpenAPI definitions describing BATTUTA and REST-
COUNTRIES APIs using APIDiscoverer. We used the resulting definitions as
inputs for our approach.

Figure 8.4 illustrates the results of applying our composition mechanism
on these APIs. Figures 8.4.a.1 and 8.4.a.2 show parts of the OpenAPI defi-
nitions of BATTUTA and RESTCOUNTRIES APIs, respectively. As explained
in the previous section, the first step of the process generates an OpenAPI
model describing the input definition, while the second step generates UML
model where the data aspects have been refined and highlighted.

Figure 8.4.b.1 and 8.4.b.2 show the generated UML models for BAT-
TUTA and RESTCOUNTRIES APIs, respectively. As can be seen, the data
model for the BATTUTA API includes the classes Country, Region and City,
while the model for the RESTCOUNTRIES API includes the classes Country,
RegionalBlock, and Currency. Figure 8.4.c shows the binding model inclu-
ding a ClassBinding element for the Country entities of both data models,
identified as a valid matching concept.

3We created a set of heuristics which map operations to entity elements.
4https://battuta.medunes.net/
5https://restcountries.eu/

143

https://battuta.medunes.net/
https://restcountries.eu/


CHAPTER 8. COMPOSING REST APIS

UML model

<edmx:Edmx Version="4.0" ...>

<edmx:DataServices>

<Schema Namespace="com.example">

   <EntityType Name="Country">

<Property Name="name" .../>

<NavigationProperty Name="regions".../>

</EntityType>

<EntityType Name="Region">...

   </EntityType>

<EntityContainer Name="ODAService">

<EntitySet Name="Countries" 

    EntityType="com.example.Country">

<NavigationPropertyBinding 

     Path="regions" Target="Regions"/>

</EntitySet>...

</EntityContainer>

</Schema>

</edmx:DataServices>

</edmx:Edmx>

<edmx:Edmx Version="4.0" ...>

<edmx:DataServices>

<Schema Namespace="com.example">

   <EntityType Name="Country">

<Property Name="name" .../>

<NavigationProperty Name="regions".../>

</EntityType>

<EntityType Name="Region">...

   </EntityType>

<EntityContainer Name="ODAService">

<EntitySet Name="Countries" 

    EntityType="com.example.Country">

<NavigationPropertyBinding 

     Path="regions" Target="Regions"/>

</EntitySet>...

</EntityContainer>

</Schema>

</edmx:DataServices>

</edmx:Edmx>

OData metadata

{"swagger": "2.0",

"host": "restcountries.eu",...

"paths": {

"/all": {...},

"/name/{name}": {...},

"/alpha/{code}": {...},

"/currency/{currency}": {...},

...

"definitions": {

"Country": {...},

"Language": {...},

"RegionalBloc": {...},...}}

Battuta!

Restcountries

{"swagger": "2.0",

  "host": "battuta.medunes.net",...

  "paths": {

    "/country/all": {...},

    "/country/code/{code}": {...},

    "/region/{code}/all": {...},

    "/city/{code}/search": {...},

    ...

  },

  "definitions": {

    "Country": {...},

    "Region": {...},

    "City": {...}}}

Region

name: String

City

name: String
lattitude: String
 

cities
region

*
1

RegionalBlock

name: String
...

*

* regionalBlocks

countries

regions

cities

region

*

*

Region

name: String

1

1

 

OData query

 
{"@odata.context":"$metadata#Country",
 "name": "Spain",
 "code": "ES",
 "population": 46538422,....
 "regions":[
      {"name": "Andalucia"},
      {"name": "Aragon"},
      {"name":"Canary Islands"},,...]
}

OData response

name: String
code : String

Country

country
regions
*1

OData Entity model

a.1

a.2

b.1

e

g

d
Country

name: String
code : String
population: Long
...
 

Language

name: String
...

 

:ClassBinding

RegionalBlock

name: String
...

**

*

name: String
...

*
Language

regionalBlocks languages

countriescountries
Country

name: String
alpha2Code : String
population : Long
...
 

b.2
City

name: String
lattitude: String
langitude: String

1&2

1&2

3

4

b
in

d
ed

country

*
countries

languages

*

cBinding model

UML model

3

4

4

preferredName:"Country"

GET http://host/ODAService/Countries('ES')?$expand=regions

f

Restcountries

Battuta

Figure 8.4: APICOMPOSER illustrative example.

Figure 8.4.d shows the OData Entity model created by joining the ele-
ments of both data models and resolving the match between the Country
entities. As can be seen, the Country class is shared between both APIs and
includes properties and relationships coming from both APIs. Figure 8.4.e
shows an excerpt of the Metadata document of the OData Entity model. This
document can be retrieved by appending $metadata to the URL of the OData
application and allows end-users to understand how to query the data.

Figure 8.4.f shows an example of an OData request to retrieve the
details of Spain and its regions using the query option $expand6. This
request relies on the concept binding for Country, which allows process
the request using RESTCOUNTRIES API (mainly for information about the
country) and BATTUTA API (for information about the regions). Thus, the

6$expand specifies that the related resources have to be included in line with retrieved
one.

144



8.5. TOOL SUPPORT

Figure 8.5: Screenshot of APICOMPOSER: API importer wizard.

request is traced back to both RESTCOUNTRIES and BATTUTA APIs (i.e., the
operations /alpha/{code} and /region/{code}/all, respectively), which
are therefore queried. Figure 8.4.g shows the response in OData format.

8.5 TOOL SUPPORT

We created a proof-of-concept tool implementing our approach which we
made available as an Open Source application7. Our tool has been imple-
mented as a Java web application which can be deployed in any Servlet
container (e.g., APACHE TOMCAT8). The application relies on JSF, a server-
side technology for developing Web applications; and PRIMEFACES9, a UI
framework for JSF applications; to implement a wizard guiding the user
through the steps of the API importer and displaying the different mo-
dels. The OpenAPI metamodel, the extended OpenAPI metamodel, and
the binding metamodel have been implemented using the EMF. OData
implementation relies on APACHE OLINGO10 to provide support for OData
entity model, OData query language, and serialization. Figure 8.5 shows a
screenshort from APICOMPOSER highlighting the API importer wizard.

7https://github.com/SOM-Research/api-composer
8http://tomcat.apache.org/
9http://www.primefaces.org

10http://olingo.apache.org/

145

https://github.com/SOM-Research/api-composer
http://tomcat.apache.org/
http://www.primefaces.org
http://olingo.apache.org/


CHAPTER 8. COMPOSING REST APIS

8.6 RELATED WORK

Most of the previous works on REST APIs composition are tight to specific
API description languages [Gar+16]. For instance, some of them relied on
WADL and HTML for RESTful Services (hREST) to describe the behavior
of REST APIs, and Web Service Modeling Ontology (WSMO) and Semantic
Annotation of Web Resources (SA-REST) to add semantic annotations (e.g.,
[Pau09; DRZ10; LG10]). However, none of them gained a broad support
mainly because those languages were not successfully adopted [Gar+16].
Verborgh et al. [Ver+17] proposes an approach that relies on hypermedia to
compose REST APIs. However, in practice, most REST APIs do not provide
hyperlinks to navigate through them. We decided to rely on the OpenAPI
specification, which can be seen as a reference solution for REST APIs. The
emergence of OpenAPI definitions has motivated initiatives to annotate
OpenAPI definitions with semantic descriptions [CD17; Mus+16] and iden-
tify APIs for selection [BGD17]. Our approach differs from these works by
putting OpenAPI specification at the core of the composition strategy, but
we can profit in the future from these works (e.g., by considering semantic
descriptions for concept matching).

Our approach focuses on the composition of data-oriented APIs, which
allows us to rely on the family of approaches proposed for JSON data [CC14]
and in the database world for schema matching and merging [RB01; Bor+07;
BLN86]. To the best of our knowledge, only the work by Serrano et al. [Ser+17]
proposes a similar approach to ours but theirs require annotating REST
APIs with Linked-Data ontologies and uses SPARQL to query to composed
APIs.

8.7 SUMMARY

This chapter presented a model-based approach to automatically compose
and orchestrate data-driven REST APIs. We relied on the OpenAPI and
OData specifications to describe the resources of REST APIs and provide
query support, respectively. Our approach parses OpenAPI definitions to ex-
tract data models, expressed as UML models, which are combined following
a pragmatic matching strategy to create a global data model representing
the union of all the data for the input APIs. The global model is exposed as
an OData application, thus allowing users to easily perform queries using
the OData query language. Queries on the global model are automatically
translated into queries on the underlying individual APIs.

146



CHAPTER

9
Conclusions and Future Work

This chapter draws the conclusions of this thesis in Section 9.1 and presents
new ideas for future work in Section 9.2.

9.1 CONCLUSIONS

This thesis presented a model-driven approach to facilitate the design, im-
plementation, composition, and consumption of REST APIs. Our approach
mainly targeted (i) the OpenAPI specification which has become the pre-
ferred format to define REST APIs, and (ii) OData which is focused on
data-centric REST APIs and has gained momentum because of the emer-
gence of Open Data initiatives.

We presented a set of model-based representations and modeling tools for
OpenAPI and OData. For both, we provided a metamodel and a UML profile,
thus giving users the flexibility to choose the representation that suits them
best. By targeting the Eclipse platform, users can rely on a plethora of model-
based tools to perform tasks such as (i) model-to-model transformations (e.g.,
ATL1, ECLIPSE QVT OPERATIONAL2), (ii) code generation (e.g., ACCELEO3,
EGL4), (iii) model validation (e.g., ECLIPSE OCL5, EPSILON VALIDATION

1https://www.eclipse.org/atl/
2https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
3https://www.eclipse.org/acceleo/
4https://www.eclipse.org/epsilon/doc/egl/
5https://projects.eclipse.org/projects/modeling.mdt.ocl

147

https://www.eclipse.org/atl/
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://www.eclipse.org/acceleo/
https://www.eclipse.org/epsilon/doc/egl/
https://projects.eclipse.org/projects/modeling.mdt.ocl


CHAPTER 9. CONCLUSIONS AND FUTURE WORK

LANGUAGE (EVL)6), (iv) model weaving (e.g., EMF VIEWS7), and (v) model
comparison (e.g., EMF COMPARE8). These resources set the foundations for
the rest of the contributions of this thesis.

We presented EMF-REST, our solution to enable model management
via REST APIs, thus unlocking modeling tasks which currently rely on
heavy desktop environments. EMF-REST paves the way to develop model-
based solutions relying on the Cloud as well as an enhanced collaborative
support for Web-based modeling tools.

We presented APIDISCOVERER, our example-driven approach to dis-
cover Web API specifications, thus helping developers increase the exposure
of their APIs without fully writing API specifications and benefit from
OpenAPI tooling infrastructure (e.g., generating documentation, generating
SDKs). These specifications can be stored in a public repository where devel-
opers can use them. We believe our process and repository is a significant
step forward towards API reuse, helping developers to find and integrate
the APIs they need to provide their software services.

We presented APITESTER, our approach to automate specification-based
REST API testing by relying on OpenAPI. APITESTER covers both nominal
test cases (i.e., with correct data input) and faulty test cases (i.e., with incor-
rect data input) to test APIs in correct scenarios and also in the presence
of invalid data inputs. We validated our approach using the APIs listed in
APIS.GURU9. Our experiments showed good coverage levels and revealed
that errors are generally found errors in the specification of the APIs and
their implementations.

We presented APIGENERATOR, our model-driven approach to generate
OData REST APIs from conceptual data models. APIGENERATOR aims at
bringing more agility to the Web development process by providing ready-to-
run Web APIs out of data models. Also, our approach advances towards the
definition of an MDE infrastructure for the generation of OData services,
where developers can rely on a plethora of modeling tools to easily design,
generate and evolve their web applications.

Finally, we presented APICOMPOSER which proposes a lightweight
model-driven approach to compose and orchestrate data-centric REST APIs.
APICOMPOSER relies on OpenAPI to describe the input APIs and OData to
expose the global API combining all these APIs. The global model is exposed
as an OData application, thus allowing users to easily perform queries using

6https://www.eclipse.org/epsilon/doc/evl/
7https://www.atlanmod.org/emfviews/
8https://www.eclipse.org/emf/compare/
9https://apis.guru/openapi-directory/

148

https://www.eclipse.org/epsilon/doc/evl/
https://www.atlanmod.org/emfviews/
https://www.eclipse.org/emf/compare/
https://apis.guru/openapi-directory/


9.2. FUTURE WORK

the OData query language. Queries on the global model are automatically
translated into queries on the underlying individual APIs. In case users are
not familiar with OData, OpenAPI definitions could also be easily derived
from OData services using tools such as ODATA-OPENAPI10. Our approach
advances towards the automatic composition of REST APIs.

Collectively, the presented contributions constitute an ecosystem of so-
lutions which automate different tasks related to REST APIs development
and consumption. We believe such contributions to be of a great value to
Web APIs developers who want to bring more agility to their development
tasks. Furthermore, they advance the state of the art of automated software
engineering for REST APIs development and consumption.

9.2 FUTURE WORK

This section presents some ideas for future work. We will propose first some
possible extensions of the contributions of this thesis. Later, we will present
new ideas for possible research lines which could extend the work presented
in this thesis.

9.2.1 Current Contributions

MODELING APIS. The resources presented in Chapter 3 could be ex-
tended to cover more than functionalities of REST APIs. For instance,
we are interested in extending the OpenAPI metamodel and profile
to add ontology and vocabulary concepts to describe the APIs on both
syntactical level and semantic level. This will help identifying what
the APIs offer and therefore prepare the ground for semantic-based
composition of REST APIs. We aim to complete our resources with
Quality of Service (QoS) and business plan aspects, which play a fun-
damental role in the API economy. This information will help in the
selection process of REST APIs specially when many APIs offer similar
functionalities.

We also envision to enrich our metamodel with OCL expressions with
the goal of calculating metrics that could be used to ensure high-quality
models. Such metrics could help in the recommendation of REST APIs
based on their design quality (e.g., GET operations should not have
body parameters) and the quality of their definitions (e.g., does the

10https://github.com/oasis-tcs/odata-openapi

149

https://github.com/oasis-tcs/odata-openapi


CHAPTER 9. CONCLUSIONS AND FUTURE WORK

definition include the data structures consumed and produced by the
API?).

Additionally, we would like to investigate new ways to represent Open-
API and OData models such as a graphical notation in order to vi-
sualize the functionalities of REST APIs and therefore facilitate un-
derstanding them. This may involve creating a graphical editor using
model-based frameworks such as SIRIUS11 or GRAPHITI12 to create
and visualize the diagrams.

We also plan to support the newly released version of OpenAPI (i.e.,
OpenAPI 3) as it is getting more adoption, and help migrating to this
version. To do so, we will need to create a new metamodel for OpenAPI
3 and a transformation to derive OpenAPI 3 models from OpenAPI 2
models.

Regarding OData, we aim at extending our OData metamodel and
OData profile to capture additional OData behavioral concepts such
as functions and actions to enable the design and generation of more
complex aspects.

EMF-REST. We plan to extend our EMF-REST approach in order
to include a small configuration DSL to help designers parameterize
the structure of the generated API (e.g., configuring the URIs to the
resources, customizing the data structure consumed and produced by
the API, configuring the part of the metamodel to be exposed). This
will enable the decoupling between the generated REST API and the
back-end model, thus allowing both to evolve separately.

We are also interested in exploring the benefits of using EMF-REST
in combination with client-side modeling environments, for instance,
in ECLIPSE, thus enabling developers to collaborate and deal with
large EMF models in a transparent way (i.e., models in Eclipse that
are remotely stored using an EMF-REST back-end). To this end, we
would like to support a different persistence strategy that promotes
scalability and allows the definition of very large models (we currently
support the default persistence strategy provided by EMF using XMI
files). For instance, we aim to investigate the use of alternative EMF
persistence frameworks such as NEOEMF [Dan+17] and CDO13 to
store EMF models in graph databases. This integration may allow

11https://www.eclipse.org/sirius/
12https://www.eclipse.org/graphiti/
13https://www.eclipse.org/cdo/

150

https://www.eclipse.org/sirius/
https://www.eclipse.org/graphiti/
https://www.eclipse.org/cdo/


9.2. FUTURE WORK

EMF-REST generated APIs to use less memory (i.e., no need to load
the entire model in memory), gain more speed (i.e., saving model
into the desk may be costly) and deal with concurrency issues more
efficiently.

We would also like to explore a possible extension of the EMF-REST
approach that does not require the generation of the EMF Java API. To
do so, we need to generate a layer that serves as a proxy for REST calls
and delegate the execution of such calls to the EMF API, then retrieve
the results and send them to the client as REST responses. This will
enable the support of existing metamodels that already have their
customized Java API which cannot be regenerated (e.g., UML214).

APIDISCOVERER. We are interested in extending APIDISCOVERER

in order to discover other aspects such as non-functional properties,
semantic definitions, and the security mechanisms of the APIs un-
der scrutiny, and to support non-JSON data (e.g., XML). The non-
functional properties and semantic definitions will rely on the exten-
sion of the OpenAPI metamodel presented before. The discovery of non-
functional properties will require performing non-functional tests such
as load tests, while the discovery of semantic annotations will require
studying the state of the art of ontology matching algorithms [ORG15]
and the support for automatic semantic annotations of Web services
[TM15]. Furthermore, the discovery of security mechanisms will re-
quire performing security tests to determine the parameters that grant
the authorizations to the API (i.e., API keys, when such parameters
are missing the API returns a 403 Forbidden or 401 Unauthorized
response).

The discovery process per se could also be improved by extending our
approach to support the generation of call examples based on the
textual analysis of the API documentation websites, thus speeding up
the process of interacting with the API to infer its specification. We
plan to systematically apply our process to a large number of APIs
(linked from other directories or repositories) in order to contribute to
current repositories of APIs and therefore help developers facilitate
the integration of more APIs.

Finally, we want to support also OpenAPI 3 and give the user the
choice to choose between version 2 and 3 in the discovery process.
The support for OpenAPI 3 will require a metamodel that represents

14https://www.eclipse.org/modeling/mdt/?project=uml2

151

https://www.eclipse.org/modeling/mdt/?project=uml2


CHAPTER 9. CONCLUSIONS AND FUTURE WORK

the OpenAPI 3 specification. OpenAPI 3 includes some new features
such as links between operations and an enhanced support for JSON
schema (e.g., support of oneOf) which will present new challenges for
APIDISCOVERER which, for instance, will have to match operation
responses with operation parameters to find links between them.

APITESTER. We are interested in extending APITESTER with the goal
to increase the coverage levels by improving our parameter inference
technique. For instance, we can rely on natural language processing
techniques to infer parameter values and constraints from the pa-
rameter descriptions. We could also rely on the OpenAPI metamodel
extension proposed before to support semantic annotations and the
APIDISCOVERER extension to discover semantic definitions to infer
parameter values. The usage of search-based techniques to generate
test cases could also be useful here.

We also plan to extend our approach in order to support OpenAPI 3
which will allow us to deal with dependencies between operations and
side-effects caused by executing test cases. Thus, this would involve
extending our TestSuite metamodel in order support (i) links between
test steps which will require adding a property transfer mechanism,
and (ii) pre- and post- requests. The former will allow us to support
integrity test cases which evaluate the life-cycle of a particular resource
in a REST API, while the latter will allow us to create pre- and post-
operations which prepare data for a test case and manage side-effects,
respectively.

We would like also to extend APITESTER to generate other kinds of
test cases such as load tests and security test cases. This will require
extending the TestSuite metamodel to support these test cases and
creating new rules to generate such tests by relying on the proposed
extension of the OpenAPI metamodel to support non-functional prop-
erties.

APIGENERATOR. We plan to extend our APIGENERATOR approach to
support a number of features commonly used in any Web infrastruc-
ture such as authentication and encryption. To do so, we envision to
develop a DSL that helps developers tune their API definition (e.g.,
authentication mechanisms, encryption). We need to combine this DSL
with the OData metamodel to generate a REST API that takes into
consideration these constraints and relies on well known frameworks
to support them (e.g., SPRING SECURITY for authentication).

152



9.2. FUTURE WORK

We are interested in extending our code generation facility to support
more back-end technologies (e.g., .NET, NODE.JS) and data sources
(e.g., NOSQL databases). We also plan to extend our APIGENERA-
TOR approach to comply with the advanced OData conformance level,
which implies adding support to other OData functionalities such as
canonical functions. This will imply relying on the extension of the
OData metamodel presented before.

We plan to add support for OCL to enrich the definition of the OData
metamodel in order to define the logic behind the functions. We would
like to extend our UML-to-OData transformation in order to support
enriched UML models which include operations and OCL constraints
to generate fine-grained OData models.

Finally, we envision to integrate our OData models with other web-
based modeling languages like IFML that focus on the modeling of the
user interaction with the web application. With this integration we
aim to provide a rich modeling environment combining both front-end
and back-end development.

APICOMPOSER. We are interested in extending the APICOMPOSER

approach to consider semantic descriptions for improving the matching
strategy and non-functional aspects (like QoS or price) in the genera-
tion of the global model when alternative APIs have a high degree of
overlapping. To do so, we need to rely on the extensions of the Open-
API metamodel and the extension of the APIDISCOVERER approach to
support them presented before. We would also like to work on a DSL
to configure the user’s preferences for choosing resolution paths based
on non-functional constraints (e.g., by using free APIs when possible).

We would like to extend our approach in order to support not only data
retrieval but also data modification (i.e., support all CRUD operations).
Such task is not trivial since it may require replicating changes in
many APIs. We are also interested in improving the maintainability
of our approach by allowing the update of the composed APIs as they
evolve.

Finally, we envision to integrate an analysis framework to evaluate
the composed API by analyzing the logs related to requests. User
interaction with the system could be used to evaluate different parts
of the composed API which will contribute to improve the system. For
this purpose, several usage metrics (e.g., highly demanded parts of
the global API, the average time of a request, or failure rate) and

153



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

improvement actions (e.g., substitute an API, fix an API) have to be
defined.

ALL-IN-ONE. We plan to create a variety of industrial case studies to
validate the contributions of this thesis. The goal of such studies is
to demonstrate how our contributions could be integrated together in
one scenario with proper empirical measures to sustain the underlying
goal of this thesis.

9.2.2 New Research Lines

Other than the future work related to the different contributions of this
thesis, we identified new research lines related to the topic of this thesis.

FLEXIBLE FRONT-END QUERIES. REST APIs typically offer a set of
operations over HTTP protocol. However, most of these APIs do not
respect all the required REST constraints [Rod+16] which makes using
them confusing. OData15 aims at solving this problem by defining a
set of best practices for building and consuming “true” REST APIs. We
presented an approach to model and generate REST APIs in OData
style. This situation motivated also the creation of an alternative to
REST called GraphQL16. GRAPHQL has been created by FACEBOOK

in 2012 and released as Open Source in 2015. GRAPHQL is a query
language, specification, and set of tools designed for building optimized
and flexible Web APIs. It is designed to operate over a single endpoint
via HTTP using a query language and proposes its own conventions.

We would like to extend the work presented in this thesis in order
to support GRAPHQL as well. This extension will allow our work
to enrich the range of supported Web APIs approaches and therefore
reach a bigger impact on the field of Web APIs engineering. To integrate
GRAPHQL into our approach we will need to create first a metamodel
to represent GRAPHQL schemas. This metamodel will be then used
by our model-driven approach to design, test and generate GRAPHQL
APIs. In the following we describe the different extensions to our
contributions to support GRAPHQL.

15http://www.odata.org/
16https://graphql.org/

154

http://www.odata.org/
https://graphql.org/


9.2. FUTURE WORK

APIGENERATOR. We would like to extend our APIGENERATOR

approach to support the generation of GRAPHQL APIs from con-
ceptual models. To achieve this goal, we will need to (i) create
a transformation that derive GRAPHQL models from UML mo-
dels, (ii) create a DSL to parametrize the generation process
(e.g., authentication mechanism, targeted data base), and (iii)
use the GRAPHQL model and the DSL to generate a ready-to-
deploy GRAPHQL API and a database DDL targeting the chosen
database.

APITESTER. We would like to extend our APITESTER approach
to support the generation of test cases for GRAPHQL APIs. To do
so, we will need to (i) derive a GRAPHQL model from a GRAPHQL
schema, (ii) adapt our parameter values inference heuristics to
GRAPHQL, (iii) extend our TestSuite metamodel, and (iv) create
a set of rules to generate test cases based on the GRAPHQL
query language with the goal to reach a high coverage level of
the schema parts and the GRAPHQL query options (e.g, fields,
arguments). Such task in not trivial since a GRAPHQL API shapes
its response based on the parameters of the query (e.g., filter
fields).

APICOMPOSER. We plan to explore a possible extension of our
APICOMPOSER approach to support GRAPHQL as both a source
API and query language for the global API. To do so, we will need
to (i) derive UML models from GRAPHQL schemas, (ii) expose
the global model as a GRAPHQL schema, and (ii) create the
logic to transform GRAPHQL queries into requests to the source
APIs then compose the responses and send them in GRAPHQL
format. This will allow our approach to create a flexible hybrid
API combining different data sources and supporting different
query languages.

NON-FUNCTIONAL REQUIREMENTS. Non-functional requirements de-
fine the requirements that are not directly related to the functionality
of a service. However, in the literature there is still a debate about what
properties should be considered functional or non-functional. Chung et
al. [CS09] addressed the question of non-functional requirements in
Software engineering. The qualitative perspective, which is understood
as a set of concerns related to the concept of quality (e.g., reliability,

155



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

interoperability), constitutes the heart of non-functional requirements.
While designing or composing Web APIs, a particular attention should
be paid to non-functional concerns, especially in vulnerable applica-
tions (e.g., flights booking, banks) where quality of service is required.

As an extension of our contributions, we would like to take into consid-
eration non-functional requirements in our processes. This will have
a deep impact on the artifacts developed in this thesis. We already
highlighted some possible extensions to our contributions that go into
this direction.

As mentioned before, we are interested in extending the OpenAPI
metamodel and profile to add non-functional aspects (e.g., QoS, busi-
ness plans). This will require an investigation to determine the most
relevant non-functional requirements for REST APIs and a study to
identify the different business plans adopted by API providers (e.g.,
freemium, credits, rate-limiting). Then we will need to model these
concepts and integrate them into our metamodels. In the following we
describe how plan to extend our contributions to support non-functional
requirements.

APIDISCOVERER. We would like to extend our APIDISCOVERER

approach to monitor APIs and calculate these non-functional
aspects. We would also like to use web scraping and natural lan-
guage processing techniques to extract business plans from Web
API repositories (e.g., PROGRAMMABLEWEB17). The results of the
latter will allow us to perform a statical analysis to determine
the trends in Web API economy.

APIDISCOVERER. We are also interested in extending our
APITESTER approach to generate non-functional test cases (e.g.,
load tests, speed tests) which check that non-functional aspects
are respected (e.g., average response time). Such test cases are
very important to ensure the quality of Web APIs specially for
those generating a huge traffic and those having a Service Level
Agreement (SLA) with their customers.

APICOMOPSER. We would like to extend our APICOMPOSER ap-
proach to take into consideration the non-functional aspects when
composing REST APIs. This is specially useful to choose the most

17https://www.programmableweb.com/

156

https://www.programmableweb.com/


9.2. FUTURE WORK

suitable API for a query in the case of overlapping between APIs
(e.g., free APIs, fastest APIs).

SMART CITIES. The Smart City concept defines an urban area which
relies on collected data to efficiently manage resources in order to
enhance the life quality of citizen. This data include data collected
from citizens, devices, and assets which are processed in order to serve
different application domains, namely: natural resources and energy,
transport and mobility, buildings, living, government, and economy
and people [Nei+14]. Smart Cities integrate Internet of things (IoT),
which defines a network of devices connected and exchanging data, to
achieve its goals. Smart Cities rely also on data exposed by Web APIs
(e.g., Open Data APIs) to optimize the services they provide.

We see smart cities as a potential direction to apply the work presented
in this thesis. Since Web APIs play an important role in the Smart
Cities movement, we plan to extend our APIGENERATOR approach in
order to generate REST APIs from already existing data sources (e.g.,
databases, XML, JSON) to facilitate the use of these data in smart
cities tasks. To do so, we need to infer the data model from the data
source and generate the REST API accordingly. We would also like to
target the development of applications that consume IoT data. In fact,
IoT technologies are evolving but mainly focus on the technological and
infrastructure aspects to create such systems. Front-end development
of IoT, on the other hand, still needs attention and research on this
direction will contribute in the adoption of IoT solutions [BUA17].
Thus, as we did with REST APIs, we would like to define model-driven
approaches to facilitate the design of applications that consume IoT
applications. We are interested in extending the work of Brambilla
and al. [BUA17], which proposes a model-driven approach to design
user interfaces of IoT systems by extending IFML language to support
IoT, to target also the generation of Web APIs that consume IoT data.
We would also like to extend our APICOMPOSER approach in order
to apply it to smart cities use cases by (i) integrating also IoT data
to optimize city operations (e.g., searching for apartments taking into
consideration not only the price and but also pollution and noise levels),
and (ii) generating mobile applications for such use cases. By doing
so, we aim to offer normal citizens the tools to contribute to the Smart
City movement.

157



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

158



Acronyms

API Application Programming Interface.
ATL ATL Transformation Language.

CASE Computer Aided Software Engineering.
CDI Context Dependency Injection.
CORS Cross-Origin Resource Sharing.
CSDL Common Schema Definition Language.

DDL Data Definition Language.
DSL Domain Specific Language.

EDM Entity Data Model.
EGL Epsilon Generation Language.
EJB Enterprise Java Bean.
EMF Eclipse Modeling Framework.
ER Entity Relationship.
EVL Epsilon Validation Language.

GMF Graphical Modeling Framework.

HATEOAS Hypermedia As The Engine Of Application
State.

hREST HTML for RESTful Services.

159



ACRONYMS

HTTP Hypertext Transfer Protocol.
HTTPS Hypertext Transfer Protocol Secure.

IFML Interaction Flow Modeling Language.
IoT Internet of things.

JAX-RS Java API for Representational State Transfer.
JAXB Java Architecture for XML Binding.
JPA Java Persistence API.
JSF JavaServer Faces.
JSON JavaScript Object Notation.

MDA Model-Driven Architecture.
MDE Model-Driven Engineering.
MDT Model Development Tools.
MDWE Model Driven Web Engineering.
MIME Multipurpose Internet Mail Extensions.
MOF Meta-Object Facility.
MTL Model-To-Text Transformation Language.

OAI OpenAPI Initiative.
OCL Object Constraint Language.
OData Open Data Protocol.
OMG Object Management Group.

PIM Platform-Independent Model.
POM Project Object Model.
PSM Platform-Specific Model.

QoS Quality of Service.
QVT Query/View/Transformation.

RDF Resource Description Framework.
REST Representational State Transfer.
RFC Request for Comments.

SA-REST Semantic Annotation of Web Resources.
SDK Software Development Kit.
SLA Service Level Agreement.
SOAP Simple Object Access Protocol.

160



ACRONYMS

SQL Structured Query Language.
SSL Secure Sockets Layer.

TLS Transport Layer Security.

UML Unified Modeling Language.
URI Uniform Resource Identifier.
URL Uniform Resource Locator.

WADL Web Application Description Language.
WSDL Web Services Description Language.
WSMO Web Service Modeling Ontology.

XMI XML Metadata Interchange.
XML Extensible Markup Language.

YAML YAML Ain’t Markup Language.

161





Bibliography

[AC13] Camilo Alvarez and Rubby Casallas. “MTC Flow: A Tool to
Design, Develop and Deploy Model Transformation Chains”.
In: Workshop on ACadeMics Tooling with Eclipse. 2013, pp. 1–
9.

[Arc17] Andrea Arcuri. “RESTful API Automated Test Case Genera-
tion”. In: International Conference on Software Quality, Relia-
bility and Security. 2017, pp. 9–20.

[Aué+18] Joop Aué, Maurício Aniche, Maikel Lobbezoo, and Arie van
Deursen. “An Exploratory Study on Faults in Web API Inte-
gration in a Large-Scale Payment Company”. In: International
Conference on Software Engineering: Software Engineering in
Practice. 2018, pp. 13–22.

[Bai+05] Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, and Yinong Chen.
“WSDL-based Automatic Test Case Generation for Web Ser-
vices Testing”. In: International Workshop on Service-Oriented
System Engineering. 2005, pp. 207–212.

[Bar+09] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and An-
drea Polini. “WS-TAXI: A WSDL-based Testing Tool for Web
Services”. In: International Conference on Software Testing
Verification and Validation. 2009, pp. 326–335.

[Ben+14] Clara Benac Earle, Lars-Åke Fredlund, Ángel Herranz, and
Julio Mariño. “Jsongen: A QuickCheck Based Library for Test-

163



BIBLIOGRAPHY

ing JSON Web Services”. In: Workshop on Erlang. 2014, pp. 33–
41.

[BF+14] Marco Brambilla, Piero Fraternali, et al. Interaction Flow Mod-
eling Language. Tech. rep. Object Management Group (OMG),
2014.

[BFM05] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform
Resource Identifier (URI): Generic Syntax, RFC 3986. Tech. rep.
2005.

[BGD17] Luciano Baresi, Martin Garriga, and Alan De Renzis. “Mi-
croservices Identification Through Interface Analysis”. In: Eu-
ropean Conference on Service-Oriented and Cloud Computing.
2017, pp. 19–33.

[BHH13] Mustafa Bozkurt, Mark Harman, and Youssef Hassoun. “Test-
ing and Verification in Service-Oriented Architecture: A Sur-
vey”. In: Software Testing, Verification and Reliability 23.4
(2013), pp. 261–313.

[BLN86] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe.
“A Comparative Analysis of Methodologies for Database Schema
Integration”. In: ACM Computing Surveys (CSUR) 18.4 (1986),
pp. 323–364.

[Bor+07] Artur Boronat, José Á Carsí, Isidro Ramos, and Patricio Lete-
lier. “Formal Model Merging Applied to Class Diagram Integra-
tion”. In: Electronic Notes in Theoretical Computer Science 166
(2007), pp. 5–26.

[BUA17] Marco Brambilla, Eric Umuhoza, and Roberto Acerbis. “Model-
Driven Development of User Interfaces for IoT Systems via
Domain-Specific Components and Patterns”. In: J. Internet
Services and Applications 8.1 (2017), 14:1–14:21.

[BW14] Manfred Bortenschlanger and Steven Willmott. The API Owner’s
Manual. Tech. rep. 3Scale, 2014.

[CC14] Javier Luis Cánovas Izquierdo and Jordi Cabot. “Composing
JSON-Based Web APIs”. In: International Conference on Web
Engineering. 2014, pp. 390–399.

[CC16] Javier Luis Cánovas Izquierdo and Jordi Cabot. “JSONDis-
coverer: Visualizing the Schema Lurking Behind JSON Docu-
ments”. In: Knowledge-Based Systems 103 (2016), pp. 52–55.

164



BIBLIOGRAPHY

[CD17] Marco Cremaschi and Flavio De Paoli. “Toward Automatic Se-
mantic API Descriptions to Support Services Composition”. In:
European Conference on Service-Oriented and Cloud Comput-
ing. 2017, pp. 159–167.

[CFB00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. “Web Modeling
Language (WebML): A Modeling Language for Designing Web
Sites”. In: Computer Networks 33 (2000), pp. 137–157.

[CFB17] Hanyang Cao, Jean-Rémy Falleri, and Xavier Blanc. “Auto-
mated Generation of REST API Specification from Plain HTML
Documentation”. In: Internationl Conference on Service-Oriented
Computing. Springer. 2017, pp. 453–461.

[CG12] Jordi Cabot and Martin Gogolla. “Object Constraint Language
(OCL): A Definitive Guide”. In: Formal Methods for Model-
Driven Engineering. Springer, 2012, pp. 58–90.

[CK09] Sujit Kumar Chakrabarti and Prashant Kumar. “Test-the-
REST: An Approach to Testing RESTful Web-Services”. In: In-
ternational Conference on Advanced Service Computing. 2009,
pp. 302–308.

[CS09] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. “On
Non-Functional Requirements in Software Engineering”. In:
Conceptual modeling: Foundations and applications. Vol. 5600.
2009, pp. 363–379.

[Dan+17] Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo
Tisi, Yoann Vernageau, Abel Gómez, and Jordi Cabot. “NeoEMF:
A Multi-Database Model Persistence Framework for Very Large
Models”. In: Science of Computer Programming 149 (2017),
pp. 9–14.

[DRZ10] Teodoro De Giorgio, Gianluca Ripa, and Maurilio Zuccalà. “An
approach to enable replacement of SOAP services and REST
services in lightweight processes”. In: International Conference
on Web Engineering. 2010, pp. 338–346.

[EN10] Ramez Elmasri and Shamkant Navathe. Fundamentals of
Database Systems. Addison Wesley, 2010.

[EZG14] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. “Web
API Growing Pains: Stories from Client Developers and their
Code”. In: International Conference on Software Maintenance,
Reengineering and Reverse Engineering. 2014, pp. 84–93.

165



BIBLIOGRAPHY

[EZG15] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. “Web
API Growing Pains: Loosely Coupled Yet Strongly Tied”. In:
Journal of Systems and Software 100 (2015), pp. 27–43.

[FB15] Tobias Fertig and Peter Braun. “Model-driven Testing of REST-
ful APIs”. In: International Conference on World Wide Web.
2015, pp. 1497–1502.

[Fid+12] Robson Do Nascimento Fidalgo, Elvis Maranhão De Souza,
Sergio España, Jaelson Brelaz De Castro, and Oscar Pastor.
“EERMM: a Metamodel for the Enhanced Entity-Relationship
Model”. In: International Conference on Conceptual Modeling.
2012, pp. 515–524.

[Fie+99] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry
Masinter, Paul Leach, and Tim Berners-Lee. HTTP/1.1, RFC
2616. Tech. rep. 1999.

[Fie00] Roy Thomas Fielding. “Architectural Styles and the Design of
Network-based Software Architectures”. PhD thesis. 2000.

[Fra+16] Jonathan Frankle, Peter-Michael Osera, David Walker, and
Steve Zdancewic. “Example-Directed Synthesis: A Type-Theoretic
Interpretation”. In: ACM Symposium on Principles of Program-
ming Languages. 2016, pp. 802–815.

[Fra99] Piero Fraternali. “Tools and Approaches for Developing Data-
intensive Web Applications: A Survey”. In: ACM Computing
Surveys 31.3 (1999), pp. 227–263.

[Gar+16] Martin Garriga, Cristian Mateos, Andres Flores, Alejandra
Cechich, and Alejandro Zunino. “RESTful Service Composition
at a Alance: A Survey”. In: Journal of Network and Computer
Applications 60 (2016), pp. 32–53.

[Gra96] Matthew Gray. Growth and Usage of the Web and the Internet.
Tech. rep. 1996.

[Had06] Marc J. Hadley. Web Application Description Language (WADL).
Tech. rep. 2006.

[Hau+14] F. Haupt, D. Karastoyanova, F. Leymann, and B. Schroth. “A
Model-Driven Approach for REST Compliant Services”. In:
International Conference on Web Services. 2014, pp. 129–136.

[HM08] Samer Hanna and Malcolm Munro. “Fault-Based Web Services
Testing”. In: International Conference on Information Technol-
ogy: New Generations. 2008, pp. 471–476.

166



BIBLIOGRAPHY

[HPB14] Ralf Handl, Michael Pizzo, and Mark Biamonte. OData JSON
Format Version 4.01. Tech. rep. OASIS, 2014.

[HRW11] John Hutchinson, Mark Rouncefield, and Jon Whittle. “Model-
Driven Engineering Practices in Industry”. In: International
Conference on Software Engineering. 2011, pp. 633–642.

[Hut+11] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar
Kristoffersen. “Empirical Assessment of MDE in Industry”.
In: International Conference on Software Engineering. 2011,
pp. 471–480.

[Jou+08] Frederic Jouault, Freddy Allilaire, Jean Bezivin, and Ivan
Kurtev. “ATL: A Model Transformation Tool”. In: Science of
Computer Programming 72.1-2 (2008), pp. 31–39.

[KK12] Nora Koch and Sergej Kozuruba. “Requirements Models as
First Class Entities in Model-Driven Web Engineering”. In:
International Conference on Web Engineering, Workshops. 2012,
pp. 158–169.

[Kle+15] Meike Klettke, Uta Störl, Stefanie Scherzinger, and OTH Re-
gensburg. “Schema Extraction and Structural Outlier Detec-
tion for JSON-based NoSQL Data Stores”. In: Conference on
Database Systems for Business, Technology, and Web. 2015,
pp. 425–444.

[LG10] Markus Lanthaler and Christian Gütl. “Towards a RESTful
service ecosystem”. In: International Conference on Digital
Ecosystems and Technologies. 2010, pp. 209–214.

[Lóp+15] Jesús J. López-Fernández, Jesús Sánchez Cuadrado, Esther
Guerra, and Juan de Lara. “Example-Driven Meta-Model De-
velopment”. In: Software & Systems Modeling 14.4 (2015),
pp. 1323–1347.

[Mas11] Mark Masse. REST API Design Rulebook: Designing Consistent
RESTful Web Service Interfaces. O’Reilly Media, Inc., 2011.

[Max+07] E.Michael Maximilien, Hernan Wilkinson, Nirmit Desai, and
Stefan Tai. “A Domain-Specific Language for Web APIs and
Services Mashups”. In: International Conference on Service-
Oriented Computing. 2007, pp. 13–26.

167



BIBLIOGRAPHY

[MCG10] Brambilla Marco, Jordi Cabot, and Michael Grossniklaus. “Tools
for Modeling and Generating Safe Interface Interactions in
Web Applications”. In: International Conference on Web Engi-
neering. 2010, pp. 482–485.

[Mor90] Larry J. Morell. “A Theory of Fault-based Testing”. In: IEEE
Transactions on Software Engineering 16.8 (1990), pp. 844–
857.

[Mot+11] Hamid Reza Motahari-Nezhad, Regis Saint-Paul, Fabio Casati,
and Boualem Benatallah. “Event Correlation for Process Dis-
covery from Web Service Interaction Logs”. In: International
Journal on Very Large Data Bases 20.3 (2011), pp. 417–444.

[Mus+16] Fathoni A Musyaffa, Lavdim Halilaj, Ronald Siebes, Fabrizio
Orlandi, and Sören Auer. “Minimally Invasive Semantifica-
tion of Light Weight Service Descriptions”. In: International
Conference on Web Services. 2016, pp. 672–677.

[Nei+14] Paolo Neirotti, Alberto De Marco, Anna Corinna Cagliano,
Giulio Mangano, and Francesco Scorrano. “Current Trends
in Smart City Initiatives: Some Stylised Facts”. In: Cities 38
(2014), pp. 25–36.

[Nie+07] O. Nierstrasz, M. Kobel, T. Girba, and M. Lanza. “Example-
Driven Reconstruction of Software Models”. In: European Con-
ference on Software Maintenance and Reengineering. 2007,
pp. 275–286.

[ODD17] Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter.
“Inter-Parameter Constraints in Contemporary Web APIs”. In:
International Conference on Web Engineering. 2017, pp. 323–
335.

[OMG14a] OMG. MDA Guide rev. 2.0. Tech. rep. Object Management
Group, 2014.

[OMG14b] OMG. Object Constraint Language. Tech. rep. Object Manage-
ment Group, 2014. URL: https://www.omg.org/spec/OCL/2.
4/PDF.

[OMG15] OMG. XML Metadata Interchange (XMI) Specification. Tech.
rep. Object Management Group, 2015. URL: https://www.omg.
org/spec/XMI/2.5.1/PDF.

168

https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/XMI/2.5.1/PDF
https://www.omg.org/spec/XMI/2.5.1/PDF


BIBLIOGRAPHY

[OMG16a] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transfor-
mation Specification. Tech. rep. Object Management Group,
2016. URL: https://www.omg.org/spec/QVT/1.3/PDF.

[OMG16b] OMG. OMG Meta Object Facility (MOF) Core Specification.
Tech. rep. Object Management Group, 2016. URL: https://
www.omg.org/spec/MOF/2.5.1/PDF.

[OMG17] OMG. OMG Unified Modeling Language (OMG UML). Tech.
rep. Object Management Group, 2017. URL: https://www.omg.
org/spec/UML/2.5.1/PDF.

[ORG15] Lorena Otero-Cerdeira, Francisco J Rodríguez-Martínez, and
Alma Gómez-Rodríguez. “Ontology Matching: A Literature
Review”. In: Expert Systems with Applications 42.2 (2015),
pp. 949–971.

[OX04] Jeff Offutt and Wuzhi Xu. “Generating Test Cases for Web
Services Using Data Perturbation”. In: Software Engineering
Notes 29.5 (2004), pp. 1–10.

[Pau09] Cesare Pautasso. “RESTful Web service composition with BPEL
for REST”. In: Data & Knowledge Engineering 68.9 (2009),
pp. 851–866.

[PHZ14a] Michael Pizzo, Ralf Handl, and Martin Zurmuehl. OData Com-
mon Schema Definition Language (CSDL) JSON Representa-
tion Version 4.01. Tech. rep. OASIS, 2014.

[PHZ14b] Michael Pizzo, Ralf Handl, and Martin Zurmuehl. OData Com-
mon Schema Definition Language (CSDL) XML Representation
Version 4.01. Tech. rep. OASIS, 2014.

[PHZ14c] Michael Pizzo, Ralf Handl, and Martin Zurmuehl. OData Ver-
sion 4.0 Part 1: Protocol. Tech. rep. OASIS, 2014.

[PHZ14d] Michael Pizzo, Ralf Handl, and Martin Zurmuehl. OData ver-
sion 4.0 part 2: URL Conventions. Tech. rep. OASIS, 2014.

[PHZ14e] Michael Pizzo, Ralf Handl, and Martin Zurmuehl. OData Ver-
sion 4.0 Part 3: Common Schema Definition Language (CSDL).
Tech. rep. OASIS, 2014.

[PR11] Ivan Porres and Irum Rauf. “Modeling Behavioral RESTful
Web Service Interfaces in UML”. In: ACM Symposium on Ap-
plied Computing. 2011, pp. 1598–1605.

169

https://www.omg.org/spec/QVT/1.3/PDF
https://www.omg.org/spec/MOF/2.5.1/PDF
https://www.omg.org/spec/MOF/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF


BIBLIOGRAPHY

[PZL08] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann.
“RESTful Web Services vs. “Big”’ Web Services”. In: Interna-
tional Conference on World Wide Web. 2008, pp. 805–814.

[QBC13] Silvia Quarteroni, Marco Brambilla, and Stefano Ceri. “A Bottom-
up, Knowledge-Aware Approach to Integrating and Querying
Web Data Services”. In: ACM Transactions on the Web 7.4
(2013), pp. 19–33.

[QN10] Xhevi Qafmolla and Viet Cuong Nguyen. “Automation of Web
Services Development Using Model Driven Techniques”. In:
International Conference on Computer and Automation Engi-
neering. Vol. 3. 2010, pp. 190–194.

[RAR13] Leonard Richardson, Mike Amundsen, and Sam Ruby. REST-
ful Web APIs. O’Reilly Media, Inc., 2013.

[RB01] Erhard Rahm and Philip A Bernstein. “A Survey of Approaches
to Automatic Schema Matching”. In: the VLDB Journal 10.4
(2001), pp. 334–350.

[Riv+13a] José Matías Rivero, Sebastian Heil, Julián Grigera, Martin
Gaedke, and Gustavo Rossi. “MockAPI: An Agile Approach
Supporting API-first Web Application Development”. In: Inter-
national Conference on Web Engineering. 2013, pp. 7–21.

[Riv+13b] José Matías Rivero, Sebastian Heil, Julián Grigera, Martin
Gaedke, and Gustavo Rossi. “MockAPI: an Agile Approach
Supporting API-first Web Application Development”. In: Inter-
national Conference on Web Engineering. 2013, pp. 7–21.

[Riv+14] José Matías Rivero, Sebastian Heil, Julián Grigera, Esteban
Robles Luna, and Martin Gaedke. “An Extensible, Model-driven
and End-User Centric Approach for API Building”. In: Interna-
tional Conference on Web Engineering. Ed. by Sven Casteleyn,
Gustavo Rossi, and Marco Winckler. 2014, pp. 494–497.

[RMM15] Diego Sevilla Ruiz, Severino Feliciano Morales, and Jesús
García Molina. “Inferring Versioned Schemas from NoSQL
Databases and its Applications”. In: International Conference
on Conceptual Modeling. 2015, pp. 467–480.

170



BIBLIOGRAPHY

[Rod+13] Roberto Rodríguez-Echeverría, Fernando Macías, Víctor M.
Pavón, José M. Conejero, and Fernando Sánchez-Figueroa.
“Model-Driven Generation of a REST API from a Legacy Web
Application”. In: International Conference on Web Engineering,
Workshops. 2013, pp. 133–147.

[Rod+15] Pablo Rodriguez Mier, Carlos Pedrinaci, Manuel Lama, and
Manuel Mucientes. “An Integrated Semantic Web Service Dis-
covery and Composition Framework”. In: IEEE Transactions
on Services Computing 9.4 (2015), pp. 537–550.

[Rod+16] Carlos Rodríguez, Marcos Baez, Florian Daniel, Fabio Casati,
Juan Carlos Trabucco, Luigi Canali, and Gianraffaele Percan-
nella. “REST APIs: a large-scale analysis of compliance with
principles and best practices”. In: International Conference on
Web Engineering. Springer. 2016, pp. 21–39.

[SAM15] SM Sohan, Craig Anslow, and Frank Maurer. “SpyREST: Au-
tomated RESTful API Documentation Using an HTTP Proxy
Server (N)”. In: International Conference on Automated Soft-
ware Engineering. 2015, pp. 271–276.

[Sch+08] Wieland Schwinger, Werner Retschitzegger, Andrea Schauer-
huber, Gerti Kappel, Manuel Wimmer, Birgit Pröll, Cristina
Cachero Castro, Sven Casteleyn, Olga De Troyer, Piero Frater-
nali, et al. “A Survey on Web Modeling Approaches for Ubiq-
uitous Web Applications”. In: International Journal of Web
Information Systems 4.3 (2008), pp. 234–305.

[Sch06] Douglas C Schmidt. “Model-Driven Engineering”. In: IEEE
Computer Society 39.2 (2006), p. 25.

[SCL14] Angel Mora Segura, Jesús Sánchez Cuadrado, and Juan de
Lara. “ODaaS: Towards the Model-driven Engineering of Open
Data applications as Data Services”. In: International Confer-
ence on Enterprise Distributed Object Computing, Workshops
and Demonstrations. 2014, pp. 335–339.

[Sel03] Brian Selic. “The Pragmatics of Model-Driven Development”.
In: IEEE Software 20.5 (2003), pp. 19–25.

[Ser+08] Belkacem Serrour, Daniel P. Gasparotto, Hamamache Khed-
douci, and Boualem Benatallah. “Message Correlation and
Business Protocol Discovery in Service Interaction Logs”. In:

171



BIBLIOGRAPHY

International Conference on Advanced Information Systems
Engineering. 2008, pp. 405–419.

[Ser+17] Diego Serrano, Eleni Stroulia, Diana Lau, and Tinny Ng. “Linked
REST APIs: A Middleware for Semantic REST API Integra-
tion”. In: International Conference on Web Services. 2017, pp. 138–
145.

[She+14] Quan Z Sheng, Xiaoqiang Qiao, Athanasios V Vasilakos, Clau-
dia Szabo, Scott Bourne, and Xiaofei Xu. “Web Services Com-
position : A Decade’s Overview”. In: Information Sciences 280
(2014), pp. 218–238.

[SP04] Cristina Schmidt and Manish Parashar. “A Peer-to-Peer Ap-
proach to Web Service Discovery”. In: International Conference
on World Wide Web. 2004, pp. 211–229.

[SWK06] Andrea Schauerhuber, Manuel Wimmer, and Elisabeth Kap-
sammer. “Bridging Existing Web Modeling Languages to Model-
Driven Engineering: A Metamodel for WebML”. In: Interna-
tional Conference on Web Engineering. 2006.

[Ter+17] Branko Terzić, Vladimir Dimitrieski, Slavica Kordić, Gordana
Milosavljević, and Ivan Luković. “MicroBuilder: A Model-driven
Tool for the Specification of REST Microservice Architectures”.
In: International Conference on Information Society and Tech-
nology. 2017, pp. 179–184.

[TM15] Davide Tosi and Sandro Morasca. “Supporting the Semi-Automatic
Semantic Annotation of Web Services: A Systematic Literature
Review”. In: Information and Software Technology 61 (2015),
pp. 16–32.

[TV13a] Nírondes A. C. Tavares and Samyr Vale. “A Model Driven
Approach for the Development of Semantic RESTful Web Ser-
vices”. In: International Conference on Information Integration
and Web-based Applications & Services. 2013, p. 290.

[TV13b] Nírondes AC Tavares and Samyr Vale. “A Model Driven Ap-
proach for the Development of Semantic RESTful Web Ser-
vices”. In: International Conference on Information Integration
and Web-based Applications & Services. 2013, p. 290.

172



BIBLIOGRAPHY

[Val+07] Antonio Vallecillo, Nora Koch, Cristina Cachero, Sara Comai,
Piero Fraternali, Irene Garrigós, Jaime Gómez, Gerti Kappel,
Alexander Knapp, Maristella Matera, Santiago Meliá, Nathalie
Moreno, Birgit Pröll, Thomas Reiter, Werner Retschitzegger,
José Eduardo Rivera, Andrea Schauerhuber, Wieland Schwinger,
Manuel Wimmer, and Gefei Zhang. “MDWEnet: A Practical
Approach to Achieving Interoperability of Model-Driven Web
Engineering Methods”. In: International Conference on Web
Engineering, Workshops. 2007.

[Ver+17] Ruben Verborgh, Dörthe Arndt, Sofie Van Hoecke, Jos De Roo,
Giovanni Mels, Thomas Steiner, and Joaquim Gabarro. “The
Pragmatic Proof: Hypermedia API Composition and Execution”.
In: Theory and Practice of Logic Programming 17.1 (2017),
pp. 1–48.

[VP11] Pedro Valderas and Vicente Pelechano. “A Survey of Require-
ments Specification in Model-driven Development of Web Ap-
plications”. In: ACM Transactions on the Web 5.2 (2011), p. 10.

[W3C14a] W3C. Cross-Origin Resource Sharing. Tech. rep. W3C, 2014.
URL: https://www.w3.org/TR/cors/.

[W3C14b] W3C. RDF Schema 1.1. Tech. rep. W3C, 2014. URL: https:
//www.w3.org/TR/cors/.

[WK99] Jos Warmer and Anneke Kleppe. The Object Constraint Lan-
guage: Precise Modeling with UML. Addison-Wesley, 1999.

[XOL05] Wuzhi Xu, Jeff Offutt, and Juan Luo. “Testing Web Services by
XML Perturbation”. In: International Symposium on Software
Reliability Engineering. 2005, pp. 257–266.

[Yan+18] Jinqiu Yang, Erik Wittern, Annie T. T. Ying, Julian Dolby, and
Lin Tan. “Towards Extracting Web API Specifications from Doc-
umentation”. In: International Conference on Mining Software
Repositories. 2018, pp. 454–464.

[Zol+17] Christoforos Zolotas, Themistoklis Diamantopoulos, Kyriakos
C Chatzidimitriou, and Andreas L Symeonidis. “From Require-
ments to Source Code: A Model-Driven Engineering Approach
for RESTful Web Services”. In: Automated Software Engineer-
ing 24.4 (2017), pp. 791–838.

[ZPH14] Martin Zurmuehl, Michael Pizzo, and Ralf Handl. OData Atom
Format Version 4.0. Tech. rep. OASIS, 2014.

173

https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/


BIBLIOGRAPHY

[ZZ05] Jia Zhang and L-J Zhang. “Criteria Analysis and Validation of
the Reliability of Web Services-Oriented Systems”. In: Interna-
tional Conference on Web Services. 2005.

174


	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Problem Statement
	APIfication
	Modeling and discovering REST APIs
	Testing REST APIs
	Generating REST APIs
	Composing REST APIs

	Approach
	Contributions
	Results
	Scientific Production
	Tools Developed

	Thesis Outline

	Background
	REST APIs
	REST Architectural Style
	HTTP's Uniform Interface

	REST APIs Specifications and Protocols
	The OpenAPI Specification
	OData Protocol

	Model-Driven Engineering
	History
	Model-Driven Architecture
	UML
	UML Profiles
	OCL
	Supporting Frameworks for MDE

	Summary

	Modeling REST APIs
	Modeling OpenAPI
	A Metamodel for OpenAPI
	A UML Profile for OpenAPI
	Mapping UML and OpenAPI
	The OpenAPI Profile

	Tool Support
	OpenAPIMM
	OpenAPIProfile
	OpenAPItoUML


	Modeling OData
	The OData Metamodel
	A UML Profile for OData
	The Entity Data Model
	Default Profile Generation

	Tool Support

	Summary

	APIfication of Models
	Our Approach
	Running Example
	Mapping EMF and REST
	Identification of Resources
	Manipulation of Resources Through Representations
	Uniform Interface

	Additional EMF-REST Features
	Validation
	Security

	EMF-REST API Architecture
	Content Management
	Validation
	Security

	Code Generation and Tool Support
	Related Work
	Summary

	Discovering REST APIs Specifications
	Running Example
	Our Approach
	The Discovery Process
	Behavioral Discoverer
	Structural Discoverer

	The Generation Process
	Validation and Limitations
	Related Work
	Tool Support
	Summary

	Testing REST APIs
	Background
	Our Approach
	Extracting OpenAPI Models
	Inferring Parameter Values
	Extracting Test Case Definitions
	The TestSuite Metamodel
	OpenAPI to TestSuite Transformation

	Code Generation
	Tool Support
	Validation
	REST APIs Collection and Selection
	Results
	Threats to Validity

	Related Work
	Summary

	Generating REST APIs
	Our Approach
	Running Example
	Specification of OData Services
	Database Schema Generation
	OData Service Generation
	OData Metadata Document Generation
	OData Requests to SQL Statements Transformation
	OData Serializer and Deserializer Generation

	Tool Support
	Related work
	Summary

	Composing REST APIs
	Our Approach
	API Importer
	Requests Resolver
	Example
	Tool Support
	Related Work
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Current Contributions
	New Research Lines


	Bibliography

