
Enabling Performance Modeling for the Masses:
Initial Experiences

Abel Gómez1[0000−0003−1344−8472], Connie U. Smith2, Amy Spellmann2, and
Jordi Cabot1,3[0000−0003−2418−2489]

1 Internet Interdisciplinary Institute (IN3)
Universitat Oberta de Catalunya (UOC), Spain

agomezlla@uoc.edu
2 L&S Computer Technology, Inc, USA

{cusmith|amy}@spe-ed.com
3 ICREA, Spain

jordi.cabot@icrea.cat

Abstract. Performance problems such as sluggish response time or low throughput
are especially annoying, frustrating and noticeable to users. Fixing performance
problems after they occur results in unplanned expenses and time. Our vision
is an MDE-intensive software development paradigm for complex systems in
which software designers can evaluate performance early in development, when
the analysis can have the greatest impact. We seek to empower designers to do
the analysis themselves by automating the creation of performance models out of
standard design models. Such performance models can be automatically solved,
providing results meaningful to them. In our vision, this automation can be enabled
by using model-to-model transformations: First, designers create UML design
models embellished with the Modeling and Analysis of Real Time and Embedded
systems (MARTE) design specifications; and secondly, suchmodels are transformed
to automatically solvable performance models by using QVT. This paper reports
on our first experiences when implementing these two initial activities.

Keywords: Experience, Performance Engineering, UML, MARTE, QVT

1 Introduction

Poor performance of cyber-physical systems (CPS) is exemplified by: (i) noticeably
sluggish response time that becomes frustrating and unacceptable to users; (ii) low
throughput that, in the worst case, cannot keep pace with the arrival and processing of new
information; (iii) jitter such as flickering of displays, pixelation, irregular unpredictable
responses, pauses while the system catches up, etc.; (iv) lack of response to user inputs
because the system is busy with the previous request; or (v) timeouts and error messages.

Performance problems are obvious to users, and especially annoying and frustrating.
Performance has become a competitive edge. The consequences of poor performance
range from complaints or rejection of new products to a system failure that, in the worse
case, may involve loss of life [18]. Social media and online product reviews expose these
performance problems in a way not previously possible, so product failures are much
more visible. Extreme cases raise the potential of a business failure.

However, more often than not, performance problems are tackled after they occur,
resulting in unplanned expense and time for refactoring. Instead, we advocate for a
Model-driven Engineering (MDE) [15] approach to CPS systems development in which
stakeholders evaluate the performance of systems early in development when the analysis
can have the greatest impact [34]. We seek to move system performance analysis from an
isolated set of tools, that require experts to do laborious manual transfers of data among
design and analysis tools, to an integrated framework in which independent tools share
information automatically and seamlessly [33].

Our vision is a framework which takes advantage of 1 Model Interchange Formats
(MIF), which are a common representation for data required by performance modeling
tools. TheMIFs we use were originally proposed in 1995 [35,37] and have been broadened
in scope over the years to incorporate performance-determining factors found in most
performance modeling tools and techniques [19,32]. Using a MIF, tools in the framework
may exchange models by implementing an import/export mechanism and need not be
adapted to interact with every other tool in the framework. In fact, tools need not know
of the existence of other tools thus facilitating the addition of new tools in the framework.
This framework exploits model-to-model (M2M) transformations from design models to
a MIF and thus provides an automated capability for analyzing the performance of CPS
architectures and designs, enabling stakeholders to obtain decision support information –
quickly and economically – during the early stages of development.

Our envisioned framework is 2 design-driven rather than measurement-driven.
Measurement-driven approaches use metrics of performance behavior and find ways to re-
duce resource usage to improve performance. On the contrary, our design-driven approach
ties the performance metrics to the aspects of the design that cause excessive demands, so
it is also possible to change the way the software implements functions. This often leads
to more dramatic improvements than those achievable solely with measurement-driven
approaches. The design-driven approach also leads to the resource-usage-reduction
improvements so a combination of both types of improvements are attainable.

Finally, we envision an approach exploiting 3 design specifications as the source for
the performance models, as opposed to performance specifications (see Section 4 for a
description, and Section 8 for a comparisonwith similar previous approaches). Developing
performancemodeling annotations to designs – such as those in theModeling andAnalysis
of Real Time and Embedded Systems /Performance Analysis Model (MARTE/PAM) [25] –
requires expertise in performance engineering, and we seek to enable system designers
to evaluate the performance of their designs without requiring performance-modeling
experts. System designers – software architects, designers, modelers, developers, etc. –
are the masses to whom our approach is targeteda. We do not envision eliminating
performance specialists altogether: experts should be used when system designers find
high performance risk or serious problems requiring performance expertise, when
successful project completion is vital, and other high-profile concerns exist. This makes
effective use of scarce performance-expertise resources.

This paper reports on our experience on implementing the first version of the design
to MIF transformation for our MDE-based performance modeling framework supporting

a From this point on, we will use the generic term system designers to refer to any stakeholder
taking advantage of our approach.

2

our vision to bring performance assessment closer to system designers. The starting point
of this experience is the Implementation of a Prototype UML to S-PMIF+ model-to-model
transformation (UML to S-PMIF+) project. This UML to S-PMIF+ transformation is
a core element of our approach and key to study the feasibility of the approach. This
L&S Computer Technology project, supported by the MDE experts at the Universitat
Oberta de Catalunya, aims at implementing the transformation to generate performance
models – that can be automatically verified – from design models. As the title of the
project specifies, design models are specified using UML [27], which are enriched with
design modeling stereotypes from theModeling and Analysis of Real-time Embedded
Systems (MARTE) [25] standard. These design models are transformed to the Software
Performance Model Interchange Format+ (S-PMIF+) [32]. S-PMIF+ is an XML-based,
MOF-compliant interchange format that can be fed into performance engineering analysis
tools such as RTES/Analyzer [20].

The rest of the paper is structured as follows. Section 2 introduces a classical – i.e.,
not automated – performance analysis process, which serves as the basis to our automated
proposal presented in Section 3. Section 4 presents our approach to model performance by
using UML and MARTE, and Section 5 presents how such UML/MARTE models can be
transformed to an automatically solvable performance model by using the QVT transfor-
mation language. Section 6 exemplifies how the concepts introduced in the two previous
Sections are put in practice. Section 7 discusses our findings and lessons learned during
this experience. Section 8 discusses related work and Section 9 presents our conclusions.

2 Software Performance Engineering in a Nutshell

Software Performance Engineering (SPE) [34] is a systematic, quantitative approach to
the cost-effective development of software systems to meet performance requirements.
Presented more than 25 years ago, it is a clear example of a classical and well established
performance analysis process. The SPE process focuses on the system’s use cases
and the scenarios that describe them. From a development perspective, use cases
and their scenarios provide a means of understanding and documenting the system’s
requirements, architecture, and design. From a performance perspective, use cases allow
the identification of workloads that are significant from a performance point of view,
that is, the collections of requests made by the users of the system. Traditionally, SPE
processes have been conducted by performance analysts – assisted by software architects
or developers – who use existing functional models of the system as their starting point.
Fig. 1 describes typical steps in a simplified SPE process from the modeling point of view:

1. A performance analyst identifies the critical use cases, which are those that are
important to the operation of the system, or to responsiveness as seen by the user.

2. The analyst selects the key performance scenarios – i.e. UML Sequence Diagrams
in design models. The key performance scenarios are those that are executed
frequently, or those that are critical to the perceived performance of the system.

3. The analyst establishes the performance requirements, i.e., identifies and defines
the performance requirements – expressed in terms of response time, throughput, or
resource usage – and workload intensities for each scenario selected in step 2.

3

Select key
performance

scenarios

Establish
performance
requirements

Construct
performance

models

Specify
resource

requirements

[performance
acceptable]

Modify/create
scenarios

Identify
critical

use cases

Solve
performance

models

Modify
product
concept

[infeasible][feasible]

Revise
performance
requirements

Fig. 1: SPE Process (adapted from [34])

4. The performance analyst constructs the performance models by translating the
sequence diagrams of the key performance scenarios into execution graphs [34].

5. The analyst specifies the resource requirements, i.e., the amount of service that is
required from key devices in the execution environment. This is typically done in
two separate steps: first, by specifying the software resource requirements, i.e., the
computational needs that are meaningful from a software perspective; and secondly,
by mapping those software resource requirements onto the computer resource
requirements. Software resource requirements can be extracted from the functional
description of the system (e.g., from UML Class Ciagrams), while computer
resource requirements depend on the environment in which the software executes
(e.g., typically specified in UML Deployment Diagrams and other documentation).

6. Finally, the analyst solves the performance models. Solving the execution graph
characterizes the resource requirements of the proposed software in isolation. If
this solution indicates that there are no problems, the analyst proceeds to solve the
system execution model. If the model solution indicates that there are problems,
there are two alternatives: (i) revise performance requirements, modifying them
to reflect this new reality – in this case, all stakeholders should decide if the new
requirements are acceptable – or, (ii)modify the product concept, looking for feasible,
cost-effective alternatives for satisfying this use case instance. This latter option may
require modifying existing scenarios or creating new ones – again, involving other
stakeholders such as software architects or developers.

These steps describe the SPE process for one phase of the development cycle, and
the steps repeat throughout the development process. At each phase, the analyst refines
the performance models based on increased knowledge of details in the design.

Despite many successes applying the SPE methods, there are key barriers to its
widespread adoption and use: (i) it requires considerable experience and knowledge
of performance modeling and there is a small pool of these experts; (ii) it is time
consuming to manually develop performance models of a large, complex system; and
(iii) a substantial amount of time is required to keep performance models in sync with
evolving design models.

3 Towards Automated Software Performance Engineering

As mentioned above, a traditional SPE process is a labor-intensive approach requiring
considerable expertise and effort: performance engineers work side by side with system
designers to understand their design, and then create performance models of the design

4

using a performance modeling tool, such as SPE·ED [20]; when problems are detected,
performance engineers recommend solutions to system designers who do a refactoring
in order to improve performance. Clearly, automating the production of performance
models would make early design assessment viable and enable system designers to
conduct many of their own analyses without requiring extensive performance expertise.

Fortunately, as electronic systems have become more and more complex and software
intensive [36], new engineering practices have been introduced to advance productivity
and quality of these cyber-physical systems [16]. Model-Driven Engineering (MDE) [15]
is a powerful development paradigm based on software models which enables automa-
tion, and promises many potential benefits such as increased productivity, portability,
maintainability, and interoperability [10].

Although SPE relies on some design models, it does not exploit all their potential.
Thus, our vision for SPE is a MDE-intensive software development paradigm based on
MDA standards such as UML [27], MARTE [25], QVT [23] and MOF [24]. In this
paradigm, automatic model transformation plays a key role in the development process,
allowing system designers to evaluate the performance of systems early in development,
when the analysis can have the greatest impact. Thus, we seek to empower systemdesigners
to do the analysis themselves by automating the creation of performance models, invoking
the model solver, and getting the analysis results in a format meaningful to them. This
quantifies the performance of system design options and identifies performance risks.

Achieving such empowerment, however, presents two important challenges:

C1 — We need to provide system designers with model specifications which allow
them to express performance-determining design elements such as communication,
constrained resources, etc. in their design models

C2 — We need to provide system designers with automatic tools able to transform
system design models into analyzable performance models.

Thus, resolving these challenges accomplishes the objective of providing performance
predictions without the performance expertise previously required.

Informally, our proposed renovated process can be seen as an evolution of SPE in
which we introduce automation as shown in Fig. 2b. An important aspect to be noted
(Fig. 2) with respect to a classical SPE process (Fig. 1) is that the main actors involved
are now system designers as opposed to performance engineers. Our process consists
of the following Activities:

1. As in traditional SPE, a performance assessment process starts by identifying the
critical use cases.

2. System designers define the key performance scenarios. As opposed to Fig. 1, in
which the key performance scenarios were selected by performance engineers from
design models, here system designers use UML modeling tools to directly create
them as we will describe later in Section 4.

3. System designers define performance requirements directly in the design models.
This can be done by enriching the UML functional models with non-functional
properties, using MARTE stereotypes, as we also describe in Section 4. Here,

b We have indicated with a gray background the activities that are different from those in Fig. 1

5

Generate
Code

Define key
performance

scenarios

Define
performance
requirements

Transform to
performance

models

Modify
product
concept

[performance
acceptable]

[infeasible][feasible]

Revise
performance
requirements

Identify
critical

use cases

Solve
performance

models

Fig. 2: An automated SPE Process

performance requirements are thus part of system models, and not a separate artifact
as in traditional SPE.

4. Design models are transformed to performance models. As opposed to traditional
SPE, where performance models were manually created by performance engineers,
here performance models are automatically generated by executing a model-to-model
transformation specified in QVT, as we outline in Section 5.

5. From here on, the process is similar to traditional SPE: performance models are
solved, and after obtaining the analysis results three possibilities arise: (i) the results
are acceptable; (ii) the results are unacceptable but the performance requirements are
infeasible; and (iii) the results are unacceptable but the performance requirements are
feasible. In the first and the second case the process continues as in traditional SPE.
In the third case, system designers may modify the product concept (i.e., the models)
and regenerate/reevaluate the performance models without intermediate steps.

6. Finally, as in any MDE process, system designers may automatically generate the
application code for the systemmodels. This latter step is out of the scope of this paper.

4 Defining Performance Scenarios and Requirements with
UML/MARTE

In Section 2 we informally introduced some of the different UML diagrams that are useful
from the SPE point of view. However, since traditional SPE design models do not need to
be machine readable, no specific design rules are enforced in that approach. Our approach
aims to achieve automation, and thus, it advocates for – and enforces – the use of four
different UML diagrams to specify design models including performance characteristics.

An important aspect of UML is that customization is possible by using profiles.
Modeling and Analysis of Real-time Embedded Systems (MARTE) [25] is an OMG
standard defining foundations for model-based descriptions and analysis of real time and
embedded systems. To facilitate its adoption, MARTE has been defined as a UML profile.

We advocate for the use of MARTE to include performance information and
requirements in design models. Thus, system designers can make use of tools they are
familiar with, without requiring performance engineers to manually create performance
models. Although the use of MARTE stereotypes to enable the generation of performance
models is not novel (see Section 8), the use of design specifications in favor of performance
modeling annotations is. Thus, we propose the use of design modeling annotations – such
as those from the Generic Resource Modeling (GRM), Software Resource Modeling

6

(SRM),Hardware ResourceModeling (HRM) orAllocationmodeling (Alloc)MARTE [25]
subprofiles – as opposed to performance modeling annotations – such as those from
the Generic Quantitative Analysis Modeling (GQAM), Performance Analysis Modeling
(PAM) or Schedulability Analysis Modeling (SAM) MARTE subprofiles.

Below we specify the UML diagrams to be used in our automated approach and their
purpose, which are later exemplified in the case study in Section 6.

Structural View – Deployment Diagrams (DD) specify elements defining the execu-
tion architecture of systems. In our modeling approach, DDs specify hardware
elements of the system, i.e., those capable of providing any kind of processing service.

Structural View – Class Diagrams (CD) specify the main logical entities participat-
ing in a system. In our modeling approach, CDs are used to define software elements
of the system, as well as other communication and synchronization entities.

Examples of MARTE stereotypes that can be applied on class diagrams are those
applicable to Operations, such as MARTE::MARTE_Foundations::GRM::Acquire
and MARTE::MARTE_Foundations::GRM::Release. Such stereotypes can be used
to specify that the stereotyped operations acquire or release a mutex, respectively.

Structural View – Composite Structure Diagrams (CSD) allow modeling the inter-
nal structure of a given Classifier. In our modeling approach CSDs are used to repre-
sent how the specific instances participating in a system – modeled as Properties – re-
late to each other from a static point of view. Such participants instantiate the classifiers
representing either hardware or software elements (specified in a DD or a CD respec-
tively). CSDs specify resources and their allocations for performance analysis. Typical
stereotypes used inCSDs are (non exhaustive): MARTE::MARTE_DesignModel::SRM:-
:SW_Concurrency::SwSchedulableResource, to annotate software elements gen-
erating a workload, and which execute concurrently with other software elements;
MARTE::MARTE_DesignModel::HRM::HwLogical::HwComputing::HwComputing-
Resource, to annotate active hardware execution resources such as CPUs or FPGAs;
MARTE::MARTE_Foundations::Alloc::Allocate, typically applied on Abstrac-
tionsc between software resources and hardware resources; or MARTE::MARTE_Foun-
dations::Alloc::Allocated, typically applied to software and hardware elements
related by an Allocated Abstraction.

Behavioral View – Sequence Diagrams (SD) allow describing precise inter-process
communication by specifying execution traces. In our proposal,Lifelines in a SD repre-
sent elements declared in a CSD. SDs are the main means to specify key performance
scenarios in our modeling approach. SDs typically also include fine grained resource
usage information by using the MARTE::MARTE_Foundations::GRM::Resource-
Usage stereotype. This stereotype may be applied to aMessage or to an Execution-
Specification to indicate that a given operation effectively requires the usage of the
resource represented by the Lifeline – either receiving the Message or covered by
the ExecutionSpecification, respectively – for a specific amount of time.

7

5 Automatic Transformation to Performance Models

With the aim of automating the transformation of software designmodels into performance
models, we have implemented a transformation in a M2M transformation language.
As Section 4 describes, the source models to be transformed are UML design models
enriched with MARTE annotations.

We have chosen the Software Performance Model Interchange Format+ (S-PMIF+)
as the target representation for our performance models. S-PMIF+ is a Model Interchange
Format (MIF) to exchange Real-Time and Embedded Systems (RTES) and Internet of
Things (IoT) performance models among modeling tools proposed by Smith et al. [32].
S-PMIF+ is an extension of the S-PMIF, which is MOF-compliant since 2010 [22].

We have chosenMOF2.0Query/View/Transformation (QVT) [23], and specifically its
Operational language (QVTo)d, to encode the transformation rules betweenUML/MARTE
and S-PMIF+. While a plethora of other existing transformation languages could have
been chosen to implement this project, we chose QVTo for the following reasons:

Consistency —Almost all the languages in this work are OMG standards (UML [27],
MARTE [25], MOF [24]). Using QVT allows us to stay inside the OMG stack.

c Allocate can only be applied to Abstractions, which are a specific kind of UML Dependency.
d In fact, the QVT specification defines three transformation languages: Core, Operational and
Relations, being the main difference among them their declarative or imperative nature.

Table 1: High-level transformation mappings
SOURCE ELEMENT MARTE STEREOTYPE TARGET ELEMENT

Property represented by a Lifeline SwSchedulableResource
(isActive=true)

PerformanceScenario

Property represented by a Lifeline SwSchedulableResource ExecutionGraph
(contained within the

corresponding
Scenario)

Property represented by a Lifeline TimingResource PassiveEntity
(type=timer)

ExecutionSpecification whose
covered Lifeline does not receive
neither sync nor async Messages

— BasicNode

MessageOccurrenceSpecification SwSchedulableResource (applied on the Property
represented by the Lifeline receiving the message);

and ResourceUsage (applied on the
ExecutionSpecification whose start event is the

receive event of the current message)

ActiveService

MessageOccurrenceSpecification
of a self-message

SwSchedulableResource (applied on the Property
represented by the Lifeline receiving the message);
and ResourceUsage (applied on the Message whose

start event is the current
MessageOccurrenceSpecification)

ActiveService

MessageOccurrenceSpecification
whose corresponding Message is
invoking a method called ’start’

TimingResource (applied on the Property
represented by the Lifeline receiving the message)

PassiveService
(command=start)

MessageOccurrenceSpecification
whose corresponding Message is
invoking a method called ’stop’

TimingResource (applied on the Property
represented by the Lifeline receiving the message)

PassiveService
(command=stop)

Property
(receiving an Abstraction)

Allocated and HwComputingResource or
DeviceResource. Additionally, the Abstraction
pointing to the Property must have Allocate.

Server

8

Standardization — QVT has a normative document describing the semantics of the
language, alleviating any future vendor lock-in problem.

Availability — Eclipse provides an interpreter of this language. Eclipse is the ideal
platform to implement this transformation, since it provides (open source) tools to
cover all the modeling steps of our proposed process.

Adequacy to the problem — The transformation from UML to S-PMIF+ involves
sequence diagrams, where ordering is an important property. Managing ordering
with declarative languages is hard, thus an imperative language such asQVTo provides
a better control of the transformation logic (however, at the expense of abstraction).

Table 1 shows the subset of the transformation rules of the UML to S-PMIF+
transformation that are relevant for the case study presented in Section 6. The first column
indicates theUML elements (see [27]) involved in the rule; the second column theMARTE
stereotypes (see [25]) that have to be applied so that the rule matches; and the third column
indicates the S-PMIF+ element (see [22,32] for a full reference) that should be generated.

The UML to S-PMIF+ transformation follows a top-down approach. Starting from
the UML top-level element – i.e., the Interaction corresponding to the SD – traverses the
containment tree processing the contained elements. In this navigation, one of the most rel-

Listing 1: Excerpt of the UML/MARTE to S-PMIF+ QVTo transformation
1 mapping UML::ExecutionSpecification::executionSpecification2Node() : SPMIF::ProcessingNode
2 disjuncts UML::ExecutionSpecification::executionSpecification2BasicNode,
3 UML::ExecutionSpecification::executionSpecification2ReplyNode,
4 UML::ExecutionSpecification::executionSpecification2NoReplyNode;
5

6 abstract mapping UML::ExecutionSpecification::executionSpecification2abstractNode() : SPMIF::Node {
7 var index : Index = new Index();
8 self.events()->forEach(s) {
9 serviceReq += s[UML::ExecutionSpecification]
10 .map executionSpecification2ServiceSpec(index);
11 serviceReq += s[UML::MessageOccurrenceSpecification]
12 .map messageOccurrenceSpecification2PassiveService(index);
13 serviceReq += s[UML::MessageOccurrenceSpecification]
14 .map messageOccurrenceSpecification2ActiveService(index);
15 }
16 }
17

18 mapping UML::ExecutionSpecification::executionSpecification2BasicNode() : SPMIF::BasicNode
19 inherits UML::ExecutionSpecification::executionSpecification2abstractNode
20 when { -- Generate Basic Node when the Lifeline does not receive neither sync nor async messages
21 self.events()[UML::MessageOccurrenceSpecification].message[--> Select messages that:
22 receiveEvent.covered() = self.covered() --> Are received by this Lifeline
23 and receiveEvent.covered() <> sendEvent.covered() --> Are not self-messages
24 and (messageSort = UML::MessageSort::synchCall
25 or messageSort = UML::MessageSort::asynchCall) --> Are sync or async messages
26]->isEmpty()
27 }{
28 name := self.name;
29 }
30

31 helper UML::ExecutionSpecification::events() : OrderedSet(UML::InteractionFragment) {
32 var start : Integer = self.covered().events()->indexOf(self.start);
33 var finish : Integer = self.covered().events()->indexOf(self.finish);
34 assert fatal (start < finish)
35 with log (’Malformed input model in ExecutionSpecification "{1}": its "start" event ({2})

appears after its finish ent ({3}).’._format(self, self.start, self.finish));
36 return self.covered().events()->subOrderedSet(start, finish);
37 }

9

evant properties of Interaction is fragment, which contains – in the order they occur – all the
events happening in the Interaction. Simplifying, once an interesting event – i.e., an event
that should be transformed – is found, the corresponding transformation rule is applied.

Listing 1 shows the QVT mappings implementing the rule specified in the fourth row
of Table 1. Rule executionSpecification2Node (lines 1–4) is a mapping that is called
when an ExecutionSpecification contained within an Interaction is found. This mapping
is indeed a disjunction of three other mappings: executionSpecification2BasicNode
(lines 18–29), executionSpecification2ReplyNode (not shown) and executionSpec-
ification2NoReplyNode (not shown). A disjunction indicates that only the firstmapping
whose when clause holds will be executed. As it can be observed, executionSpecifi-
cation2BasicNode inherits from the abstract mapping executionSpecification2-
abstractNode (lines 6-16). This abstract mapping cannot be executed by itself (in
fact, SPMIF::Node is an abstract class, which prevents its execution), but can specify
transformation actions that can be reused and extended by other mappings (such as the
executionSpecification2Node disjoint mappings). In this case, the abstract mapping
is executed before the instruction in line 28, and triggers the execution of the mappings
between lines 9–14 for the events returned by the helper events(). This helper is declared
in the context of ExecutionSpecification so that it can be used as shown in line 8. It
returns the list of events that occurr in the Lifeline covered by the ExecutionSpecification
while it is active. As it can be observed, we rely on the order of the events to determine
whether an event occurrs during the execution. Lines 34–36 show an interesting feature
of QVTo: the possibility to specify assertions. This is a specially useful feature as we
will discuss in Section 7. Finally, the when clause between lines 20–27 specifies that
the mapping will only be executed when the Lifeline covered by the ExecutionSpec-
ification does not receive neither synchronous nor asynchronous messages while the
ExecutionSpecification is active.

This Listing is only a small demonstration of what our M2M transformation – of
nearly 2000 lines of code (LOC) – looks like. In Section 7 we provide more information
about its characteristics and numbers.

6 An Illustrative Case Study: Cyber Physical Systems Analysis

We illustrate our approach by analyzing an existing data acquisition system (SensorNet)
and predicting its performance when encryption is added. Encryption is critical to ensure
that data is securely transferred from servers to a data store in the cloud.We chose this case
study to show how both security and performance can be analyzed before implementation.

Our SensoreNet case study involves both hardware and software elements as shown
in Figure 3. Figure 3a shows the DD with the processors used in execution: Servers
are hardware elements, with computing and communication capabilities, that read
information from simple hardware Sensors – 2700 in our case study – and send this
information via a communication media to the cloud (represented by CloudData).
Figure 3b depicts the software elements in a CD: Analytics reads information from a
Sensore, later processes it by using the Advanced Encryption Standard (AES) and Filter

e Sensor here represents the software element used to access hardware Sensors.

10

(a) (b)

Fig. 3: Deployment Diagram (a) and Class Diagram (b)

software artifacts; and finally sends it to a CloudTable. Additionally, Analytics makes use
of a LatencyTimer, which tracks the beginning and the end of this process.

Figure 4 shows the actual instances of these hardware and software elements of
our SensorNet case study in a CSD: cloudData, server and sensors are instances of
the Nodes specified in Figure 3a; while filter, aes, analytics, sensor and latencyTimer
are instances of the Classes specified in Figure 3b. As it can be observed, we used
MARTE stereotypes to specify additional data that is needed to build the performance
modelf: SwSchedulableResource specifies workload in analytics by using the VSL [25]
expression closed(population=10, extDelay=(500,ms)), i.e., 10 requests in an
interval of 500ms; HwComputingResource designates the processors for the Servers,
i.e., 80 instances; DeviceResource represents a server that does not model contention
delays (a so-called delay server in the performance model); and the TimingResource
designates the latency timer. The Allocate shows how processes are allocated to the

f We obtained processing times and data/network transfer bytes specified in Figures 4 and 5 from
the analysis of benchmark data.

Fig. 4: Composite Structure Diagram

11

Fig. 5: Sequence Diagram

processors: cloudTable is hosted on cloudData; filter, aes and analytics tasks are executed
on a server; and the software representation of sensors lie on hardware sensors.

Finally, we modeled two scenarios: the first adds security/encryption using basic
sensors, where the encryption and filtering happen on the servers; and the second
evaluates replacing the basic sensors with smart sensors, capable of doing the encryption
on the sensor itself. In both cases, we use the CloudTable database for storing data.

The sequence diagram for the first scenario is shown in Figure 5: analytics reads a
frame of captured data from a specific basic sensor, starts the latencyTimer, encryptsg
the frame, and inserts it into the cloudTable. Then, it filters the data, does a lookup

g We based the encryption and decryption on an open source version of the Advanced Encryption
Standard (AES) [8].

12

Fig. 6: Generated S-PMIF+ model

from the cloudTable to get recent activity discovered by the sensor, decrypts it, and
makes predictions of future behavior. Results are finally encrypted and inserted into the
cloudTable, and the latencyTimer is stopped. The figure shows the MARTE annotations
for the execution time required for some – not all for readability purposes – steps.

We do not show the sequence diagrams for the second scenario (i.e., using the smart
sensors) for the sake of conciseness. In summary, this second sequence diagram lacks
the encryption and filter steps, and has a lower value in the specification for the data rate.
All the other structure diagrams remain unchanged.

Once the scenarios are modeled, our prototype is able to transform them to the
corresponding S-PMIF+ specifications by applying the rules introduced in Section 5.
Figure 6 shows the resulting S-PMIF+ model for the first scenario. A Performance
Scenario – with its corresponding Execution Graph – is generated for the analytics
property, whichwas stereotyped as SwSchedulableResource. Additionally, aBasic Node
is generated from the ExecutionSpecification sending the insert message to cloudTable.
This message, in turn, generates an Active Service which executes on the CloudData
Server with a service time of 1.0 · 10−6 (seconds). All the other elements are generated
according to the transformation rules listed in Table 1.

The S-PMIF+ models are sent to the RTES/Analyzer solver. RTES/Analyzer is the
tool allowing the developer to study the performance of the modeled system with different
parameter settings for the data rate, number of processors, time for encryption, and time
for CloudTable processing.

From our experiments using RTES/Analyzer, we obtained that the first scenario using
the basic sensors requires 80 CPUs to meet the performance requirement (for the 2700
sensors of the case study); while the second scenario using smart sensors requires only
50 CPUs. Additional valuable information from the RTES/Analyzer model shows that

13

we need more processors in the cloud to speed up the insert and lookup tasks. For the
case study, we used a single instance in the cloud. There are many other options for
both platforms and designs that can be explored with the model, such as: (i) reducing
the time required for encryption by tuning the algorithm to the application; (ii) using
asynchronous cloudTable inserts; (iii) using a pipeline architecture; or (iv) using cloud vs.
on-premises storage. In any case, the evaluation process is the same: the design model is
revised, transformed and solved.

7 Discussion

This section reports on the some of the lessons learned during the realization of this
work, mainly linked to the realization of the technology transfer project between L&S
Computer Technology and the Universitat Oberta de Catalunya.

While the specific goal of the project was to “simply” write a transformation between
UML/MARTE and S-PMIF+ (i.e., implementing Activity 4 of Section 3), we quickly
realized that clearly defining the inputs and outputs of such a transformation indeed
impacted the whole process. This led us to redraw the initial scope of the transformation,
having a wider vision of the project, and coming out with a set of modeling guidelines
(which in turn support Activities 2–3 in Section 3) that, together with the transformation
itself, make up the core of the framework. A transformation project is, in the end, a
software development project (where the software is the transformation) and, as such, it
is not without similar challenges.

In the following, we provide some facts about this project, and reflect about the
decisions taken and the experience we gained. We believe this could be useful to other
teams developing projects involving industry-level transformations. This is the first
take-away for anybody starting a transformation project.

Project size and effort — The project lasted for 2 months and was lead by two main
technical contacts, one with nearly 30 years of experience in performance engineering,
and the other with more than 13 years of experience in MDE and OMG standards.

The set of conceptual correspondences betweenUML/MARTE and S-PMIFwere iden-
tified in a several-months previous study, and were provided in an Excel sheet at the start of
the project. Including attributes, the spreadsheets documented up to 200 correspondences,
including 40 MARTE stereotypes with their corresponding S-PMIF+ counterparts.

To complete the transformation code itself, the project required 8 meetings and over
150 emails exchanged; and the final deliverable included a 118-pages report.

Barrier to entry: the modeling languages — While UML and MARTE indeed allow
stakeholders to provide the design specifications without having to learn complex
performance modeling languages, there is still a lot to do to lower the barrier to entry.

Especially regarding MARTE, although there exists a reference book [31], there are
very few online documents providing systematic modeling guidelines and we had to
rely on online tutorials [9, 21] to determine the right recommendations for users of our
approach. We based our specifications on the design methods of Selic et al. [31] because
they are a big step forward on how to specify typical design characteristics, particularly

14

those that impact performance such as communication, synchronization, etc. This work
provides performance feedback on the desirability of design options. This and other
work that provides design-assessment feedback makes UML/MARTE more attractive
going forward. If another, more promising MDE design language emerges it should be
straightforward to adapt our approach to transform it to our MIFs to provide performance
predictions.

As a consequence of the scarce documentation available, 34 pages out of the 118
of the report mentioned above were dedicated to explain our recommended use of UML
and MARTE to support Activities 2–3 of our approach. This is necessary to resolve some
of the language ambiguities (e.g., regarding the specification of VSL expressionsh).

Our thoughts on using QVTo — Although imperative transformation languages do not
have an especially good reputation, in this special case QVTo was a very good choice for
our project thanks to the following features of the language:

– Its imperative character facilitated the processing of ordered elements (required for
the transformation of sequence diagrams) in a very natural way.

– Its logging facilities and support for assertions are specially useful to control
ill-formed models produced by the tools (more on this below).

– It has explicit support to organize transformations in libraries which helps when
developing complex transformations and facilitates reusability.

– Helpers can be used to add new operations to meta-elements dynamically, without
changing the metamodels (similar to the concept of extension functions in Kotlin [14]
and other languages). Again, this simplifies the writing of complex transformations.

– QVTo allows the definition of intermediate classes, which only live within the
transformation execution scope. This is very useful to reifyVSLexpressions – Strings –
in their corresponding in-memory complex datatypes (the so-called NFP types [25]).

We have been pleasantly surprised with QVTo, especially after previous bad expe-
riences with its declarative counterpart. QVTo is definitely an option to be considered
when choosing the transformation language for your project, particularly if you require
some of the complex requirements above.

Repetitive Transformation code —The transformationwas spread out in 4 files for a total
of 2027 lines of code (LOC) excluding empty lines. These LOCwere distributed as follows:

– 243 LOC dedicated to check the presence/absence ofMARTE stereotypes (58 helpers
were written to deal with MARTE stereotypes);

– 272 LOC (in 30 helpers) devoted to string manipulations;
– 448 LOC to deal with VSL expressions and NFP types (21 helpers to deal with them);
– 305 LOC in UML helpers (47 helpers to deal with UML elements);
– 759 LOC for the actual implementation of the transformation mappings

As you see, more than 60% of the transformation code dealt with auxiliary tasks.
This must be taken into account when estimating the effort required to implement
h See http://issues.omg.org/issues/MARTE12-4

15

http://issues.omg.org/issues/MARTE12-4

transformations. Too often we based that estimation on the analysis of the mappings
forgetting that this will be only a small part of the total LOC.

Nevertheless, this repetitive code could be simplified by importing external libraries
(a clear example would be a QVTo library for String manipulation). These ready-made
libraries do not exist at this time, but we believe it is in the best interest of the community
to develop and share them.

Limitations of the modeling tools —Within the Eclipse ecosystem, Papyrus is the most
popular tool for UML modeling. Still, it also has known limitations when it comes to SDs
and this had a negative impact on our project. Ordering of events is crucial in SDs (see
Section 5), however Papyrus is not always able to maintain it correctly in the underlying
model as soon as the user moves messages around. Papyrus models get corrupt very
easily, and ExecutionSpecifications – among other primitives – lose their start and finish
events easily. Garbage elements are also commonly left around.

Limitations of this approach —The design specifications follow the methods in [31] for
specifying communication, synchronization and other coordination, resource constraints,
etc. using the rules in Section 5. These guidelines must be followed for the resulting
performance model to represent the intended behavior of the system. Likewise, the
performance models only contain features that are expressed in the design models;
developers should be aware that early predictions tend to be optimistic, and only represent
details that have been specified in the design models. This follows the SPE method of
adding features as the software evolves: early models may not represent all aspects of
performance (best-case models); details are added as the software specifications evolve
to get a more precise prediction of performance.

All the previous facts and issues, beyond delaying the project, also forced us to write
additional sanity check code to ensure the correctness of the input models before actually
transforming them.

On the positive side, the interpreter of QVTo provided all the expected facilities of
a modern IDE: content-assist, line-by-line debugging, and watch expressions, which
helped us in detecting the above issues.

8 Related work

The assessment of non-functional requirements, such as performance, of software systems
is a well-established discipline in the software engineering field [1, 4, 7, 34]; however,
different formalisms, techniques, and levels of automation have been achieved.

Other design-based approaches can also be found in the literature. Performance by
Unified Model Analysis (PUMA) is a framework for transforming data from a UML-based
software design to performance tools [28, 39]. It uses the Core Scenario Model (CSM)
as the intermediate representation. CSM was originally based on the UML profile for
Schedulability, Performance, and Time (SPTP) [26] and later adapted to MARTE/PAM
both of which closely correspond to the information requirements of the Layered
Queueing Model (LQN) tool. This simplifies the M2M transformations, but because the
MARTE/PAM input specifications so closely resemble the performance model itself,

16

it requires performance expertise to create those specifications. Our work uses MIFs
that were originally proposed for a model interchange paradigm in 1995 [35,37]. They
have been updated and generalized [19,32] to include performance modeling features
found in a variety of performance modeling tools and techniques that have proven to
be useful over the years, including those in LQN. Another key difference is that we do
not require the performance-specific annotations in MARTE/PAM; we use the MARTE
design specifications provided by developers instead. Nevertheless, these approaches are
similar in concept, and useful insights on the challenges of developing transformations
are also described in [38].

Palladio [2] is an example that also uses MDE techniques. Its simulation tool is
implemented using the same technologies as the prototype presented in this work (e.g.,
Eclipse, Eclipse Modeling Framework, etc.). Unlike our proposal, Palladio provides a
domain specific modeling language, the so-called Palladio Component Model (PCM), to
specify component-based software architectures. Nevertheless, it is worth mentioning that
PCM resembles UML in some parts (e.g., component, activity and deployment diagrams).

Kounev et al. [17] propose a model-based approach to designing self-aware IT
systems using the Descartes Modeling Language (DML). DML is a domain-specific
architecture-level language that allows specifying adaptation points to reconfigure the
application architecture at runtime. The Descartes approach is fully automated, it is
also based on Eclipse, and enables on-line performance predictions and model-based
adaptation. DML has been applied to several industrial case studies [13].

These and other approaches differ in that they transform to one specific tool rather
than to a MIF. E.g., both PCM and DML transform to Queueing Petri Nets (QPN) to solve
their models using the QPME tool; while our prototype transforms our UML/MARTE
models to S-PMIF+, which serves as a pivot language for different formalisms and tools.

On the other hand, these tools still require an expert in the use of that performance
analysis tool: e.g., Palladio and DML require learning a new performance model specifica-
tion language. While this is not a problem for performance modeling experts, it is a barrier
to system developers who wish to evaluate their own design with minimal extra work. It is
also noteworthy that the contents of these meta-models (PCM and DML) were considered
and incorporated when possible in the development of the MIFs used in our approach.

The DICE framework [6] is an MDE-based solution using UML specifically designed
to focus on the specific challenges of quality-assurance for data-intensive applications
using big data technologies. Its DICE Simulation component [3] is also built using
Eclipse Papyrus, and is able to transform annotated UML models to both performance
and reliability models to stochastic Petri nets using QVTo. The main difference with
respect to the work presented here is that, in order to fully support the specificities of
data-intensive applications, DICE provides its own profile – the so-called DICE Profile.
This profile provides performance modeling annotations – as opposed to the design
specifications of our approach – which extend and reuse constructs from the GQAM,
PAM and SAM MARTE subprofiles, as well as from the DAM [4] profile.

Process mining techniques are a clear example of measurement-based approaches
(as described earlier) and several tools are available (e.g., [5, 11, 12, 29, 30]). These
approaches try to bridge the gap between the resulting performance metrics and the
design itself, however, this is still a challenging task requiring significant expertise.

17

Our approach is design-based, and uses M2M transformations to bridge such a gap by
automatically generating performance models from UML diagrams, which are compliant
with the standard OMG MARTE [25] profile.

9 Conclusions

This experience has proved the viability of automating SPE processes based on MDE
techniques and MIFs. The heart of this automated approach, the transformation from
UML/MARTE, shows that a renovated SPE process can be based on the models
produced by system designers without requiring extensive knowledge and experience
in performance engineering. By automating the transformation of software designs
to performance models, we eliminate the need for laborious and error-prone manual
translation of software design information into performance models, and the effort
in keeping the design and performance models in sync throughout development and
operation. The results are also presented in a format that can be easily evaluated by
system designers. Automation and usability are key if system designers are to use the
technology.

The prototypes we created demonstrated that the end-to-end process is clearly viable
even if we learned a few hard lessons along the way. We developed screens that make the
transformation of designs to performance models, automated solution of experiments, and
the conversion of tool output into a results format that is easy to comprehend, highlights
potential problems, allows evaluation of tradeoff in design parameters, and allows user
customization of results and formats.

The focus of this effort was on performance analysis of CPS systems; however, as
further work, we plan to plug in other tools to support additional types of design analysis,
such as safety, reliability/availability, fault tolerance and others.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE Trans. Softw. Eng. 30(5), 295–310 (May 2004)

2. Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for Model-driven
Performance Prediction. J. Syst. Softw. 82(1), 3–22 (Jan 2009)

3. Bernardi, S., Domínguez, J.L., Gómez, A., Joubert, C., Merseguer, J., Perez-Palacin, D.,
Requeno, J.I., Romeu, A.: A systematic approach for performance assessment using process
mining. Empirical Software Engineering (Mar 2018), doi: 10.1007/s10664-018-9606-9

4. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability Modeling and Analysis of Software
Systems Specified with UML. ACM Comput. Surv. 45(1), 1–48 (Dec 2012)

5. Celonis PI (2011), url: https://www.celonis.com, accessed June 2018
6. Consortium, D.: Getting Started with DICE: Developing Data-Intensive Cloud Applica-

tions with Iterative Quality Enhancements (2018), url: http://www.dice-h2020.eu/
getting-started/, accessed June 2018

7. Cortellessa, V., Marco, A.D., Inverardi, P.: Model-Based Software Performance Analysis.
Springer Publishing Company, Incorporated, 1st edn. (2011)

8. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag New York, Inc., Secaucus,
NJ, USA (2002)

18

10.1007/s10664-018-9606-9
https://www.celonis.com
http://www.dice-h2020.eu/getting-started/
http://www.dice-h2020.eu/getting-started/

9. Demathieu, S.: MARTE Tutorial: An OMG UML profile to develop Real-Time and Embed-
ded systems, http://www.uml-sysml.org/documentation/marte-tutorial-713-ko/
at_download/file, accessed June 2018

10. Di Ruscio, D., Paige, R.F., Pierantonio, A.: Guest editorial to the special issue on success
stories in model driven engineering. Sci. Comput. Program. 89(PB), 69–70 (Sep 2014), doi:
10.1016/j.scico.2013.12.006

11. Diwan, A., Hauswirth, M., Mytkowicz, T., Sweeney, P.F.: TraceAnalyzer: A system for
processing performance traces. Software: Practice and Experience 41(3), 267–282 (2011)

12. Günther, C.W., Rozinat, A.: Disco: Discover Your Processes. BPM (Demos) 940, 40–44
(2012)

13. Huber, N., Brosig, F., Spinner, S., Kounev, S., Bähr, M.: Model-Based Self-Aware Performance
and Resource Management Using the Descartes Modeling Language. IEEE Transactions on
Software Engineering 43(5), 432–452 (May 2017)

14. JetBrains: Extensions – Kotlin Programming Language, https://kotlinlang.org/docs/
reference/extensions.html, accessed June 2018

15. Kent, S.: Model driven engineering. In: Proceedings of the Third International Conference on
Integrated Formal Methods. pp. 286–298. IFM ’02, Springer-Verlag, London, UK, UK (2002)

16. Khaitan, S.K., McCalley, J.D.: Design Techniques and Applications of Cyberphysical Systems:
A Survey. IEEE Systems Journal 9(2), 350–365 (2015)

17. Kounev, S., Huber, N., Brosig, F., Zhu, X.: A Model-Based Approach to Designing Self-
Aware IT Systems and Infrastructures. IEEE Computer 49(7), 53–61 (July 2016), doi:
10.1109/MC.2016.198

18. Leveson, N.G.: Safeware - system safety and computers: a guide to preventing accidents and
losses caused by technology. Addison-Wesley (1995)

19. Lladó, C.M., Smith, C.U.: Pmif+: Extensions to broaden the scope of supported mod-
els. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) Computer Performance En-
gineering. pp. 134–148. Springer Berlin Heidelberg, Berlin, Heidelberg (2013), doi:
10.1007/978-3-642-40725-3_11

20. L&S Computer Technology, Inc.: SPE·ED+, http://spe-ed.com/, accessed June 2018
21. Medina, J.: The UML Profile for MARTE: modelling predictable real-time sys-

tems with UML, http://www.artist-embedded.org/docs/Events/2011/Models_for_
SA/01-MARTE-SAM-Julio_Medina.pdf, accessed June 2018

22. Moreno, G.A., Smith, C.U.: Performance analysis of real-time component architectures: An
enhanced model interchange approach. Performance Evaluation 67(8), 612 – 633 (2010),
special Issue on Software and Performance

23. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Version
1.3, http://www.omg.org/spec/QVT/1.3/

24. OMG: Meta Object Facility (MOF), Ver. 2.5.1, http://www.omg.org/spec/MOF/2.5.1/
25. OMG: Modeling and Analysis of Real-time Embedded Systems (MARTE), Ver. 1.1, http:

//www.omg.org/spec/MARTE/1.1/
26. OMG: UML Profile for Schedulability, Performance, & Time (SPTP), Ver. 1.1, http:

//www.omg.org/spec/SPTP/1.1/
27. OMG: Unified Modeling Language (UML), Ver. 2.5, http://www.omg.org/spec/UML/2.5/
28. Petriu, D.B., Woodside, M.: An intermediate metamodel with scenarios and resources for

generating performance models from uml designs. Software & Systems Modeling 6(2),
163–184 (Jun 2007), doi: 10.1007/s10270-006-0026-8

29. ProM Tools (2017), url: http://www.promtools.org/doku.php, accessed June 2018
30. QPR Process Analyzer (2011), url: https://www.qpr.com, accessed June 2018
31. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems with UML

and MARTE: Developing Cyber-Physical Systems. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edn. (2013)

19

http://www.uml-sysml.org/documentation/marte-tutorial-713-ko/at_download/file
http://www.uml-sysml.org/documentation/marte-tutorial-713-ko/at_download/file
10.1016/j.scico.2013.12.006
https://kotlinlang.org/docs/reference/extensions.html
https://kotlinlang.org/docs/reference/extensions.html
10.1109/MC.2016.198
10.1007/978-3-642-40725-3_11
http://spe-ed.com/
http://www.artist-embedded.org/docs/Events/2011/Models_for_SA/01-MARTE-SAM-Julio_Medina.pdf
http://www.artist-embedded.org/docs/Events/2011/Models_for_SA/01-MARTE-SAM-Julio_Medina.pdf
http://www.omg.org/spec/QVT/1.3/
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/UML/2.5/
10.1007/s10270-006-0026-8
http://www.promtools.org/doku.php
https://www.qpr.com

32. Smith, C.U., Lladó, C.M.: SPE for the Internet of Things and Other Real-Time Embed-
ded Systems. In: Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering Companion. pp. 227–232. ACM, New York, USA (2017), doi:
10.1145/3053600.3053652

33. Smith, C.U., Lladó, C.M., Puigjaner, R.: Model interchange format specifications for
experiments, output and results. The Computer Journal 54(5), 674–690 (2011), doi:
10.1093/comjnl/bxq065

34. Smith, C.U.,Williams, L.G.: Performance Solutions: A Practical Guide to Creating Responsive,
Scalable Software. Addison Wesley Longman Publishing Co., Inc. (2002)

35. Smith, C., Williams, L.: A performance model interchange format. Journal of Systems and
Software 49(1), 63 – 80 (1999), doi: 10.1016/S0164-1212(99)00067-9

36. Wallin, P., Johnsson, S., Axelsson, J.: Issues Related to Development of E/E Product Line
Architectures in Heavy Vehicles. In: 42nd Hawaii Int. Conf. on System Sciences (2009)

37. Williams, L.G., Smith, C.U.: Information requirements for software performance engineering.
In: Beilner, H., Bause, F. (eds.) Quantitative Evaluation of Computing and Communication
Systems. pp. 86–101. Springer Berlin Heidelberg, Berlin, Heidelberg (1995)

38. Woodside, M., Petriu, D.C., Merseguer, J., Petriu, D.B., Alhaj, M.: Transformation challenges:
from softwaremodels to performancemodels. Software&SystemsModeling 13(4), 1529–1552
(Oct 2014), doi: 10.1007/s10270-013-0385-x

39. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Performance
by unified model analysis (puma). In: Proceedings of the 5th International Workshop on
Software and Performance. pp. 1–12. WOSP ’05, ACM, New York, NY, USA (2005), doi:
10.1145/1071021.1071022

20

10.1093/comjnl/bxq065
10.1016/S0164-1212(99)00067-9
10.1007/s10270-013-0385-x
10.1145/1071021.1071022

	Enabling Performance Modeling for the Masses: Initial Experiences

