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ABSTRACT

The increased adoption of model-driven engineering (MDE)
in complex industrial environments highlights the value of a
company’s modeling artefacts. As such, any MDE ecosystem
must provide mechanisms to both, protect, and take full
advantage of these valuable assets.

In this sense, we explore the adaptation of the Robust
Hashing technique to the MDE domain. Indeed, robust hash-
ing algorithms (i.e. hashing algorithms that generate similar
outputs from similar input data), have been proved useful
as a key building block in intellectual property protection,
authenticity assessment and fast comparison and retrieval so-
lutions for different application domains. We present a novel
robust hashing mechanism for models based on the use of
model fragmentation and locality sensitive hashing. We dis-
cuss the usefulness of this technique on a number of scenarios
and its feasibility by providing a prototype implementation
and corresponding experimental evaluation.
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1 INTRODUCTION

The increased adoption of model-driven engineering (MDE)
tools and techniques in complex industrial environments
(e.g., MDE for cyber-physical systems, Internet of Things
or Industry 4.0.) highlights modeling artefacts as valuable
assets. Indeed, in such complex scenarios, valuable (domain-
specific) knowledge is produced, exchanged and consumed
in the form of models and metamodels, transformations and
queries. Consequently, new requirements for MDE arise while
existing ones get accentuated.

Concretely, in order to both, protect, and take full ad-
vantage of these valuable assets, we believe that the MDE
ecosystem needs to provide the means to 1) protect the MDE
asset’s owners from losing their intellectual property 2) pro-
tect MDEs asset’s users from malicious tampering aimed at
damaging or putting at risk the assets 3) efficiently store,
retrieve and compare MDE assets, so that reuse is maximized.

In order to deal with the aforementioned requirements,
we explore in this paper the adaptation of the concept of
robust hashing to the MDE domain. Indeed, robust hashing
algorithms have been proved useful as a key building block
for providing intellectual property protection, authenticity
assessment and fast comparison and retrieval solutions in
different application domains such as digital images [14], 3D
models [20] or text documents [34]. Contrary to cryptographic
hash algorithms, such as MD5 [29] or SHA1 [11], where
slightly different inputs produce very different outputs due
the avalanche effect [13], robust hashing algorithms (often
called perceptual hashing algorithms) produce the same or
very similar hashes for similar inputs. Moreover, they are
capable of resisting attacks (i.e., modifications) that change
non-essential properties of the asset.

Therefore, we propose in this work a novel robust hash-
ing algorithm for MDE artefacts. Our algorithm starts by
extracting from the model to be hashed multiple overlapping
fragments, so that model elements are characterized not only
by their contents (e.g., attributes and operations) but also by
their relative position w.r.t. other model elements. Fragments
are then translated to textual set summaries so that we can
apply to them the min-wise independent permutations locality
sensitive hashing scheme (minhash) [5], that reduces large
summary sets to small and robust hash signatures. Finally
hash signatures are manipulated and combined to obtain the
final robust hash of a given model.

We demonstrate the feasibility of our approach by a proto-
type implementation for EMF models and its corresponding
evaluation w.r.t. the properties of robustness (i.e., resistance
to mutations and thus to false negatives) and discrimination
(absence of false positives).

https://doi.org/10.1145/3239372.3239405
https://doi.org/10.1145/3239372.3239405
https://doi.org/10.1145/3239372.3239405
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The rest of the paper is organized as follows. Section 2
introduces the basic concepts of a robust hashing schema and
Section 3 their adaptation to MDE. Section 4 provides the
details about our hashing algorithms and its building blocks.
Analisys and evaluation of our robust hashing approach are
provided in Section 5, followed by a discussion of possible
application scenarios in Section 6. Section 7 discusses related
work. Finally, we present conclusions and future work in
Section 8.

2 BACKGROUND ON ROBUST
HASHING

We introduce here the basic concepts and properties related
to the robust hashing technique.

2.1 Robust Hashing

Classical cryptographic hashes such as SHA1 or MD5 may
be used for the authentication and integrity assessment of
digital assets. However, and due to the avalanche effect they
include in their design, small changes to the asset lead to the
generation of very different hashes, making them unsuitable
for other tasks such as fast comparison and retrieval, intel-
lectual property protection or plagiarism detection. This is
so because in these scenarios we are interested not only in
finding exact assets, but also variations of the assets.

In order to solve this problem, the concept of robust (or
perceptual) hashing has been introduced, notably in the
domain of digital images [14] but also in other domains such
as those of 3D mesh models [20] and textual documents [34].
A robust hash is a hash that can resist a certain type and/or
number of data manipulations. This is, the hash obtained
from a digital asset and that from another asset similar
to the original one but that has been subjected to minor
manipulations should be the same or at least very similar. As
an example, robust hash algorithms for images or 3D model
mesh resist manipulations such as rotation and compression,
as they remain visually similar. Text documents remain
similar if they convey the same message, thus, they resist to
attacks introducing synonyms, etc.

Data
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Hash
generation

Hash
sequencing

08204a08a
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788ad0244
106993b21
088aa0244

Data hash

Figure 1: Robust Hashing Generation Algorithm

The main building blocks of a robust hashing schema are de-
picted in Figure 1. Basically, a robust hash algorithm starts by
extracting key features from the data to hash, then groups and
hashes them to finally use aggregation/selection/compression
methods to obtain the final data hash. We describe each
of these buildings blocks in the following. Note that these
building blocks may be decomposed in several substeps.

∙ Feature extraction. Core features of the data to be
protected are extracted (e.g., for images this could be
histogram information, wavelet transform information,
etc.). The key idea of this feature extraction step is to
focus in those characteristics that give the data its main
meaning, so that changes in less important features do
not lead to very different hashes. This step normally
divides the input data in several different data groups,
then applies a randomization step to scramble the data
groups.

∙ Hash Generation. The core features extracted in the
previous step are then further manipulated and finally
hashed using different mechanisms (that can include
cryptographic hashes). As with the previous step, ran-
domization operations are applied to the results to
further scramble the hash.

∙ Hash Sequencing. The hashes generated from features
in the previous step are transformed into a final hash.
This step may include different operations with differ-
ent objectives such as compressing the hash or aug-
menting its robustness. Among the typical operations
that we find in this block we have: 1) quantization; and
2) error correction codes.

∙ Key. Unlike standard cryptographic hash algorithms,
robust hash algorithms are by construction vulnerable
to pre-image attacks, notably to second pre-image at-
tacks. Knowing the hash algorithm, it is not difficult
to find an input that leads to a given hash. And given
a data input and a hash it is not difficult to build a
second input with the same or a very similar hash. To
alleviate this problem, the previously described steps
use randomization operations. Being that we need the
randomization to be reproducible so that we can do
hash comparisons, a secret key is used as a seed to
the pseudo-random number generator used at various
stages of the robust hashing algorithms. Given the
same data, if a different key is used, the resulting hash
will be statistically independent and thus completely
different. The key is kept secret, and so, the hash value
of a given piece of data cannot be computed or verified
by an unauthorized party.

2.2 Robust Hashing Properties And
Requirements

We have introduced the concept of robust hashing and its
composing building blocks. Here we present two properties
that characterize robust hashing algorithms: Robustness and
Discrimination. We define them below:
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∙ Robustness refers to the capacity of a robust hashing
algorithm to resist to data distortions due to 1) its
normal manipulation; or 2) intentional attacks aimed
at hiding the similarity between the data. In other
words, it refers to the capacity of the robust hash
algorithm not to produce false negatives in the face
of certain data manipulations that do not change the
core features of the data.

∙ Discrimination refers to the ability of a robust hashing
algorithm to tell the difference between two different,
not related (i.e., not derived from one another) data
inputs. This is, a robust hash algorithm, for being
usable, needs to avoid producing false positives.

Summarizing, when designing a robust hash algorithm,
both robustness and discrimination need to be assured. There
is a trade-off between both properties: the more robust, the
more prone to false positives and viceversa.

As extra requirements for a robust hashing scheme we have
the size of the hash and its internal organization. Hashes
must have a regular size and their features must be scrambled
following a predictable algorithm. Otherwise, the hash com-
parison for determining authenticity of the data will not be
feasible (calculating similarity and distance of irregular data
is much more difficult and often extremely slow). Moreover,
note that for certain applications, the detection of similar
hashes will be a probabilistic process. This is, we may not
find exact the same hash but a very similar one. Thus, a
threshold criteria would have to be defined to discriminate
between similar and non similar hashes.

3 REQUIREMENTS FOR A ROBUST
HASHING SOLUTION FOR MODELS

This section discusses how the previously introduced concept
of robust hashing and its related properties can be adapted
to the MDE ecosystem to enable the hashing of models.
Next sections describes how we take these requirements into
account in our proposal for a robust hashing algorithm for
models.

In an abstract way, models can be regarded as structured
data (defined by the metamodel the model conforms to) com-
posed of model elements that contain a set of attributes
and/or reference slots (other models may be then built by
using this basic building blocks). Similarly, metamodels con-
form to metametamodels and, as such, they can be regarded
(and manipulated) as models as well; we will use indistinctly
the term model to refer to both unless disambiguation is nec-
essary. And in fact, all MDE artefacts can be represented as
models themselves and thus, will benefit from our approach
[2].

In this scenario, and based on the definitions from the pre-
vious section, we need to answer the two following questions
in order to design a robust hashing algorithm for models:
1) what is the information of a model that is essential?; 2)
what are the model modifications or attacks that need to be
resisted by our algorithm?

3.1 Essential features

Model elements include individual data (attributes, oper-
ations) but are also related to a number of other model
elements via their references and relationships. Both aspects
need to be considered for a robust hashing. If we consider
only the content, two models with the same elements would
generate the same hash even if those elements were organized
according to a very different structure. And, similarly, if we
just take the structure into account, models of two very dif-
ferent domains but that, by chance, share a similar structure,
could be regarded as equivalent.

3.2 Type of attacks

A model can be modified in very different ways. Some modi-
fications should not have any impact in the resulting hash.
Some other modifications should be tolerated to a certain
degree. Concretely:

∙ Changes in the way a model is serialized should not
have any impact on the resulting hash. The same model
stored as an XMI document, as table rows in a rela-
tional database or as a graph object in a graph database
should always result in the same hash.

∙ Mutations to the model content, e.g., for UML struc-
tural models, changes to classes, attributes, references,
operations, etc., should be resisted but only to a certain
degree. A structural model containing a few new classes
and references should be still considered the same (or a
derived) model (as per the robustness property). This
resistance should not be that strong that models that
become different enough to be perceived as so by a
human are classified as equal (as for the discrimination
property).

4 APPROACH

This sections describes our proposal for a robust hash mecha-
nism for models. Figure 2 depicts its main steps. It starts by
creating 𝑚 fragments of size 𝑠 from the model to hash. These
model fragments are then represented as text summaries so
that we can apply to them the minhash hashing technique to
obtain 𝑚 small model fragment signatures. Once the model
signatures have been generated, the next step consists in di-
viding and re-hashing them to perform a content-based classi-
fication in a number of buckets. Next, the global model hash
is created by taking 𝑛 elements from key-selected buckets.
Finally, the hash is compressed by using a scalar quantization
step.

We devote the rest of this section to a detailed description
of the rationale and functioning of each of these steps. Note
that in order to ease the discussion we use as a concrete
target for the process UML structural models. Nevertheless,
our approach is designed to work for any kind of model.

4.1 Model Fragmentation

As a first step we create a number of fragments from the
model. This allows to generate the hashes using as unit not
the single model element (which, as we have discussed before,
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[1,3,1,0,6,0,0,0,2,7]

[9,1,1,1,4,1,0,1,3,2]

[0,8,2,0,0,1,0,1,1,1]

[5,9,3,3,1,7,1,1,0,0]
[0,0,1,0,3,8,0,0,7,5]

[2,1,2,7,6,7,1,1,2,6]

[2,0,9,1,1,3,0,0,2,1]
[2,3,1,5,6,7,0,5,2,1]

[4,1,2,1,9,6,0,1,5,5]

[7,0,7,1,1,2,2,0,0,0]

bucket 0

bucket 1

bucket m-1

bucket 2

Model HashInput Model Model 
Fragments

Fragment 
Signatures

0110100101010
0101010001010
1111101101000
0010100100101
0010100100101
1110101001011
0000010010100
1000111110100
0101010010101
1010111010011

Bucket
Classification

fragmentation minhash re-hash for
classification

hash
sequencing

Figure 2: Model Hashing Process

would not be good enough) but the element together with
some contextual information.

Once we have determined the need for the extraction of
model fragments we need to decide: 1) how our fragments are
created and 2) how many of these fragments are needed. The
answer to these two questions is determined by the purpose
of our method, that is to resist model mutations (including
the addition and deletion of model elements).

The principal requirement our fragment needs to meet is
its statistical independence from the other fragments, so that
a change affecting one fragment would not be propagated
to other fragments creating the avalanche effect we precisely
need to avoid.

Advanced model slicing techniques, aiming at extracting
a subset from a model for a specific purpose (monitoring,
model comprehension, modularity,...) [18] [4] [36] may be
adapted to our use case. However, as we do not require our
fragments to fulfill any semantic criteria, we propose a simpler
approach, closer to approaches that automatically generate
model fragments for the purposes of test generation[6] or
efficient model storage [30].

[6] and [30] produce disjoint fragments. We need to drop
this constraint so that model fragments are created in an
independent way. In the same sense, we need to extract many
fragments and not just a small number of them. In Definition
1, we show how we build fragments around a model element
acting as center. The process of selecting a small number of
centers would be greatly affected by mutations by imposing
different orders to the list of existing models elements. We
avoid this problem by extracting a large number of fragments
(experiments show that the best results are obtained when the
number of fragments approximates to the number of model
elements in the model) and by later using content-based
classification to select just a few of these fragments for the
final hash. We will see in Subsection 4.3 how the classification
step guarantees that 1) we take fragments that are different,
maximizing the coverage of the model to hash; 2) we take
similar fragments even in the presence of mutations.

Definition 1. Connected Model Fragment. Let 𝐴 be the
set of all model elements in a given model, 𝑐 ∈ 𝐴 the model

element center of the fragment and 𝐶* the closure of neigh-
bours of 𝑐 (being neighbours any element reachable from 𝑐
through its references, including the superclass relation), then,
we describe a fragment of 𝐴 with center in 𝑐:

𝐹𝑛
𝑐 (𝐴) = {𝑥𝑖 : 𝑥𝑖 ∈ 𝐴, 𝑥𝑖 ∈ 𝐶*, 0<𝑖<𝑛}

Remark. Note that in order to avoid ordering issues re-
lated to the modeling API traversal functions and/or model
mutations we first store model elements in a hash map so
that the selection of fragments centers is as consistent among
executions as possible.

4.2 Signatures of Model Fragments

Previously to the hashing of the extracted model fragments,
we need to transform them to summary sets, this is, sets
containing words representing the contents of the fragment.
This enables us to then use the minhash technique to obtain
the fragment signatures. We use content-based [28] identi-
ties of model elements as the base for the translation from
model fragments to summary sets. We call this content-based
identities model summaries and model fragment summaries.

Definition 2. Model Element Summary. Let 𝑀 be a
model element represented by the quadruple < 𝐹,𝐻,𝐴,𝑂 >
with:

∙ 𝐹 : the set of model inner features, such as name, id,
abstractness, etc

∙ 𝐻: the set of super types.
∙ 𝐴: the set of attributes
∙ 𝑂: the set of operations

We have 𝑆𝑈𝑀𝑀𝐴𝑅𝑌 (𝑀) = {𝐹 ∪𝐻 ∪𝐴 ∪𝑂}.

Remark. Note that in order to reduce the similarity be-
tween sets, we only use proper attributes of model elements,
discarding inherited ones. Note also that we provide here a
very generic summary, aimed to work at the abstract syntax
level of any model. However, summaries can be modified for
some specific domains, so that other information is added
(e.g., constraints) and/or different weights are given to the
constituting parts of model elements, making the labelling
system more or less resistant to better fit the need of specific
scenarios. In this same sense, different summaries could be
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conceived for different modeling domains such as petri nets
or sequence diagrams.

Definition 3. Model Fragment Summary. Let 𝐹𝑛
𝑐 (𝐴) be

a model fragment composed of 𝑛 model elements 𝑀𝑖, we have

SUMMARY(𝐹𝑛
𝑐 (𝐴)) =

𝑛⋃︁
𝑖=1

𝑆𝑈𝑀𝑀𝐴𝑅𝑌 (𝑀𝑖)

Remark. Relations between elements are implicitly cap-
tured by the concept of connected fragment.This is, all ele-
ments in a fragment are connected with one or another kind
of relation. Relations may be added explicitly to the frag-
ments (or the individual model fragments). Note however that
adding many details of the relation, such as cardinalities, etc.,
will increase the discrimination capacity of the approach but
decrease its robustness.

Once we have our fragments represented as summary sets,
our goal is to replace them with much smaller representa-
tions that we call signatures. In order for these signatures
to be adequate for our robust hashing scheme, they must
be robust themselves, this is: 1) equal elements have the
same signature; 2) similar elements have similar signatures,
so that we can obtain, combined with the next step, resilience
against modifications; 3) very different elements obtain very
different signatures. In order to solve this issue, we adapt
here the min-wise independent permutations locality sensitive
hashing scheme (minhash), used as an efficient way to detect
near-duplicate elements in large datasets.

The Jaccard Index (see Definition 4) is an indicator of the
similarity between two sets.

Definition 4. Jaccard Index. Let 𝐴 and 𝐵 be sets, the
Jaccard similarity 𝐽(𝐴,𝐵) is defined to be the ratio of the
number of elements of their intersection and the number of
elements of their union:

𝐽(𝐴,𝐵) =
|𝐴 ∩𝐵|
|𝐴 ∪𝐵|

Remark. J(A,B) is 1 when sets A and B are equal and 0
when A and B are disjoint.

The very basic virtue of the minhash is that we can com-
pare minhash signatures of two sets and estimate the Jaccard
similarity of the underlying sets from them alone. That is,
the signatures preserve the Jaccard Index while being smaller
and easier to manage than the original sets.

Basically, a signature for a given number of sets is built by:
1), creating an ordered dictionary of existing words for the
universe of sets to hash; 2), creating a characteristics matrix
by assigning 1 if the word exists in the set to hash and 0 if it
does not exist. As an example, being the dictionary {this, is,
a, dictionary} and two sentences to be hashed: ’a dictionary’
and ’this dictionary’, the characteristics matrix would be
[0,1;0,0;1,0;1,1]; finally, the hashes are constructed by per-
muting this matrix and selecting, for each sentence to hash,
the minimum row index with a non-zero value. The signa-
ture will have as many components as permutations. Having

the original matrix and the permutations [1,0;0,0;0,1;1,1],
[1,0;1,1;0,1;0,0] and [1,1;0,0;1,0;0,1], the signature for the ’a
dictionary’ will be [2,2,2,3] and for ’this dictionary’ [0,0,3,3].

However, as permutations are very expensive to imple-
ment, they are usually simulated by the use of random hash
functions. We adopt here this latter approach. More formally,
hash-based minhash signatures are defined as follows:

Definition 5. Minhash Signature.

∙ Let ℎ𝑖 with 0 < 𝑖 < 𝑘 be a collection of hash functions
and 𝑆 a source set.

∙ Let ℎ𝑚𝑖𝑛,𝑖(𝑆) be the member x of S with the minimum
value of ℎ𝑖(𝑥)

Then, the signature of S is the vector composed of all the
ℎ𝑚𝑖𝑛,𝑖(𝑆) with 0 < 𝑖 < 𝑘:

𝑆𝐼𝐺𝑁𝐴𝑇𝑈𝑅𝐸(𝑆) = [ℎ𝑚𝑖𝑛,1(𝑆), ℎ𝑚𝑖𝑛,2(𝑆), . . . , ℎ𝑚𝑖𝑛,𝑘(𝑆)]

Remark. From [5] we know that for any 𝑖, the follow-
ing equality holds. 𝑃𝑟[ℎ𝑚𝑖𝑛,𝑖(𝐴) = ℎ𝑚𝑖𝑛,𝑖(𝐵)] = 𝐽(𝐴,𝐵).
this is, the probability of ℎ𝑚𝑖𝑛,𝑖(𝐴) to be equal to ℎ𝑚𝑖𝑛,𝑖(𝐵)
corresponds to the original jaccard index between 𝐴 and 𝐵.
It is demonstrated then that the average ℎ𝑚𝑖𝑛,𝑖 taken as bi-
nary variables is an unbiased estimator for the jaccard index.
Thus, our signatures will preserve the jaccard index of the
original summary sets (with some bounded error, inversely
proportional to 𝑘).

We show in Figure 3 an example of the two first steps
of our approach. Concretely, we show a random fragment
extracted from the ProMarte.ecore metamodel obtained from
the ATL Metamodel Zoo1. The fragment has its center in the
TimingMechanism class and includes four neighbours (Clock,
TimedEvent, MetricTimeValue and MetricTimeInterval).

Below the fragment diagram we show the corresponding
summary and signature. Then, we show the summary and
signature of the fragment after a mutation that removes the
Clock class. Finally, we show the summary and signature of
a totally different fragment.

From this example we can see that similar fragments (e.g.,
a fragment after a mutation) get very similar signatures (only
positions six and fourteen of the signatures are different)
while different fragments get totally different signatures.

Note that as per Definition 2, model summaries only in-
clude proper attributes, discarding reference names, cardi-
nalities, etc. This is not a limitation of our approach as,
effectively, model summaries could include other elements if
needed to adapt them to specific application scenarios and
attacks.

4.3 Classification of Model Fragments and
Hash Sequencing

The three previous steps have allowed us to transform a
model into a long set of minhash signatures. As explained
before, we have decided to generate a large number of these
signatures so to avoid model mutations to influence the hash

1http://web.emn.fr/x-info/atlanmod/index.php?title=Zoos



MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Salvador Mart́ınez, Sébastien Gérard, and Jordi Cabot

MetricTimeValue

 denotedInstant : Instant

 ref : TimeBase

MetricTimeInterval

 endValues : TimeValue

 denotedInterval : Interval

TimedEvent

TimingMechanism

stability : String

drift : String

skew : String

state : String

Clock

 instants : Instant

 refEvent : Event

 generatedInterrupt : ClockInterrupt

[1..*] timestamp

[1..1] origin

[1..1] resolution

[1..1] refClock

[1..1] accuracy

[1..1] offset

Fragment A Summary:
{TimingMechanism, TimedEvent, state, Clock, MetricTimeValue, 
stability, MetricTimeInterval, drift, skew}
Fragment A Minhash Signature:
[3, 1, 2, 3, 0, 6, 1, 2, 4, 5, 1, 2, 0, 10, 0, 0, 5, 0, 2, 5]

Mutated Fragment A Summary:
{TimingMechanism, TimedEvent, state, MetricTimeValue, 
stability, MetricTimeInterval, drift, skew}
Mutated Fragment A Minhash Signature:
[3, 1, 2, 3, 0, 9, 1, 2, 4, 5, 1, 2, 0, 13, 0, 0, 5, 0, 2, 5]

Fragment B Summary:
{NFPCategory, QualitativeNFP, NFPLibrary, 
AnnotatedModelElement, Quantity, NFP}
Fragment B Minhash Signature:
[5, 8, 5, 1, 17, 4, 11, 12, 1, 2, 15, 3, 1, 3, 1, 4, 0, 2, 2, 4]

Figure 3: Fragment Signatures

creation process (e.g., modifying the order of selected ele-
ments). However, much of the information generated in this
manner is very redundant, and thus, can not be efficiently
used as is for the generation of the model hash. Instead, the
idea is to just take a certain number of different signatures
by performing a classification step that puts similar signa-
tures in the same bucket. Then we can just choose one of the
elements of the bucket as its representative. Moreover, while
model mutations may affect this selection step, the degree
of the error would be minimized (if an element ends up in
the same bucket, that means it is still quite similar) and not
propagated across buckets.

This classification process is called Locality Sensitive Hash-
ing (LSH). One general approach to LSH is to “hash” items
several times, in such a way that similar items are more likely
to be hashed to the same bucket than dissimilar items are[31].

Having minhash signatures, an effective way to perform the
hashings is to divide the signatures into 𝑏 bands consisting
of 𝑟 rows each[21]. For each band, there is a hash function
that takes vectors of 𝑟 integers (the portion of one minhash
signature within that band) and hashes them to some large
number of buckets. We can use the same hash function for

all the bands, but we use a separate bucket array for each
band, in order to avoid inter-band collisions. Intuitively, the
banding strategy makes similar minhash signatures much
more likely to be candidate pairs than dissimilar pairs. We
refer the reader to [21] for a more detailed description of how
this band-classification increases the probabilities of similar
signatures to end up in the same buckets.

Practically, this classification step is performed by:

(1) dividing the minhash signatures in bands (e.g., we could
divide a minhash signatures of 20 elements into 4 bands
of 5 elements each). In effect, it is more likely that a
given band remains equal after mutation than a whole
hash. Thus, working with bands we add robustness
to our method. Note however that bands should be
sufficiently large so that false positives are unlikely.

(2) rehashing the selected band by using any available hash
function. This could be achieved with java hashcode
functions.

(3) applying a modulo operation on the number of buckets
to the obtained hash to classify them in a given bucket.

Once the classification is done, the hash is constructed by
polling the buckets randomly with the help of the secret key
in order to take the desired number of minhash signatures
(the same list of buckets will be selected across execution,
assuring us to always take similar minhashes when we are
dealing with similar models). Note that in case of selecting an
empty bucket, the polling algorithm will just take a minhash
signature from the next bucket.

4.4 Scalar Quantization For Compression

The last step of our robust hashing approach is optional. If
reducing the size of the final hash and/or provide it with
extra robustness to model changes is needed, the use of an
scalar quantizer is advised (see Definition6).

A scalar quantizer assigns each value of the obtained hash
to a given interval so that the number of bits required to
represent them gets reduced. The process will also make the
final hash more resistant to mutations as very similar hashes
would have values that will fall in the same interval. Alter-
natively, although arguably more complex, error corrections
codes may be used to obtain a similar effect by exploiting
the fuzzy commitment technique [15] consisting in directly
using the decode function without the prior encoding of the
data. This way, the hash data would be treated as a message
received through a noise channel, then decoded to assign it
the nearest codeword in the given error correction code.

Definition 6. k-level quantizer.

∙ Let 𝑑𝑖 with 0 < 𝑖 < 𝑘 + 1 be decision levels where
𝑑𝑖 divides the range of data under quantization into k
consecutive intervals [𝑑0, 𝑑1)[𝑑1, 𝑑2)...[𝑑𝑘−1, 𝑑𝑘).

∙ Let reconstruction levels 𝑟0, 𝑟1, ...𝑟𝑘 − 1 be the centers
of the intervals.

∙ Let 𝑣 be a value to quantize.
∙ Then, 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑(𝑣) = 𝑖 when 𝑣 > 𝑑𝑖 and 𝑣 ≤ 𝑑𝑖+1
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As an example of quantization, if we use twenty hash
functions for the minhash signatures, we would obtain vectors
of twenty elements with values from zero to nineteen, each
of one requiring five bits for its representation. By creating
intervals of just two consecutive values (e.g., we assign the
values two and three to two) we will be able to represent
each value with four bits, saving twenty bits for the whole
minhash signature.

5 EVALUATION

We devote this section to the analysis and experimental
evaluation of our robust hashing approach for models. The
robust hashing properties presented in Section 2, this is,
discrimination, and robustness, are analyzed to see how well
our approach fares against them.

We first discuss for each property the expected behav-
ior as derived from the construction of our approach. Then
we present the actual validation using our prototype imple-
mentation. This prototype (available online2) includes the
implementation of the model fragmentation, summary calcu-
lation, minhash signature generation and LSH (as band-based
classification). It has been implemented using Java and the
EMF API [33].

The hashing libraries integrated in our approach are highly
performant. As such, the scalability of our approach is not an
issue. As an example, it takes less than one second to produce
the hash for even the larger models (around 1000 elements)
in our experiments below on a fairly standard computer3.

5.1 Discrimination

Discrimination is the ability of a robust hashing algorithm
to produce different hashes for (very) different models. Effec-
tively, while we want our robust hashing algorithm to resist
modifications, it would be useless if it can not tell when two
models are not related. We achieve a high level of discrimi-
nation by using connected model fragments as the basis for
our feature extraction. Indeed, by working with fragments
and not with isolated model elements, our approach is able
to distinguish between models using similar vocabulary but
with a different structure.

We demonstrate by means of conducting the following
empirical evaluation: we have: 1) selected 18 different meta-
models from the ATL metamodel zoo; 2) hashed them with
our robust hashing algorithm. We produce hashes of 200
bytes, by using 20 hash functions for the minhash signatures
and by extracting 80 fragments from each model (we use 20
hash function to get signatures of 20 components so that
collisions of different model fragments are very unlikely. The
size of the final hash is then determined as a multiple of the
size of the signatures and similar to the typical size of hashes
in literature. Finally, the number of fragments is determined
by experimental results showing that for the models used in
the evaluation, more fragments did not improve robustness

2https://gitlab.com/smartine/RobustModelHashing
3An Intel Core i5-6200U CPU @ 2.30GHz 4 cores, running ubuntu
16.04

nor discrimination.) and 3) calculated the similarity of the
hashes between all pairs.

We use for the calculation of the similarity the Hamming
Similarity measure for vectors. It is calculated as shown in
Equation 1. Basically, it counts the numbers of equal elements
(IdSim() returns 1 when elements are equal, 0 otherwise) in
the same position of the vectors and divides the result by the
total number of elements.

𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠, 𝑡) =

∑︀𝑛
𝑖=1 𝐼𝑑𝑆𝑖𝑚(𝑠[𝑖], 𝑡[𝑖])

𝑛
(1)

We show in Table 1 the result of the pairwise similarity
calculation (multiplied by 100). The darker the cell, the more
similar the hashes. As we can see, only the hashes obtained
from the same model get higher levels of similarity, while the
hashes of different models get similarities normally lower than
50. It is interesting to see that the higher similarity value
between two different models corresponds to the pair UML2-
J2SE5 that reach a similarity coefficient of 60. The UML2 and
the J2SEE share vocabulary and structure (classes contain
attributes and operations, have types, etc), and thus this
high level of similarity is somehow expected. Nevertheless, the
obtained similarity values obtained in this experiment are far
from the similarity coefficients obtained when comparing the
hashes obtained from a model and its mutations (see Table 2).
Therefore, our robust hashing algorithm does not lead to
false positives. We can thus conclude that the discrimination
property holds for out robust hashing approach.

5.2 Robustness

Once we have shown that our robust hashing approach is
not prone to false positives we proceed here to discuss its
robustness, this is, its ability to resist modifications. As
discussed in Section 2 our approach should resist to two
types of modifications: 1) modifications related to the storage
mechanism; and 2) modifications of the model content.

Our approach is robust against changes in the storage
of the model as the storage information is not taken into
account in the hashing process. As long as the implementation
can provide model fragments as sets of model elements, our
approach leads to the same results. In the same way, our
approach is independent of the modeling framework used for
the specification of a model (e.g., UML models, EMF models,
GME [19],...). Note however that if required our approach
could be sensitive to the specificities of a given modeling
framework by including those specificities in the fragment
summaries.

As for the modifications to the models contents and struc-
ture, our approach provides two protection mechanisms. First,
the very use of minhash for the calculation of model frag-
ment signatures gives robustness to our approach. This is
illustrated in Figure 3 where a fragment and its mutated
counterpart obtained very similar signatures. Second, the
use of band-based LSH for the classification of signatures
w.r.t. their content provides robustness to our approach as it
promotes the selection of the same (or very similar) model
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Table 1: Pairwise Similarity

a b c d e f g h i j k l m n o p q r

a 100 15 11 15 11 8 10 29 34 20 15 6 9 9 14 10 7 13

b 15 100 10 13 11 5 12 31 13 47 40 8 21 10 24 16 10 22

c 11 10 100 15 12 7 14 9 15 13 7 13 13 33 18 11 25 9

d 15 13 15 100 12 6 25 10 36 13 8 13 11 11 6 10 5 10

e 11 11 12 12 100 4 60 10 15 10 7 30 7 17 7 5 7 5

f 8 5 7 6 4 100 3 6 6 8 6 5 8 7 7 7 36 9

g 10 12 14 25 60 3 100 8 13 12 7 30 11 16 7 10 6 9

h 29 31 9 10 10 6 8 100 17 51 28 6 16 9 17 14 10 18

i 34 13 15 36 15 6 13 17 100 10 10 11 11 14 7 11 8 10

j 20 47 13 13 10 8 12 51 10 100 35 7 19 11 20 13 11 20

k 15 40 7 8 7 6 7 28 10 35 100 5 15 9 54 12 10 38

l 6 8 13 13 30 5 30 6 11 7 5 100 7 30 4 9 5 5

m 9 21 13 11 7 8 11 16 11 19 15 7 100 7 17 38 12 41

n 9 10 33 11 17 7 16 9 14 11 9 30 7 100 14 8 15 8

o 14 24 18 6 7 7 7 17 7 20 54 4 17 14 100 16 40 46

p 10 16 11 10 5 7 10 14 11 13 12 9 38 8 16 100 11 18

q 7 10 25 5 7 36 6 10 8 11 10 5 12 15 40 11 100 15

r 13 22 9 10 5 9 9 18 10 20 38 5 41 8 46 18 15 100

*a:SBVRvoc; b:mlhim2; c:Agate; d:sbvrEclipse; e:J2SE5; f:Matlab; g:UML2; h:SCADE; i:XHTML; j:KDM; k:Maude; l:MoDAF-AV;

m:ifc2x3; n:MavenMaven; o:OpenConf.owl; p:ProMarte; q:MICRO.owl; r:SWRC;

Table 2: Mutation Resistance

Number of Mutations

Model Name 5 mt. 10 mt. 25 mt. 50 mt.

ProMarte 77 80 79 65

Uml2 79 96 62 76

Scade 100 80 74 34

OpenConf 77 81 93 58

Matlab 76 81 81 45

fragment signatures for the composition of the final model
hash even in the presence of mutations.

To conduct the experimental evaluation of the robustness
property we perform the hashing of five different regular-sized
models (our prototype implementation works with Ecore mod-
els, but we also deal with UML models and Profiles). Then,
we randomly introduce mutations to these five models. The
introduced mutations include: adding and removing classes,
adding and removing attributes and references, adding and
removing generalizations and modifying attributes. (we use
and adaptation of the EcoreMutator tool4). Finally, we com-
pare the hashes of the original model to those of the mutated
versions to determine whether their similarity level allow us
to conclude that the models are derivations.

Table 2 summarizes the obtained results. Rows indicate
the model, while columns indicate the number of introduced
mutations (we introduce 5, 10, 25 and 50 mutations). Note
that mutations are introduced randomly and independently
between rows, i.e., we start always from the original model.
This explains why models with five mutations sometimes get

4https://code.google.com/archive/a/eclipselabs.org/p/ecore-mutator

lower levels of similarity. From the results we can see that
models resist very well the introduction of up to 25 mutations,
with similarity values much higher than the ones obtained
for different models as shown in Table 1. The last columns
show how after 50 mutations models become too different to
be considered similar, notably Scade and Matlab, that are
the smaller models (with around 100 and 34 models elements
each), get the biggest impact.

As a summary, we can conclude that our robust hashing
algorithm resists well mutations. Models need to be mutated
to the extent of making them unusable for their original
purpose in order to obtain very different hashes. Therefore
our hashing algorithm is, as intended, robust.

5.3 Threats to Validity

The validity of the conclusions obtained by our experiments
may be affected by:

(1) Our evaluation dataset: effectively, we focus our evaluation
on metamodels. While we chose a large set of them, alleviating
the threat to the validity of the conclusion within this kind
of models, extending this conclusions to other kind of models
will require further experimentation.

(2) The mutation generation: indeed, different kinds of mu-
tations are randomly introduced in models. This way it is
difficult to assure that a model with more mutations have
been subject to more modifications than another with less
but more severe mutations (e.g., a class deletion mutation
affects a model more than an attribute modification muta-
tion). Nevertheless, from the experimental evaluation we can
conclude that the variations due to the random process are
less important when the number of introduced mutations
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grows (e.g., in some cases 5 mutations affect the model hash
more than 10 mutations in 4 cases, while 10 mutations affect
the model hash more than 25 only in one of the cases).

6 DISCUSSION OF APPLICATION
SCENARIOS

A robust hashing algorithm for MDE artifacts makes it pos-
sible to efficiently support a number of application scenarios
related to the fast search and classification of models, intel-
lectual property protection and authenticity assessment. In
this sense, in the following we briefly describe some of these
applications.

6.1 Classification & Search

We can use the fast comparison and retrieval properties of
a robust hashing schema to detect very similar models in
large repositories (such as MDE Forge [1]). This could be
useful in diverse scenarios, including: automatic classification
of models (e.g., to find all models related to some topic);
plagiarism detection in academic assignments, model diversity
assessment, etc.

In order to do so, we need to extend our robust hashing
algorithm with a locality sensitive hashing schema aimed
at reducing the total amount of comparisons to complete
when classifying a large number of models. Even if comparing
hashes is much faster than comparing the models themselves,
it is still computationally expensive. The goal is to first
classify the models to compare into a set of buckets where
each bucket holds models that are similar.

The process is very close to our classification step in Sec-
tion 4, but this time applied to the whole model hash and
not to fragments. As in that step, the idea behind this is
that most of the dissimilar pairs will never hash to the same
bucket (being the number of buckets large enough to avoid
accidental collisions).

Once this is done, plagiarism detection gets simplified by
reducing it to the problem to compare only the models that
ended up in the same bucket. Conversely, model diversity
could be ensured by choosing a set of models from different
buckets (e.g. to increase coverage in a model-based testing
scenario).

Within a bucket we can use standard model comparison
tools to directly compare pairwise the models as the amount
of comparisons is now drastically reduced. Indeed, LSH is
an approximate search mechanism, and thus false positives
while rare, may appear. Thus, model comparison and match-
ing tools such as EMFCompare [7] DiffMerge [8], Epsilon
Comparison Language [17] or [12] can be used to obtain more
accurate results at this point.

6.2 Copyright Infringement

Robust hashing can be used to provide prosecution evidence
in cases of IP protection violations. A model considered to be
an unauthorized copy or derivation of a proprietary model
would be hashed (using the owner’s secret key) and this hash

then searched and compared in order to determine its prior
existence 5.

For this scenario, the importance of hashing relies not only
on its efficient storage (as in the previous section) but also as
a way to avoid exposing intellectual property as the models
can not be reconstructed from the hashes (notably, without
the secret key). Moreover, the fact that our hashing algorithm
is robust is key to detect tampering aimed to avoid copyright
infringement detection even for models are derivations from
ours.

Suspected
model

Hashed
model

Distance

Different
models

IP
Violation

original
hash

>t

<t

Figure 4: Ip Violation Detection Process

The detection of IP infringements follows the process de-
picted in Figure 4. Starting from a suspected model, we hash
it by using our secret key. We then compare it with the hash
of the original model to determine if the similarity of the
hashes is high enough to determine, within a determined
confidence level (this confidence is build as to make statis-
tically very unlikely that such a similarity level arises from
independent models), that they are either the same model or
derived from each another. Note that in order to efficiently
retrieve the original model from its storage, or to proactively
find copies along repositories, we can use the classification
and search mechanism described in Subsection 6.1.

6.3 Accountability

In a collaborative modeling scenario where a number of dif-
ferent companies participate in the creation and evolution
of models, we typically want to keep track of the changes
performed by each party and the corresponding model ver-
sions generated at each step. This information could be, for
instance, stored in a blockchain infrastructure.

The benefits of the use of blockchain technologies as a de-
centralized consensus ledger to provide accountability for the
actions of different agents on shared resources have been al-
ready acknowledged in different application domains [26] [24].
However, its adaptation to the MDE environment risks to
present scalability issues. Indeed, directly storing full models
as part of blockchain transactions would fail to scale as mod-
els are too large for what current blockchain infrastructure
can efficiently handle nowadays.

5The hashing may also be used as a key building block in the con-
struction of a watermarking schema [14] for models but to be most
effective the hashing creation process should be different from the one
presented here [23].
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In this sense, our hashing mechanism for models may be-
come a key enabler for the use of blockchain technologies
for the enforcement of accountability in collaborative de-
velopment scenarios by remarkably reducing the required
storage requirements if we store the hash, instead of the
full model, in the blockchain transactions. Similarly, looking
for all transactions pertaining to a given model would be
easier and quicker to perform by using the model digests
provided by our hashing algorithm instead of their full model
counterparts.

7 RELATED WORK

Robust hashing algorithms for different digital assets have
attired a great deal of attention from the research community
over the last decade. To the best of our knowledge, our
approach is the first robust hashing algorithm specifically
designed for MDE artefacts.

Notably many different robust hash algorithms have been
proposed for the domains of digital images image [14] [16] [22]
[37] [39], 3D mesh models [20] [38], digital video [9] [10] and
text [34].

While the general, high-level process for generating the
robust hashes is similar across domains, the concrete steps
need to be adapted to each domain and to the desired robust-
ness (e.g., which kind of modifications are to be resisted). We
base our approach on the extraction of model fragments and
its processing via the minhash [5] and locality sensitive hash-
ing [21] methods for nearest neighbour search for text. The
minhash technique has been used in [23] in order to provide a
robust labelling mechanism for model elements that enables
the use of state-of-the-art watermarking algorithms in the
MDE ecosystem. While such watermarking algorithms could
be used to extract patterns (instead of performing insertions)
to be used as hashes, those hashes are less effective as model
digests than the ones we generate here as they were created
with a different and very specific goal in mind (e.g. those
hashes are based in the extraction of some random bits to
protect the watermark from being destroyed).

Prior to us, text analysis techniques for the purpose of
model comparison have been used in [25], where the authors
use Natural Language Processing (NLP) to find the semantic
similarities between language descriptions by attaching text
descriptions to domain concepts. We see their approach as
complementary to ours, since these annotations could be
added to the models before the hashing phase in order to
take into account model semantics in our approach.

8 CONCLUSIONS AND FUTURE
WORK

In this paper, we have explored the adaptation of the robust
hashing concept to the modeling domain. We have shown how
the adaptation of the minhash and locality sensitive search
techniques, developed for the comparison and classification of
large repositories of text documents, can be used to effectively
extract the core features of a model to produce a robust hash.

Our robust hashing algorithm for models is meant to be-
come a key building block for providing solutions for intel-
lectual property protection, authenticity assessment and fast
comparison and retrieval, all of them key requirements for the
adoption of model-driven engineering in complex industrial
environments.

As future work we intend to extend the present work by
exploring five different research lines. Concretely, we are
interested in:

(1) Comparing the similarity measures of our hashes with
different existing model difference and similarity met-
rics [27] [35].

(2) exploring the personalization of our approach to specific
types of models. The additional semantics of a specific
model type can be used to improve the hashing of
models of that type.

(3) extending our approach to the hashing of sets of inter-
related models in what is typically known as a meg-
amodel [3].

(4) integrating it in an effort to build a blockchain for
models infrastructure, where transactions on models
must be stored in en efficient way.

(5) extending our approach to enable the search of semanti-
cally meaningful fragments withing models (e.g., search
for model patterns).

(6) exploring the introduction of machine learning tech-
niques in order to automatically derive good hash func-
tion for specific model datasets [32].
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