
APIComposer: Data-driven Composition of REST APIs?

Hamza Ed-douibi1[0000−0003−4342−4818], Javier Luis Cánovas
Izquierdo1[0000−0002−2326−1700], Jordi Cabot1,2[0000−0003−2418−2489]

1 Internet Interdisciplinary Institute (IN3)
Universitat Oberta de Catalunya (UOC). Barcelona, Spain

{hed-douibi,jcanovasi}@uoc.edu
2 ICREA. Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. More and more companies and governmental organizations are pub-
lishing data on theWeb via RESTAPIs. The increasing number of RESTAPIs has
promoted the creation of specialized applications aiming to combine and reuse
different data sources to generate and deduce new information. However, creating
such applications is a tedious and error-prone process since developers must invest
much time in discovering the data model behind each candidate REST API, de-
fine the composition strategy, and manually implement such strategy. To facilitate
this process, we propose an approach to automatically compose and orchestrate
data-oriented REST APIs. For an initial set of REST APIs, we discover the data
models, identify matching concepts, obtain a global model, and make the latter
available on theWeb as a global REST API. A prototype tool relying on OpenAPI
for describing APIs and on OData for querying them is also provided.

Keywords: REST API, Modeling, OData, OpenAPI, API Composition

1 Introduction

More andmore individuals and organizations are sharing their data on theWeb, including
governments and research initiatives. Web APIs have been increasingly used to make
these data available on the Web and allow third parties to infer new information not
visible at first glance. In particular, the REpresentational State Transfer (REST) has
become the prominent architectural style mainly due to its adaptability to the Web, as it
allows creating Web APIs by relying only on URIs and HTTP messages.

By enabling a programmatic access to data sources, REST APIs promote the cre-
ation of specialized data-driven applications that combine data from different sources
to offer user-oriented value-added APIs. Creating such applications requires API dis-
covery/understanding/composition and coding. Such tasks are not easy since developers
should [11, 2]: (i) know the operations and data models of the APIs to compose; (ii)
define the composition strategy; and (iii) implement an application (usually anotherWeb
API) realizing such strategy.

While automatic Web API composition has been heavily studied for the classical
WSDL/SOAP style [20], RESTAPI composition is of broad and current interest specially
? This work has been supported by the Spanish government (TIN2016-75944-R project).

after the emergence of new RESTAPI specifications such as the OpenAPI specification3
andOData4. OpenAPI is a vendor neutral, portable, and open specification initially based
on Swagger5 which allows defining the resources and operations of a REST API, either
in JSON or YAML. The OpenAPI specification has become the choice of reference to
describe REST APIs. As a result, OpenAPI is at the core of many research initiatives
to, for instance, discover OpenAPI definitions [9, 6], provide semantic descriptions for
OpenAPI definitions [7, 14], identify candidate REST APIs for selection [3], and allow
semantic integration of REST APIs [19]. On the other hand, OData is an open protocol
especially useful to expose and consume data sources as REST APIs.

In this paper we propose a lightweight model-based approach to automatically com-
pose data-oriented REST APIs given an initial set of OpenAPI definitions (potentially
inferred when not explicitly available). As a result of the composition, we obtain a global
API that hides the complexity of the composition process to the user. Indeed, a user
queries the global API and, in a completely transparent way, the global queries triggers
a fully automatic process that accesses the individual APIs and combines their data to
generate a single response.

To facilitate the consumption of the global API, we expose it as an OData service.
OData allows creating resources which are defined according an Entity Data Model
(EDM) and can be queried by Web clients using a URL-based query language in an
SQL-like style. In our approach, this EDM corresponds to the data schema behind the
global API, which is generated during the composition process based on the discovery of
matches between the individual data schema of each single API. All these schemas are
represented as models and their manipulation (e.g., concept matching or composition)
are implemented as model transformations. Working at the model level helps us focus
on the domain concepts while abstracting from the low level technical details [18].

The rest of the paper is organized as follows. Section 2 describes our approach,
while Sections 3 and 4 explain its main steps. Section 5 illustrates our approach using an
example. Section 6 presents our tool support. Section 7 discusses some related works.
Finally, Section 8 concludes the paper and presents some future work.

2 Our Approach

We propose a model-based approach to compose data-driven REST APIs. From a set
of initial REST APIs, our approach creates a global API exposing a unified data model
merging the data models of the initial APIs. The global model is exposed as an OData
service, thus allowing end-users to use the OData query language to get the information
they need in an easy and standard way.

Figure 1 shows an overview of our approach. APIComposer takes as input the
OpenAPI definitions of the REST APIs to be composed. Such definitions may be (i)
supplied by the API provider, (ii) generated using tools such as APIDiscoverer [9] or
AutoREST [6], which are able to infer OpenAPI definitions from API call examples

3 www.openapis.org.
4 www.odata.org.
5 https://swagger.io

API

API

API

API

OpenAPI
definition

API importer
OData request

OData response

End-usersEnd-users
OData

Entity model

Requests resolver

APIComposer
Discovery

Fig. 1. Overview of our approach.

UML
model

1 Model
generation

M2M
transformation
2

Open API
model

OpenAPI
model

UML model
+ OData profile

1 Model
generation

M2M
transformation

2Binding
discovery

3
API ImporterI

OData
Entity model

OData
interpretation

4

OpenAPI
definition

Data
binding model

Input

AB
CD

B
CD
AA =

AB

A
CD

Fig. 2. Composition process.

or API documentation pages, respectively. (iii) or derived from other API definition
formats (e.g., API Blueprint or RAML) using tools such as API Transformer6.

Our approach includes two components, namely: (i) API importer, in charge of
integrating a newRESTAPI to the global API; and (ii)Requests resolver, responsible for
processing the user requests and returning the queried data. We explain each component
in the following sections.

3 API Importer

Figure 2 shows the API importer process. For each input OpenAPI definition, the API
importer first generates an equivalent model conforming to our OpenAPI metamodel
(see step 1 in Fig. 2). We previously introduced this metamodel alongside the discovery
process [9]. The generation of the OpenAPI model is rather straightforward since the
OpenAPI metamodel conforms to the OpenAPI specification and only special attention
had to be paid to resolve JSON references.

The second step of the process (see step 2 in Fig. 2) performs a model-to-model
transformation to generate a UMLmodel, which emphasizes the data schema of the input
API to facilitate the matching process later on. This process consists on iterating over the
data structures in theOpenAPImodel (i.e., the schema elements) to generate the adequate
UML elements (i.e. classes, properties and associations elements). This process relies on
our tool OpenAPItoUML7 which generates UMLmodels fromOpenAPI definitions [10].

6 http://apimatic.io/transformer
7 http://hdl.handle.net/20.500.12004/1/A/O2U/001

BindingModel BindingElement

preferredName: String

ClassBinding

Class Property Association

AssociationBindingPropertyBinding

bindingElements
*

binded binded binded* * *

UML metamodel

Fig. 3. Excerpt of the binding metamodel.
The third step (see step 3 in Fig. 2) analyzes the UML models to discover matching

elements and creates bindings to express the matches between them. The binding model
conforms to the binding metamodel which allows creating traceability and binding
elements for the data elements in the UML models. Figure 3 shows an excerpt of the
binding metamodel. The BindingModel element is the root element of the binding
metamodel and includes a set of binding elements (i.e., bindingElements reference).
The ClassBinding, PropertyBinding, and AssociationBinding elements allow
defining bindings to Class, Property, and Association elements in a UML model,
respectively. Each element includes a preferred name (i.e., the preferredName attribute
inherited from the BindingElement element) and a set of binded elements (i.e., the
binded references). We currently support a simple two-step matching strategy to define
the bindings between elements. The first step finds matching candidates based on their
names and types. Then, the second step validates the matches by calling the REST
APIs and comparing data related to each candidate. Our experience showed that such
strategy is sufficient for APIs coming from the same provider/domain, which share the
same concept names across their APIs. However, our approach can be extended in order
to support more advanced matching strategies specially for cross-domain composition
by relying on, for instance, database schema integration approaches [4] or the new
approaches to add semantic descriptions to OpenAPI [7, 14]. Also, a designer can
manually curate the initial automatic result.

Finally, the last step creates an OData metadata document from: (i) the generated
UML models, and (ii) the binding model. This document includes an OData entity
model created by merging all the data models of the input REST APIs and resolving the
bindings between them. Thus, the creation process iterates over all the data elements
in the UML models and creates a new element in the entity model if there is not a
binding linking such element to another element, or merging both elements otherwise.
The OData metadata document is the standard way OData provides to let end-users
know how to query data using the OData query language.

4 Requests Resolver

The Requests resolver is an OData service exposing the created data model, and in
charge of processing the end-user queries and building the query response based on
the bindings and extended OpenAPI models generated during the import phase. Such
process involves two steps, namely: query resolution and response resolution.

XOA model

<edmx:Edmx Version="4.0" ...>

<edmx:DataServices>

<Schema Namespace="com.example">

 <EntityType Name="Country">

<Property Name="name" .../>

<NavigationProperty Name="regions".../>

</EntityType>

<EntityType Name="Region">...

 </EntityType>

<EntityContainer Name="ODAService">

<EntitySet Name="Countries"

 EntityType="com.example.Country">

<NavigationPropertyBinding

 Path="regions" Target="Regions"/>

</EntitySet>...

</EntityContainer>

</Schema>

</edmx:DataServices>

</edmx:Edmx>

<edmx:Edmx Version="4.0" ...>

<edmx:DataServices>

<Schema Namespace="com.example">

 <EntityType Name="Country">

<Property Name="name" .../>

<NavigationProperty Name="regions".../>

</EntityType>

<EntityType Name="Region">...

 </EntityType>

<EntityContainer Name="ODAService">

<EntitySet Name="Countries"

 EntityType="com.example.Country">

<NavigationPropertyBinding

 Path="regions" Target="Regions"/>

</EntitySet>...

</EntityContainer>

</Schema>

</edmx:DataServices>

</edmx:Edmx>

OData metadata

{"swagger": "2.0",

"host": "restcountries.eu",...

"paths": {

"/all": {...},

"/name/{name}": {...},

"/alpha/{code}": {...},

"/currency/{currency}": {...},

...

"definitions": {

"Country": {...},

"Language": {...},

"RegionalBloc": {...},...}}

Battuta!

Restcountries

{"swagger": "2.0",

 "host": "battuta.medunes.net",...

 "paths": {

 "/country/all": {...},

 "/country/code/{code}": {...},

 "/region/{code}/all": {...},

 "/city/{code}/search": {...},

 ...

 },

 "definitions": {

 "Country": {...},

 "Region": {...},

 "City": {...}}}

Region

name: String

City

name: String
lattitude: String

cities
region

*
1

RegionalBlock

name: String
...

*

* regionalBlocks

countries

regions

cities

region

*

*

Region

name: String

1

1

OData query

{"@odata.context":"$metadata#Country",
 "name": "Spain",
 "code": "ES",
 "population": 46538422,....
 "regions":[
 {"name": "Andalucia"},
 {"name": "Aragon"},
 {"name":"Canary Islands"},,...]
}

OData response

name: String
code : String

Country

country
regions
*1

OData Entity model

a.1

a.2

b.1

e

g

d
Country

name: String
code : String
population: Long
...

Language

name: String
...

:ClassBinding

RegionalBlock

name: String
...

**

*

name: String
...

*
Language

regionalBlocks languages

countriescountries
Country

name: String
alpha2Code : String
population : Long
...

b.2
City

name: String
lattitude: String
langitude: String

1&2

1&2

3

4

b
in

d
ed

country

*
countries

languages

*

cBinding model

XOA model

XOA model

3

4

4

preferredName:"Country"

GET http://host/ODAService/Countries('ES')?$expand=regions

f

Restcountries

Battuta

Fig. 4. Illustrative example.

The query resolver interprets first the OData query in order to determine the target
resource to retrieve (i.e., a collection of entities, a single entity or a property) and the
options associated with the query (e.g., filter or ordering). The resolver transforms then
the query into a set of API calls by tracing back the origin of each element thanks to the
binding model. From the binding model we navigate first to the UMLmodels then to the
OpenAPI models. These OpenAPI models contain all the necessary details to generate
the actual calls8 as they contain the same information as the originalOpenAPI definitions.

On the other hand, the response resolver is in charge of providing the result to the
end-user by combining the different API answers in a single response conforming to the
OData entity model defined in the OData metadata document.

5 Illustrative Example

To illustrate our approach, we consider the following REST APIs: Battuta9, which
allows retrieving the regions and cities of a country; and Restcountries10, which

8 We created a set of heuristics which map operations to entity elements. More information can
be found at our repository.

9 https://battuta.medunes.net/
10 https://restcountries.eu/

allows getting general information about countries such as their languages, currencies
and population. Our goal is to create a global API combining both APIs. Thanks to
the global API, users will be able to query both kinds of country information (either
geographical, general or both) in a transparent way, (i.e., without having to specify
in each query what API/s the query should read from). As a preliminary step, we
generated the OpenAPI definitions describing Battuta and Restcountries APIs using
APIDiscoverer [9]. We used the resulting definitions as inputs for our approach.

Figure 4 illustrates the results of applying our composition mechanism on these
APIs. Figures 4.a.1 and 4.a.2 show parts of the OpenAPI definitions of Battuta and
Restcountries APIs, respectively. As explained in the previous section, the first step
of the process generates an OpenAPI model describing the input definition, while
the second step generates UML model where the data aspects have been refined and
highlighted. Figure 4.b.1 and 4.b.2 show the generated UML models for Battuta and
Restcountries APIs, respectively. As can be seen, the data model for the Battuta API
includes the classes Country, Region and City, while the model for the Restcountries
API includes the classes Country, RegionalBlock, and Currency. Figure 4.c shows the
binding model including a ClassBinding element for the Country entities of both data
models, identified as a valid matching concept.

Figure 4.d shows the OData Entity model created by joining the elements of both
data models and resolving the match between the Country entities. As can be seen, the
Country class is shared between both APIs and includes properties and relationships
coming from both APIs. Figure 4.e shows an excerpt of the Metadata document of the
OData Entity model. This document can be retrieved by appending $metadata to the
URL of the OData application and allows end-users to understand how to query the data.

OData defines a URL-based query language sharing some similarities with SQL that
allows users to query the data described in the metadata document [16]. Figure 4.f shows
an example of an OData request to retrieve the details of Spain and its regions using the
query option $expand11. This request relies on the concept binding for Country, which
allows process the request using Restcountries API (mainly for information about the
country) andBattutaAPI (for information about the regions). Thus, the request is traced
back to both Restcountries and Battuta APIs (i.e., the operations /alpha/{code}
and /region/{code}/all, respectively), which are therefore queried. Figure 4.g shows
the response in OData format. More query examples can be found in our repository [1].

6 Tool Support

We created a proof-of-concept tool implementing our approachwhichwemade available
as an Open Source application [1]. Our tool has been implemented as a Java web
application which can be deployed in any Servlet container (e.g., Apache Tomcat). The
application relies on JavaServer Faces (JSF), a server-side technology for developing
Web applications; and Primefaces12, a UI framework for JSF applications; to implement
a wizard guiding the user through the steps of the API importer and displaying the
different models. The OpenAPI metamodel, the extended OpenAPI metamodel, and

11 $expand specifies that the related resources have to be included in line with retrieved one.
12 http://www.primefaces.org

the binding metamodel have been implemented using the Eclipse Modeling Framework
(EMF). OData implementation relies on Apache Olingo13 to provide support for OData
entity model, OData query language, and serialization.

7 Related Work

Most of the previous works on RESTAPIs composition are tight to specific API descrip-
tion languages [12]. For instance, some of them relied on WADL (Web Architecture
Description Language) and hREST (HTML for RESTful Services) to describe the be-
havior of REST APIs, and WSMO (Web Service Modeling Ontology) and SA-REST
(Semantic Annotation of Web Resources) to add semantic annotations (e.g., [15, 8, 13]).
However, none of them gained a broad support mainly because those languages were not
successfully adopted [12]. We decided to rely on the OpenAPI specification, which can
be seen as a reference solution for REST APIs. The emergence of OpenAPI definitions
has motivated initiatives to annotate OpenAPI definitions with semantic descriptions [7,
14] and identify APIs for selection [3]. Our approach differs from these works by putting
OpenAPI specification at the core of the composition strategy, but we can profit in the
future from them (e.g., by considering semantic descriptions for concept matching).

Our approach focuses on the composition of data-oriented APIs, which allows us to
rely on the family of approaches proposed for JSON data [5] and in the database world
for schema matching and merging [17, 4]. To the best of our knowledge, only the work
by Serrano et al. [19] proposes a similar approach to ours but theirs require annotating
RESTAPIs with Linked-Data ontologies and uses SPARQL to query to composed APIs.

8 Conclusion

We have presented a model-based approach to automatically compose and orchestrate
data-driven REST APIs. Our approach parses OpenAPI definitions to extract data mod-
els, expressed as UML models, which are combined following a pragmatic matching
strategy to create a global data model representing the union of all the data for the input
APIs. The global model is exposed as an OData service, thus allowing users to easily
perform queries using the OData query language. Queries on the global model are au-
tomatically translated into queries on the underlying individual APIs. In case users are
not familiar with OData, OpenAPI definitions could also be easily derived from OData
services14. Also, note that we illustrated our composition using OData but a similar
approach could be followed to generate GraphQL APIs instead.

As future work we are interested in considering semantic descriptions for improving
the matching strategy and non-functional aspects (like Quality-of-Service, QoS, or
price) in the generation of the global model when alternative APIs have a high degree
of overlapping. The latter would allow users to choose different resolution paths for
the same query based on their preferences (e.g., by using free APIs when possible). We
would like to extend our approach in order to support not only data retrieval but also data

13 http://olingo.apache.org/
14 https://github.com/oasis-tcs/odata-openapi

modification (i.e., support all CRUD operations). We are also interested in improving
the maintainability of our approach by allowing the update of the composed APIs as
they evolve.

References
1. APIComposer. http://hdl.handle.net/20.500.12004/1/A/APIC/001
2. Aué, J., Aniche, M., Lobbezoo, M., van Deursen, A.: An exploratory study on faults in web

api integration in a large-scale payment company. In: Int. Conf. on Software Engineering:
Software Engineering in Practice. pp. 13–22 (2018)

3. Baresi, L., Garriga,M., DeRenzis, A.:Microservices identification through interface analysis.
In: Eur. Conf. on Service-Oriented and Cloud Computing. pp. 19–33 (2017)

4. Boronat, A., Carsí, J.Á., Ramos, I., Letelier, P.: Formal model merging applied to class
diagram integration. Electronic Notes in Theoretical Computer Science 166, 5–26 (2007)

5. Cánovas Izquierdo, J., Cabot, J.: Composing JSON-Based Web APIs. In: Int. Conf. on Web
Engineering. pp. 390–399 (2014)

6. Cao, H., Falleri, J.R., Blanc, X.: Automated Generation of REST API Specification from
Plain HTML Documentation. In: Int. Conf. on Service-Oriented Computing. pp. 453–461.
Springer (2017)

7. Cremaschi, M., De Paoli, F.: Toward Automatic Semantic API Descriptions to Support
Services Composition. In: Eur. Conf. on Service-Oriented and Cloud Computing. pp. 159–
167 (2017)

8. De Giorgio, T., Ripa, G., Zuccalà, M.: An approach to enable replacement of SOAP services
and REST services in lightweight processes. In: Int. Conf. on Web Engineering. pp. 338–346
(2010)

9. Ed-Douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: Example-driven Web API Specification
Discovery. In: Eur. Conf. on Modelling Foundations and Applications (2017)

10. Ed-Douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: OpenAPItoUML: a Tool to Generate UML
Models from OpenAPI definitions. In: Int. Conf. on Web Engineering (2018)

11. Espinha, T., Zaidman, A., Gross, H.G.: Web API growing pains: Stories from client devel-
opers and their code. In: Int. Conf. on Software Maintenance, Reengineering and Reverse
Engineering. pp. 84–93 (2014)

12. Garriga, M., Mateos, C., Flores, A., Cechich, A., Zunino, A.: Restful service composition at
a glance: A survey. Journal of Network and Computer Applications 60, 32–53 (2016)

13. Lanthaler, M., Gütl, C.: Towards a RESTful service ecosystem. In: Int. Conf. on Digital
Ecosystems and Technologies. pp. 209–214 (2010)

14. Musyaffa, F.A., Halilaj, L., Siebes, R., Orlandi, F., Auer, S.: Minimally Invasive Semantifi-
cation of Light Weight Service Descriptions. In: Int. Conf. on Web Services. pp. 672–677
(2016)

15. Pautasso, C.: RESTful Web service composition with BPEL for REST. Data & Knowledge
Engineering 68(9), 851–866 (2009)

16. Pizzo, M., Handl, R., Zurmuehl, M.: OData version 4.0 part 2: URL Conventions. Tech. rep.,
OASIS (2014)

17. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. the
VLDB Journal 10(4), 334–350 (2001)

18. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Softw. 20(5), 19–25 (2003)
19. Serrano, D., Stroulia, E., Lau, D., Ng, T.: Linked REST APIs: A Middleware for Semantic

REST API Integration. In: Int. Conf. on Web Services. pp. 138–145 (2017)
20. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services compo-

sition: A decade’s overview. Information Sciences 280, 218–238 (2014)

