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Abstract. Existing modeling tools provide direct access to the most current ver-
sion of a model but very limited support to inspect the model state in the past. This
typically requires looking for amodel version (usually stored in some kind of exter-
nal versioning system likeGit) roughly corresponding to the desired period and us-
ing it tomanually retrieve the required data. This approximate answer is not enough
in scenarios that require a more precise and immediate response to temporal
queries like complex collaborative co-engineering processes or runtime models.
In this paper, we reuse well-known concepts from temporal languages to propose
a temporal metamodeling framework, called TemporalEMF, that adds native tem-
poral support for models. In our framework, models are automatically treated as
temporal models and can be subjected to temporal queries to retrieve the model
contents at different points in time. We have built our framework on top of the
Eclipse Modeling Framework (EMF). Behind the scenes, the history of a model
is transparently stored in a NoSQL database. We evaluate the resulting Tempo-
ralEMF framework with an Industry 4.0 case study about a production system
simulator. The results show good scalability for storing and accessing temporal
models without requiring changes to the syntax and semantics of the simulator.

Keywords: Temporal Models, Metamodeling, Model-Driven Engineering

1 Introduction

Modeling tools and frameworks have improved drastically during the last decade due to
the maturation of metamodeling concepts and techniques [9]. A concern which did not
yet receive enough attention is the temporal aspect of metamodels and their correspond-
ing models when it comes to model valid time and transaction time dimensions instead
of just arbitrary user-defined times [15]. Indeed, existing modeling tools provide direct
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access to the most current version of a model, but very limited support to inspect the
model state at specific past time periods [5,8]. This typically requires looking for amodel
version stored in some kind of model repository roughly corresponding to that time pe-
riod and using it to manually retrieve the required data. This approximate answer is not
enough in scenarios that require a more precise and immediate response to temporal
queries like complex collaborative co-engineering processes or runtime models [20].

To deal with these new scenarios, temporal language support must be introduced
as well as an infrastructure to efficiently manage the representation of both historical
and current model information. Furthermore, query means are required to validate the
evolution of amodel, to find interestingmodeling states, aswell as execution states.Using
existing technology to tackle these requirements is not satisfactory as we later discuss.

To tackle these limitations, we reuse well-known concepts from temporal languages
to propose a temporal metamodeling framework, called TemporalEMF, that adds native
temporal support. In TemporalEMF, models are automatically treated as temporal, and
temporal query support allows to retrievemodel elements at any point in time.Our frame-
work is realized on top of the Eclipse Modeling Framework (EMF) [24]. Models history
is transparently stored in a NoSQL database, thus supporting large evolving models. We
evaluate the resulting framework using an Industry 4.0 case study of a production sys-
tem simulator [19]. The results show good scalability for storing and accessing temporal
models without requiring changes to the syntax and semantics of the simulator.

Thus, our contribution is three-fold: (i) we present a light-weight extension of
current metamodeling standards to build a temporal metamodeling language; (ii) we
introduce an infrastructure to manage temporal models by combining EMF and
HBase [26], an implementation of Google’s BigTable NoSQL storage [12]; and (iii)
we outline a temporal query language to retrieve historical information from models.
Please note that contributions do not change the general way how models are used: if
only the latest state is of interest, the model is transparently accessed and manipulated
in the standard way as offered by the EMF. Thus, all existing tools are still applicable,
and the temporal extension is considered to be an add-on.

This paper is structured as follows. Section 2 presents our proposal to include tem-
poral information in existing metamodeling standards. Section 3 presents how temporal
models can be stored in a NoSQL database, and Section 4 presents our prototype based
on EMF and HBase. Our approach is evaluated with a case study in Section 5. Section 6
presents related work, and Section 7 concludes the paper with an outlook on future work.

2 Temporal Metamodeling

In this section, we discuss how existing work on temporal modeling can be applied for
temporal metamodeling. We introduce a profile for adding temporal concepts in exist-
ing metamodeling standards; and we present an Industry 4.0 case which demands for
temporal metamodeling in order to realize simulation and runtime requirements.

2.1 A Profile for Temporal Metamodeling

We propose a profile for augmenting existing metamodels with information about tem-
poral aspects. Metamodels can be regarded as just a special kind of models [7], and
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<<meta-metaclass>>
Class

<<stereotype>>
Temporal

<<meta-metaclass>>
StructuralFeature

<<meta-metaclass>>
Operation

<<stereotype>>
Log

<<stereotype>>
Vacuuming

<<profile>>
Temporal Profile

durability : DurabilityKind
frequency : FrequencyKind

<<enum>>
DurabilityKind

constant
permanent
durable
instantaneous

<<enum>>
FrequencyKind

single
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Fig. 1: Profile for Temporal Metamodeling.

therefore, existing work on temporal modeling for ER [15] and UML [11] languages
can be easily leveraged to specify arbitrary temporal (meta)models. Thus, we base our
temporal metamodeling profile on these previous works for the static parts of the model,
and extend them to cover behavioural definitions which are of particular interested if
executable metamodels, i.e., executable modeling languages, are used.

Figure 1 introduces the profile for augmenting metamodels with temporal concerns
in EMF Profiles notation. EMF Profiles [18] is a generalization of UML Profiles. As
with UML Profiles, stereotypes are defined for predefined metaclasses and represent a
way to provide lightweight extensions for modeling languages without requiring any
changes to the technological infrastructure. However, in contrast to UML Profiles, EMF
Profiles allow modelers to define profiles for any kind of modeling language.

The profile in Figure 1 includes the stereotypeTemporal (inspired frompreviouswork
on temporal UML [11]) combinedwith its durability and frequency properties to classify
metaclasses as instantaneous, durable, permanent or constant. We also introduce novel
stereotypes for annotating the operations as we consider executable metamodels. We
want to define special operations for which their calls are logged or vacuumed. The
former requires to keep a trace of all executions of the operation. The later forces
to restart from scratch the lifespan of the modeling elements deleting their complete
previous history. This should be obviously used with caution as it defeats the purpose of
having the temporal annotations in the first place but it may be necessary in scenarios
where runtimemodels are used for simulation purposes andmodelers want to restart that
simulation using a clean slate. Furthermore, it may help inmanaging the size of temporal
models which may attach an extensive history where only the last periods are of interest.

Similarly, we have also adapted our previous work on the specification of temporal
expressions [11] to provide temporal OCL-based query support on top of our temporal
infrastructure. Before we show an application of the profile and query support, we
introduce the motivating and running example of this paper.

2.2 Running Example: Transportation Line Modeling Language

The running example of the paper is taken from the CDL-MINTa project. The main
goal is to investigate the application of modeling techniques in the domain of smart
production systems. The example is about designing transportation lines made up of
sets of turntables, conveyors, and multi-purpose machines. The production plant is
supposed to continuously processes items by its multi-purpose machines located in
specific areas. Turntables and conveyors are in charge ofmoving items to thesemachines.
a More information available at: https://cdl-mint.big.tuwien.ac.at
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Fig. 2: Applying the Temporal Profile for a Transportation Line Modeling Language

Given a particular design for a transportation line, simulations are needed for computing
different KPIs such as utilization, throughput, cycle times, etc., in order to validate if
certain requirements are actually met by a particular design.

The metamodel of the transportation line modeling language is shown in Fig. 2.
System is the root class, which is composed of several Areas. The system has associated
a SimConfig, where parameters of the simulation can be specified, e.g., the simulation
time or number of iterations. An area, in turn, can contain any number of Compo-
nents. As we see, there are five types of Components, namely, Conveyor, Machine,
Turntable, StorageQueue, andWaitingQueue. Items are created by ItemGenerators and
are moved along the transportation line by starting their way in the area’s associated
WaitingQueue. On their way, they may serve as input to Machines. Those items that
complete the transportation line successfully, should end up in a StorageQueue.

In Fig. 2, we also provide an application example of the introduced temporal profile.
In particular, wemark the class Item asTemporal as instances of this class are created dur-
ing runtime which should be tracked in the history of the model. Furthermore, not only
the items, but also their assignment to particular locations should be tracked. For this, we
also annotate the bi-directional reference between Item and Component. In order to un-
derstand which component is activated in a particular point in time, we annotate the do()
operation with the Log stereotype. Finally, in order to create a fresh state when a simula-
tion run is started, we annotate the simulation() operationwith theVacuuming stereotype.

Having the class Itemmarked as a temporal element aswell as the involved references,
we are now able to define several queries (Qs) to compute execution states of interest
(such as those needed for provenance) and KPIs (such as utilization):

Q1 — Find all items which have been processed by machine m.
Q2 — Find the components which had an item assigned at a particular point in time.
Q3 —Find the components which had an item assigned within a particular time frame.
Q4 —Compute the utilization of machine e for the whole system execution lifecycle.

Query Q1 retrieves the complete evolution of a structural feature, namely the hosts
reference. Q2 accesses the hosts reference for a particular point in time, while Q3 is
evaluating this reference for any particular moment between two time instants. Finally,
Q4 is performing a complex query which is also requiring the access of the time values
for having items assigned and not having items assigned.
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As an example of how these queries are defined using a temporal OCL [21] extension,
below we find the specification forQ2. In particular, by using additional access methods
for properties which are time sensitive (cf. hostsAt(i:Instant)) we are able to query the
state of the hosts reference for a particular moment in the past.

1 Component.allInstances()->select(c | not c.hostsAt(instant).oclIsUndefined())

3 Approach
Enabling a temporal metamodeling language as the one discussed above requires a
temporal modeling infrastructure. In this section, we introduce the core concepts of
our solution, based on the use of a key-value NoSQL mechanism to store the models’
historical data. Next section gives additional technical details on its design.

In a previous work [14], we discussed why NoSQL data stores and, more concretely,
map-based (i.e. key-value) stores are especially well-suited to persist models managed
by (meta-)modeling frameworks since map-based stores are very well aligned with the
typical fine-grained APIs offered by modeling frameworks (that mostly force individual
access to model elements, even when the user aims to query a large subset of the model).
Alternative mechanisms, such as in-memory or XML-based, failed to scale when deal-
ing with large models as it typically happens when working on, for instance, building
information models (BIMs), modernization projects involving the model-based reengi-
neering of legacy systems, or on simulation scenarios. This is also true for relational
databases (even temporal ones, a direction they are all following in compliance with the
SQL:2011 standard) mainly due to the lack of alignment with modeling tools APIs.

An interesting map-based solution is BigTable [12]. BigTable is a distributed, scal-
able, versioned, non-relational and column-based big data store; where data is stored
in tables, which are sparse, distributed, persistent, and multi-dimensional sorted maps.
These maps are indexed by the tuple row key, column key, and a timestamp. The native
presence of timestamps and the benefits of map-based solutions to store large models
make a BigTable-like solution an ideal candidate for a temporal modeling infrastructure.

Next, we describe BigTable’s main concepts and howwe adapt them (and, in general,
similar column-based solutions) to support a temporal modeling infrastructure able to
automatically persist and manage (meta)models annotated with our profile.

3.1 BigTable Basics
The top-level organization units for data in BigTable are named tables; and within tables,
data is stored in rows, which are identified by their row key. Within a row, data is grouped
by column families, which are defined at table creation. All rows in a table have the same
column families, although may be empty. Data within a column family is addressed via
its column qualifier; which, on the contrary, do not need to be specified in advance nor
be consistent between rows. Cells are identified by their row key, column family, and
column qualifier, do not have a data type, and store raw data which is always treated as
a byte[]. Values within a cell are versioned. Versions are identified by their version
number, which by default is the timestamp of when the cell was written. If the timestamp
is not specified for a read, the latest one is returned. The number of cell value versions
retained by BigTable is configurable for each column family.
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3.2 Column-based Data Model

Our proposed data model flattens the typical graph structure expressed by models into
a set of key-value mappings that fit the map-based data model of BigTable. Such data
model takes advantage of unique identifiers that are assigned to each model object.

Fig. 3a shows a simplification of the production plant model for the case study pre-
sented in Section 2.2 that we will use as an example. The figure describes a production
system (omitted for the sake of simplicity) with a single Area with machines, which in
turn, host and process – one by one – a set of items that are fed into the production
system. Figs. 3b-3d, present three instances of this model in three different consecutive
instants. Changes performed at each instant are highlighted in red. Fig. 3b represents an
area a1, at a given moment in time ti, with one machine m1, and one unprocessed item
i1. Fig. 3c represents the same area at time ti+1, when item i1 – which is ready to be
processed – is fed into m1. Finally, Fig. 3d represents the area at time ti+2, once m1 has
processed i1, thus changing the isProcessed status to true.

Our proposed data model uses a single table with three column families to store
models’ information: (i) a property column family, that keeps all objects’ data stored
together; (ii) a type column family, that tracks how objects interact with the meta-level
(such as the instance of relationships); and (iii) a containment column family, that
defines the models’ structure in terms of containment references. Table 1 shows how the
sample instances in Figs. 3b-3d are represented using this structure.

As Table 1 shows, row keys are the objects’ unique identifiers. The property column
family stores the objects’ actual data. Please note that not all rows have a value for a given
column (as BigTable tables are sparse). How data is stored depends on the property type
and cardinality (i.e., upper bound). For example, values for single-valued attributes (like
the id, which is stored in the id column) are directly saved as a single literal value; while
values for many-valued attributes are saved as an array of single literal values (Fig. 3
does not contain an example of this). Values for single-valued references, such as the
hosts reference from Machine to Item, are stored as a single value (corresponding to
the identifier of the referenced object). Finally, multi-valued references are stored as an
array containing the literal identifiers of the referenced objects. Examples of this are the
machines and items containment references, fromArea toMachine and Item, respectively.

As it can be seen, the table keeps track of all current and past model states. At ti (cf.
Fig. 3b), the model is stored in rows 〈’ROOT’, ti〉, 〈’a1’, ti〉, 〈’m1’, ti〉 and 〈’i1’, ti〉.

Area
id : String

Machine
id : String

+ process()

Item
id : String
isProcessed : Boolean

machines * items *

hosts
0..1

(a)

a1 : Area

id : ’a1’
m1 : Machine

id : ’m1’

i1 : Item

id : ’i1’
isProcessed : false

machines items

(b)

a1 : Area

id : ’a1’
m1 : Machine

id : ’m1’

i1 : Item

id : ’i1’
isProcessed : false

machines items

hosts

(c)

a1 : Area

id : ’a1’
m1 : Machine

id : ’m1’

i1 : Item Area

id : ’i1’
isProcessed : true

machines items

hosts

(d)

Fig. 3: Example model (3a) and sample instances at ti (3b), ti+1 (3b) and ti+2 (3b)
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Table 1: Example model stored in a sparse table in BigTable
property

key timestamp rootContents id machines items hosts isProcessed
’ROOT’ ti { ’a1’ } — — — — —
’a1’ ti — ’a1’ { ’m1’ } { ’i1’ } — —
’m1’ ti+1 — ’m1’ — — ’i1’ —
’m1’ ti — ’m1’ — — — —
’i1’ ti+2 — ’i1’ — — — true
’i1’ ti — ’i1’ — — — false

(continued) containment type
key timestamp container feature nsURI EClass
’ROOT’ ti — — ’http://plant’ ’RootEObject’
’a1’ ti ’ROOT’ ’rootContents’ ’http://plant’ ’Area’
’m1’ ti+1 ’a1’ ’machines’ ’http://plant’ ’Machine’
’m1’ ti ’a1’ ’machines’ ’http://plant’ ’Machine’
’i1’ ti+2 ’a1’ ’items’ ’http://plant’ ’Item’
’i1’ ti ’a1’ ’items’ ’http://plant’ ’Item’

After setting the hosts reference at instant ti+1 (cf. Fig. 3c), the new 〈’m1’, ti+1〉 row
– which supersedes 〈’m1’, ti〉 – is added. When the isProcessed property is changed
(cf. Fig. 3d), the 〈’i1’, ti+2〉 row is added; and the last model state is stored in rows
〈’ROOT’, ti〉, 〈’a1’, ti〉, 〈’m1’, ti+1〉 and 〈’i1’, ti+2〉. Note that our infrastructure is
not bitemporal: we assume that valid-time and transaction-time are always equivalent.

Structurally, EMF models are trees, and thus, every non-volatile object (except the
root object) must be contained within another object (i.e., referenced via a containment
reference). The containment column family maintains this information for every per-
sisted object at a specific instant in time. The container column stores the identifier of
the container object, while the feature column indicates the property that relates the
container object with the child object. Table 1 shows that, for example, the container of
the Area a1 is ROOT through the rootContents property (i.e., it is a root object and is not
contained by any other object). In the next row we find the entry that describes that the
Machine m1 is contained in the Area a1 through the machines property.

The type column family groups the type information by means of the nsURI and
EClass columns. For example, the table specifies the element a1 is an instance of the
Area class of the Plant metamodel (that is identified by the http://plant nsURI).
Data stored in the type column family is immutable and never changes.

3.3 Query facilities

Asmentioned in Section 2, several temporal query languages have been proposed before.
Nevertheless, they all share the need to refer to the value of an attribute or an association
at a certain (past) instant of time i in order to evaluate the temporal expressions [11] (also
known as temporal interpolation functions). Based on this general requirement, we have
built the generic TObject::eGetAt(i:instant, f:feature)method that returns the value of a
feature (either an attribute or an association end) for a specific temporal object at a spe-
cific instant. For convenience, we also provide TObject::eGetAllBetween(s:startInstant,
e:endInstant, f:feature), that returns a sorted map where the key of the map is the mo-
ment when the feature was updated, and the value is the value that was set at that specific
moment within the given period. In Section 2.2, we showed howQ2 could be expressed
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in temporal OCL. As an example, below we depict how to specify such query for a
specific Area a1 in our proposed Java-based query language. This language makes use
of the EMF Java API [24], taking advantage of Java streams and lambda expressions.

1 a1.getComponent().stream()
2 .filter(c -> c.eGetAt(instant, TllPackage.eINSTANCE.getComponent_Hosts()) != null)
3 .collect(Collectors.toSet());

4 TemporalEMF Architecture

We have built our temporal (meta-)modeling framework on top of Apache HBase [26],
the most wide-spread open-source implementation of BigTable, based on our experience
on building scalable, non-temporal model persistence solutions [6].

Fig. 4 shows the high-level architecture of our proposal. It consists of a temporal
model management interface – TemporalEMF – built on top of a regular model man-
agement interface – EMF [24]. These interfaces use a persistence manager in such a
way that tools built over the temporal (meta)modeling framework would be unaware of
it. The persistence manager communicates with the underlying database by a driver. In
particular we implement TemporalEMF as a persistence manager on top of HBase; but
other persistence technologies can be used as long as a proper driver is provided.

Thanks to our identifier-based data model, TemporalEMF offers lightweight on-
demand loading and efficient garbage collection. Model changes are automatically re-
flected in the underlying storage. To do so, (i)we decouple dependencies among objects
taking advantage of the unique identifier assigned to all model objects. (ii) We im-
plement an on-demand loading and saving mechanism for each live model object by
creating a thin delegate object that is in charge of on-demand loading the element data
from storage and keeping track of the element’s state. Data is loaded/saved from/to the
persistence backend by using the object’s unique identifier. Finally, and thanks to the
data model explained in Section 3.2. (iii) We provide a garbage collection-friendly
implementation where no hard references among model objects are kept, so that any
model object that is not directly referenced by the application can be deallocated.

TemporalEMF is designed as a simple persistence layer that adds temporal support to
EMF. As in standard EMF, no thread-safety is guaranteed, and no transactional support
is explicitly provided, although all ACID properties [16] are guaranteed at the object
level. Nevertheless, we paid special attention to keep the same semantics than in basic
EMF. Thus, TemporalEMF, available as an open-source project [1], can be directly
plugged into any EMF-based tool to immediately provide enhanced temporal support.

Client Code
Model Access API

Persistence API

Backend API

Model Manager

Persistence Manager

Persistence Backend HBase

Standard EMF Temporal EMF

Model-based Tools

Temporal EMF Persistence Manager
HBase Driver ...

Fig. 4: Overview of the model-persistence framework
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5 Evaluation

In this section, we perform experiments based on the guidelines for conducting empirical
explanatory case studies [22]. The main goal is to evaluate the impact of the temporal
extension formodels on the performance as well as the capabilities of temporal queries in
the context ofmodel-based simulations.All the artifacts used in this evaluation and all the
data we have gathered (either raw or processed) can be inspected at the paper web pageb.

This study aims to evaluate the possible distinct behavior of current in-memory
solutions without dedicated temporal support (in the following, StandardEMF) and our
temporal solution (in the following, TemporalEMF) and, more specifically, to answer
the following research questions (RQs):
RQ1: Production Cost — Is there a significant difference of the time required for
producing and manipulating temporal model elements? This question is of particular
relevance for efficient model simulators which have to run for longer periods to produce
a target model as well as the traces to reach such a model.
RQ2: Storage Cost — Is there a significant difference of the storage size of temporal
models? This question is of particular interest since the output of a model simulation
may have to be stored for provenance reasons or for comparing different variants.
RQ3: Reproduction Cost — Is there a significant difference of restoring previous
versions of temporal model elements? This question is of relevance as the different
properties of a simulation run have to be computed which involves accessing past states
and information of the simulated model.

5.1 Case Study Setup

Next, we summarize the selected case study, the input models, the evaluation measures
and the environment used to perform the evaluation.
SelectedCase: TransportationLine Simulator—Section 2.2, wherewe exemplify the
application of the temporalmodeling profile, already presents the casewe use in this eval-
uation: the Transportation Line Modeling Language. However, in order to have a refer-
ence implementation with which to compare TemporalEMF, we need to extend themeta-
model so that StandardEMF can also provide temporal capabilities. Following a naive
approach, we introduce additional metamodel elements (as well as listeners), so that the
history of our model elements can be explicitly tracked and stored in the model itself.

Fig. 5 shows an example of such additions: the ItemHistoryEntry metaclass can be
added to themetamodel so that everytime the hosts property of aComponent changes, the
b http://hdl.handle.net/20.500.12004/1/C/ER/2018/043

begin: Timestamp
end: Timestamp

ItemHistoryEntry
Component Item

hosts
0..1

hHosts
0..*

value 1..1

Fig. 5: Extension of the Transportation Line Modeling Language for StandardEMF
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corresponding ItemHistoryEntry element is created and/or updated. Following this naive
approach, we add as many extensions to the original metamodel as many temporal prop-
erties we aim to track (in our case, the Component::hosts and Item::location properties).
InputModels—Inall the experimentswe have used amodelwith a single System and (as
wewell see later in Section 5.2) varying SimConfig parameters depending on theRQ to be
answered. For reference, this System is composed by a singleArea, with 1 ItemGenerator,
1 WaitingQueue, 1 StorageQueue, 3 Conveyors, 4 TurnTables, and 1 Machine.

ForRQ1, we execute the simulation varying the processing times for the elements of
the Area from 0 ms (no processing time), to 40 ms, following an arithmetic progression
with a common difference of 5 milliseconds. Additionally, we run the experiments in
simulations whose duration (measured in the number of iterations executed) varies from
20 iterations to 40 960 iterations, following a geometric progression with a common
ratio of 2. To answer RQ2, we only vary the duration of the simulation and the amount
of memory available in the system; as well as we do for RQ3.
Evaluation Measures — We use different metrics depending on the nature of the
research question. For RQ1, we measure the execution time needed for running the
same simulation both using StandardEMF and TemporalEMF. We vary both the total
simulation time (iterations), and the processing time in the transportation line model
to evaluated how the different simulation parameters impact on the execution time.
The procesing time can be considered the think time that determines the workload we
apply to the simulation execution. To evaluate RQ2, we measure both the used memory
during the simulation as well as the storage needed to keep the simulation outcomes
for both solutions. To evaluate RQ3, we measure the execution time for recreating
previous versions of model elements for both solutions. Specifically, we execute the
code implementing queries Q1–Q4 presented in Section 2.2.
Environment Setup — We have executed the experiments using two Linux containers
in a Proxmox VE 5.1-46 server: one for running the EMF-based code, and other for
running HBase. Each one had 8 GB of RAM and 4 virtual CPUs. The actual hardware is
a Fujitsu Primergy RX200 S8 server with two quad-core Intel Xeon E5-2609 v2 CPUs
at 2.50GHz, 48 GB of DDR3 RAM memory (1 333 MHz), and two hard disks (at 7 200
rpm) configured in a software-controlled RAID 1. The experiments were run using Java
OpenJDK 1.8.0_162, Ant 1.9.9, Eclipse Oxygen 4.7.3a, EMF 2.13 and HBase 1.4.0.

5.2 Result Analysis

Below we summarize our experiments. For the sake of brevity, only the most significant
results are shown. For a comprehensive report please refer to the paper web page.
RQ1 — Table 2 shows the results for the experiments executed to evaluate the Pro-
duction Cost. TemporalEMF imposes an overhead that is especially noticeable when
models are small and there is no time between model modification (i.e., processing time
is zero). In those extreme cases, TemporalEMF is up to ∼23 times slower (i.e., it has an
overhead of 2291%). This is understandable, since such small models are completely
loaded in memory in StandardEMF. On the contrary, on TemporalEMF, every single
model operation implies a database access thus imposing a big cost.
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Table 2: Execution times (in seconds) for the experiments for RQ1
proc. 5120 iterations 10240 iterations 2048 iterations 40960 iterations
time SEMF TEMF % SEMF TEMF % SEMF TEMF % SEMF TEMF %
0 ms 11 261 2 291% 39 588 1 405% 99 1 167 1 078% 367 2 488 578%
5 ms 102 377 268% 217 738 240% 492 1 491 203% 1 169 3 627 210%
10 ms 193 473 145% 392 939 140% 839 1 917 128% 1 902 4 328 128%
15 ms 282 620 120% 570 1 219 114% 1 206 2 227 85% 2 593 4 752 83%
20 ms 373 711 91% 755 1 301 72% 1 556 2 592 67% 3 314 6 236 88%
25 ms 461 801 74% 941 1 606 71% 1 939 3 213 66% 4 004 6 616 65%
30 ms 552 841 52% 1 113 1 683 51% 2 275 3 443 51% 4 738 7 492 58%
35 ms 641 942 47% 1 297 1 880 45% 2 640 3 761 42% 5 472 8 279 51%
40 ms 731 1 033 41% 1 471 2 084 42% 3 012 4 158 38% 6 162 9 149 48%

Table 3: Memory usage and disk usage (in MB) for the experiments for RQ2
memory usage (max heap 512 MB) memory usage (max heap 2 GB) disk usage

Its. SEMF TEMF SEMF TEMF SEMF TEMF
5 120 19 9 20 9 6 11

10 240 32 9 34 10 12 21
20 480 61 10 64 12 23 41
40 960 112 11 118 13 45 82
81 920 219 15 225 16 89 164

163 840 (i) 22 438 22 177 328
327 680 (i) 28 865 36 354 656
655 360 (ii) (ii) (i) 37 (i) 1 341
(i)Out Of Memory Error; (ii) Setup not executed because experiment was already failing in StandardEMF for smaller sizes.

Table 4: Execution times (in milliseconds) for the queries for RQ3
query execution time (max heap 512 MB) query execution time (max heap 2 GB)

SEMF TEMF SEMF TEMF
Its. Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
5 120 22 13 8 6 145 11 17 65 13 12 8 6 107 10 16 66

10 240 23 24 20 10 225 14 29 93 23 23 15 10 157 11 19 79
20 480 37 39 29 18 1 694 17 21 138 38 36 31 18 239 10 22 172
40 960 43 49 40 35 5 492 31 32 318 47 44 35 34 1 438 23 24 257
81 920 79 63 60 45 14 453 47 35 602 69 56 50 41 11 570 28 21 417

163 840 (i) (i) (i) (i) 34 035 42 23 1 510 93 79 74 52 28 913 36 30 852
327 680 (i) (i) (i) (i) 68 839 34 20 2 262 184 128 122 74 61 101 33 28 2 163
655 360 (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (i) (i) (i) (i) 135 975 36 36 3 595
(i)Out Of Memory Error; (ii) Setup not executed because experiment was already failing in StandardEMF for smaller sizes.

As the simulation time increases and themodel size grows, the overhead is drastically
reduced: by just increasing the procesing time from 0 to 5ms, the overhead is reduced
by 10 times (i.e. only∼2 times slower). When the processing time is higher than 30 ms,
the overhead is reduced to only ∼0.5 times slower. These numbers remain stable with
increasing simulation times. It is worth noting that the overhead is only noticeable when
modifications happen in the range of ms. Thus, in activities where modifications happen
in the range of seconds (e.g. collaborative modeling) the overhead is unnoticeable.

RQ2—Table 3 shows the evaluation for Storage Cost. The table summarizes howmuch
memory and storage space is used after running a simulation. To measure the memory
consumption, the whole simulation process is executed, the resulting models are saved
in disk (in XMI for StandardEMF, in HBase for TemporalEMF), and after requesting
the garbage collector for three times, the actual used memory is measured. As expected,
StandardEMF uses much more RAM than TemporalEMF since all model states are kept
in memory; and as it can be observed, some experiments cannot be executed in Stan-
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dardEMF because the simulation runs out of memory. On the contrary, TemporalEMF
maintains a low memory footprint, using less than 40 MB consistently.

Regarding the disk usage, TemporalEMF requires∼2 times more storage than Stan-
dardEMF. However, TemporalEMF can take advantage of the distributed HBase infras-
tructure, thus allowing models to grow beyond the storage available in a single machine.
RQ3—Table 3 shows the results for the experiments to evaluate Reproduction Cost. We
executed Q1–Q4 ondifferent models for both StandardEMF and TemporalEMF. As ex-
pected StandardEMF outperformsTemporalEMF since all needed information is already
in memory. However, StandardEMF is not scalable, and fails when models start growing
or when memory is limited. On the contrary, TemporalEMF is able to execute all the
queries in all the evaluated setups, even when memory is tightly constrained. It is worth
noting that some queries are more costly than others (e.g.,Q2 andQ3 vsQ1 andQ4). In
any case, most of the queries can be computed in very few millisecons, and only Q1 on
specially bigmodels takes several seconds (to return hundreds of thousands of elements).

5.3 Threats to Validity

Several internal and external factors may jeopardize the validity of our results. The first
internal threat to validity is about the applied pattern for the StandardEMF solution.
There are different patterns for keeping temporal information in object-oriented struc-
tures (evenmaking use of external databases, thus alleviating thememory consumption).
We used a standard pattern, but other well-known patterns may show a different result.
The same holds for the formulation of the queries.

There are also external threats which may jeopardize the generalization of our
results. First, we only performed one case study in the domain of model simulation
domain. Other domains may show different ratios between the number of static design
elements and dynamic runtime elements. Moreover, we did not allow changes to the
design element during simulation. Finally, also the employed queries may not represent
all possibilities on how to access a temporal model. We aimed to provide heterogeneous
queries, such as provenance queries and KPI formulas. However, other queries such as
retrieving full model states or a revision graph for the complete model evolution may
require different capabilities and may show different runtime results.

6 Related Work

While there is abundant research work on temporal modeling and query languages to for
systems data (e.g., consider [15] or [23] for a survey), ours is, as far as we know, the first
fine-grained temporal metamodeling infrastructure, enabling the transparent and native
tracking (and querying) of system models themselves.

Closest approaches to ours are model versioning tools, focusing on storing models
in Version Control Systems (VCS) such as SVN and Git using XMI serializations [2] as
well as in database technologies such as relational databases, graph databases, or tuple
stores [3]. Traditionally, each version of an evolving model is stored as self-contained
model instance together with a timestamp on when the instance as a whole was recorded
in the VCS. There is no temporal information at themodel element level, and versions are
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generated on demand when the designer feels there are enough changes to justify a new
version (and not based on the temporal validity of the model). Therefore, reasoning on
the history of specific elements with a sufficient degree of precision is barely impossible.

Trying to adapt versioning systems tomimic a temporal metamodeling infrastructure
would trigger scalability issues as well. Storing full model states for each version is not
efficient. E.g., several approaches use model comparison [25] to extract fine-grained his-
torical data out of differentmodel versions.However, these solutions are extremely costly.
Just consider changing one value between two versions. This would result in mostly two
identical models which have to be stored and compared. This clearly shows that historical
model information is currently not well supported by existing model repositories.

A second group of related work is the family of models@run.time approaches [4].
Models@run.time refers to the runtime adaptation mechanisms that leverage software
models to dynamically change the behaviour of the system based on a set of predefined
conditions.While these approaches provide amodeling infrastructure to instantiatemod-
els, as we do, they do not store the history of those changes and only focus on the current
state to steer the system. The only exception is the work by Hartmann at al. [17] which
proposes the usage of versioning as we have seen in versioning systems for models. In-
stead of full models, model elements are versioned. However, the versions have to be ex-
plicitly introduced and managed as in the aforementioned versioning systems. We find a
similar situation with the group of works onmodel execution [10,13] that focus on repre-
senting completemodel states but do not keep track of the evolution of those states unless
the designer manually adds some temporal patterns (e.g. the one in the previous section).

7 Conclusion

We have presented TemporalEMF, a temporal modeling infrastructure built on top of
EMF. With TemporalEMF, conceptual schemas are automatically and transparently
treated as temporal models and can be subject to temporal queries to retrieve and com-
pare the model contents at different points in time. An extension to the standard EMF
APIs allows modelers to easily express such temporal queries. TemporalEMF relies on
HBase to provide an scalable persistence layer to store all past versions.

As further work, we would like to extend TemporalEMF in several directions. At the
modeling level, we will predefine some useful temporal patterns to facilitate the defini-
tion of temporal queries and operations. At the technology level, we will explore the inte-
gration of our temporal infrastructure in other types of NoSQL backends andWeb-based
modeling environments to expand our potential user base. Finally, we aim to exploit the
generated temporal information for a number of learning and predictive tasks to improve
the user experience with modeling tools. For instance, we could classify users based on
their typical modeling profile and dynamically adapt the tool based on that behaviour.
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