
OpenAPItoUML: A Tool to Generate UMLModels from
OpenAPI Definitions?

Hamza Ed-douibi1[0000−0003−4342−4818], Javier Luis Cánovas
Izquierdo1[0000−0002−2326−1700], Jordi Cabot1,2[0000−0003−2418−2489]

1 UOC. Barcelona, Spain
{hed-douibi,jcanovasi}@uoc.edu

2 ICREA. Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. REpresentational State Transfer (REST) has become the prominent
architectural style for designingWeb APIs. This increasing adoption has triggered
the creation of languages to formally describe REST APIs, thus facilitating and
promoting their usage. In particular, a consortium of companies has created the
OpenAPI Initiative, which aims at creating a vendor neutral, portable, standard and
open specification for describing REST APIs. OpenAPI specification has become
the choice of reference for describing REST APIs, and its adopters can benefit
from a plethora of tools for documenting, developing and integrating REST APIs.
However, current documentation tools for OpenAPI only describe REST APIs in
HTML pages using text and code samples, thus requiring a considerable effort
to visualize and understand what the APIs offer. In this paper, we propose a tool
called OpenAPItoUML, which generates UML models from OpenAPI definitions,
thus offering a better visualization of the datamodel and operations of RESTAPIs.

Keywords: OpenAPI, UML, REST API

1 Introduction

The REpresentational State Transfer (REST) is an architectural style which allows
relying on URIs and HTTP messages to build interoperable Web applications. Due to its
lightweight nature, adaptability to the Web, and scaling capacity, REST has become the
preferred style for building Web APIs. For instance, reports from ProgrammableWeb3,
the biggest repository of public Web APIs with more than 19,000 APIs, show that more
than 80% of the registered APIs are REST4.

The growing importance of REST APIs has been supported by the proposal of
several languages aimed at formally describing REST APIs and therefore facilitating
their discovery and integration (e.g., Swagger, API Blueprint, andRAML). Recently, and
aiming at standardizing the way to describe RESTAPIs, several vendors have announced
the OpenAPI Initiative (OAI)5. OAI has succeeded in attracting major companies (e.g.,
? This work has been supported by the Spanish government (TIN2016-75944-R project).
3 http://www.programmableweb.com
4 https://tinyurl.com/yd8gnuer
5 https://openapis.org



OpenAPI
definition

Open API
model

OpenAPI
metamodel

UML
metamodel

UML model

OpenAPI to UML
Discovery

API Blueprint

Markdown

T

RAML

YAML

3
3
3

API

REST API

Transformation

API Transformer

UML Designer

Extractor

UML model

XMI

</>

Papyrus

111

111111

111

111111M2M

2
Serializer

31

Fig. 1. Our approach.

Google, Microsoft or IBM) and has created the OpenAPI specification (initially based
on Swagger), which has become the choice of reference to describe REST APIs. For
instance, APIs.guru6, a repository of OpenAPI definitions, lists more than 800 APIs.

There is therefore a need for creating an ecosystem of supporting tools to facilitate
the integration, development, and documentation of REST APIs described by OpenAPI
(e.g., generating client SDKs, documentation pages or server skeleton). In this paper we
propose a tool, called OpenAPItoUML, which contributes to this ecosystem by allowing
the visualization of OpenAPI definitions as UML Class diagrams (including both the
structure and behavior of the API), thus offering a better visualization of the capabilities
of REST APIs. To the best of our knowledge, current documentation tools for OpenAPI
(e.g., ReDoc7 and Swagger UI8) display the operations and data structures of the defi-
nitions in HTML pages using only text and code samples, which complicate the under-
standing and visualization of REST APIs. Only JSONDiscoverer [2] allows visualizing
the data schema of JSON-based RESTAPIs but focus on the inputs/outputs of the opera-
tions and does not model the operations themselves nor supports OpenAPI descriptions.

The rest of the paper is organized as follows. Section 2 describes our approach and
Section 3 presents the tool. Section 4 concludes the paper and presents the future work.

2 The OpenAPItoUML Approach

Wepropose amodel-based approach to visualizeOpenAPI definitions asUMLClass dia-
grams. From an input OpenAPI definition, our approach extracts first an OpenAPImodel
which is then transformed into a UML model (i.e., Class diagram) showing the data
structure and operation signatures of the API. While the intermediate OpenAPI model is
useful to perform other kinds of advanced analysis on the OpenAPI definition, it is more
convenient to generate a UML model for visualization and comprehension purposes.
Being a standard UML model, our result can be automatically rendered and modified
using any of the plethora of UML modeling tools (e.g., Papyrus or UML designer).

The OpenAPItoUML process is depicted in Figure 1. As can be seen, the process
takes as input an OpenAPI definition, which can be (1) provided by the API provider;
(2) generated by tools such as APIDiscoverer [3], which allows discovering OpenAPI
definitions from API call examples; or (3) derived from other API definition formats

6 https://apis.guru/openapi-directory/
7 http://rebilly.github.io/ReDoc/
8 https://swagger.io/swagger-ui/



{]swagger] M]E()]T
]host] M ]petstore(swagger(io]TT
]paths] M {
]*pet*findByStatus] M {
]get] M {
]operationId] M ]findPetsByStatus]T
]parameters] M [
{ ]name] M ]status]T ]type] M ]array]T
]items]M {
]type] M ]string]T
]enum] M []available]T ]pending]T ]sold]]T
((((}T}]T

]responses]M{
]E))]M { ]schema] M

{ ]type] M ]array]T
]items]M {]cref] M ]}*definitions*Pet]}}}

}}}T
]definitions]M{
]Pet]M{
]type] M ]object]T
]required] M []name]T ]photoUrls]]T
]properties] M {
]id] M { ]type] M ]integer]T ]format]M ]int=?]}
]tags]M {
]type]M ]array]T
]items]M { ]cref]M ]}*definitions*Tag]}}T (((
}T (((}}}}

Pet

idM Integer [)((<]
nameM String [<]
(((

findPetsByStatus qstatusM PetSatus [)((6]UM Pet [6]
(((

Tag

idM Integer [)((<]
nameM String [)((<]

kkEnumerationAA
PetStatus

available
pending
sold

tags 6

kOxml versionC]<()] encodingC]UTF1-]OA
kumlMModel xmiMversionC]E)<><))<] (((A
kpackagedElement xmiMtypeC]umlMClass]
nameC]Pet]A
kownedzttribute xmiMtypeC]umlMProperty]
nameC]id]A
((((
k*ownedzttributeA
kownedOperation xmiMtypeC]umlMOperation]
nameC]findPetsByStatus] (((A
kownedParameter xmiMtypeC]umlMParameter]
nameC]status]*A
(((
k*ownedParameterA
k*ownedOperationA
kpackagedElement xmiMtypeC]umlMClass]
nameC]Tag]A
(((
k*packagedElementA
kpackagedElement xmiMtypeC]umlMEnumeration]
nameC]PetStatus]A
(((
k*packagedElementA
(((
k*umlMModelA

OpenzPI definition< UML modelE Serialized UML model>

Fig. 2. The Petstore example.

(e.g., API Blueprint, RAML) using tools such as API Transformer9, which allows
converting API definitions.

TheOpenAPItoUML process generates UMLmodels in three steps (see the steps 1, 2,
and 3 in Figure 1), which we will illustrate with the Petstore API example, a REST API
for a pet store management system, released by the OpenAPI community as a reference.
Figure 2.1 shows an excerpt of the Petstore OpenAPI definition including the operation
findPetsByStatus and the schema definition Pet.

The first step (see step 1 in Figure 1) extracts a model conforming to our OpenAPI
metamodel from the input OpenAPI definition. More details about this metamodel can
be found in our previous work [3]. Since the OpenAPI metamodel conforms to the
OpenAPI specification, the generation of OpenAPI models from OpenAPI definitions
is almost straightforward and only special attention had to be paid to deal with JSON
references. We omitted to show this model for the Petstore example as it mirrors the
OpenAPI definition shown in Figure 2.1.

The second step (see step 2 in Figure 1) performs a model-to-model transformation
to generate a model conforming to the UML metamodel from the previously extracted
OpenAPI model. This transformation iterates over the operations and definitions of
the OpenAPI model in order to generate classes, properties, operations, data types,
enumeration, and parameters, accordingly. This process relies on a set of heuristics to
identify the most adequate UML class to attach each OpenAPI operation to. Heuristics
are based on the analysis of the tags, parameters and responses of the operation10. The
full list of heuristics can be found in the tool website [1]. Figure 2.2 shows an excerpt of
generated UMLmodel for the Petstore API. As can be seen, the OpenAPI schema Pet is
transformed to the UML class Pet, while the OpenAPI operation findPetsByStatus
is transformed into the UML operation findPetsByStatus in the Pet class.

The last step of the process (see step 3 in Figure 1) serializes the generated UML
model as an XMI file (standard XML format for UML tool interoperability). Users can
rely on tools such as Papyrus and UML designer to open and visualize such file.

9 https://apimatic.io/transformer
10 When no class is a good fit for the operation, an artificial class is created to host the operation.



Fig. 3. A screenshot of the OpenAPItoUML plugin.

3 Tool

OpenAPItoUML has been implemented in Java as a plugin for the Eclipse platform [1].
The plugin extends the platform to provide a contextual menu to obtain a UML model
from an OpenAPI definition (using its JSON representation format). Figure 3 shows a
screenshot of our plugin including the created contextual menu (on the left side) and the
generated Class diagram for the Petstore API displayed using Papyrus (on the right side),
the “de facto” UML tool for Eclipse. The OpenAPI metamodel has been implemented
using the Eclipse Modeling Framework (EMF), while UML models rely on UML211,
an EMF-based implementation of the UML 2.5 OMG metamodel.

4 Conclusion

We have presented OpenAPItoUML, a tool to generate UML models from OpenAPI
definitions. We believe our approach contributes to the ecosystem of tools for OpenAPI
by offering developers the opportunity to understand and easily visualize the capacities
of REST APIs. OpenAPItoUML is available as an Open Source Eclipse plugin [1]. The
plugin repository includes a Get started guide which explains the steps to install the
plugin and generate and visualize UML models.

As further work, we would like to extend our approach in order to support the newly
released version of OpenAPI (i.e., OpenAPI v3.0) once it starts to get more attraction and
adoption. This v3.0 version includes some interesting new features (e.g., explicit links
between operations) that could be exploited to generate other types of UML diagrams
(e.g. sequence diagram showing the suggested execution order). We would like also to
release our tool as a Web application to visualize the generated UML models on-the-fly
using Javascript.

References
1. OpenAPItoUML https://github.com/SOM-Research/openapi-to-uml
2. Cánovas Izquierdo, J., Cabot, J.: JSONDiscoverer: Visualizing the schema lurking behind

JSON documents. Knowl.-Based Syst. 103, 52–55 (2016)
3. Ed-Douibi, H., Cánovas Izquierdo, J., Cabot, J.: Example-driven Web API Specification Dis-

covery. In: Eur. Conf. on Modelling Foundations and Applications (2017)

11 https://wiki.eclipse.org/MDT/UML2


