
Model-driven Development of OData Services: An
Application to Relational Databases

Hamza Ed-douibi
UOC

Barcelona, Spain
hed-douibi@uoc.edu

Javier Luis Cánovas Izquierdo
UOC

Barcelona, Spain
jcanovasi@uoc.edu

Jordi Cabot
ICREA - UOC

Barcelona, Spain
jordi.cabot@icrea.cat

Abstract—Open Data Protocol (OData) is a protocol to fa-
cilitate the publication and consumption of queryable and in-
teroperable data-driven online services. OData is based on the
use of RESTful APIs derived from a data model plus a URL-
based query language to identify and filter the data described
in such model. Due to its maturity and ease of use for end-
users and client applications, OData has become the natural
choice to publish datasets online. Still, creating OData services
is a tedious and time-consuming task, since data providers
should (1) represent their data models in OData format, (2)
implement the business logic to transform OData requests to
SQL statements (or the target storage technology of choice), and
(3) de/serialize the exchanged messages conforming to the OData
protocol. This paper presents a model-based approach aimed
at (semi)automating all these steps. From an initial UML class
diagram, we derive all the artifacts required to have an OData
service up and running on top of a relational database conforming
to the model definition. A prototypical implementation of the
approach is provided.

Index Terms—OData, Web Service, MDE, MDA, UML

I. INTRODUCTION

Open Data Protocol (OData)1 is a data access protocol
to create Web services with query and update capabilities
in a simple and standard way, thus allowing developers to
easily expose and access information from a variety of data
sources such as relational databases, file systems and content
management systems. In the last years, OData has evolved
to become the natural choice for creating data-centric Web
services, specially for Open Data initiatives aiming at facilitat-
ing the access to information using Web services rather than
Resource Description Framework (RDF). As a result, many
service providers have integrated OData in their solutions
(e.g., SAP, IBM WebSphere or JBoss Data Virtualization). The
current version of OData (version 4.0) has been approved as
an OASIS standard [1].

OData enables the creation of data-centric Web services,
where URL-accessible resources are defined according to an
Entity Data Model (EDM) and can be queried by Web clients
using standard HTTP messages. EDM, which borrows some
concepts from the Entity Relationship (ER) model, defines an
abstract conceptual model of the data exposed by the OData
service [2]. Thus, relational databases are usually the most
common storage solution for OData services. The protocol also

1http://www.odata.org/

defines a URL-based query language sharing some similarities
with SQL that facilitates clients to query the data described
by the EDM [3].

While consuming an OData service is easy, the task of cre-
ating OData services is tedious and time-consuming, specially
for relational databases where extra effort is needed to align
the service with the database query capabilities. Developers
should first represent their data models according to the EDM
format and then provide support to query and update the data
by implementing the business logic to resolve URLs using
the OData query language and transforming such queries into
SQL statements. Furthermore, a de/serialization mechanism is
required to exchange messages with clients conforming to the
OData protocol (using OData JSON and Atom formats).

There are some Software Development Kits (SDKs) for de-
veloping OData applications (e.g., RESTier2, Apache Olingo3,
SDL OData Frameworks4) and commercial tools for exposing
OData services from already existing data sources (e.g., Cloud
Drivers5, OData server6, Skyvia Connect7), but they still
require advanced knowledge about OData to implement the
business logic of the service, and provide limited support
for the OData specification, respectively. Other tools such as
simple-odata-server8 and JayDATA9 allow generating a basic
OData server from both an entity model expressed in OData
format and the corresponding database, but they only cover a
subset of the OData protocol.

Model-Driven Engineering (MDE) is a methodology that
focuses on using models to raise the level of abstraction
and automation in software development [4]. MDE relies on
models and model transformations for the specification and
generation of software applications, thus hiding the complexity
of the target technology. Even though many MDE approaches
target the generation of Web applications in general [5–7], to
the best of our knowledge, there is no current support for the
specification and generation of OData services.

2https://github.com/OData/RESTier
3https://olingo.apache.org/
4https://github.com/sdl/odata
5http://www.cdata.com/odata/
6https://rwad-tech.com/
7https://skyvia.com/connect/
8https://github.com/pofider/node-simple-odata-server
9https://github.com/jaystack/jaydata

UML class model

Database schema

SQL

Web Server

Database

OData clients

OData metamodel

OData model

OData service

OData2SQL

XML

EDM

PSMPIM

ER model

ER2OData

DatabaseGen

ODataGen
UML2OData

Metadata
Document

ODataSerializer

Fig. 1. Overview of the approach.

In this paper, we propose to combine the benefits of
MDE and OData by providing a model-based approach to
(semi)automate the generation of ready-to-deploy OData ser-
vices. From an initial Unified Modeling Language (UML)
class diagram, we derive all the artifacts required to have an
OData service up and running on top of a relational database
conforming to the model definition, including the transfor-
mation of OData requests to SQL queries and complying
with OData protocol. Our approach relies on an OData pivot
metamodel, which is used to represent and generate OData
services; thus allowing us to leverage on the plethora of
existing modeling tools and therefore enabling our approach
to use other input models or target technologies.

The rest of this paper is structured as follows. Section II
describes our approach and Section III shows the running
example used along the paper. Section IV presents OData
metamodel and how we derive its instances from UML models.
Sections V and VI show the database schema generation
process and the OData service generation process, respectively.
Section VII describes the tool support. Section VIII presents
the related work. Finally, Section IX concludes the paper and
presents the future work.

II. APPROACH

We propose a model-driven approach where OData models
drive the generation of OData services using a relational
database as storage solution. These OData models could be
specified directly but typically they will be derived from an
input UML or ER model describing the domain. Figure 1
shows an overview of our approach.

On the left-hand side of Figure 1, and following the
Model-Driven Architecture (MDA) terminology of the Ob-
ject Management Group (OMG), we have the UML and
ER models at the Platform-Independent Model (PIM) level
while the OData metamodel would belong to the Platform-
Specific Model (PSM) level as a refinement of the previous
one. The mapping between the PIM and PSM level is rather
straightforward, as we will show. In this paper we will focus
on the UML to OData path (see UML2OData transformation)
but a similar approach could be used for ER models (see
ER2OData transformation).

On the right-hand side of Figure 1, we see how OData
models are used to generate: (1) an OData service wrapped in
a Web application to be deployed in a server (see ODataGen
transformation); and (2) the corresponding database schema to
initialize the database (see DatabaseGen transformation). The
OData service includes: (a) the OData metadata document,
which defines the Entity Data Model (EDM) for the data
exposed by the service [8]; (b) the logic to transform OData
requests into SQL statements according to the query language
defined by OData protocol [3] (see OData2SQL component);
and (c) an OData serializer, which defines the serialization
mechanism according to OData JSON format [9] and OData
Atom format [10] (see ODataSerializer component).

OData defines three levels of conformance for an OData
Service, namely: minimal, intermediate and advanced (cf.
OData protocol [1], Section 13). Each level defines a set of
requirements and recommendations that a service should fulfill
in order to conform to this level. The OData service generated
with our approach fully conforms to the OData Intermediate
Level and partially to the OData Advanced Conformance
Level, as we will present later.

The elements generated in each step could be customized
by the user in order to either include other details not captured
in our generation process or remove extra generated elements.
For instance, an OData model generated from a PIM model
could be enriched by adding other OData elements (e.g.,
OData annotations) or remove unwanted generated elements
(e.g., an OData entity type generated from an unwanted UML
class). Also, the generated application could be refined in
order to customize the OData service or integrate other web
functionalities not related to OData such as authentication.

III. RUNNING EXAMPLE

To illustrate our approach, we use as running example the
UML class diagram shown in Figure 2 representing a data
model to manage online stores. This example is inspired by
the official reference example of OData10. The model includes
two classes, namely: Product, which represents products; and
Supplier, which represents the supplier of a product. The

10http://services.odata.org/V4/OData/OData.svc/$metadata

Fig. 2. UML model of the running example.

address of a supplier is defined using the data type Address.
The bidirectional association between products and suppliers
allows navigating from a product to a supplier (the association
end supplier), and from a supplier to a list of products (the
association end products).

Given this model, our approach generates a ready-to-deploy
OData Service exposing the OData metadata document repre-
senting the data model and serving client requests for both
querying and update data, which requires transforming OData
requests to SQL statements and presenting the data according
to OData protocol (i.e., OData JSON [9] and OData Atom [10]
formats).

The OData metadata document is expressed using the Con-
ceptual Schema Definition Language (CSDL) [8]. Listing 1
shows an excerpt of the generated metadata document for
the data model shown in Figure 2. The Schema element
describes the entity model exposed by the OData Web service
and includes the entity types Product and Supplier, and
the complex type Address. Each type includes properties
and navigation properties to describe attributes and relation-
ships, respectively. The Schema element includes also an
EntityContainer element defining the entity sets exposed
by the service and therefore the entities that can be accessed.
Web clients use this document to understand how to query
and interact with the service. For instance, the request GET
http://host/service/Products?$filter=Price
le 2.6 including the $filter option, should retrieve the
list of products having the price less or equals to 2.6. Listing
2 shows the result of this request in OData JSON format.

Next sections will describe how our approach can be used
to go from the original model to the deployed OData services
following a model-driven approach.

IV. SPECIFICATION OF ODATA SERVICES

This section describes the specification of OData services
including (1) the OData metamodel and (2) the creation of
models conforming to this metamodel from UML models.

A. The OData Metamodel

There are two primary ways to formalize domain-specific
knowledge, either by refining/extending an existing modeling
language (e.g., using a UML profile), or creating a metamodel
describing a domain-specific language [11]. In a previous
work we proposed a UML profile for OData [2], while
for the context of this paper we propose a metamodel for
OData to ease the definition of our MDA-based approach and
implementation of the involved transformations. The OData
metamodel is aligned with the OData CSDL specification [8],

Listing 1. A simple OData Metadata Documents for the products service.
1<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/

edmx" Version="4.0">
2 <edmx:DataServices>
3 <Schema xmlns="http://docs.oasis-open.org/odata/ns/edm"

Namespace="com.example.ODataDemo" Alias="ODataDemo
">

4 <EntityType Name="Product">
5 <Key><PropertyRef Name="ID"/></Key>
6 <Property Name="ID" Type="Edm.Int32" Nullable="

false"/>
7 <Property Name="Name" Type="Edm.String"/>
8 <Property Name="Description" Type="Edm.String"/>
9 <Property Name="ReleasedDate" Type="Edm.

DateTimeOffset" Nullable="false"/>
10 <Property Name="DiscontinuedDate" Type="Edm.

DateTimeOffset"/>
11 <Property Name="Rating" Type="Edm.Int16" Nullable="

false"/>
12 <Property Name="Price" Type="Edm.Double" Nullable="

false"/>
13 <NavigationProperty Name="Supplier" Type="ODataDemo

.Supplier" Partner="Products"/>
14 </EntityType>
15 <EntityType Name="Supplier">
16 <Key><PropertyRef Name="ID"/></Key>
17 <Property Name="ID" Type="Edm.Int32" Nullable="

false"/>
18 <Property Name="Name" Type="Edm.String"/>
19 <Property Name="Address" Type="ODataDemo.Address"/>
20 <NavigationProperty Name="Products" Type="

Collection(ODataDemo.Product)" Partner="
Supplier" />

21 </EntityType>
22 <ComplexType Name="Address">
23 <Property Name="Street" Type="Edm.String"/>...
24 </EntityType>
25 <EntityContainer Name="DemoService">
26 <EntitySet Name="Products" EntityType="ODataDemo.

Product">
27 <NavigationPropertyBinding Path="Supplier" Target

="Suppliers"/>
28 </EntitySet>
29 <EntitySet Name="Suppliers" EntityType="ODataDemo.

Supplier">
30 <NavigationPropertyBinding Path="Products" Target

="Products"/>
31 </EntitySet>
32 </EntityContainer>
33 </Schema>
34 </edmx:DataServices>
35</edmx:Edmx>

which defines the main concepts to be exposed by any OData
service, thus facilitating later the generation of OData metadata
documents (as we will describe in Section VI-A).

Figure 3 shows an excerpt of the OData metamodel. The top
part of the metamodel comprises the ODService element,
which includes a set of schemas (i.e., schemas reference).
One or more schemas define the data model of an OData
service. A schema is represented by the ODSchema ele-
ment which includes the namespace of the schema (e.g.,
com.example.ODataDemo) and an alias for the schema
namespace (e.g., ODataDemo). It includes also references
to the data structures defined by the schema which com-
prise enumerations (i.e., enumTypes reference), complex
types (i.e., complexTypes reference) and entity types (i.e.,
entityTypes reference). All data structures in the meta-
model are subtypes of the ODType element which describes
the structure of an abstract data type.

An enumeration is represented by the ODEnumType ele-

Fig. 3. An excerpt of OData metamodel.

Listing 2. An example of collection of products in OData JSON format.
1 {
2 "@odata.context": "$metadata#Products",
3 "value": [
4 {
5 "ID": 1,
6 "Name": "Milk",
7 "Description": "Fresh milk",
8 "ReleasedDate": "1992-01-01",
9 "DiscountinuedDate": null,

10 "Rating": 4,
11 "Price": 2.40
12 },
13 {
14 "ID": 2,
15 ...
16 "Price": 2.25
17 }
18]
19 }

ment which is a subtype of the ODPrimitiveType element
and includes a name (inherited from ODNamedElement),
an attribute indicating whether the enumeration allows multi-
selection (i.e., isFlags attribute), an underlying primitive
type (i.e., underlyingType reference), and a list of mem-
bers (i.e., members reference). The element ODMember
defines the options for the enumeration type and includes a
name (inherited from ODNamedElement) and a value.

Entity types are named structured types with a key, while
complex types are keyless named structured types. Entity types
and complex types are represented by the ODEntityType
and ODComplexType elements, respectively. Both
elements are subtypes of the ODStructuredType
abstract element which represents a structured type.
The ODStructuredType element is a subtype of the
ODType element and includes a name (inherited from
ODNamedElement), an attribute indicating whether the
structural type cannot be instantiated (i.e., abstract
attribute), and an attribute indicating whether undeclared

properties are allowed (i.e., openType property11). A
structured type is composed of structural properties (i.e.,
properties reference) and navigation properties (i.e.,
navigationProperties reference) and may define
a base type (i.e., baseType reference). Additionally, the
ODEntityType element includes a key (i.e., key reference)
which indicates the properties identifying an entity (i.e.,
property reference of the element ODPropertyKeyRef)
and an alias name for each property.

The ODProperty and ODNavigationProperty
elements represent a structural property and a navigation
property, respectively. While the ODProperty element
defines an attribute of a structured type, the element
ODNavigationProperty defines an association
between two entity types. Both elements are subtypes
of the ODElement abstract element which defines the
common features of structural properties. This element
includes a name (inherited from ODNamedElement),
an attribute indicating whether the element can be
null (i.e., nullable property), a type (i.e., type
reference inherited from ODTypedElement), and a
cardinality (i.e., the multivalued property inherited
from ODTypedElement). Additionally, the ODProperty
element includes several attributes to provide additional
constraints about the value of the structural property
(e.g., maxLength and precision properties). The
ODNavigationProperty element, on the other hand,
includes a containment attribute (i.e., containsTarget
reference) and an opposite navigation property (i.e., partner
reference).

11Open types entities allows clients to persist additional undeclared prop-
erties.

TABLE I
UML TO ODATA MODEL TRANSFORMATION RULES.

REF. SOURCE
ELEMENTS

CONDITIONS TARGET ELEMENTS INITIALIZATION DETAILS

1 c: Class - et: ODEntityType
es: ODEntitySet

- et.name = c.name
- if c.abstract = true then et.abstract ← true
- if c.generalizations contains a class cc then et.baseType ← t where
t is the corresponding EntityType of cc
- et.properties ← (cf. rules to transform attributes, rows 3 and 4)
- et.navigationProperties ← (cf. rule to transform navigable associa-
tion ends, i.e., row 5)
- es.name ← the plural form of c.name
- es.entityType ← et
- es.navigationPropertyBindings ← (cf. rule to transform navigable
association ends, i.e., row 5)

2 dt: DataType - ct: ODComplexType

- ct.name ← dt.name
- if ct.abstract = true then dt.abstract ← true
- if dt.generalizations contains a data type dd then ct.baseType ←
t where t is the corresponding ODComplexType of dd
- ct.properties ← (cf. rules to transform attributes, i.e., rows 3 and 4)

3

p: Property

p is a class attribute
or a data type at-
tribute

op: ODProperty
- op.name ← p.name
- op.type ← t where t is the corresponding type of the attribute
- if p is multivalued then op.multivalued ← true

4 p is a class attribute
marked as ID

pk: ODPropertyKeyRef - pk.property = op

5 p is a navigable as-
sociation end

np: ODNavigationProperty
npb:
ODNavigationPropertyBinding

- np.name ← p.name
- np.type ← t where t is the corresponding entity type of p.type
- if p.aggregation = Composite then np.containsTarget ← true
- if p is multivalued is then np.multivalued ← true
- npb.path ← p.name
- npb.target ← t.name where t is the corresponding entity set of p.type

6 e:
Enumeration

- oe: ODEnumType
- oe.name ← e.name
- oe.members ← (cf. rule to transform literals, i.e., row 7)

7
el:
EnumerationLiteral - om: ODMember - om.name ← el.name

The ODSchema element includes also an entity container
(i.e., entityContainer reference) defining the entity sets
and singletons queryable and updatable by the service. The
ODEntityContainer element defines an entity container
and includes a set of entity sets (i.e., entitySets refer-
ence) and singletons (i.e., singleton reference). An en-
tity set allows addressing a collection of entities, while a
singleton allows addressing a single entity directly from the
entity container. The two concepts are materialized by the
ODEntitySet and ODSingleton elements, respectively.
Both elements are subtypes of the ODExposedEntity ab-
stract element which includes a reference to the target entity
type (i.e., entityType reference), a name (inherited from
ODNamedElement), and a set of navigation properties bind-
ings (i.e., navigationPropertyBindings reference).

Apart from the elements presented in this section, the OData
metamodel includes other OData concepts which could not
be presented for the sake of simplicity. Thus, the metamodel
includes elements to define annotations and vocabularies
which provide an extension mechanism to add additional
characteristics or capabilities of OData elements. The complete
metamodel is available in our Github repository [12].

Fig. 4. An excerpt of the generated OData model for the running example.

B. Mapping UML to OData Models

OData models can be automatically derived from UML
models by means of a model-to-model transformation (see
UML2OData transformation in Figure 1). In this paper we
rely on plain UML models to generate OData models, thus no
knowledge of OData is to be required. A similar approach,
relying on the UML profile for OData [2], could also be
followed to drive a custom transformation for enriched UML
models.

Table I shows a subset of the main transformation rules12

from UML metamodel elements to OData metamodel

12The full transformation is available at our repository [12].

elements where the second column displays the source UML
elements, third column shows the conditions to trigger the
transformation, firth column shows the created/updated OData
elements, and the last column shows the initialization values
for the OData elements. Note that instances of the elements
ODEntityType, ODComplexType, and ODEnumType are
added to the element ODSchema once they are created, and
likewise instances of ODEntitySet are added to the element
ODEntityContainer. Furthermore, each instance of the
elements ODProperty, ODNavigationProperty,
ODNavigationPropertyBinding are
added to its corresponding ODEntityType,
ODComplexType element, and likewise each instance
of ODNavigationPropertyBinding is added to its
corresponding ODEntitySet. Figure 4 shows an excerpt of
the generated OData model for the Product entity (with
only the ID attribute) of our running example (see Figure 2).

V. DATABASE SCHEMA GENERATION

OData is designed to work on a variety of data stores. In
particular, the protocol does not necessarily assume a relational
data model. In this paper we defined an algorithm to generate a
relational database schema from an OData data model, which
we describe in this section (see DatabaseGen transformation
in Figure 1). This algorithm is heavily inspired by the typical
transformation rules to derive database schemas from UML
models (e.g., GenMyModel13, UMLtoX14) or ER models (e.g.
see Fidalgo et al. [13], ER2SQL15).

Algorithm 1 illustrates the OData data model to database
schema generation process. As can be seen, the algorithm
takes as input an instance of ODSchema and returns a Data
Definition Language (DDL) script representing the data model.
The first part of the algorithm (i.e., from line 1 to line 41)
iterates over the contained entity types and complex types then
generates a CREATE command for each element not having a
super type (i.e., baseType = null). The algorithm adds an
extra column id for each complex type to define a primary key
(cf. line 5) and an extra column discriminator for each
complex or entity type having subtypes to identify the concrete
type of the element (cf. line 8). Furthermore, for each single
valued property or navigation property the algorithm generates
a column statement (cf. line 12). Moreover, the algorithm
generates a CREATE command for each multivalued property
(cf. line 21) and many to many navigation property (cf. line
31). The second part of the algorithm (i.e., from line 42 to
line 52) iterates over the navigation properties of each entity
type and complex type then generates an ALTER TABLE
command to declare a foreign key. The algorithm relies on
the functions TABLENAME, COLUMNTYPE, COLUMNNAME,
GETNULL and REFERENCE (see footnotes on Algorithm 1).
Note that for the sake of simplicity, the algorithm assumes that
the key of each entity type is represented by a single property.
Listing 3 shows an excerpt of the DDL script to create the

13https://www.genmymodel.com/
14https://github.com/jcabot/UMLtoX
15http://er2sql.sourceforge.net/

Algorithm 1 DDL schema generation.
Input:

s where s is an instance of ODSchema
Output:

q where q is the DDL script of the database
1: S ← s.entityTypes ∪ s.complexTypes
2: for i = 1 to S.length do
3: if S[i] does not have a super type then
4: q ← q+ "CREATE TABLE" + TABLENAME(S[i]) + "("
5: if S[i] is instance of ODComplexType then
6: q ← q+ "id INT not null,"
7: end if
8: if S[i] is a super type then
9: q ← q+ "discriminator VARCHAR(255),"

10: end if
11: P ← S[i].properties ∪ S[i].navigationProperties
12: for j = 1 to P.length do
13: if P [j] is single valued then
14: q ← q+ COLUMNNAME(P [j])
15: +COLUMNTYPE(P [j]) + GETNULL(P [j]) + ","
16: end if
17: end for
18: q ← q+ "PRIMARY KEY (" + PRIMARY(S[i]) + "));"
19: end if
20: for j = 1 to S[i].properties.length do
21: if S[i].properties[j] is multivalued then
22: q ← q+ "CREATE TABLE"
23: +TABLENAME(S[i].properties[j])
24: +"(id INT not null," + COLUMNNAME(S[i].properties[j])
25: +COLUMNTYPE(S[i].properties[j]) +","
26: +TABLENAME(S[i]) + "_id" + PRIMARYTYPE(S[i]) +","
27: +"PRIMARY KEY (id));"
28: end if
29: end for
30: for j = 1 to S[i].navigationProperties.length do
31: if S[i].navigationProperties[j] is many to many then
32: q ← q+ "CREATE TABLE"
33: +TABLENAME(S[i].navigationProperties[j]) + "("
34: +"id INT not null,"
35: +TABLENAME(S[i]) + "_id," + PRIMARYTYPE(S[i])+","
36: +TABLENAME(S[i].navigationProperties[j].partner)+"_id,"
37: +PRIMARYTYPE(S[i].navigationProperties[j].partner)+","
38: +"PRIMARY KEY (id));"
39: end if
40: end for
41: end for
42: for i = 1 to S.length do
43: for j = 1 to S[i].navigationProperties.length do
44: if S[i].navigationProperties[j] is single valued then
45: q ← q+ "ALTER TABLE" + TABLENAME(S[i])
46: +"ADD FOREIGN KEY"
47: +COLUMNNAME(S[i].navigationProperties[j])
48: +"REFERENCES" + REFERENCE(S[i].navigationProperties[j])
49: +";"
50: end if
51: end for
52: end for

TABLENAME gets a table name according database recommendations repre-
senting the input element.

COLUMNTYPE gets a database primitive type representing the type of the
input element.

COLUMNNAME gets a column name according database recommendations
representing input element.

GETNULL generates NOT NULL statement if the input parameter is required.
PRIMARY gets the key column of the input element
PRIMARYTYPE gets the type of the key column of the input element
REFERENCE generates the target of REFERENCES statement of the input

element.

database schema corresponding to the running example after
applying the algorithm.

VI. ODATA SERVICE GENERATION

In this section we describe the generation process of OData
services from OData models (see the ODataGen transforma-

TABLE II
EXAMPLE OF ODATA REQUESTS AND THE CORRESPONDING SQL STATEMENTS.

REF
HTTP
METHOD

DESCRIPTION RESOURCE PATH EXAMPLE SQL QUERY

1

GET

Request a collection of en-
tities

GET http://host/service/Products SELECT * FROM product p

2 Request a single entity by
ID

GET http://host/service/Products(1)
SELECT * from product p
WHERE p.id = 1

3 Request an individual prop-
erty GET http://host/service/Products(1)/Price

SELECT p.price from product p
WHERE p.id = 1

4

Request an entity collec-
tion by following a nav-
igation from an entity to
another related entity

GET http://host/service/Suppliers(1)/Products
SELECT p.* from product p
JOIN supplier s on p.supplier_id = s.id
WHERE s.id = 1

5 POST Create a new entity

POST http://host/service/Products
{
"ID": 1;
"Name": "Milk",
"Description": "Fresh milk",...}

INSERT INTO product (id, name,
description, ...) VALUES (1, ’Milk’,
’Fresh milk’, ...)

6 PATCH Update an entity

PATCH http://host/service/Products(1)
{
"Description": "Very fresh milk"
}

UPDATE product
SET description = ’Very fresh milk’
WHERE id = 1

7 PUT
Update a navigation prop-
erty

PUT http://host/service/Products(1)/Supplier/
$ref
{
"@odata.id": "http://host/service/Suppliers(2)"
}

UPDATE product
SET supplier_id = 2
WHERE id = 1

8 DELETEDelete an entity DELETE http://host/service/Products(1) DELETE FROM product WHERE id = 1

Listing 3. A simple DDL file of the running example.
1 CREATE TABLE product (
2 id INT not null,
3 name VARCHAR(255),
4 description VARCHAR(255),
5 releaseddate DATE not null,
6 discountinueddate DATE,
7 rating INT not null,
8 price DECIMAL (10,2) not null,
9 supplier_id INT,

10 PRIMARY KEY (id));
11 CREATE TABLE supplier (
12 id INT not null,
13 name VARCHAR(255)
14 address_id INT,
15 PRIMARY KEY (id));
16 CREATE TABLE address (
17 id INT not null,
18 street VARCHAR(255),...
19 PRIMARY KEY (id));
20 ALTER TABLE product
21 ADD FOREIGN KEY (supplier_id) REFERENCES supplier(id);
22 ALTER TABLE supplier
23 ADD FOREIGN KEY (address_id) REFERENCES address(id);

tion in Figure 1). Our process includes the generation of (1) the
metadata document, (2) the mapping between OData requests
and SQL statements (see OData2SQL component in Figure
1), and (3) the de/serialization process (see ODataSerializer
component in Figure 1).

A. OData Metadata Document Generation

This process transforms an OData model into an OData
metadata document by means of a model-to-text transforma-
tion. This document helps clients discover the data schema
exposed by the service and therefore build OData queries.

The generation process is nearly straightforward as our
metamodel follows the OData CSDL specification and only
special attention had to be paid when generating references
among elements. Thus, the transformation iterates over OData
model elements and generates their XML representation (e.g.,
Schema for the element ODSchema, EntityContainer
for the ODEntityContainer, etc.) taking into account its
specification (e.g., name, type, etc.). The resulting document
is an XML file represented using the CSDL language [8] and
can be retrieved by appending $metadata to the root URL
of an OData service. An example of this file was previously
shown in Listing 1.

B. OData Requests to SQL Statements Transformation

The OData specification defines standard rules to query data
via HTTP GET requests and perform data modification actions
via HTTP POST, PUT, PATCH, and DELETE requests. A URL
of an OData request has three parts [3]: (1) the service root
URL, which identifies the root of an OData service; (2) a target
resource path, which identifies a resource to query or update
(e.g., products, a single product, supplier of a product); and
(3) a set of query options.

http://host/service︸ ︷︷ ︸
service root URL

/ Suppliers(1)/Products︸ ︷︷ ︸
target resource path

? $top=2&orderby=Name︸ ︷︷ ︸
query options

(1)
To transform OData requests to SQL statements we consider

the HTTP method, which specifies if the request is either a

query or a data modification action; the resource path, and
the query options part. In the following we describe how
these elements drive the SQL statement generation process, in
particular, how we deal with the target resource paths, query
options, and data modification actions.

1) Target resource path URL transformation: The target
resource path in an OData request can address (1) a collection
of entities, (2) a single entity, (3) and a property, which
we will illustrate by means of examples. Table II shows a
set of requests relying on our running example for all the
CRUD operations. The second column shows the used HTTP
methods. The third column explains the type of the request.
The fourth and fifth columns show an example of the OData
request including the resource path and request body, and the
corresponding SQL query to the database, respectively.

Example 1 illustrates a request to access to a collection
of entities (i.e., collection of products), which is transformed
into a SELECT SQL statement for the corresponding table
of the entity exposed by the addressed entity set. Example 5
also illustrates a request to add a new entity into the target
collection of entities.

Example 2 shows how a single entity can be accessed by
adding the entity key as path segment (i.e., the product of
ID 1), which requires adding a WHERE clause to the SELECT
statement. Likewise, examples 6 and 8 illustrate how to update
and delete a single entity, respectively.

Example 3 shows how to access an entity property (i.e., the
price of the product), which requires adding the corresponding
column name to the SELECT statement.

Finally, example 4 illustrates a request to access to a col-
lection of entities by navigating from an entity to another one
(i.e., the collection of products of a specific supplier), which
requires adding one or more JOIN clauses to the SELECT
statement depending on the cardinalities of the navigation
properties (i.e., one to many, many to many) and the hierarchy
of the resource. Example 7 also illustrates how to update a
navigation property.

To perform the transformation of the target resource path
into the corresponding SQL statement we devised Algorithm 2.
The algorithm takes as input the set of entity types referenced
in the URL, the set of the properties used to navigate from
one entity to the other in the path, a set of path segments to
specify the key of a particular entity and the name of the final
property to retrieve. Last two parameters are optional.

The algorithm is divided into three parts. The first part (i.e.,
from line 1 to line 4) retrieves the database tables correspond-
ing to each entity. The second part (i.e., from line 5 to line 33)
iterates over the entities and constructs the SELECT statement
and the JOIN clauses depending on the number and the type
of the navigations (i.e., one-to-one, one-to-many, many-to-one,
many-to-many). Finally, the third part (i.e., from line 34 to line
40) constructs the WHERE clause. The algorithm relies on the
functions TABLENAME, TABLEALIAS, COLUMNNAME, and
HASNEXT (see footnotes on Algorithm 2).

The first row of Table IV illustrates the execution of this
algorithm for the URL shown on the left. This URL identifies

Algorithm 2 Resource path URL transformation.
Input:

E = {E1, E2, ..., En} where Ei is the entity at the index i and n is the
total number of entities
N = {N1,2, N2,3, ..., Nn−1,n} where Ni−1,i is the navigation property
from Ei−1 to Ei.
x = {x1, x2, ..., xn} where xi is the key of the entity Ei if presented in
the URL or ∅ otherwise
p where p corresponds to the name of a particular property to retrieve or ∅

Output:
q where q is an SQL query representing the resource of the input

1: for i = 1 to n do
2: Ti ← TABLENAME(Ei)
3: Ai ← TABLEALIAS(Ei)
4: end for
5: if p <> ∅ then
6: q ← +"SELECT" + An +"." + COLUMNNAME(p)
7: + "FROM" + Tn + An

8: else
9: q ← + "SELECT" + An + ".* FROM" + Tn + An

10: end if
11: i← n
12: while i <> 1 do
13: if Ni−1,i is many to one then
14: Let C

ifk
i−1 be the column representing the foreign key of Ti in Ti−1

and Cpk
i the primary key of Ti

15: q ← q + "JOIN" + Ti−1 + Ai−1 + "ON" + Ai−1 +"." + C
ifk
i−1

16: + "=" + Ai + "." + Cpk
i

17: else
18: if Ni−1,i is one to many then
19: Let C

i−1fk
i be the column representing the foreign key of Ti−1

in Ti and Cpk
i−1 the primary key of Ti−1

20: q ← q + "JOIN" + Ti−1 + Ai−1 + "ON" + Ai + "."

21: + C
i−1fk
i + "=" + Ai−1 + "." + Cpk

i−1

22: else
23: if Ti,i−1 is many to many then
24: Let Ji,i−1 be the association table between Ti and Ti−1,

Ai,i−1 the alias name Ji,i−1, C
ifk
i,i−1 the column representing the foreign

key of Ti in Ji,i−1, and C
i−1fk
i,i−1 the column representing the foreign key of

Ti−1 in Ji,i−1

25: q ← q + "JOIN" + Ji,i−1 Ai,i−1 + "ON" + Ai,i−1 +"."
26: + C

ifk
i,i−1 "=" + Ai + "." + Cpk

i "JOIN" + Ti−1 Ai−1

27: + "ON" + Ai,i−1” + "." + C
i−1fk
i,i−1 "=" + Ai−1 + "."

28: + Cpk
i−1

29: end if
30: end if
31: end if
32: i← i− 1
33: end while
34: q ← q + "WHERE"
35: for i = 1 to n do
36: q ← q + Ae + "." + Cpk

e + "=" + xe
i

37: if HASNEXT(xe
i) then

38: q ← q + "AND"
39: end if
40: end for

TABLENAME gets a table name according to database recommendations
representing the input element.

TABLEALIAS gets an alias name for the input element.
COLUMNNAME gets a column name according database recommendations

representing input element.
HASNEXT returns true if there is a key in the queue and false otherwise.

the price of the product 1 belonging to the supplier 1. The cor-
responding input parameters are: E = {E1 : Supplier, E2 :
Product}, N = {N1,2 : Products}, x = {x1 : 1, x2 : 3}, and
p = Price. The resulting SQL query is shown on the right.

2) Query transformation: OData allows querying data via
HTTP GET requests to the resources addressed by a resource
path (as shown before). OData queries can include a set of
options which are string parameters prefixed by a $ symbol

that control the amount and order of the returned data for a
resource. Query options can be used to refine the result of
an OData request and therefore are also considered in our
transformation. Table III shows the query options provided by
OData and the corresponding mapping rules to generate the
SQL code. For each query option, the table provides a small
description, the mapping rule with SQL, an example, and the
corresponding SQL query.

OData also defines (1) logical and arithmetic operators
(e.g., eq for equals or add for addition) to use with the
$filter query option, (2) utility functions for string, date
and time management (e.g., concat, hour() or now()),
and (3) combining query options to create advanced queries.
Our approach covers the operators and functions supported by
MySQL database16.

The second row of Table IV shows an example of query
option mapping. On the left, the Table shows a URL example
to retrieve 10 records after the position 5 ordered by name
from the collection of products which have a name containing
the character i and a price less or equals to 2.6; while on
the right, the Table lists the corresponding SQL query.

3) Data modification transformation: To perform data
modification actions, OData relies on the HTTP POST, PUT,
PATCH and DELETE requests. To support data modification
actions, we generate a set of controllers which process the
client requests and generate the corresponding SQL statements
according to specification.

Table II shows the usage of HTTP methods in OData illus-
trated with examples. To create an entity, the client must send
a POST request containing a valid representation of the new
entity to the URL of a collection of entities (i.e., EntitySet, e.g.,
Products). This request is transformed to an INSERT state-
ment (see example 5). To update an entity, the client must send
a PATCH request containing a valid representation of the prop-
erties to update to the URL of a single entity (e.g., Products(1))
. This request is transformed to an UPDATE statement (see ex-
ample 6). To update a navigation property, the client must send
a PUT request containing the URL of the new related entity to
the URL of the reference17 of a single-valued navigation prop-
erty (e.g., Products(1)/Supplier/$ref). This request is trans-
formed to an UPDATE statement (see example 7). Finally to
remove an entity, the client must send a DELETE request to the
URL of an individual entity (e.g., Products(1)). This request
is transformed to a DELETE statement. Next, we explain the
serialization and deserialization mechanisms of the requests.

C. OData Serializer and Deserializer Generation

This process generates a serializer and a deserializer for
OData objects supporting both the OData JSON [9] and
Atom [10] formats.

The serializer applies a model-to-text transformation to
the result of OData requests (i.e., entity collection, entity

16More details can be found at https://github.com/SOM-Research/
odata-generator.

17A reference is specified by adding $ref to the resource path of the
navigation property

and property) in order to generate the textual representation
according to OData format conventions. For instance, in the
case of JSON, an entity collection is transformed to a JSON
array holding the entities while an entity is represented by a
JSON object containing a list of key/value pairs representing
its properties. A similar process is followed for the Atom rep-
resentation format. OData representation formats also support
different levels (and content) of metadata (i.e., full, minimal
or none) [9, 10], which can be configured in the header of any
OData request. The generated serializer also takes into account
this setting and generates the JSON or Atom representation
accordingly. An example of a collection of products in OData
JSON format was previously shown in Listing 2. As can be
seen, apart from the properties of the entity, the JSON object
also includes as metadata the annotation odata.context
which indicates the root context URL of the payload.

The deserializer processes and parses the body of the OData
requests POST, PUT and PATCH in order to generate the
details of the INSERT and UPDATE SQL statements, accord-
ingly. For instance, in the case of JSON (see the examples 5,
6 and 7 in Table II), each key and value in the JSON object
are transformed to the corresponding field in the corresponding
table and the value for such field, respectively, in the generated
SQL statement. A similar process is followed for the Atom
representation format.

VII. TOOL SUPPORT

Our approach is available as a proof-of-concept plugin for
the Eclipse platform [12]. The plugin extends the platform
to provide contextual menus to obtain OData models from
existing UML models and, given an OData model instance:
(1) generate the metadata document conforming to OData
specification; (2) generate the DDL of the database; and (3)
generate an OData service based on a Maven-based project.

Our OData metamodel has been implemented using
the Eclipse Modeling Framework (EMF). The UML to
OData model transformation relies on UML218 which
provides an EMF-based implementation of the UML 2.5
OMG metamodel; while the code generators are based on
Acceleo19, an implementation of the MOF Model-To-Text
Transformation Language (MTL) specification from OMG, to
define the logic and generate the different OData artifacts.

The generated Web application includes a properties file
with the configuration of the database. The OData service im-
plementation relies on Apache Olingo20 to provide support for
OData query language and serialization; and JOOQ21 which
provides a DSL to build SQL queries. The implementation
includes controllers to analyze and deserialize the requests,
transform them into SQL queries, execute the queries, and
serialize the result to be sent back to the client.

Figure 5 shows a screenshot of the generated application
for the running example. The figure includes the structure of

18https://wiki.eclipse.org/MDT/UML2
19https://www.eclipse.org/acceleo/
20http://olingo.apache.org
21https://www.jooq.org

TABLE III
ODATA SYSTEM QUERY OPTIONS AND THEIR CORRESPONDING SQL RULES.

OPTION DESCRIPTION SQL RULE QUERY OPTION EXAMPLE SQL EXAMPLE

$filter
Filter a collection of resources that
are addressable by a request url

Add a WHERE clause including the
corresponding operator to the filter
expression

http://host/service/Products?$filter=
Name eq ’Milk’

SELECT * FROM product p
WHERE p.name LIKE ’Milk’

$expand Include relative resource in line with
retrieved resources

For each retrieved resource, create
a SELECT statement to retrieve the
relative resource

http://host/service/Suppliers(1)
?$expand=Products

SELECT * FROM product p
WHERE supplier_id = 1

$select Request a specific set of properties Add the corresponding column
names to the SELECT statement

http://host/service/Products?$select=
Name,Price

SELECT p.name, p.price
FROM product p

$orderby
Request resources in either ascend-
ing order using asc or descending
order using desc

Add the ORDER BY clause to the
SELECT statement

http://host/service/Products?
$orderby=’Name’ desc

SELECT * FROM product p
ORDER BY p.name DESC

$top $skip
$top requests the number of items
to be included and $skip requests
the number of items to be skipped

Add the supported clause by the
database system (e.g., LIMIT for
MySQL)

http://host/service/Products?$top=
10$skip=5

SELECT * FROM product p
LIMIT=5,10

$count Request a count of the resources Add the COUNT function to the
SELECT statement

http://host/service/Product?$count SELECT COUNT(*) FROM
product

$search Request entities matching a free text
search

Add a set of LIKE operators to the
WHERE clause to much the search
text with all the text columns of the
corresponding table

http://host/service/Product?$search=
’Milk’

SELECT * FROM product p
WHERE p.name LIKE ’Milk’
OR p.description LIKE
’Milk’

TABLE IV
EXAMPLE OF ODATA REQUEST TO SQL MAPPING.

ODATA QUERY SQL QUERY

http://host/service/Suppliers(1)/Products(1)/Price SELECT p.price

FROM product p

JOIN supplier s ON p.supplier_id = s.id

WHERE p.id = 1 AND s.id = 1

http://host/service/Products? SELECT p.name, p.price

$select=Name,Price FROM product p

&$filter=contains(Name,’i’) and Price le 2.6 WHERE p.name LIKE ’%i%’ AND p.price <= 2.6

&$orderby=Name desc ORDER BY p.name DESC

$skip=5&$top=10 LIMIT 5,10

the Maven project (see left panel) and a browser showing
the result of request in Atom format (see right panel). The
service currently implements the support for: (1) resource path
URL transformation; (2) data querying using the query options
$filter, $top, $skip and $orderby; and (3) data mod-
ification as described in the previous section. The generated
application returns 501, ‘‘Not Implemented’’ for any
unsupported functionality as required by the protocol. The
complete generated application can be found in our repository
[12]. The repository includes also the steps to install the
plugin, generate the OData service, and deploy the generated
application in a Servlet container.

VIII. RELATED WORK

Model-driven approaches have been widely used in the
Web Engineering field to generate different kinds of web
applications (e.g., [5–7, 14–19]). While existing approaches
already provide methodologies and tools to cover a variety
of technologies (e.g., web services, ubiquitous applications),
specific support for Web APIs is rather limited. For instance,

Porres et al. [20] and Tavares et al. [21] propose to model
REST APIs using UML and a REST metamodel, respec-
tively, but only generate a WADL document [22] describing
the behavior of a REST API and do not generate the API
implementation. A few exceptions to generate REST APIs
are: (1) EMF-REST [14] (but for generating web modeling
environments); (2) ODaaS [15] (for the exploitation of existing
Open Data and social media streams); (3) the work by Haupt et
al. [16] (targeting REST-compliant services in a broad sense);
(4) ELECTRA [17] and MockAPI [23] (for fast prototyping
of mockup APIs); (5) the work by Rodrı́guez-Echeverrı́a et
al. [18] (deriving REST APIs from legacy Web applications);
and (6) MicroBuilder [24] and the work by Haupt et al. [16]
(using ad-hoc DSLs for the specification and the realization
of REST APIs). None of them, though, have explicit support
neither for modeling OData nor for automatically generating
OData Services from high-level models.

Some SDKs provide support for developing OData applica-

Fig. 5. A screenshot of the generated application for the running example.

tions for a target platform (e.g., RESTier22, Apache Olingo23,
SDL OData Frameworks24). These frameworks are handy for
developers but require knowledge to deal with the intricacies
of their architecture25 to create OData applications.

Support for generating OData applications is so far limited
to commercial tools like Cloud Drivers26, OData server27 or
Skyvia Connect28. Still, these solutions only offer ways to
expose OData services from already existing data sources
such as databases but not to create new OData services from
scratch nor to configure the full support to OData specification.
In fact, OData services generated from relational databases
just mirror the data structure (i.e., tables and relationships to
entities and navigation entities, respectively), thus not lever-
aging on OData protocol which supports richer data structures
(e.g., hierarchies, complex type or multivalued properties) and
capabilities. For instance, we tested the trial version of OData
server to create an OData server for the MySQL database of
our running example. Besides the limitation regarding the use
of richer data structures (e.g., Address was transformed to an
Entity and not a ComplexType), we also detected other
issues related to Open API capabilities: (1) there is no entity
container and therefore clients are not able to query the data;
(2) the foreign keys are plain properties instead of navigation
properties; (3) data is read-only.

22https://github.com/OData/RESTier
23https://olingo.apache.org/
24https://github.com/sdl/odata
25There are 129 open issues in the Github repository of RESTier and

StackOverFlow lists 396 questions regarding Olingo.
26http://www.cdata.com/odata/
27https://rwad-tech.com/
28https://skyvia.com/connect/

Other tools such as simple-odata-server29 and JayDATA30

allow generating a basic OData server but require providing
both an OData Entity model of the desired application and
the corresponding database. Also, they only support a subset
of the query options offered by OData protocol. On the other
hand, our approach has advanced support for OData protocol
and provides the database implementation of the data model
out of the box.

IX. CONCLUSION

In this paper we have presented a model-driven approach to
specify and generate OData services. UML models are used to
generate the required artifacts to deploy OData services relying
on a relational database as storage solution. The generation
process covers the specification of the OData metadata docu-
ment, the database schema, the resolution of URL requests
into SQL statements and a de/serialization mechanism for
the exchanged messages. Our approach advances towards the
definition of an MDE infrastructure for the generation of
OData services, where developers can rely on the plethora
of modeling tools to easily design, generate and evolve their
web applications.

As future work we aim at extending our OData metamodel
to capture additional OData behavioral concepts such as func-
tions and actions to enable the design and generation of more
complex aspects. We plan to extend our approach to comply
with the advanced OData conformance level, which implies
adding support to other OData functionalities such as canon-
ical functions. We aim at extending the generative approach
to add predefined support for a number of basic features in

29https://github.com/pofider/node-simple-odata-server
30https://github.com/jaystack/jaydata

any web infrastructure like security (i.e., authentication and
encryption). Finally, we would like to integrate our OData
models with other web-based modeling languages like IFML
that focus on the modeling of the user interaction with the
web application. With this integration we aim to provide a rich
modeling environment combining both front-end and back-end
development.

ACKNOWLEDGMENT

This work has been supported by the Spanish government
(TIN2016-75944-R project).

REFERENCES

[1] M. Pizzo, R. Handl, and M. Zurmuehl, “OData version
4.0 part 1: protocol,” OASIS, Tech. Rep., 2014.

[2] H. Ed-Douibi, J. L. Cánovas Izquierdo, and J. Cabot,
“A UML profile for OData APIs,” in Int. Conf. on Web
Engineering, 2017.

[3] M. Pizzo, R. Handl, and M. Zurmuehl, “OData version
4.0 part 2: URL Conventions,” OASIS, Tech. Rep., 2014.

[4] B. Selic, “The Pragmatics of Model-Driven Develop-
ment,” IEEE Softw., vol. 20, no. 5, pp. 19–25, 2003.

[5] W. Schwinger, W. Retschitzegger, A. Schauerhuber,
G. Kappel, M. Wimmer, B. Pröll, C. Cachero Castro,
S. Casteleyn, O. De Troyer, P. Fraternali et al., “A
Survey on Web Modeling Approaches for Ubiquitous
Web Applications,” Int. J. of Web Information Systems,
vol. 4, no. 3, pp. 234–305, 2008.

[6] P. Valderas and V. Pelechano, “A Survey of Requirements
Specification in Model-driven Development of Web Ap-
plications,” ACM Transactions on the Web, vol. 5, no. 2,
p. 10, 2011.

[7] P. Fraternali, “Tools and Approaches for Developing
Data-intensive Web Applications: a Survey,” ACM Com-
puting Surveys, vol. 31, no. 3, pp. 227–263, 1999.

[8] M. Pizzo, R. Handl, and M. Zurmuehl, “OData ver-
sion 4.0 part 3: Common Schema Definition Language
(CSDL),” OASIS, Tech. Rep., 2014.

[9] R. Handl, M. Pizzo, and M. Biamonte, “OData JSON
Format version 4.0,” OASIS, Tech. Rep., 2014.

[10] M. Zurmuehl, M. Pizzo, and R. Handl, “OData Atom
Format Version 4.0,” OASIS, Tech. Rep., 2014.

[11] B. Selic, “A Systematic Approach to Domain-specific
Language Design using UML,” in Int. Symp. on Object
and Component-Oriented Real-Time Distributed Com-
puting, 2007, pp. 2–9.

[12] “OData generator https://github.com/SOM-Research/
odata-generator.”

[13] R. D. N. Fidalgo, E. M. De Souza, S. España, J. B.
De Castro, and O. Pastor, “EERMM: a metamodel for

the enhanced entity-relationship model,” in Int. Conf. on
Conceptual Modeling, 2012, pp. 515–524.

[14] H. Ed-Douibi, J. L. Cánovas Izquierdo, A. Gómez,
M. Tisi, and J. Cabot, “EMF-REST: Generation of
RESTful APIs from Models,” in ACM/SIGAPP Symp.
On Applied Computing, 2016, pp. 1446–1453.

[15] A. M. Segura, J. S. Cuadrado, and J. de Lara, “ODaaS:
Towards the Model-driven Engineering of Open Data
applications as Data Services,” in Int. Conf. on Enterprise
Distributed Object Computing, Workshops and Demon-
strations, 2014, pp. 335–339.

[16] F. Haupt, D. Karastoyanova, F. Leymann, and B. Schroth,
“A Model-Driven Approach for REST Compliant Ser-
vices,” in Int. Conf. on Web Services, 2014, pp. 129–136.

[17] J. M. Rivero, S. Heil, J. Grigera, E. Robles Luna, and
M. Gaedke, “An Extensible, Model-driven and End-User
Centric Approach for API Building,” in Int. Conf. on Web
Engineering, S. Casteleyn, G. Rossi, and M. Winckler,
Eds., 2014, pp. 494–497.

[18] R. Rodrı́guez-Echeverrı́a, F. Macı́as, V. M. Pavón, J. M.
Conejero, and F. Sánchez-Figueroa, “Model-driven Gen-
eration of a REST API from a Legacy Web Application,”
in Int. Conf. on Web Engineering, Workshops, 2013, pp.
133–147.

[19] A. Vallecillo, N. Koch, C. Cachero, S. Comai, P. Fra-
ternali, I. Garrigós, J. Gómez, G. Kappel, A. Knapp,
M. Matera, S. Meliá, N. Moreno, B. Pröll, T. Re-
iter, W. Retschitzegger, J. E. Rivera, A. Schauerhuber,
W. Schwinger, M. Wimmer, and G. Zhang, “MDWEnet:
A Practical Approach to Achieving Interoperability of
Model-Driven Web Engineering Methods,” in Int. Conf.
on Web Engineering, Workshops, 2007.

[20] I. Porres and I. Rauf, “Modeling Behavioral RESTful
Web Service Interfaces in UML,” in Symp. on Applied
Computing, 2011, pp. 1598–1605.

[21] N. A. Tavares and S. Vale, “A Model Driven Approach
for the Development of Semantic RESTful Web Ser-
vices,” in Int. Conf. on Information Integration and Web-
based Applications & Services, 2013, p. 290.

[22] M. J. Hadley, “Web Application Description Language
(WADL),” Tech. Rep., 2006.

[23] J. M. Rivero, S. Heil, J. Grigera, M. Gaedke, and
G. Rossi, “MockAPI: an Agile Approach Supporting
API-first Web Application Development,” in Int. Conf.
on Web Engineering, 2013, pp. 7–21.

[24] B. Terzić, V. Dimitrieski, S. Kordić, G. Milosavljević,
and I. Luković, “MicroBuilder: A Model-driven Tool for
the Specification of REST Microservice Architectures,”
in Int. Conf. on Information Society and Technology,
2017, pp. 179–184.

