
Stepwise Adoption of Continuous Delivery in
Model-Driven Engineering

Jokin Garcia1 and Jordi Cabot2

1 IK4-IKERLAN, Arrasate, Spain
jgarcia@ikerlan.es

2 ICREA-UOC, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. Continuous Delivery (CD) and, in general, Continuous Soft-
ware Engineering (CSE) is becoming the norm. Still, current practices
and available integration platforms are too code-oriented. They are not
well adapted to work with other, non text-based, software artifacts typ-
ically produced during early phases of the software engineering life-
cycle. This is especially problematic for teams adopting a Model-Driven
Engineering (MDE) approach to software development where several
(meta)models (and model transformations) are built and executed as
part of the development process. Typically, (part of) the code is au-
tomatically generated from such models. Therefore, in a complete CD
process, changes in a model should trigger changes on the generated
code when appropriate.

A step further would be to apply CD practices to the development of
modeling artefacts themselves. Analogously to “traditional” CD, where
the goal is to have the mainline codebase always in a deployable state,
the aim would be to have the modeling infrastructure always ready to
be used. Those models could be the final product themselves or an in-
termediate artifact in a complete CSE process as described above.

Either way, a tighter integration between CD and MDE would benefit
software practitioners by providing them with complete CSE, covering
also analysis and design stages of the process.

Keywords: Continuous Evolution, Continuous Delivery, Model-Driven
Engineering

1 Introduction

Gone are the days when developing projects required a mere compiler. Nowadays,
software engineering is much more complex and heterogeneous, often involving
several stacks, languages, and frameworks.

Software building tools have evolved accordingly and we have gone from
make to Gradle, passing through Ant and Maven. Besides, agile practices and
specifically Continuous Delivery (CD) has encouraged a more frequent software
integration and testing. This philosophy of faster release cycles has expanded to



2 Jokin Garcia and Jordi Cabot

the organizational level (e.g. for a rapid time-to-market and quality feedback) in
what it is known as Continuous Software Engineering (CSE).

Unfortunately, so far this trend has left aside another parallel trend in soft-
ware engineering: Model-Driven Engineering (MDE) [5]. MDE advocates for the
rigorous use of models as key artifacts in all software engineering activities.
Though this idea is far from new and we are still learning how to best effectively
apply it in practice, recent studies suggest an increasing uptake of MDE and a
more widespread use than commonly believed [22], specially when taking MDE
on a broad sense (e.g. models beyond code-generation approaches, for instance,
models used for communication purposes or software documentation).

Therefore, it is evident that software models play some role in most software
development projects. Challenges for MDE adoption include social and organi-
zational factors but also tool-related ones [23] such as synchronization problems
between models and code. Clearly, a tighter integration between CD and MDE
would benefit software practitioners by providing them with a more complete
CSE, covering also analysis and design stages of the process. This integration is
what we call Continuous Model-Driven Engineering.

This paper will be looking at this integration at two different levels. First, it
will discuss how to add modeling artifacts as standalone executable components
in a standard CD pipeline aimed at releasing a new software version.

Then, it will cover a more complex scenario where the target of the CD is
a MDE artifact itself built as the result of a collaboration in a MDE ecosystem
(a.k.a. megamodel in literature). Indeed, in many projects, the “modeling side”
is a combination of models (possibly conforming to different metamodels, where
each metamodel defines the possible set of well-formed models to be created
with that language, similar to the relationship between programs and language
grammars), model-to-model and model-to-text transformations (for the former,
input and output are models, for the latter, the output is a text file, e.g. a piece of
code generated from a model). Transformations can also be regarded as models
on their own and conform to specific model transformation languages. As for the
modeling languages, projects usually combine general modeling languages like
UML with several Domain-Specific Languages (DSLs). DSLs can be reused from
other projects or be developed adhoc for the current one, which implies creating
their abstract syntax (grammar) and concrete syntax (notation) as part of the
project itself.

Figure 1 tries to sketch how these elements relate to each other. As shown in
Figure 1, model Ma is transformed into model Mb using a M2M transformation,
and then model Mb is transformed into code through a M2T transformation. As
can be seen from the number of relationships, CD of a MDE artifact is a complex
task where changes on one artifact can trigger changes on several others that need
to co-evolve together. This process requires tools for model comparison, merging,
testing,... that react accordingly to (meta)model changes. While specific couples
of on-demand evolution scenarios have been studied (metamodels-models [8],
metamodels-transformations [12] and metamodels-editors [9]) no holistic and
global approach has been proposed so far.



Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 3

conformsTo

input, output

Legend

uses

Fig. 1. MDE architecture

The remainder of the paper is structured as follows. Section 2 tries to clar-
ify the glossary of terms that the mixture of Continuous* and Model-Driven
domains entails. In Section 3 we analyze how can models can be integrated in
CD processes and tools. Then, in Section 4 it is proposed to use CD practices
to manage the evolution of MDE artifacts. Section 5 exposes related work; and
finally, in Section 6 we conclude with a summary and future challenges.

2 Background

The Agile Manifesto was born in 2001. This manifesto claimed four values and
twelve principles. The values are well-known: individuals and interactions over
processes and tools, working software over comprehensive documentation, cus-
tomer collaboration over contract negotiation and responding to change over
following a plan. The principles are as well described in the manifesto [4].

In this agile context, and opposite to what it could be thought, teams are
more likely to model than in traditional methodologies [23], as modeling supports
many of their principles, as communication, rapid feedback or quality. MDE is a
paradigm that uses models to develop software. Models conform to metamodels,
and are transformed to other models or to code, building an ecosystem of related
artifacts (Figure 1). These models can be used in workflows where they can
be: validated, merged, compared, transformed, etc... [18]. These tasks are not
in solitary confinement: they need to be integrated in heterogeneous projects
managed with CD methodologies.

Rooted in the spirit of the manifesto, the Agile Model Driven Development
(AMDD) method was conceived to ensure the emergence of effective architec-
tures, requirements and designs. As the name suggests, AMDD is an agile version



4 Jokin Garcia and Jordi Cabot

of MDD where the created models are not extensive, just good enough for the
development cycle at hand. In opposition to the waterfall methodology where
the modeling is done only in the beginning, in the agile software development
lifecycle there are many cycles and in each of them modeling is present at the
beginning [2].

The last step is introducing as well agility in the release step. Continuous
Delivery is a subset of agile that emphasizes the need for software to be always
ready for release. Contrary to the waterfall model that releases the software once
all the functionality is developed, agile releases partial functionality throughout
the development. In order to achieve this always-ready release philosophy, some
techniques (e.g. test automation) and tools (e.g. Jenkins) are used.

To clarify these acronyms, we will adhere to the following reference termi-
nology [15] : Continuous Integration (CI) is the frequent integration of code by
all the members of a project. Build and tests are accomplished automatically in
order to detect integration errors as soon as possible. Continuous Delivery (CD)
is an extension of CI where it is guaranteed that the mainline is always in a
deployable state, and that this deployment can be done in ”one click”. Opposed
to CD where the deployment is manual, in Continuous Deployment, every time
there is a commit, the software is automatically deployed to production. Contin-
uous Software Engineering (CSE) is the organizational and cultural attempt to
connect development with business strategy. All these practices are encompassed
in what is known as Continuous*. In this paper we are going to use the term
Continuous Delivery (CD), as it is closest to our proposal of always keeping the
MDE infrastructure ready to be executed.

In order to achieve this automatic deployment, these techniques are based
on the automation of the build. Specifically, a deployment pipeline divides and
executes automatically different stages of the build; which are generally compi-
lation, tests and deployment. This stages are, as well, broken up into jobs. This
pipeline provides visibility of the whole process.

3 Integration of MDE tools in CD

In most software development projects, there is some degree of model use [22].
MDE components must collaborate with each other but also interface with other
non-MDE tools, including CD servers [19], in a global CSE context.

This section looks at whether this integration is possible, focusing on the
basic scenario of individual MDE artifacts used as part of a larger software
development CD scenario. The key requirement of CD servers like Jenkins3 is
that an IDE cannot be used to build the software, as it does not guarantee a
repeatable build. To be part of a CD pipeline, MDE tools must be able to be
wrapped as jobs to be executed standalone, i.e. without human intervention,
when called by the CD server.

Therefore, at its simplest level, integration of MDE in CD will be possible
if we find at least one MDE tool, for each major MDE activity, offering some

3 https://jenkins-ci.org/



Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 5

kind of external interface (via API or shell access) that allows its integration in
CD pipeline. And indeed, we do. Table 1 lists examples of such tools for each
activity.

Modeling task Tool example

Modeling framework EMF4

Model to model transformation ATL, Epsilon ETL, QVT

Model to text transformation Acceleo, Epsilon EGL, Xpand

Model comparison EMFCompare, Epsilon ECL

Model weaving/composition/merge AMW, Epsilon EML

Model injection/extraction Xtext, EMFText

Model validation EMFtoCSP, Epsilon EVL
Table 1. Example of available tools for each modeling task

This alone is powerful enough to build CD pipelines for (model-based) de-
velopment projects.

Illustrating example

As an example of MDE infrastructure, we are going to use a very common
Forward Engineering (FE) process, where models are used to design a solution
that is later automatically transformed into a CRUD-based web application.
This scenario is illustrated in Figure 2:

1. The left-bottom part shows a UML class diagram depicting the need to store
information about books and bookshops.

2. A transformation uses this schema definition to generate a navigation model
[6] with the usual CRUD pages as default website structure.

3. A final model-to-text transformation generates the code corresponding to
the forms, pages and tables for the example.

The class diagram conforms to the UML language while the navigation model
is represented as an object diagram conforming to a small DSL called sWML
(Simple Web Modeling Language [5], inspired in IFML [6]). The transformation
is written in ATL and describes how to generate sWML models from UML ones.
The upper rule bootstraps the sWML model while the lower one iterates through
the UML model and, for each class it founds, it creates the corresponding CRUD
pages. More details on this example can be found in [1].

This transformation chain (from UML to sWML and from sWML to code)
is implemented in the CD server (Jenkins) by creating two new jobs, one per
transformation (see the last two jobs in Figure 3). This way we enable: the
chaining of modeling tasks (M2T is automatically executed when M2M finalizes),

4 One difference of running EMF standalone is that the application is unaware of
plug-ins, so registrations have to be done now in the code



6 Jokin Garcia and Jordi Cabot

Fig. 2. Example of a model-based software process

visualization of their status (if there is any error in the execution or resulting
model or code) and the immediate re-execution of the process when a model
is updated (either at the UML or sWML levels). Reactivity is achieved thanks
to a hook between the SCM and Jenkins5, that allows the execution of jobs as
triggers after an update in the software repository.

Still, this integration is straightforward but quite dumb in the sense that the
CD server sees models as pure text/XML artifacts and therefore is unable to use
the model semantics to better manage the pipeline, for instance by preventing
triggering the transformations when the model update does not have any real
impact in the rest of the chain. We discuss a more advanced integration in the
next section.

4 Continuous Evolution of MDE infrastructure

All MDE elements in the previous example are a software product on its own
that have followed as well a build and deploy process, and therefore may benefit
from being the target of a CD process themselves to bring all CD benefits to the

5 https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin



Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 7

Fig. 3. Jenkins pipeline of the co-evolution process

MDE domain (or to best exploit them when part of a more global CD process).
These benefits include:

– Reactivity: The co-evolution process does not have to be launched by the
developer manually anymore. Everytime a new change is committed in the
repository, the process will be triggered automatically.

– Parallelization: Different co-evolution solutions are given depending on the
affected artifacts. Instead of applying them one by one, a CD server allows
to execute in the same time all of them.

– Visibility: of the process and its state.
– Time saving: Co-evolution and testing is only executed if the impact analysis

determines that it is actually needed.
– Flexibility: We may not need the modeling expert. The domain expert can

execute the whole process alone.

Due to the complex and non-linear nature of MDE ecosystems, we must deal
with changes at two different levels: the model level but also the metamodel
one, not usually the case when developing more traditional software products
where the grammars and libraries imported in the project hardly ever change
during the development; instead in MDE, the DSLs change much more often.
Covering this scenario is important to ensure the long-term maintainability of



8 Jokin Garcia and Jordi Cabot

the MDE artifacts (and therefore of the software depending on them) as part of
a Continuous Evolution[11] effort.

When co-evolving a MDE ecosystem, we must take into account the coupling
between each single pair of artifacts. Dependencies between different artifacts
in a MDE ecosystem can be seen in Figure 1. These are the most common
coupling cases, that happen when the metamodel, which is the cornerstone of
the ecosystem, evolves:

– Metamodel - model: When a metamodel evolves, instances of that metamodel
have to be adapted to changes [8].

– Metamodel - transformation: Transformations are defined between meta-
model elements, so when any of the metamodels of the transformation (source
or target) evolves, it has to be adapted to that evolution as well [12].

– Metamodel - editors: When the metamodel defining the abstract systax of
an editor changes, the rest of the editor artifacts are affected [9].

4.1 Evolution scenario: an example implementation

Coming back to our example of Figure 2, we propose a simple evolution scenario:
the sWML metamodel evolves, renaming the name of the type HypertextLayer
to NavigationLayer. This change forces us to change the references to that type
in the transformations using it as input/output element and update all model
elements that instantiate that type to reclassify them. We can see these impacts
as dotted arrows in the figure.

In a naive MDE - CD integration (as the one sketched in the previous sec-
tion), any change on a MDE artifact will trigger an update on all the depending
elements which in turn could fire further changes down the lane. Ideally, the CD
server should be smarter than that and be able to understand enough the MDE
artifacts it manages in order to optimally coevolve them.

Figure 3 shows how our CRUD-based example has been implemented as a
fully automated pipeline in a CD server (Jenkins). For clarity, jobs have been
divided into phases:

1. Change detection: analyzing and classifying the kind of changes that have
occurred after every update by comparing the two versions of the artifact.
When the new version of the metamodel is committed, the process is trig-
gered. Both metamodel versions will be compared by calling the tool EM-
FCompare in charge of generating a difference model that represents the
differences between the two versions of the metamodel. In this case, it will
result in a Rename Class type of change. Notice that in this step, a textual
comparison tool is not enough: a tool that deals with model semantics is
needed.

2. Impact analysis: it is assessed what parts of the system are likely to be
affected by a change on the related artifacts running an impact analysis al-
gorithm. It decides, for each depending artifact, whether the changes should
be classified into:



Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 9

– Non Breaking Changes (NBC): changes that do not have any impact.
– Breaking and Resolvable Changes (BRC) changes that have an impact

but that can be resolved automatically.
– and Breaking and Unresolvable Changes (BUC) changes that have an

impact that requires human intervention.

As we can see in Figure 3, there is one job for detecting breaking changes and
another for unresolvable changes. The impact analysis has been implemented
as an ATL transformation wrapped in Java. The Rename Class would be
classified as a BRC type.

3. Synchronization: Once we know the affected artifacts (and the kind of
changes relevant to them), they are synchronized: for NBCs, the CD server
should not propagate anything, for BRCs it should evolve the depending ele-
ment automatically and for BUCs mark it as in an erroneous state for manual
reviewing. This step is implemented via an ATL transformation wrapped in
Java. In the example, as it is a BRC, the co-evolution jobs will adapt both
the models conforming to the sWML metamodel and the model to model
transformation. In the case of models, HypertextLayer elements will be re-
named; and in the ATL transformation, elements of type OclModelElement
will be renamed as well. This is because there is a coupling between EClass
element in Ecore and OclModelElement in ATL metamodel. As we can see
in the pipeline, there is one job for coevolving models and another one for
coevolving transformations.

4. Testing the results. Conformance verifications have been implemented using
EMF default checking mechanisms. In the pipeline, there are several testing
jobs, one per artifacts: model, metamodel and transformation.

The corresponding jobs have been linked using the post-build section mech-
anism provided by Jenkins, where all elements are tested after any change and
feedback is provided if any error is detected (see [1] for the full details).

As we can see, this smarter integration would save a lot of time and, poten-
tially, many unnecessary redeployments in any non-trivial system. In the case of
Forward Engineering scenarios where code is generated, we avoid all the gener-
ation and testing of code.

Nevertheless, from the naive to the smart integration approaches we have
a full range of intermediate solutions depending on the characteristics of the
project and the availability of the model-based components required for each of
the four previous tasks in the specific project context.

4.2 Adoption levels

Therefore, a step-wise adoption of Continuous MDE for software companies
could follow the phases described next, which progressively raise the level of
adoption:

Using generic support Without any specific model support, the CD server
treats models as plain text and is not aware of their structure at all. Dependencies



10 Jokin Garcia and Jordi Cabot

Fig. 4. Conditional and parallel execution of coevolution jobs

between jobs have to be manually added and co-evolution is limited to alerting
developers when an element needs to be manually reviewed. Any new model
version triggers all depending jobs.

With co-evolution support We can add co-evolution support for coupled
MDE artifacts. As described in the evolution scenario and (see also the generic
process described the Figure 4), a model comparison job is triggered to interpret
model changes for a given artifact when a new version of the model is saved in
the repository.

– If there are breaking changes, co-evolution jobs (one for each coupled element
type) take care of processing those changes and determining whether the
depending elements need to be resynchronised. Those jobs are parallelizable.



Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 11

Fig. 5. Extraction of transformation execution configurations

Then, if there was any unresolvable change, developers will be notified to do
a manual co-evolution. After that, tests will be executed in parallel.

– If there are not breaking changes, tests are executed directly, without passing
through the co-evolution step.

This conditional and parallel execution shortens the deployment time. The lim-
itation of this approach is that jobs are still manually added as part of the
pipeline definition phase but the pipeline is automatically executed (except for
BUCs) afterwards.

Automatizing the process As a final step in the integration between MDE
and Continuous Delivery, we could automate the definition of the pipeline itself.
The initial configuration of the CD server can be generated programmatically.



12 Jokin Garcia and Jordi Cabot

For instance, the pipeline feature in Jenkins 2.0 (or Job DSL plugin6 in pre-
vious versions of Jenkins) allows to build Jenkins jobs using a simple DSL on
top of Groovy, which can be integrated in version control systems. This script,
in turn, could be generated based on the analysis of the (implicit or explicit)
dependencies between artifacts like a transformations configuration launch with
specific reference to the input/output metamodels. In Figure 5 we can see the
implicit process information in the m2t and m2m transformations regarding the
relation between transformation, metamodels and models. We could take advan-
tage of this information for the impact analysis and co-evolution phases, where
it is needed to know the coupling between artifacts. In this scenario, both the
definition and execution of the pipeline are fully automated. Implementing this
part is left as future work.

5 Related Work

Co-evolution of artifacts in the MDE ecosystem has been tackled in several
works, where specific solutions have been proposed depending on the type of
artifact to be co-evolved. It has been studied the impact of metamodel evolution
on models [8], transformations [12] and editors [9]. But, as far as we know, there
are not works with an holistic and automatized view of the evolution. They are
limited to an on-demand and manual co-evolution between pairs of artifacts.
Using those evolution tools as building blocks, we are proposing a more ambi-
tious approach where the co-evolution is reactive, automatic and parallelizable.
Moreover, the process can be implemented with existing tools, integrating all
the modeling tasks that are standalone.

The most basic premise in order to apply any kind of Continuous* practice is
that all the artifact versions are committed to a Version Control System. VCSs
([7], [16], [14]), comparison ([21] ) and merge tools ([17] ) for models have been
proposed.

There are also methodologies based on Ant to chain MDE operations [18]
but they have not been proposed as part of a CD process.

Papers studying the synergies between CD and MDE for specific domains
have also been presented. In [3], authors provide a model-based approach to gen-
erate TOSCA blueprints (that supports the definition of deployments as code),
allowing the quick (re) deployments of cloud applications. Also in the domain
of cloud computing, [20] proposes a model-driven approach to abstract and au-
tomate a continuous delivery process of cloud resources. This is done with a
tool that uses a Domain Specific Language (DSL) to model the cloud infras-
tructure and a transformation that from that model creates scripts to manage
different Configuration Management Tools. Similarly, in [10], a developer team
can specify a model of the deployment of its application and automatically enact
it in a test environment. Finally, in [13], authors present a prototype that uses
a model-driven generator combined with CI server. They report on an empiri-

6 https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin



Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 13

cal evaluation that shows the benefits of using MDE in combination with a CI
server.

Complementary to these approaches, our work provides a more generic solu-
tion and studies the benefits of using CD processes and tools in the maintain-
ability of MDE infrastructures themselves.

6 Conclusions and Future Research Directions

We have sketched the integration of MDE artifacts as first-class citizens in con-
tinuous software engineering, ranging from a direct use of current integration
platforms to advanced coevolution scenarios, depending on the needs of the
project and the role MDE plays in it. This benefits developers of both software
artifacts (that can benefit from MDE) and MDE artifacts (that can benefit from
CSE in their work).

Nevertheless, to achieve a complete and smooth support for MDE in CSE, we
need to extend the state of the art in several directions. First, MDE technologies
themselves need to become more mature. While some (e.g. model transforma-
tions) are reliable and ready-to-use in complex industrial scenarios, others (e.g.
model merging) require more work to provide automatic solutions and/or profes-
sional tools. Secondly, CI components should be model-aware, providing default
support for some model management operations (like model comparison for well-
known types of models, e.g. UML class diagrams) or at least standard extension
points to provide that. Finally, brand new research proposals should target some
of the co-evolution scenarios and smarter dependency and impact analysis algo-
rithms that have not been addressed so far and that would enable a better CSE
automation for MDE projects.

We hope to see progress in these directions in the coming years.

References

1. https://github.com/jokingarcia/ContinuousEvolution. access 9.07.2018.
2. Scott W. Ambler. Agile software development. In Encyclopedia of Software Engi-

neering, pages 29–46. Taylor & Francis, 2010.
3. Matej Artač, Tadej Borovšak, Elisabetta Di Nitto, Michele Guerriero, and

Damian A. Tamburri. Model-Driven Continuous Deployment for Quality DevOps.
In Proceedings of the 2Nd International Workshop on Quality-Aware DevOps, 2016.

4. Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff
Sutherland, and Dave Thomas. Manifesto for Agile Software Development, 2001.

5. Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software En-
gineering in Practice. Morgan & Claypool Publishers, 2012.

6. Marco Brambilla and Piero Fraternali. Interaction Flow Modeling Language. Mor-
gan Kaufmann, 2015.

7. Petra Brosch, Gerti Kappel, Martina Seidl, Konrad Wieland, Manuel Wimmer,
Horst Kargl, and Philip Langer. Adaptable Model Versioning in Action. In Mod-
ellierung, 2010.



14 Jokin Garcia and Jordi Cabot

8. Andreas Demuth, Markus Riedl-Ehrenleitner, Roberto E. Lopez-Herrejon, and
Alexander Egyed. Co-evolution of Metamodels and Models through Consistent
Change Propagation. Journal of Systems and Software, 111:281–297, 2016.

9. Davide Di Ruscio, Ralph Lämmel, and Alfonso Pierantonio. Automated Co-
evolution of GMF Editor Models. In Software Language Engineering, 2011.

10. Nicolas Ferry and Arnor Solberg. Models@Runtime for Continuous Design and
Deployment, pages 81–94. Springer International Publishing, 2017.

11. Brian Fitzgerald and Klaas-Jan Stol. Continuous Software Engineering: A
Roadmap and Agenda. Journal of Systems and Software, pages 1–14, 2015.

12. Jokin Garćıa, Oscar Diaz, and Maider Azanza. Model Transformation Co-
evolution: A Semi-automatic Approach. In Software Language Engineering.
Springer, 2013.

13. Vicente Garćıa-Dı́az, Jordn Pascual Espada, Edward Rolando Núñez-Valdéz,
B. Cristina Pelayo Garćıa-Bustelo, and Juan Manuel Cueva Lovelle. Combining
the Continuous Integration Practice and the Model-Driven Engineering Approach.
Computing and Informatics, 35:299–337, 2016.

14. Taid Holmes, Uwe Zdun, and Schahram Dustdar. MORSE: A Model-Aware Service
Environment. In 4th IEEE Asia-Pacific Services Computing Conference, 2009.

15. Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education, 2010.

16. Maximilian Koegel and Jonas Helming. EMFStore: a Model Repository for EMF
Models. In International Conference on Software Engineering, 2010.

17. Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. Merging Mod-
els with the Epsilon Merging Language (EML), pages 215–229. Springer Berlin
Heidelberg, 2006.

18. Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. A Framework
for Composing Modular and Interoperable Model Management Tasks. In MDTPI
Workshop, 2008.

19. Richard F. Paige, Nicholas Matragkas, and Louis M. Rose. Evolving Models in
Model-Driven Engineering: State-of-the-art and Future Challenges. Journal of
Systems and Software, 111:272 – 280, 2016.

20. Julio Sandobalin, Emilio Insfrán, and Silvia Abrahão. An Infrastructure Modelling
Tool for Cloud Provisioning. In International Conference on Services Computing,
pages 354–361, 2017.

21. Antoine Toulmé. Presentation of EMF Compare Utility. In Eclipse Modeling
Symposium, 2006.

22. Jon Whittle, John Hutchinson, and Mark Rouncefield. The State of Practice in
Model-Driven Engineering. IEEE Software, 31:79–85, 2014.

23. Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden, and Rogardt
Heldal. Industrial Adoption of Model-Driven Engineering: Are the Tools Really
the Problem? In International Conference on Model Driven Engineering Languages
and Systems, 2013.


