Better Call the Crowd. Using Crowdsourcing to Shape
the Notation of Domain-Specific Languages

Marco Brambilla
Politecnico di Milano
Milano, Italy
marco.brambilla@polimi.it

Javier Luis Canovas Izquierdo
UuoC
Barcelona, Spain
jcanovasi@uoc.edu

Abstract

Crowdsourcing has emerged as a novel paradigm where hu-
mans are employed to perform computational tasks. In the
context of Domain-Specific Modeling Language (DSML) de-
velopment, where the involvement of end-users is crucial
to assure that the resulting language satisfies their needs,
crowdsourcing tasks could be defined to assist in the lan-
guage definition process. By relying on the crowd, it is pos-
sible to show an early version of the language to a wider
spectrum of users, thus increasing the validation scope and
eventually promoting its acceptance and adoption. We pro-
pose a systematic method for creating crowdsourcing cam-
paigns aimed at refining the graphical notation of DSMLs.
The method defines a set of steps to identify, create and
order the questions for the crowd. As a result, developers
are provided with a set of notation choices that best fit end-
users’ needs. We also report on an experiment validating the
approach.

CCS Concepts -« Software and its engineering — Con-
text specific languages; Software development process manage-
ment; Collaboration in software development;

Keywords crowdsourcing, domain-specific languages, model-
driven development

ACM Reference Format:
Marco Brambilla, Jordi Cabot, Javier Luis Canovas Izquierdo, and An-
drea Mauri. 2017. Better Call the Crowd. Using Crowdsourcing to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SLE’17, October 23-24, 2017, Vancouver, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5525-4/17/10...$15.00

Jordi Cabot
ICREA
UuocC
Barcelona, Spain
jordi.cabot@icrea.cat

Andrea Mauri
Politecnico di Milano
Milano, Italy
andrea.mauri@polimi.it

Shape the Notation of Domain-Specific Languages. In Proceedings
of 2017 ACM SIGPLAN International Conference on Software Lan-
guage Engineering (SLE’17). ACM, New York, NY, USA, 10 pages.
https://doi.org/

1 Introduction

Domain-Specific Modeling Languages (DSMLs) are a spe-
cial kind of languages which have been tailored to solve a
particular problem in a domain. As they target a concrete
domain, the development of DSMLs requires a tight collab-
oration between language developers and end-users, who
are usually the domain experts. While language developers
provide the technical knowledge, end-users help setting the
language concepts and shaping the notation most suitable
for the domain. Involving end-users therefore enriches the
process and assures the resulting language satisfies their
needs [Kelly and Pohjonen 2009; Vélter 2011].

In the last years, crowdsourcing has emerged as a novel
paradigm in which humans are employed to perform com-
putational tasks [Doan et al. 2011]. Crowdsourcing has been
successfully used in very different scenarios such as fact
checking, opinion mining or localized information gathering.
Among their applications, crowdsourcing techniques can be
used to create and validate software artifacts [LaToza et al.
2014]. In the context of DSMLs, crowdsourcing tasks could
be defined to create and validate language constructs.

In particular, we envision a collaborative development
process of DSMLs illustrated in Figure 1 which follows these
phases:

1. The language is initialized by language developers
with initial definitions for the abstract (i.e., concepts
and relationships) and concrete (i.e., graphical and/or
textual notation) syntaxes.

2. Language elements are polished by a set of end-users
who are experts in the domain and collaborate closely
with language developers to shape the language (ap-
proaches like Collaboro [Canovas Izquierdo and Cabot
2016] can be used here). At this point, developers can

https://doi.org/

SLE’17, October 23-24, 2017, Vancouver, Canada Marco Brambilla, Jordi Cabot, Javier L. Canovas Izquierdo, Andrea Mauri

Language Language Language
developers developers end-users

AS, || cs,

Language

AS, || cs,

Language

design

initialize & shape

-

-

The Crowd Language Analyzer
() [
oMoo
" YY YY) @
oMoMo
MeoMeM 10} 18}
oMeoMo
a A -
refine analyze
& tune & recommend
AS3 CS3 ‘ AS3 CS3
Language Language

Figure 1. Language development process proposed. AS = Abstract Syntax. CS = Concrete Syntax.

be sure that the language fulfills the core end-users’
needs.

. Crowdsourcing techniques are applied to validate the
language notation. While the previous phase concen-
trates the changes in the concepts and main shape of
the language, this phase leverages the crowd to show
the language to a wider spectrum of users and tune its
notation.

. (Optional) Once the language has been developed and
deployed, an analyzer (manual or automatic) studies
how the language is being used in practice to detect
common patterns and propose improvements (e.g., re-
moving hardly used elements or promoting as new
primitives the most typical elements).

In this paper we focus on the third step of the process, in
which the crowd is used to validate and refine the concrete
syntax of a DSML. By relying on the crowd, it is possible
to show the language to a bigger spectrum of users, thus
increasing the validation scope and eventually promoting its
acceptance and adoption. In particular this is necessary when
the language aims to be adopted in a global scale, where the
heterogeneity of the end-users could lead to misinterpreta-
tion and errors in its usage.

Our contribution bridges the world of crowdsourcing and
DSML design by providing a systematic method for creating
crowdsourcing campaigns aimed at validating the graphical
notation of DSMLs. By taking as inputs the abstract syntax
of the language and its candidate concrete syntaxes (i.e., pos-
sible graphical symbols), our process generates the set of
crowdsourcing tasks including the questions for the crowd.
The collected answers can then be used to refine the con-
crete syntax that most fit the end-users’ needs. At the best of
our knowledge, no previous works studied a systematic ap-
proach for involving large crowds in the validation of DSML
concrete syntaxes, addressing the problems of the cost (e.g.,
minimizing the number of questions) and quality.

The paper is structured as follows. Section 2 presents
some background on Crowdsourcing and Section 3 describes

our approach. Section 4 describes the validation of our ap-
proach while Section 5 discusses the lessons learned. Section
6 presents the related work and Section 7 ends the paper.

2 Crowdsourcing for Language Design

A crowdsourcing campaign is composed of a set of tasks
including one or more questions to be asked to the crowd.
The interaction is generally among (1) the requester, who
poses a task; (2) the system, which organizes the computation
by mixing conventional and crowd-based modules; and (3)
a potentially wide set of performers, who are in charge of
performing crowd tasks (i.e., answering the questions) and
are typically unknown to the requester.

A campaign lifecycle consists of three phases: (1) design
by the requester, (2) execution by asking the crowd and (3)
answers aggregation. Figure 2(a) shows this workflow. Notice
that these phases can be often overlapping, for instance, the
design of the campaign can change while the tasks are being
executed and the answer aggregation phase can start while
the crowd is working on the tasks [Brambilla et al. 2015].

To support the definition and execution of crowdsourcing
campaigns for language design, we record the campaign in-
formation by means of the model shown in Figure 2(b), which
is inspired by the work presented by Bozzon et al. [Bozzon
et al. 2015a]. In the following, we describe each phase in
detail along with the model elements involved.

Design. This phase consists in configuring the tasks and
their corresponding questions for the campaign. It is con-
ducted by instantiating the left part of the model shown
in Figure 2(b), in particular, a crowdsourcing Campaign is
composed of a set of Tasks, which ask the Performer to an-
swer some Questions. As we want the performer to select
the most suitable candidate concrete syntax elements for a
language, we devise the employment of classification tasks,
where questions include a set of options and performers
have to chose one. Thus, each question asks about a specific
Abstract Syntax Element and it includes two or more options,
each one referring to a Candidate Concrete Syntax Element.

Crowdsourcing to Shape the Notation of Domain-Specific Languages

SLE’17, October 23-24, 2017, Vancouver, Canada

Campaign Campaign Answers
> . > . —_—> . —>
Design Execution Aggregation
5 CY
v v v
Campaign
1
- 0.
o Candidate . Execution
— Concrete Syntax Question Task Performer
Element 1 o T 1 T o.+| StartDate:Date [g+ 1
text:String endDate:Date
1
1 N i
@5
Metamodel
Element Answer 90 a Result
1 0.*
o 0.1
(b)

Figure 2. (a) Crowdsourcing campaign lifecycle and (b) the supporting model.

Execution. In this phase, performers conduct the tasks pro-
viding their answers. In our metamodel, the Performer exe-
cutes the Task by answering its Questions, which involves
choosing which Candidate Concrete Syntax Element he/she
prefers for representing the Abstract Syntax Elements. Thus,
a task Execution includes some statistics about the performer
actions and tracks the performer choices by means of An-
swers.

Answers aggregation. The final result of a crowdsourcing
campaign is obtained by combining the different contribu-
tions provided by the crowd, for which several methods have
been proposed as it depends on the particular scenario. In
the case of language design, where classification tasks are
used, we simply count the preferences for each option [Boz-
zon et al. 2013]. The Answers gathered are aggregated and
analyzed in order to find the Result.

3 Derivation of Crowdsourcing Campaigns

Our process receives as input: (1) the abstract syntax of the
language (specified as a metamodel), (2) a set of symbols rep-
resenting the candidate concrete syntax and (3) the mapping
between the two (i.e., which symbol/s correspond to each
concept/relationship). Optionally, the user can also provide
a set of models to be used as templates when illustrating the
usage of the different candidate notations. If this is not pro-
vided, questions will display the symbols isolated. With these
inputs, the method we describe herein generates a crowd-
sourcing campaign to let users choose the best language
syntax.

We will use as running example, a simplified business pro-
cess modeling language, to illustrate our approach. We define
a simple metamodel defining the abstract syntax (Figure 3)
and a set of candidate symbols for each concrete metamodel
element (except for the Flow concept, for which we decided
to set the use of an arrow for the sake of simplicity). The
definition of candidate symbols was inspired by the BPMN
standard notations and following the recommendations from
Moody’s work on “Physics of Notations” [Moody 2009]. Ta-
ble 4 shows the proposed symbols (see option columns).

3.1 Design

In order to design the crowdsourcing campaign, we have to
instantiate the elements of our campaign model correspond-
ing to this phase. In particular, it is necessary to first identify
the set of Task elements composing our crowdsourcing Cam-
paign and then define the Questions to be included in each
Task. We devise a crowdsourcing model generation driven by
the abstract syntax metamodel of the language. To this aim,
we define a set of metamodel patterns which, once applied
to the language abstract syntax metamodel, will generate
the required campaign model elements. The patterns have
been defined by an extensive review of existing metamodels
such as IFML , UML, and BPMN, and our expertise creat-
ing DSMLs and the recurring structural patterns appearing
therein.

Tables 1 and 2 describe the patterns and how they are
used to create Tasks and Questions. For each pattern we
show an example model (i.e., matching example), the set of

SLE’17, October 23-24, 2017, Vancouver, Canada Marco Brambilla, Jordi Cabot, Javier L. Canovas Izquierdo, Andrea Mauri

Table 1. Simple patterns.

Pattern Generated Elements .
Id . . . Question Example
(Matching example) in Campaign Metamodel
o A e One Task e Which symbol do you prefer for representing
attr e One Question for the class element (i.e., A class) the element A?
e One Question for each attribute element (i.e., attr | ® How do you prefer to represent the attribute
attribute) attr?
P2
A |bs B e One Task e How do you prefer to represent the relation bs
e One Question for the relation element (i.e., bs between A and B elements?
relation)
P3
A |bs B e One Task e How do you prefer to represent the containment
e One Question for the containment relation ele- relation bs between A and B elements?
ment (i.e., bs relation)
P4
A e One Task e How do you prefer to represent the element A,
attrA o One Question for the parent class (i.e., A class) and its attribute attrA?
ZF e One Question for each attribute in parent class | ® How do you prefer to represent the element B,
(i.e., attrA attribute) and its attribute attrB?
B e One Question for the child class (i.e., B class)
attrB e One Question for each attribute in child class
(i.e., attrB attribute)

elements to create as a consequence of the match in the cam-
paign metamodel and some illustrative questions. Note that
Questions refer to the abstract syntax and concrete syntax
elements involved in the pattern. We identified two types
of patterns: simple (see Table 1), which includes the basic
constructs of the metamodel; and composite (see Table 2),
which represents unified specification practices and reduces
the number of tasks by aggregating questions on related
elements (e.g., pattern P7 creates a single task asking about
all the elements of a hierarchy).

More specifically, given an abstract syntax metamodel,
our pattern application and task generation process follows
these steps:

1. Mark all the abstract syntax elements as nonvisited.
2. Identify patterns to be applied, from the most general
(i.e., P8) to the most specific (i.e., P1).

3. For any nonvisited elements, apply the most general

pattern identified.

4. Generate a Task and a set of Questions according to

pattern:

4.1. Generate Questions only for abstract syntax elements
marked as nonvisited and having a mapping to a
concrete syntax element.

4.2. Mark the abstract syntax elements involved in the
questions as visited.

4.3. Associate to the question the examples of models
provided by the designer if available; otherwise gen-
erate simple diagrams showing element usage.

5. Go to step 3 until all abstract syntax elements have

been marked as visited.

If a visited element is included in a pattern involving also
at least one element marked as nonvisited, the Question for
the visited one is not generated again; instead, the previously
selected symbol is shown.

Figure 3 shows in grey boxes the patterns found in our
example metamodel (step 2). In particular the algorithm de-
tected three P7 patterns corresponding to each hierarchy
(i.e., hierarchies with roots Gateway, Event and Node). Table
3 shows the set of iterations required to apply the patterns
(steps 3-5). The text of the Questions is generated using a
template-based approach.

3.2 Execution

Tasks are executed sequentially but in random order to avoid
a possible bias due to the order in which the questions are
asked. At the same time, past answers of a user in the same
campaign must affect future questions by dynamically ren-
dering the graphical examples in a question with the choices
already made in past questions.

The first time a performer sees a task, the involved ex-
ample is built either selecting randomly the symbols of the

Crowdsourcing to Shape the Notation of Domain-Specific Languages

Table 2. Composite patterns.

SLE’17, October 23-24, 2017, Vancouver, Canada

Pattern Generated Elements .
Id . . . Question Example
(Matching example) in Campaign Metamodel
P5
A |element B e One Task e How do you prefer to represent the containment
os e One Question for the relation element (i.e., ele- relation bs between A and B elements?
ment relation) e How do you prefer to represent the relation
e One Question for the containment relation ele- element?
ment (i.e., bs relation)
P6 source .
A B e One Task e How do you prefer to represent the containment
target e One Question for each containment relation (i.e., relations source and target between A and B
source and target relations) elements?
P7
A e One Task e How do you prefer to represent the element A?
attrA e One Question for the parent class (i.e,. A class) | o How do you prefer to represent the elements B
f} e One Question for each attribute in parent class and C?
"""""" (i.e., attrA attribute)
B c e One Question for each child class (i.e,. Band C
attrB attrC classes)
e One Question for each attribute in child classes
(i.e., attrB and attrC attributes)
P8
A e One Task e How do you prefer to represent the element A
attrA e One Question for the parent class (i.e,. A class) and its attribute attrA?
f} e One Question for each attribute in parent class | e How do you prefer to represent the elements B
(i.e., attrA attribute) and C, and their attributes attrB and attrC?
B c e One Question for each child class (i.e,. Band C | e How do you prefer to represent the containment
attrB attrC Jas classes) relation as between C and A elements?
e One Question for each attribute in child classes
(i.e., attrB and attrC attributes)
e One Question regarding the containment rela-
tion (i.e., as relation)
Node
/ \
P <<abstract>> <<abstract>> P
Gateway Event
JAN VAN
[| | l |
Data-based Inclusive Parallel | Start | | End | | Intermediate |
Exclusive

Figure 3. Running example metamodel (patterns identified in grey boxes).

various elements or, if enough answers have already been
gathered, using the symbols preferred by the crowd up to
that moment (this is configurable at the beginning of the

campaign). In the following tasks the performer will see
in the examples the symbols he/she previously chose. Fur-
thermore, in this way, when model examples are given, the

SLE’17, October 23-24, 2017, Vancouver, Canada Marco Brambilla, Jordi Cabot, Javier L. Canovas Izquierdo, Andrea Mauri

Iteration | Pattern Generated Elements involved
Task in the Question
1 P7 Task 1 Conditional, And, Parallel
2 P7 Task 2 Start, End, General
3 P7 Task 3 Task

Table 3. Tasks generated for the patterns found in Figure 3.

performer also takes into account the expressiveness of the
single symbol together with the overall visual style.

Differently from the cases where questions imply an objec-
tively correct answer, in our case there is no right or wrong
notation, just a preference. This makes it difficult to monitor
that the performer is really putting in effort when selecting
the preferred symbols and therefore that we obtain high qual-
ity answers. To identify performers who answer quickly and
randomly to maximize their reward, we compare their task
execution time to the average time of the crowd. If the time
is too low we will not consider their contribution [Gadiraju
et al. 2015].

3.3 Answers Aggregation

For the phase of aggregating the collected answers we adopt
two well-known state of the art strategies: (1) static majority
and (2) targeted agreement [Bozzon et al. 2013]. With the
static majority approach the tasks are executed until a fixed
amount, decided at design time, of answers is gathered. Then
the final result is obtained by counting each preference for
the single element and we select the symbol that was cho-
sen by the majority of the performers. Targeted agreement
consists in choosing an agreement level among the perform-
ers that needs to be reached (e.g., the 70% must agree on
the concrete syntax symbol of an element). Then the task is
executed until such agreement is reached.

4 Experiment

To evaluate our approach we conducted an experiment where
we asked the crowd to address the running example of this
paper. To deploy our crowdsourcing campaign, we extended
and configured CrowdSearcher' [Bozzon et al. 2015a], a tool
for developing crowd-based applications which uses a vari-
ety of systems for interacting with crowds, spanning from
crowdsourcing platforms (e.g., Amazon Mechanical Turk) to
social networks and other platforms.

4.1 Scenario

Based on the abstract syntax metamodel and the correspond-
ing candidate concrete syntaxes, we generated automatically
the crowdsourcing campaign, tasks and questions according
to the strategies described so far, and deployed them to our
own cloud infrastructure.

Lhttp://crowdsearcher.deib.polimi.it/

Description/Instructions

In this task we ask you to choose the graphical notation for the task
Atask is a unit of work - the job to be performed. It is an atomic activity within a process flow.

Look at the symbal on the below representing the task, which one do you prefer?

\

Which symbol would you use for the task?

Figure 4. User interfaces for the crowdsourcing tasks asking
about the task symbols.

The experiment was composed by three tasks asking about
the symbols of (1) the three types of gateways, (2) the three
types of events and (3) the task element (Table 4). Figure 4
shows the user interface for the selection of the task symbols.
Each task included a short description, a picture with a model
example and the questions themselves. When a performer
selects an option, the picture with the example changes ac-
cordingly, thus helping to decide which symbol is the most
suitable. As commented before, user choices made in the
previous tasks influence the remainder of the crowdsourcing
tasks by showing the previously selected symbols.

At the beginning of the crowdsourcing campaign, each
performer was also asked to provide demographic infor-
mation and an evaluation of his/her expertise in modeling,
language specification and business processes.

We conducted our experiment for one week and we en-
gaged a heterogeneous set of participants (85 in total) com-
posed of: undergraduate/graduate computer science students,
modeling experts and IT professionals coming from more
than 10 different countries. We used the static majority policy
as answers aggregation strategy during the experiment exe-
cution and we also simulated the targeted agreement strategy
using the collected answers, at the purpose of comparing
effectiveness and affordability of the two approaches.

4.2 Results

Table 4 (last column) shows the barcharts reporting the col-
lected results per question. For each question we show the
aggregated result of all the performers (left bar), beginners
(center), and experts (right). The degree of expertise was
computed in the following way. As mentioned above, be-
fore executing the task the performers were asked to asses
their expertise in modeling, language specification and bpmn

http://crowdsearcher.deib.polimi.it/

Crowdsourcing to Shape the Notation of Domain-Specific Languages

experience by saying if they did not have any knowledge
(none), if they had some basic skills (medium) or if they were
experts (high). We assigned a value at each level: 0 to none,
1 to medium and 2 to high; then we computed an expertise
value of each performer by making the average on the three
values. Finally we considered experts the users that had an
expertise value greater than 1. This aggregated “expertise”
concept helped us to simplify the amount of dimensions to
consider in the analysis reported in the paper®.

Option B is the winner in most cases, regardless the ex-
pertise profile. Option A has been preferred for the Task and
End Event symbols, while Option C has been selected for the
Exclusive Gateway. Similar results were obtained when con-
sidering the expertise level, although some questions were
more influenced by the option A, which was the symbol
proposed by the BPMN standard (e.g., End Event).

We also tested the targeted agreement answer aggregation
method described in Section 3.3. We configured the method
by setting the minimum number of answers per question
to 10, the agreement level at 60% and as closing condition a
maximum of 50 task executions. Table 5 shows the agreement
reached and the number of answers needed to close the tasks.
The agreement level was reached for three elements (i.e.,
Task, Data-based Exclusive Gateway and Intermediate Event
symbols). The remaining tasks were closed after reaching
the maximum number of answers (see rows with the value
of 50 in the Answers Needed column). The total number of
answers was significantly smaller than the one needed in the
static majority strategy (235 vs. 595). Moreover, we assessed
that the distribution of the answers didn’t change.

4.3 Validation

In order to verify that a graphical notation obtained using
crowdsourcing does provide advantages (in term of clarity,
acceptance, and intuitiveness), we set up an additional ex-
periment on Amazon Mechanical Turk, where we asked the
crowd to compare the different graphical notations obtained
with our approach. We defined the winning notation as com-
posed of all the symbols ranked first in the preference of all
the performers, as per Table 4; the second notation as the set
of symbols ranked second; and the third with the symbols
ranked third.

We used these notations to build a simple model describ-
ing the booking process on a travel website. An example is
shown in Figure 5: the user can login using his credentials
or alternatively register a new account, in the latter case he
must validate his data by clicking on a confirmation link he
receives via email. Then the user has to book both the flight
and the hotel, subsequently he can buy optional services
such as: car rental, travel insurance, and airport shuttle bus.
Finally, he confirms his choices and the process ends.

2The full results are available online http://crowdsearcher.deib.polimi.it/
casestudies/

SLE’17, October 23-24, 2017, Vancouver, Canada

Every worker was shown two example diagrams, built
with different graphical notations, describing the aforemen-
tioned business case and we asked them to choose which
one they preferred in term of intuitiveness, coherence, and
readability (and to motivate their answer). We paid 0.05 USD
per answer, and we collected a total of 204 answers. As a
result, our “best" notation was preferred 60% of the times
over the second best, and 69% of the times over the third one.
Moreover our second best is preferred the 67% of times over
the third one.

This provides a good intuition that with our method is
indeed possible to create graphical syntaxes that are more
accepted and easy to understand for non experts.

4.4 Threats to validity

Our study is subjected to some threats to validity. The limited
number of options for each symbol narrows down the set of
candidate alternatives and may not reflect the performer’s
preference. Moreover, performers do not have the option to
fully disagree with the proposed options (i.e., they are forced
to choose among the fixed set of option). On the positive
side, this simplifies the questions and promotes the selection
process.

Another threat to validity is the subjectivity in understand-
ing the reasons behind the selections made by the performers.
It is hard to assess why different people choose one symbol
over another and even the reasons to select the same symbol
may be different for each individual. Therefore, the method
works to find the popular choices but cannot be used to gen-
eralize global preferences on language notations or styles. In
this sense, note that our results cover a simplified version of
a well-known language and therefore our results may differ
for other DSMLs.

Finally, we would like to remark the chosen notation is
not the best in absolute terms, it is the preferred one (e.g.,
the chosen one could be more complex than other alterna-
tives). Language designers must evaluate this trade-off when
making a final decision.

5 Discussion

This paper represents the first attempt to a systematic ap-
proach for involving the crowd in the selection and validation
of DSMLs concrete syntaxes, starting from a metamodel def-
inition and a candidate set of symbols to be potentially used
as concrete syntax. The results of the experiments allows us
to draw some conclusions and open some discussion points
regarding our approach:

Conclusive results. In our experiment, out of the 7 symbols,
the crowd came to an absolute majority agreement in 5 of
them, thus, making the crowdsourcing campaign useful to
decide most of the target symbols;

http://crowdsearcher.deib.polimi.it/casestudies/
http://crowdsearcher.deib.polimi.it/casestudies/

SLE’17, October 23-24, 2017, Vancouver, Canada Marco Brambilla, Jordi Cabot, Javier L. Canovas Izquierdo, Andrea Mauri

Table 4. Candidate concrete syntax alternatives of our running example and collected answers for the experiment.

Abstract Syntax Concrete Syntax Symbols Crowd Assessment Results
Element Option A Option B Option C (% of preferences for each symbol)

100%
75%
Task 50% ac|
g o 25%
0%

100%

75%

Data-based <> L] 50%
Exclusive @ _-tl:
25%

0%

100%

75%

Gateway Inclusive @ —-l': 50%
25%

0%

all beginners experts

100%
mA
75% OB
mC
0,
Parallel <'|> 50%
25%
0%

100%

OT‘TO

75%

% 50%

25%

Intermediate ©

0%

100%
o
75% oA
50% gs
Event Start O BC
25%
0%
100%
mA
o
75% o
50% |c
W @ =
25%
0%

all beginner expert

Crowdsourcing to Shape the Notation of Domain-Specific Languages

SLE’17, October 23-24, 2017, Vancouver, Canada

Table 5. Agreement levels reached and number of answers needed for each element when using the targeted agreement

strategy.

‘ Metamodel Element

‘ Agreement Level Reached ‘ # Answers Needed ‘

Task 60% 10

Data-based Exclusive 60% 10

Gateways Inclusive 38% 50
Parallel 44% 50

Intermediate 60% 15

Events Start 42% 50
End 40% 50

\ / |
\ / \
¥ Register a.’ \
\\
\

Buy
| Flight \

\

Click \ |
Confirmation 4 Book ||
Mail Hotel

Figure 5. Example of process shown to the Amazon Mechanical Turk workers built with our “best" notation.

Iterative nature. You may not reach a definite result for
all your symbols. In those cases, a second campaign can be
useful, this times focusing only on those conflicting symbols.

Quicker results employing the dynamic targeted agree-
ment. Our experiment confirms that targeted agreement

could be a useful way to narrow down the conflicting deci-
sions and save effort.

Several notations may be a good idea. At first sight the
analysis of the answers split up according to expertise pro-
file reveals differences depending on the knowledge of the
performer. This is the case for the symbols of Start Events,
End Events, Inclusive Gateways and Tasks. Even if a further
analysis based on Chi-Square tests reveals that only the an-
swers for the symbol of End Event are significantly different
among the two expertise levels and thus further research
needs to be conducted, we believe that on large user bases
for a language, having more than one concrete notation (and
the corresponding translators among them) for the same
abstract syntax could be necessary.

Coherent answers. We analyzed the coherence of the per-
formers in the tasks that contained multiple questions. Our
hypothesis is that the symbols whose elements belong to a
hierarchy need to be evaluated at the same moment because
they should have similar “look and feel”. The analysis shows
that for the Events the users selected the same type of sym-
bols for 72% of times, while for the Gateways the coherence

Buy
4 Travel \
/| Insurance |\
\

|
|
|

\\\ / \\\
>(\\/ { F::ear;t } 'X { Confirm } @
|

\ |
\
‘ |
\ |
\ |

\ |
|

\ [

\ Buy |

Y oBus |
Tickets

was 54%, confirming that patterns help to reach a certain
coherence level for the language.

In the future we plan to experiment on multiple domains
and to better exploit the disagreement that may appear in
the results, in order to generate possibly multiple notations
targeting specific profiles of users. Finally, we will inves-
tigate the involvement of the crowd in other steps of the
process of modeling language development, for instance, in
the definition/validation of the abstract syntax and whether
there is a correlation between the chosen notation and other
typical language metrics.

6 Related Work

Several works have emphasized the need of involving the
end-user community of the language in the development pro-
cess. However such involvement has been tried at a small-
scale so far. For instance, Lopez-Fernandez et al. [Lopez-
Fernandez et al. 2015] aims at deriving the language by
parsing concrete examples provided by the users. A more
interactive approach is proposed by Céanovas et al. [Cano-
vas Izquierdo and Cabot 2016] with Collaboro, a tool for
enabling collaborative modeling language definition and by
Umuhoza et al. [Umuhoza et al. 2015] where authors work
with end-users to understand which part of the language
were too hard to understand and simplify it.

SLE’17, October 23-24, 2017, Vancouver, Canada Marco Brambilla, Jordi Cabot, Javier L. Canovas Izquierdo, Andrea Mauri

Other studies focused on how to improve the notation of
languages: works on I* [Genon et al. 2012], UML [Khendek
2015] and BPMN [Genon et al. 2011] examined the visual
notations using the “Physics of Notations” theory [Moody
2009], highlighting problems related to their complexity. All
of them conclude suggesting that the involvement of non-
expert people could increase the cognitive effectiveness of
the language.

Not strictly related to our field of investigation, interesting
is the work of Xu et al. [Xu et al. 2014] where the authors
use the crowd to gather feedbacks on works of visual design.

Many studies have been done on task decomposition and
result aggregation. For instance in [Bernstein et al. 2010]
the authors propose to decompose the task in three phases
called Find, Fix and Verify. In [Kittur et al. 2011] the au-
thors describe a framework that split complex tasks using
map-reduce. Finally, [Bozzon et al. 2015b] proposes a gen-
eral purpose methods and tools for designing crowd-based
workflows.

Nevertheless, while we do not claim that our approach is
novel with respect to the aforementioned ones, at the best
of our knowledge no previous works studied a systematic
approach for involving big crowds in the design of the con-
crete syntax of a DSML, addressing the problems of the cost
(e.g., minimizing the number of questions) and quality.

7 Conclusion

In this paper we proposed a systematic approach for involv-
ing the crowd in the validation of modeling language con-
crete syntaxes. We showed how a crowdsourcing campaign
can be configured starting from the metamodel elements and
a set of candidate graphical symbols. The method covers the
main phases of crowdsourcing campaings, ranging from task
generation to control execution and answer aggregation.

In the future we plan to study whether the number and
quality of questions could be optimized (e.g., driven by the
developers to refine/remove specific elements) and to better
exploit the disagreement that may appear in the results. It
would be interesting to correlate the performer profiles to
their choices, in this way we can understand if the users’
disagreement is caused by cultural differences. In this case it
may be more suitable to have several winning concrete syn-
taxes, instead of trying to promote only one. Furthermore we
plan to analyze how the end-user usage of the language can
be mined to further define its properties (e.g., by removing
the not used elements). We would also like to investigate the
involvement of the crowd in other steps of the process of
modeling language development, for instance, in the valida-
tion and also definition of the abstract syntax. Finally, we
would like to explore how to adapt our approach to evaluate
textual notation or language semantics.

Acknowledgments

This work has been supported by the Spanish government
(TIN2016-75944-R project).

References

Michael S. Bernstein, Greg Little, Robert C. Miller, Bjérn Hartmann, Mark S.
Ackerman, David R. Karger, David Crowell, and Katrina Panovich. 2010.
Soylent: A Word Processor with a Crowd Inside. In ACM Symposium on
User Interface Software and Technology. 313-322.

Alessandro Bozzon, Marco Brambilla, Stefano Ceri, and Andrea Mauri. 2013.
Reactive Crowdsourcing. In World Wide Web Conference. 153-164.

Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Andrea Mauri, and
Riccardo Volonterio. 2015a. Designing Complex Crowdsourcing Applica-
tions Covering Multiple Platforms and Tasks. Jounal on Web Engineering
14, 5&6 (2015), 443-473.

Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Andrea Mauri, and
Riccardo Volonterio. 2015b. Designing Complex Crowdsourcing Applica-
tions Covering Multiple Platforms and Tasks. Journal on Web Engineering
14, 5-6 (2015), 443-473.

Marco Brambilla, Stefano Ceri, Andrea Mauri, and Riccardo Volonterio. 2015.
Adaptive and Interoperable Crowdsourcing. IEEE Internet Computing 19,
5 (2015), 36-44.

Javier Luis Canovas Izquierdo and Jordi Cabot. 2016. Collaboro: a collabo-
rative (meta) modeling tool. Peerj Computer Science 2, e84 (2016).

Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. 2011. Crowd-
sourcing Systems on the World-Wide Web. Commun. ACM 54, 4 (2011),
86-96.

Ujwal Gadiraju, Ricardo Kawase, Stefan Dietze, and Gianluca Demartini.
2015. Understanding Malicious Behavior in Crowdsourcing Platforms:
The Case of Online Surveys. In ACM Conference on Human Factors in
Computing Systems. 1631-1640.

Nicolas Genon, Patrice Caire, Hubert Toussaint, Patrick Heymans, and
Daniel L. Moody. 2012. Towards a more semantically transparent i*
visual syntax. In RE conf., Vol. 7195. LNCS, 140-146.

Nicolas Genon, Patrick Heymans, and Daniel Amyot. 2011. Analysing
the Cognitive Effectiveness of the BPMN 2.0 Visual Notation. In ACM
SIGPLAN International Conference on Software Language Engineering.
377-396.

Steven Kelly and Risto Pohjonen. 2009. Worst Practices for Domain-Specific
Modeling. IEEE Software 26, 4 (2009), 22 —29.

Ferhat Khendek. 2015. On the Semantic Transparency of Visual Notations:
Experiments with UML. In SDL 2015: Model-Driven Engineering for Smart
Cities: International SDL Forum. 122-137.

Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert E. Kraut. 2011.
CrowdForge: Crowdsourcing Complex Work. In ACM Symposium on
User Interface Software and Technology. 43-52.

Thomas D. LaToza, W. Ben Towne, Christian M. Adriano, and André van der
Hoek. 2014. Microtask Programming: Building Software with a Crowd.
In ACM Symposium on User Interface Software and Technology. 43-54.

Jests J. Lopez-Fernandez, Jests Sanchez Cuadrado, Esther Guerra, and Juan
De Lara. 2015. Example-driven Meta-model Development. Software and
Systems Modeling 14, 4 (2015), 1323-1347.

Daniel Moody. 2009. The “Physics” of Notations: Toward a Scientific Ba-
sis for Constructing Visual Notations in Software Engineering. [EEE
Transactions on Software Engineering 35, 6 (2009), 756-779.

Eric Umuhoza, Marco Brambilla, Davide Ripamonti, and Jordi Cabot. 2015.
An Empirical Study on Simplification of Business Process Modeling Lan-
guages. In ACM SIGPLAN International Conference on Software Language
Engineering. 13-24.

Markus Vélter. 2011. MD*/DSL Best Practices. http://voelter.de/data/pub/
DSLBestPractices-2011Update.pdf. (2011).

Anbang Xu, Shih-Wen Huang, and Brian Bailey. 2014. Voyant: Generating
Structured Feedback on Visual Designs Using a Crowd of Non-experts.
In Conference on Computer Supported Cooperative Work. 1433-1444.

http://voelter.de/data/pub/DSLBestPractices-2011Update.pdf
http://voelter.de/data/pub/DSLBestPractices-2011Update.pdf

	Abstract
	1 Introduction
	2 Crowdsourcing for Language Design
	3 Derivation of Crowdsourcing Campaigns
	3.1 Design
	3.2 Execution
	3.3 Answers Aggregation

	4 Experiment
	4.1 Scenario
	4.2 Results
	4.3 Validation
	4.4 Threats to validity

	5 Discussion
	6 Related Work
	7 Conclusion
	References

