A UML Profile for OData Web APIs

Hamza Ed-douibi®, Javier Luis C4novas Izquierdo®, Jordi Cabot!+?
1 'UOC. Barcelona, Spain
{hed-douibi, jcanovasi}@uoc.edu
2 ICREA. Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. More and more individuals and organizations are making their data
available online publicly, resulting in a growing market of technologies and ser-
vices to help consume data and extract its real value. One of the several ways to
publish data on the Web is via Web APIs. Unlike other approaches like RDF, Web
APIs provide a simple way to query structured data by relying only on the HTTP
protocol. Standards and frameworks such as Open API or API Blueprint offer a
way to create Web APIs but OData stands out from the rest as it is specifically
tailored to deal with data sources. However, creating an OData Web API is a hard
and time-consuming task for data providers as they have to choose between rely-
ing on commercial solutions, which are heavy and require a deep knowledge of
their corresponding platforms, or create a customized solution to share their data.
We propose an approach that leverages on model-driven techniques to facilitate
the development of OData Web APIs. The approach relies on a UML profile for
OData allowing to annotate a UML class diagram with OData stereotypes. In this
paper we describe the profile and show how class diagrams can be automatically
annotated with such profile.

Keywords: UML, OData, Web API,

1 Introduction

Recent years have seen an explosion of data available online via Web APIs, coming from
both the public sector and private sources. Unlike other approaches like RDF, Web APIs
provide a simple way to query structured data by relying only on the HTTP protocol.
The increasing number of Web APIs has actually led to an explosion of specialized
applications that combine data from different sources to provide insights on specific
topics not visible at first glance, thus contributing to the growth of data economy.

While standards and frameworks such as Open API3 or API Blueprint* offer a
way to create Web APIs, the Open Data Protocol (OData)s is specifically tailored to
deal with data sources. Thus, in the last years, OData protocol has been accepted as
the favored standard to publish datasets as Web APIs. As a result, many commercial
infrastructures have integrated OData to their products (e.g., SAP, IBM WebSphere,
JBoss Data Virtualization).

3 https://www.openapis.org/
4 https://apiblueprint.org/
Shttp://www.odata.org/

Product Category

+ ID: Integer [1] Products . +ID: Imege_r [0
+ Name: String [0..1] - u + Name: String [0..1]

+ Description: String [0..1] Categories

+ DiscountedDate: Date [0..1] Advertisement

+ Ealtlngi ;née?e.rD[ﬂ‘ : FeaturedProduct FeaturedProduct +| + 1D: lnteger]

* gea‘5e ate: Date [1] :] 7 Advertisements| + Name: String [0..1]
+ price: Real [1] + AirDate: Date [1]

Fig. 1. UML class diagram of the running example.

OData enables the creation of data-centric Web APIs, which allow resources, iden-
tified using Uniform Resource Locators (URIs) and defined in a data model, to be
published and edited by Web clients using simple HTTP messages. It defines also a
small URL-based query language to identify and query the data described in the data
model. The current version of OData (version 4.0) has been approved as OASIS stan-
dard [4]. However, creating an OData Web API is still a hard and time-consuming task
for data providers as they have to choose between relying on commercial solutions,
which are heavy and require a deep knowledge of their corresponding platforms, or
create a customized solution to share their data.

Model-Driven Engineering (MDE) is a paradigm which emphasizes the use of
models to raise the level of abstraction and automation in software development [10].
MDE aims to address platform complexity by using models and model transformations
for the specification/generation of software artifacts. Thus, MDE techniques have been
increasingly used to automate the generation of Web applications [8,11,2,12,3,7,6,9].
While these existing MDE approaches cover a variety of technologies (e.g. web services
and ubiquitous applications), they lack of specific support for OData (and REST APIs
in general, with very few exceptions [2, 9, 6]).

In this sense, our goal is to advance towards the definition of an MDE infrastructure
for the generation (and reverse engineering) of OData applications. As a first step towards
this vision, this paper presents a UML profile for OData that enables an easy definition
of OData sources at the model level.

The remainder of this paper is structured as follows. Section 2 shows the running
example used along the paper. Section 3 presents the OData profile and Section 4
presents the rules to generate default profile definitions. Finally, Section 5 concludes the
paper and presents some future work.

2 Running example

We define a simple OData Web API of an online store as running example. This ex-
ample is inspired in the official reference example of the OData community®. Fig-
ure 1 shows an excerpt of the UML class diagram for the Web API data model,
which includes the classes: Product to represent products, Category to classify prod-
ucts, FeaturedProduct for premium products to be featured in commercials, and
Advertisement which records the data about those commercials.

In OData data models are not expressed in UML but as XML metadata documents
describing an Entity Data Model (EDM) using the Conceptual Schema Definition Lan-

¢6http://services.odata.org/V4/0Data/OData.svc/$metadata

Listing 1. A simple OData Metadata Documents for the products service

1 <edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

2 <edmx:DataServices>

3 <Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="com.
example.ODataDemo" Alias="ODataDemo">

4 <EntityType Name="Product">

5 <Key><PropertyRef Name="ID"/></Key>

6 <Property Name="ID" Type="Edm.Int32" Nullable="false"/>...

7 <NavigationProperty Name="Categories" Type="Collection(ODataDemo.
Cotegory)" Partner="Products"/>

8 </EntityType>

9 <EntityType Name="Category">

10 <Key><PropertyRef Name="ID"/></Key>

11 <Property Name="ID" Type="Edm.Int32" Nullable="false"/>

12 <Property Name="Name" Type="Edm.String"/>

13 <NavigationProperty Name="Products" Type="Collection(ODataDemo.Product)
" Partner="Categories"/>

14 </EntityType>

15 <EntityType Name="FeaturedProduct" baseType="Product">...</EntityType>

16 <EntityType Name="Advertisement">...</EntityType>

17 <EntityContainer Name="ODataDemoService">

18 <EntitySet Name="Products" EntityType="ODataDemo.Product">

19 <NavigationPropertyBinding Path="Categories" Target="Categories"/>

20 </EntitySet>

21

22 </EntityContainer>

23 </Schema>

24 </edmx:DataServices>
25 </edmx:Edmx>

guage (CSDL) [5]. Web clients use this document to understand how to query and
interact with the API using standard HTTP methods. Listing 1 shows an excerpt of
the metadata document for the data model shown in Figure 1. The Schema element
describes the entity model exposed by the OData Web APIs and includes the entity
types Product and Category, FeaturedProduct, and Advertisement, which also
includes properties and navigation properties to describe primitive attributes and associ-
ations, respectively. The Schema element includes also an EntityContainer element
defining the entity sets exposed by the service and therefore the entities that can be
queried. In the following section, we will describe the OData profile which enables the
generation of such file.

3 A UML Profile for OData

To formalize domain-specific knowledge, we can either create a new metamodel or ex-
tend an existing modeling language. Given the similarities between OData and available
concept in UML (specifically, UML class diagrams), we opted to use the UML ex-
tension mechanisms (providing stereotypes, tagged values, and constraints to adapt the
UML metamodel to different platforms or domains) as the basis for our OData modeling
language. Therefore, this section presents our OData profile for UML.

We organize the OData profile into two parts, namely: (i) the Entity Data Model
(EDM) which describes the data exposed by an OData Web API, and (ii) the advanced
configuration model, which defines additional characteristics or capabilities of OData
Web APIs (i.e. what parts of the EDM can be modified, what permissions are needed,...).

? ©
1

«Stereotype» «Stereotype» «Stereotype»
ODStructuralType ODEntitySet ODSingleton

+ name: String (0.1] + name: String [0..1] + name: String [0.1]

+ abstract: Boolean [0.1] §< + includesinServiceDocument: Boolean [0.1]
«Metaclass» + openType: Boolean [0..1] |+ subtype:
Model «Enumeration»
Y ? AE 0.1+ basetype Metaciass> «Metaclass» ODataPrimitiveTypes

DataType Enumeration Boolean

«Stereotype» Byte
ODataEntityType ODataComplexTypel f Date
: Boolean [0..1]) DateTimeOffset
«Stereotype» -
ODService «Metaclass»
+ version: String [0.1] PrimitiveType
+ entityContainerName: String [0..1] «Stereotype»

ODEnumType

+ schemaNamespace: String [0..1]
+ schemaAlias: String [0..1] «Stereotype» + name: String [0..1]

ODataPrimitiveType + isFlags: Boolean [0..1]
+ name: ODataPrimitiveTypes [0..1] + underlyingType: ODataPrimitiveTypes [0.1]

Fig. 2. OData profile: (a) the service wrapper and (b) data types elements.

3.1 The Entity Data Model

OData Service Wrapper. An OData Web API exposes a single entity model which may
be distributed over several schemas, and should include an entity container that defines
the resources exposed by the Web API. Figure 3a shows the extension of UML to define
these elements. We consider that the entity model is defined in one schema, represented
by the element Model of a UML class diagram. Thus, ODService stereotype extends
the metaclass Model and includes: the version the OData specification, the namespace
of the schema (e.g., com.example.ODataDemo), an alias for the schema namespace
(e.g., ODataDemo), and the name of the entity container (e.g., ODataService).

Data Types An OData entity model defines data types in terms of structural types,
enumerations, and primitive types. There are two kinds of structural types: entity types
and complex types. An entity type is a named structured type which defines the properties
and relationships of an entity. Entity types are mapped to the concept Class in a UML
model. A complex type is a named structural type consisting of a set of properties.
Complex types are mapped to the concept Data type in a UML model.

Figure 2b shows the stereotypes related to data types and their mapping with UML
concepts. The abstract stereotype ODStructuralType defines the common features of
all the structural types and includes a name, a property indicating whether the structural
type cannot be instantiated (i.e., abstract property), and a property indicating whether
undeclared properties are allowed (i.e., openType property?).

ODStructuralType supports also the concept of inheritance by allowing the
declaration of a base structural type (i.e., basetype association). The stereotypes
ODEntityType and ODComplexType inherit from ODStructureType and extend the
metaclasses Class and DataType, respectively. Additionally ODEntityType includes
the hasStream property, indicating if the entity is a media entity (e.g., photograph). The
stereotype ODPrimitiveType extends the metaclass PrimitiveType and includes a
name which corresponds to the associated OData primitive type (e.g., Binary, Boolean,
etc.). The stereolype ODEnumType extends the metaclass Enumeration and includes a

7 Open types entities allows clients to persist additional undeclared properties.

ODPropertyConstraint «Metaclass» ODNavigationPropertyBindingConstraint
{{OCL} not self.base_Property.oclAsType(UML:Property).

{{OCL} self.base_Property.oclAsType(UML:Property). Property } 1
association.ocllsUndefined()} association.ocllsUndefined()}
«contexi» I A f A | _~“econtext»
«Stereotype» «Stereotype» «Stereotype»
ODProperty ODNavigationProperty ODNavigationPropertyBinding|
+ name: String [0..1] + name: String [0..1] 1 + path: String [0..1]
+ nullable: Boolean [0..1] + containsTarget: Boolean [0..1] + target: String [0..1]
+ mangngth: Integer [0..1] + nullable: Boolean [0..1] + partner
+ precision: Integer [0..1]
+ scale: Integer [0..1] «c‘oqtext»
+ unicode: Boolean [0..1] «Stereotype» LS. ODNavigationPropertyConstraint
+ srid: Integer [0..1] <}—ﬂy_ "\. {{OCL} not self.base_Property.oclAsType(UML:Property).
+ defaultValue: String [0..1] -] association.ocllsUndefined()}

Fig. 3. Properties and associations stereotypes.

name, a boolean property indicating whether more than one member may be selected at
a time (i.e., IsFlags property), and the corresponding OData type.

The profile also allows modeling the entity sets and singletons exposed by the OData
service. While an entity set can expose instances of the specified entity type, a singleton
allows addressing a single entity directly from the entity container. These two concepts
are materialized with the stereotypes ODEnititySet and ODSingleton which extend
the metacalass Class.

Properties and Associations. Properties define the structure and the relationships in
OData. Structural properties define the attributes of an entity type or a complex type
where as navigation properties define associations between entity types. In UML the
element Property is a StructuralFeature which, when related by ownedAttribute to a
Classifier (other than Association), represents an attribute, and when related by mem-
berEnd of an Association, represents an association end. Both structural properties and
navigation properties are mapped to the concept Property in a UML model.

Figure 3 shows the stereotypes defining properties and associations. The stereo-
types ODProperty and ODnavigationProperty represent a structural property and
a navigation property, respectively. They both extend the metaclass Property. The
stereotype ODProperty includes a name and several constraints to provide additional
constraints about the value of the structural property (e.g., nullable, maxLength
properties). Additionally, the stereotype ODKey inherits from ODProperty and defines
a property as the key of the entity type (required for a an OData entity type). The stereo-
type ODNavigationProperty includes a name, a containment property, and a nullable
property. The stereotype ODNavigationPropertyBinding extends also the metaclass
Property and defines a navigation binding for the corresponding entity set.

To ensure the validity of the applied stereotypes, we have enriched the profile with
a set of constraints written using the Object Language (OCL) [1]. For instance, since
the stereotypes related to properties and navigations properties extend all the meta-
class Property, ODPropertyConstraint ensures that the stereotype ODProperty is
applied to a UML property element representing an attribute.

3.2 Advanced Configuration of OData Web APIs

OData defines annotations to specify additional characteristics or capabilities of a meta-
data element (e.g., entity type, property) or information associated with a particular

«Enumeration»

«Metaclass» «Metaclass» «Metaclass»
Permission

Model Class Property

+ 1 T [+

VANIAN
I

[Description | ["LongDescription | - [[t Dependent

None
1 Read
| ODMeasures | ReadWrite

1SOCurrency Scale Unit
+ value: String [0..1) + value: String (1]
1
[[i FilterRestrictions
[| [Fitterfuncions | InsertRestrictions

<Stereotype»
‘ODAnnotations

+ value: Integer [1.)

‘ + value: String (1] | |.va|ue String (1] | |‘va|ues Permission [1 ~]| | + value: Boolean [1] |

+ Filterable: Boolean [0.1)
|. value: Boolean [|]| |¢ value: Boolean [1|| | + values: String [*] | + insertable: Boolean (0..1] + RequiresFilter: Boolean [0..1)

+ P String [*] + Req String [*)
+ NonFilterableProperties: String [*]

Fig. 4. Annotation and vocabulary stereotypes.

result (e.g, entity or property). For example, an annotation could be used to define
whether a property is read-only. Annotations consist of a term (i.e., the namespace-
qualified name of the annotation), a target (the element to which the term is applied),
and a value. A set of related terms in a common namespace comprises a vocabulary.
Our profile supports the three standardized vocabularies defined by OData, namely: the
core vocabulary, capacity, and measures.

Figure 4 shows an excerpt of the profile defined for representing annotations. The
stereotype ODAnnotations extends the metaclasses Model, Class, and Property,
and has an association with ODVocabulary, thus allowing adding annotations accord-
ing to the vocabularies. ODVocabulary is the root class of the hierarchy of vocabularies
supported by the OData profile (i.e., core, capabilities, and measures vocabularies).
OData profile defines (i) the ODCore hierarchy which includes the core vocabular-
ies such as documentation (e.g., the class Description), permissions (i.e., the class
Permissions, and localization (i.e., the data type IsLanguageDependent); (ii) the
ODCapabilities hierarchy which is used to explicitly specify Web API capabilities
(e.g., TopSupported for query capabilities or InsertRestriction for data modifica-
tion); and (iii) the ODMeasures hierarchy to describe monetary amounts and measured
quantities (e.g., ISOCurency).

4 Default profile generation

Our OData profile can be used to annotate any new or preexisting UML class diagram.
Nevertheless, to simplify the application of our profile, we have also developed a model-
to-model transformation that given an standard UML model, returns an annotated one
by relying on a set of default heuristics that embed our knowledge on typical uml-to-
odata design decisions. This annotated model can be regarded as just an initial option
to bootstrap the process that the designer can then modify at will.

Table 1 summarizes our mapping strategies. From left to right, the columns of the
table show (1) the involved UML element; (2) the conditions to apply an stereotype (if
any), (3) the stereotype to be applied; and (4) the values of the stereotype properties.
In a nutshell, each class is mapped to an entity type and is exposed as entity set,
each attribute is mapped to a property, and each navigable association is mapped to a
navigation property. Figure 4 shows the running example including some of the generated
OData profile annotations. This first version of the class diagram can later be customized
and used in other model-driven processes to fast prototyping OData Web APIs.

«ODService»
version=4.0 "
copsenicer entityContainerName =ODataDemoService
example.ODataDem:

o -
ODataDemo schemaAlias=ODataDemo

«ODEntitySet» D —SoeT - ~ODEE " <ODEntitySet» AN
namenPromes ODEniySet Cd)DE|n(||yType ODEnu:ijlel, ODEntityType name=Categores
includesinServiceDocument=false roduc ategory iceDoc

<ODEntityType» «ODKey» + ID: Integer [1 products | «ODKey» + ID: Integer [1 «ODEntityType»
hasStream="false «ODProperty» + Name: String (0.1] «ODProperty» + Name: String (0.1} =] hasStream=false
name=Product | _| «<ODProperty» + Description: String [0.1) | * Categories| name=Category
abstract=false «ODProperty» + DiscountedDate: Date (0.1 abstract=false
openType=false «ODProperty» + Rating: Integer [1 openType=false

ot N, | «ODPropertys + ReleasedDate: Date [1
name=FeaturedProducts «ODProperty» + price: Real [1] e e N
includesinServiceDocument=false

<ODEntiyTyper T <ODEntitySet, ODEntityType> name=Advertisement
hasStream=false [<oDEntityset, ODEntityT. Advertisement | _ | abstract=false
name=FeaturedProduct «ODKey» + ID: Integer (1 openType=false

FeaturedProduct | featuredProduct

abstract=false «ODProperty» + Name: String [0.1] «ODEntitySet>
opentype=fale [______] 1 Advertisements | .ODProperty» + AirDate: Date [1 name=Advertisements

basetype=Product

Fig.5. UML class diagram of the running example annotated by the generator.
S5 Conclusion

In this paper we have presented a UML profile to model OData Web APIs and the cor-
responding annotation generator for any UML class diagram. We believe our approach
is the first step to boost the model-based development of OData Web APIs, offering
developers the opportunity to leverage on the plethora of modeling tools to define for-
ward and reverse engineering to generate, visualize and manipulate OData sources. The

Table 1. Rules of the OData profile annotation generator.

UML CONDITION STEREOTYPE VALUE
ELEMENT
-s.version = "4.0"
m: Model _ ODService s - s.entityContainerName= m.name+"Service"
- s.schemaNamespace = "com.example."+m.name
- s.schemaAlias = m.name
-et.name = c.name
ODEntityT N -if c.abstract == true then et.abstract = true
c: Class B ntitylype e -if c.generalization contains t then
et.basetype=ot (ot is the entity type of t)
ODEntitySet es - es.name = the plural form of c.name
pis an class attribute - Op.name = p.name
p: Property OR a data type at- ODProperty op -if p.lower == 1thenop.nullable = false
tribute -op.defaultValue = p.default
pisan class attribute ODKey ok - ok.name = p.name
marked as key
-np.name = p.name
. ieabl ODNavigationPropertyif p.lower == 1thennp.nullable = false
pls'ar? nav1g:l1 e as- np - if p.aggregation == composite then
sociation en np.containsTarget = true
ODNavigationPropertyPP-path = p.name) .
Binding npb - npb.target = the name of the corresponding entity
set of the association end
-ct.name = dt.name
- if dt.abstract == true then ct.abstract =
dt:) ODComplexType trLe n
DataType ct - if dt.generalization contains t then ct.base=ot
(ot is the complex type of t)
pt: . ODPrimtiveType - opt.value = the corresponding primitive type of
PrimitiveType opt pt.name
e:

. - ODEnumType oe -oe.name = e.name
Enumeration yP

OData profile along with the default profile generator are available as an Open Source
Eclipse plugin®. The plugin repository includes also the steps to reproduce the running
example.

As future work we aim at extending our profile in order to capture additional OData
behavioral concepts such as functions and actions. We would also like to integrate this
profile with other web-based modeling languages like IFML (e.g. by enabling the use
of OData-like data sources as part of the interface modeling components) in order to
create a rich modeling environment combining front-end and back-end development.
Finally, we plan to complement the profile support with model-to-text and model-to-
model transformations to offer, for instance, the (semi)automatic code-generation of
OData services from the annotated models.

Acknowledgment

This work has been supported by the Spanish government (TIN2016-75944-R project)

References

1. Cabot, J., Gogolla, M.: Object Constraint Language (OCL): a Definitive Guide. In: Formal
methods for model-driven engineering, pp. 58-90 (2012)

2. Ed-Douibi, H., Izquierdo, J.L.C., Gémez, A., Tisi, M., Cabot, J.: EMF-REST: generation of
restful APIs from models. In: SAC Symp. pp. 1446-1453 (2016)

3. Fraternali, P.: Tools and approaches for developing data-intensive web applications: a survey.
CSUR 31(3), 227-263 (1999)

4. Pizzo, M., Handl, R., Zurmuehl, M.: Odata version 4.0 part 1: protocol. Tech. rep., OASIS
(2014)

5. Pizzo, M., Handl, R., Zurmuehl, M.: Odata version 4.0 part 3: Common Schema Definition
Language (CSDL). Tech. rep., OASIS (2014)

6. Rivero, J.M., Heil, S., Grigera, J., Gaedke, M., Rossi, G.: MockAPI: an agile approach
supporting API-first web application development. In: ICWE Conf. pp. 7-21 (2013)

7. Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.): Web Engineering: Modelling and
Implementing Web Applications. Human-Computer Interaction Series, Springer (2008)

8. Schwinger, W., Retschitzegger, W., Schauerhuber, A., Kappel, G., Wimmer, M., Préll, B.,
Cachero Castro, C., Casteleyn, S., De Troyer, O., Fraternali, P., et al.: A survey on web
modeling approaches for ubiquitous web applications. IJWIS 4(3), 234-305 (2008)

9. Segura, AM., Cuadrado, J.S., de Lara, J.: Odaas: Towards the model-driven engineering of
open data applications as data services. In: EDOCW Workshop. pp. 335-339 (2014)

10. Selic, B.: The pragmatics of model-driven development. IEEE softw. 20(5), 19-25 (2003)

11. Valderas, P., Pelechano, V.: A survey of requirements specification in model-driven develop-
ment of web applications. TWEB 5(2), 10 (2011)

12. Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali, P., Garrigo6s, I., Gomez, J., Kappel,
G., Knapp, A., Matera, M., Meli4, S., Moreno, N., Proll, B., Reiter, T., Retschitzegger, W.,
Rivera, J.E., Schauerhuber, A., Schwinger, W., Wimmer, M., Zhang, G.: Mdwenet: A practical
approach to achieving interoperability of model-driven web engineering methods. In: MDWE
Workshop, @ICWE (2007)

8https://github.com/SOM-Research/OData

