
SoSyM manuscript No.
(will be inserted by the editor)

Grand Challenges in Model-Driven Engineering

An analysis of the state of the research

Antonio Bucchiarone · Jordi Cabot ·
Richard F. Paige · Alfonso Pierantonio

Received: date / Accepted: date

Abstract In 2017 and 2018, two events were held – in Marburg, Germany, and
San Vigilio di Marebbe, Italy, respectively – focusing on an analysis of the state-of-
research, state-of-practice and state-of-the-art in Model-Driven Engineering (MDE).
The events brought together experts from industry, academia, and the open-source
community to assess what has changed in research in MDE over the last ten years,
what challenges remain, and what new challenges have arisen. This article re-
ports on the results of those meetings, and presents a set of grand challenges that
emerged from discussions and synthesis. These challenges could lead to research
initiatives for the community going forward.

Keywords Model-driven engineering · Grand challenge · Research roadmap

1 Introduction

The field of Model-Driven Engineering [1] (MDE) has evolved substantially from
the earliest work on UML in the 1990s, through to seminal research on metamod-
elling, model transformation, and model management in the early-to-mid 2000s.

Antonio Bucchiarone
Fondazione Bruno Kessler
Trento, Italy
E-mail: bucchiarone@fbk.eu

Jordi Cabot
ICREA and UOC
Barcellona, Spain
E-mail: jordi.cabot@icrea.cat

Richard F. Paige
University of York and McMaster University
York, UK and Hamilton, Canada
E-mail: paigeri@mcmaster.ca

Alfonso Pierantonio
Università degli Studi di L’Aquila
L’Aquila, Italy
E-mail: alfonso.pierantonio@univaq.it



2 Antonio Bucchiarone et al.

MDE has made incredible contributions to leverage abstraction and automation
in almost every area of software and systems development and analysis. In many
domains, including railway systems, automotive, business process engineering, and
embedded systems, models are key to success in modern software engineering
processes. However, this success has led to an even higher demand for better
tools, theories, and general awareness about modeling, its scope, and application.
The changing face of MDE is reflected in the surveys (both broad and specific),
roadmaps, and research challenge workshops found in the literature [2,3,4,5].

In 2017 and 2018, the research community held two events: the Grand Chal-
lenges in MDE workshop1, co-located with STAF 2017 in Marburg, Germany in
July 2017; and the Winter Modeling Meeting2, held in San Vigilio di Marebbe,
Italy, in January 2018. Experts from industry and academia attended these meet-
ings and presented their views that reflected on the research roadmaps of the past,
and the challenges facing the community in the future. This article attempts to
synthesize the discussion at these two meetings. Moreover, it outlines how far the
community has come in addressing challenges presented in previously published
research roadmaps (particularly [4,3]), and what new challenges have arisen in
the intervening years. The meetings were attended by an overlapping set of ex-
perts with different backgrounds and experience. The Grand Challenges in MDE
2017 workshop was a traditional workshop with paper submissions and presenta-
tions, along with extensive discussion. The Winter Modeling Meeting 2018 was an
invitation-only workshop with focused sessions on research challenges as well as
educational challenges facing MDE. The interested reader can find lists of partic-
ipants and papers for these workshop on the aforementioned websites.

This article attempts to summarize the discussion of world experts in MDE at
these two venues, capturing a vision of the grand challenges facing the commu-
nity. As such, it may provide useful context for future research projects, research
grant proposals, or presentations made to funding bodies. The paper starts with a
brief reflection on research challenges identified in previous roadmaps, in order to
contextualize the new challenges. Then, the paper summarizes the key challenges
identified during discussions at the Grand Challenges in MDE 2017 workshop and
the Winter Modeling Meeting 2018. It then concludes with a brief summary of
where the authors believe the field of MDE research is going.

2 Analysis of past challenges

There has been substantial progress in research on MDE since the late 1990s and
early 2000s. This was analyzed, and the state-of-the-art synthesized, in a selection
of research roadmaps and challenge papers published at the time. In this section,
we briefly reflect on past research challenges in MDE, in order to contextualize
the results of the two workshops.

1 http://www.edusymp.org/Grand2017/en
2 http://eventmall.info/AMM2018/

http://www.edusymp.org/Grand2017/en
http://eventmall.info/AMM2018/


Grand Challenges in Model-Driven Engineering 3

2.1 Pre-2007 Challenges

The period from the late 1990s through to around 2007 was dominated by mod-
elling language issues. This was a time where the Unified Modeling Language
(UML) was undergoing considerable changes to its semantics, infrastructure and
superstructure, and there was a very substantial body of research considering pre-
cise semantics of such modeling languages, as well as the metamodeling process [6,
7,8,9]. The key use case for modeling was code generation, as embodied by research
on model-to-text transformation languages [10] and standards3, and the popular-
ity of code generators that were offered “out of the box” in modeling tools, such
as the Kennedy Carter (now Abstract Solutions)4 or Artisan (now PTC Integrity
Modeler)5 tools.

This was also a period with substantial effort in standardization, which led to
the production of the Meta-Object Facility (MOF)6, Model-Driven Architecture
(MDA)7, the Object Constraint Language (OCL)8, and Query-View-Transformation
(QVT)9 specifications. Researchers in modeling engaged in a significant way with
relevant standardization efforts, with varying degrees of success. In essence, this
period laid the groundwork for more recent research, providing the foundations
needed for more advanced research on modeling tools and model management.

2.2 Challenges from 2007 through present day

More recently, various research roadmaps [11,4,5] identified a variety of significant
research challenges, many of which have seen substantial research effort. The key
issues that were identified in these previously published roadmaps include the
following

– Language engineering (e.g., [12]): principles, practices and patterns for speci-
fying abstract and concrete syntax, as well as semantics. Research challenges
related to understanding the language engineering process were also identified.

– Language workbenches (popularized in 2005) – i.e., tools for defining and com-
posing domain-specific languages and their IDEs: the fundamental research
against this challenge led to the development of modern language workbenches
such as JetBrains MPS10, Xtext11, Kermeta12, Racket13 and Spoofax14.

– Model management – processes and tasks for manipulating and analyzing mod-
els: the fundamental research in this area led to theoretical results (e.g., iden-
tification of different model management tasks, such as model merging and

3 https://www.omg.org/spec/MOFM2T/1.0/
4 https://abstractsolutions.co.uk/our-services/executable-uml/
5 https://www.ptc.com/en/products/plm/plm-products/integrity-modeler
6 https://www.omg.org/mof/
7 https://www.omg.org/mda/
8 https://www.omg.org/spec/OCL/About-OCL/
9 https://www.omg.org/spec/QVT/About-QVT/

10 https://www.jetbrains.com/mps/
11 https://www.eclipse.org/Xtext/
12 http://www.kermeta.org/
13 https://racket-lang.org
14 http://strategoxt.org/Spoofax

https://www.omg.org/spec/MOFM2T/1.0/
https://abstractsolutions.co.uk/our-services/executable-uml/
https://www.ptc.com/en/products/plm/plm-products/integrity-modeler 
https://www.omg.org/mof/
https://www.omg.org/mda/
https://www.omg.org/spec/OCL/About-OCL/
https://www.omg.org/spec/QVT/About-QVT/
https://www.jetbrains.com/mps/
https://www.eclipse.org/Xtext/
http://www.kermeta.org/
https://racket-lang.org
http://strategoxt.org/Spoofax


4 Antonio Bucchiarone et al.

comparison) as well as technical contributions (e.g., model management plat-
forms such as AtlanMod15 and Epsilon16).

– Model analysis: the challenge of techniques for analyzing models (e.g., for per-
formance or correctness [13]), along with principles relate to understanding
what makes a good model.

– Models at run-time: the use of models to manage and understand systems
after they have been deployed and as they execute behaviour [14]. Substantial
research has taken place regarding this challenging to identify techniques and
tools for automatically reflecting changes from a system into changes in models,
and vice versa. This particular challenge is at the intersection of modeling and
artificial intelligence research.

– Modeling repositories (such as REMODD [15], the Atlantic Zoo17, and MDE-
Forge [16]), which provide persistence for modeling artefacts such as models,
transformations and metamodels: there was an identified need for not only
more modeling artefacts to support research, but facilities to make it easier for
engineers to store and acquire such artefacts. The adoption of such repositories
is sporadic in the community.

– Scalability across different dimensions: given progress against some of the other
challenges listed above, the ambition of researchers and engineers increased. As
a result, demand for support for working with very large models (with hundreds
of thousands of elements, if not more), large metamodels, large transformations
etc., increased [17]. This in turn led to fundamental work on understanding
the performance of modeling infrastructure, on fragmenting and splitting large
models and metamodels, and on scheduling the execution of transformations
to optimize their performance.

Substantial progress was made in these areas over the last period of time, and
active research continues against many of these areas. These challenges fed in to
the discussion sessions at the Grand Challenges in MDE 2017 workshop, and the
Winter Modeling Meeting in 2018, as we now discuss.

3 Technical Challenges

This section describes the technical challenges discussed in both events. We split
them up into foundation, domain, and tool challenges, respectively. The catego-
rization is not strict since it does not have crispy boundaries; on the contrary, it
is a pragmatic one and aims at facilitating the presentation of the challenges. As
a consequence, some challenges necessarily span more than one category.

The majority of the presented challenges are of technical nature, but, as the
MDE ecosystem matures and the technical issues are addressed, we believe the
social and community challenges will become the critical factors for the success of
MDE. The next sections shed some more light on these aspects.

15 http://www.atlanmod.org/
16 http://www.eclipse.org/epsilon
17 https://www.imt-atlantique.fr/fr

http://www.atlanmod.org/
http://www.eclipse.org/epsilon
https://www.imt-atlantique.fr/fr


Grand Challenges in Model-Driven Engineering 5

3.1 Foundation Challenges

The foundation dimension comprehends all the challenges concerning conceptual
and theoretical aspects of MDE, covering all the phases of software development
(i.e., modeling, deployment, execution, and maintenance). Modeling is a well-
established and successful discipline that has been practiced for decades. As a
consequence, there might be good reasons for which companies want to exploit
these (long-lived) models posing the question about how do we allow legacy mod-
els (and hence legacy modeling formats) to remain in existence. Supporting such
tasks can take advantage of modeling itself by allowing legacy models to co-exist
with modern modeling technologies. In this context, agile and lean software devel-
opment is increasingly adopted in the software industry. No matter of fact: this
is changing the way software is described. Companies must not move away from
modeling, making model-driven development valuable at the age of agile develop-
ment.

As we will see in the domain challenges section, there is a compelling need to
improve the MDE solutions in order to support those processes that intrinsically
include also social aspects as in multi-disciplinarity and heterogeneous environ-
ments. Thus, proper model management is an increasingly pressing challenge. In
this setting, How to transform a software engineer into a system engineer that
must be able to combine different types of models leads to an integrated view
on a system?. How can we virtualize these complex systems that are based on a
collection of heterogeneous models?

In systems running in an open environment (i.e., Smart* systems), uncertainty
during the design of software models is caused by many design alternatives, in-
complete information, conflicting stakeholder opinions. How to use MDE to (i)
connect discussion models with software artifacts, (ii) relate different models to
different choices, (iii) detect proposed solutions for each choice, (iv) learn a De-
sign Space Exploration specification from proposed solution examples, (v) support
fuzzy/naturalistic argumentation, (vi) leverage/integrate flexible modelling tools,
are all needed aspects to take into account.

Considering the runtime phase of such systems, and the adaptive nature of
most of the complex systems developed in the last years, we can say that software
changes are ubiquitous and unavoidable. To manage them, we need to go towards a
theory of software agility in MDE able to consider different kinds of maintenance,
including repair and improvement, adaptation to a new platform, extension with
new functionality, reuse in different contexts, refactoring to make the above kinds
of maintenance more accessible). At the same time, we need to introduce theories
and techniques able to detect/predict software anomalies and suggest the needed
software evolutions.

To automatize and make more powerful all the maintenance solutions, we need
to extend the MDE techniques exploiting AI techniques that nowaday are ready
to be used for complex and highly dynamic systems. MDE techniques can help
in the improvement of AI, Machine learning, and other cognification techniques.
At the same time, cognification techniques can be exploited to improve and bring
quantifiable and perceivable advantages to MDE solutions [18]. Machine learn-
ing is a technique that builds on the premise of having a tremendous impact not
only on the way software behaves and is realized, but also on society. However,
its adoptions requires massive skill sets that current professional profiles fail to



6 Antonio Bucchiarone et al.

meet despite the increasing demand. Machine learning practice would be easier if
the learning curve for the needed skills would be more convenient. Model-driven
software engineering and human-computer interaction design can help in abstract-
ing machine learning technology and, starting from these abstractions, enabling
automated code generation.

Due to the complexity of the targeted systems, there is a strong need to increase
the usability of the Model Transformation techniques. Model Transformations are
cornerstone components of any project adopting model-driven techniques, partic-
ularly model-to-model model transformations. Current transformation languages,
e.g., ATL, QVT, ETL, Henshin, VIATRA, and Stratego, provide rather powerful
features and useful capabilities. However, their current adoption in the industry
seems to be marginal when compared to Java and others. Difficulties are related
to the semantic intricacy of MTLs that despite their apparent simplicity (which
helps introducing subtle critical errors); lack of debugging methods and tools; lack
of performance, scalability, and inability to deal even with mid-sized models; little
or no support for parallelisation, concurrent execution or distribution; and poor
interoperability. In the same context, bidirectionality in model transformations is
all-important as it permits two or more models to remain consistent while they un-
dergo modifications. Current approaches often present idiosyncrasies that prevent
the implementors from having complete control on the generated solutions. This is
due to difficulties in assuring that a transformation is deterministic, making nec-
essary in a class of problems the explicit management of the uncertainty related to
the decision to pick the right solution. Understanding, which are the different ap-
plication scenarios for deterministic and non-deterministic transformations, may
mitigate the difficulties in adopting bidirectionality.

3.2 Domain Challenges

This dimension comprehends all the issues related to the nature of the appli-
cation domains of the systems developed using MDE. Application domains like
automotive, aerospace, nuclear, and healthcare aimed to assure a set of particular
properties (i.e., privacy, security, safety). To reduce risks and to ensure that the
software developed is reliable, assurance case modeling becomes an important part
of the model-driven engineering techniques. At the same time, complex systems
that also consider the social aspects (i.e., socio-technical systems), are composed
of different and heterogeneous artifacts. A modeling framework to support the
integration of data from sensors, open data, laws, regulations, scientific models
(computational and data-intensive sciences), engineering models, and user prefer-
ences is needed (i.e., DSLs for socio-technical integration). Finally, the Internet of
Things (IoT) domain represents a great opportunity for model-driven engineering
applications in a wide range of domains, e.g., smart cities, smart buildings, indus-
try 4.0, automotive, and health care. The answer that we still have to respond is:
Can MDE play a key role in the future of IoT and smart systems?.

For sure, MDE allows coping with the complexity of reality by abstracting
the relevant aspects for a particular application into corresponding models. In
this respect, an MDE based solution is needed for smart city applications (i.e.,
in domains like Smart Mobility). MDE is a strategic piece of a framework to
realize advanced solutions by taking into account different aspects and stakehold-



Grand Challenges in Model-Driven Engineering 7

ers involved in the smart cities domain. Different views allow for the separation
of concerns that, together to a higher level of abstraction, reduce the complex-
ity of dealing with complex systems specification — continuous deployment and
adaptation using MDE. The relationships between the views, their corresponding
semantics, and the configuration of the different applications/services available in
a city, constitute a megamodel [19]. In this dimension, in the last ten years, various
engineering disciplines have emerged and are involved in the engineering process.
How to transition from implicit to explicit knowledge about MDE in particular
fields (i.e., Cyber-Physical Production Systems)?

3.3 Tool and implementation Challenges

Lack of good tooling is often mentioned as one key aspect hampering the adop-
tion of MDE. We discussed that potential factors that may favour the adoption
of model-driven development include adopting textual languages and treating the
code as model; good and easy tooling (like modern IDEs); component-based solu-
tions; and high-quality generated code.

Lots of interesting tools for building visual editors are currently available. Vi-
sualisation and visual editor frameworks are meant to help with working with com-
plex problems, however too many difficulties are still encountered when designers
use them for real. Thus, understanding the principles of building visual editors
or visualisation frameworks that can apply to complex problems, and analysing
where do our current frameworks/tools fall short should be a major concern.

Describing a complex system requires modelling different heterogeneous views[20]
that need to be linked although they belong to different steps. Analysing how to
build correspondences among such artefacts and understanding the semantics of
such links is important in order to be able to insure traceability from require-
ments to implementation, and deduce requirements from the system. When several
stakeholders are involved, artefacts must be linked to them as well and therefore
understand the kind of requirements are existing. In this context, expressing the
requirements in a human-readable notation that can be understood by a computer
program can be highly relevant as well as and consequently understanding how to
make the link among the involved artefact expressing the system and requirements
in a same formalism (Single Model Principle).

Over the last decade, scalability has been denoted as one of the main chal-
lenges in model-driven engineering [17,11]. As one participant pointed out, vanilla
(out-of-the-box) EMF only works for simple projects. The problem is not just the
size of the models but the diversity of artefacts, including models, metamodels,
transformations, and dependencies, in any non-trivial project. There is a need to
tame the accidental complexity of MDE itself. Running large transformations is as
important as running transformations on large and heterogeneous models. Besides
this, work on parallel and incremental querying and transformation is needed. In
this sense, [21] defended the need for artifact models. According to [22] these arte-
facts should be viewed as data to which apply “classical” data analysis exploitation
techniques (e.g., those coming from the information retrieval community).

Also, while participants agreed that we do have a reasonably robust MDE
tool infrastructure (e.g., metamodeling and transformation languages), many core



8 Antonio Bucchiarone et al.

MDE aspects could still be improved. [23] highlighted the need to simplify the cre-
ation of proper tool support for executable languages by providing various analysis
tools for executable domain-specific modeling languages out-of-the-box based on
single formalizations of their execution semantics. Similarly, [24] proposed a more
general formalization of model synchronization and consistency management as-
pects that could be reused across different tools. This could also help with the
challenge of making “chaining transformations” as straightforward as composing
functions.

Another discussion point led to the argument that MDE tools should become
more intelligent and self-aware. Several AI techniques could be used to cognify
model-driven techniques [18] and to improve the autonomy of MDE tools (e.g.,
smart model autocompletion). Indeed, more and more MDE tools need to collab-
orate and agree on how to manage and evolve (runtime) models according to a
shared set of goals [25]. Self-explanation capabilities will be critical in this scenario.
This would also require considering time and timing issues as a first-class dimen-
sion (to be able to reason on when the model changes were done) as described in
[26].

4 Social and Community Challenges

It emerged from the discussions that addressing the technical challenges often
required also to consider social and community aspects in order to be able to
validate such technical solutions or to be sure that it will be adopted in practice.

4.1 Social aspects

A critical discussion on social challenges took up the argument that MDE should
be the catalyst to enable non-technical people to build the tools they need in their
domains (Modelling by the People, for the People [27]). While this is one of the
main selling arguments for MDE, it is still tricky for some modeling aspects, like
the definition of desired consistency properties [28]. Ideally, instead of starting from
scratch, stakeholders could be assisted in exploring the design space of potential
models to be built [29], where these potential models (and their relationships)
should be informed by domain information, e.g., regulatory texts from which some
initial models could be inferred.

One possible solution, which was suggested during the discussion session, would
be to facilitate deeper use of example-based modeling, even as a combination of
formal and informal techniques to describe valid scenarios. It was also suggested to
explore a kind of an Excel-like approach where one directly works at the instance-
level all the time. It has also been proposed to expect less from the modelers,
enabling practically useful analysis with minimal upfront modeling effort. Indeed,
“how much modeling is enough” is a question that deserves to be explored, and
that would help bridge modeling with agile approaches.

As a consequence of this discussion, the workshop considered whether any
reluctance to employ MDE tools might be related to concerns over the Intellec-
tual Property of the resulting models. This may be especially important in co-
engineering projects where models are typically shared with third parties. Adapt-



Grand Challenges in Model-Driven Engineering 9

ing well-known intellectual property management techniques (e.g., watermarking,
fingerprinting, or obfuscation) to MDE artifacts may be one way forward to in-
creasing confidence.

A more extreme suggestion involved moving to domain-specific MDE. Instead
of considering MDE as if it was one general-purpose approach for systems and
software engineering, we could start talking about “MDE for banking”, ‘MDE for
insurance ‘”, “MDE for health”, and so on. Each domain might require different
solutions, going far beyond the current approach of proposing different domain-
specific languages for each sector. Domain-specific MDE could involve, for instance,
tools explicitly tailored for different stakeholders in terms they understand (which
may have a higher chance of being adopted).

4.2 Community aspects

Interestingly, it has been recognized from many sides how individuals can not
easily address particular problems that instead affect the community as a whole
and require more infrastructural solutions. One of the critical arguments made was
that researchers and practitioners of MDE are primarily to blame for not having
succeeded in selling the global software engineering community on the benefits of
MDE. The workshop attendees challenged the notion of ‘blame,’ but acknowledged
that the community would benefit from further MDE evangelism, as well as talking
with software practitioners about MDE in a language that speaks to them.

There was also a strong consensus on the need for large model repositories
where models could be endowed with confidence measures about their quality,
e.g., via a community-based curation effort that tags the models contributed by
others. This is especially needed for performing automated analysis that could
influence the evolution of our field. However, quality assurance of models alone is
not enough; we also need to ensure the representativeness of models (it was noted
that most contributed models in existing repositories do not have constraints).

Another major community issue is how to teach students (who are the next
generation of potential MDE practitioners and researchers). The workshop discus-
sion considered whether we may need to change the way we teach MDE and focus
first on teaching students on how to “use” MDE tools (and realizing the advan-
tages of that) instead of teaching them how to “build” MDE tools. In the end,
it is more likely that students end up belonging to the first group (MDE users)
than to the second one (MDE builders) during their professional life. One way
or the other, the workshop attendees concluded: setting up proper MDE teaching
environments is still discouragingly hard.

Both richer model repositories and more MDE use-focused teaching require
excellent collections of (reproducible, reusable, teachable) MDE projects, and not
just individual models that anybody interested in MDE could easily import and
explore [30].

5 Discussion

In this section, we briefly discuss the outcome of the proposed challenge classifica-
tion. As aforementioned, the challenges have been arranged in different categories



10 Antonio Bucchiarone et al.

Fig. 1 Challenges Classification

that reflect the issues and problematic areas of the current state-of-art in model-
driven engineering.

In particular, Fig. 1 illustrates such categories that, in turn, have been further
refined to better characterize the challenge extension and boundary. Moreover, the
main categories have been ordered according to their chronological relevance, e.g.,
the foundation challenges emerged before the domain and tool ones because most
of the times tools have been developed for specific domains and based on theories
and foundational elements. The advent of tools challenges somewhat corresponds
also to an higher awareness about the limitations and difficulties in the practice of
modeling partly due also to inflated expectations. For instance, the idea that most
of the tools are lacking quality overwhelmingly emerged throughout the community
that reacted in many different forms (e.g, publishing surveys on success stories
and failures, organizing focused workshops and seminars, and so on). In other
terms, the difficulties, which have been identified by the individual researchers
and practitioners or within small organizations, started to be slowly part of a
conventional wisdom. At the same time, social aspects become also relevant in
many different directions, including collaborative modeling, confidentiality issues,
and several forms of design-by-example.



Grand Challenges in Model-Driven Engineering 11

6 Conclusions

In this article we presented the grand challenges in the Model-Driven Engineering
field according to the expert participants in the two events we organized to discuss
the future of MDE. We have classified them in different categories trying also to
order them respect to their chronological relevance. We hope that this analysis
not only represents a snapshot of the challenges faced in this research field but
contributes to stimulate researchers, practitioners, and tool developers to tackle
and explore some of them. At the same time, it provides a useful context for future
research projects, research grant proposals and new research directions. We hope
in a few years we can look back at this list and see many of them crossed out as
a sign of the continuous advancement and maturity of our community.

References

1. Douglas C Schmidt. Model-driven engineering. Computer-IEEE Computer Society,
39(2):25, 2006.

2. Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty HC Cheng,
Philippe Collet, Benoit Combemale, Robert B France, Rogardt Heldal, James Hill, et al.
The relevance of model-driven engineering thirty years from now. In International Con-
ference on Model Driven Engineering Languages and Systems, pages 183–200. Springer,
2014.

3. Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen. Challenges in model-
driven software engineering. In International Conference on Model Driven Engineering
Languages and Systems, pages 35–47. Springer, 2008.

4. Robert France and Bernhard Rumpe. Model-driven development of complex software: A
research roadmap. In 2007 Future of Software Engineering, pages 37–54. IEEE Computer
Society, 2007.

5. Robert B. France and Bernhard Rumpe. The evolution of modeling research challenges.
Software and Systems Modeling, 12(2):223–225, 2013.

6. Andy Evans, Robert B. France, Kevin Lano, and Bernhard Rumpe. The UML as a formal
modeling notation. In The Unified Modeling Language, UML’98: Beyond the Notation,
First International Workshop, Mulhouse, France, June 3-4, 1998, Selected Papers, pages
336–348, 1998.

7. Andy Evans and Stuart Kent. Core meta-modelling semantics of UML: the puml approach.
In UML’99: The Unified Modeling Language - Beyond the Standard, Second International
Conference, Fort Collins, CO, USA, October 28-30, 1999, Proceedings, pages 140–155,
1999.

8. Andy Evans, Robert B. France, Kevin Lano, and Bernhard Rumpe. Meta-modelling se-
mantics of UML. In Behavioral Specifications of Businesses and Systems, pages 45–60.
1999.

9. Harald Störrle and Jan Hendrik Hausmann. Towards a formal semantics of UML 2.0 ac-
tivities. In Software Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik,
8.-11.3.2005 in Essen, pages 117–128, 2005.

10. Jon Oldevik, Tor Neple, Roy Grønmo, Jan Øyvind Aagedal, and Arne-Jørgen Berre. To-
ward standardised model to text transformations. In Model Driven Architecture - Founda-
tions and Applications, First European Conference, ECMDA-FA 2005, Nuremberg, Ger-
many, November 7-10, 2005, Proceedings, pages 239–253, 2005.

11. Dimitrios S Kolovos, Louis M Rose, Nicholas Matragkas, Richard F Paige, Esther Guerra,
Jesús Sánchez Cuadrado, Juan De Lara, István Ráth, Dániel Varró, Massimo Tisi, et al. A
research roadmap towards achieving scalability in model driven engineering. In Proceedings
of the Workshop on Scalability in Model Driven Engineering, page 2. ACM, 2013.

12. Ralf Laemmel. Software Languages: Syntax, Semantics and Metaprogramming. Springer-
Verlag, 2018.

13. Gabriel A. Moreno and Paulo Merson. Model-driven performance analysis. In Steffen
Becker, Frantisek Plasil, and Ralf Reussner, editors, Quality of Software Architectures.
Models and Architectures. Springer, 2008.



12 Antonio Bucchiarone et al.

14. Nelly Bencomo, Sebastian Götz, and Hui Song. Models@run.time: a guided tour of the
state of the art and research challenges. Software and Systems Modeling, 18(5):3049–3082,
2019.

15. Robert France, Jim Bieman, and Betty HC Cheng. Repository for model driven develop-
ment (ReMoDD). In International Conference on Model Driven Engineering Languages
and Systems, pages 311–317. Springer, 2006.

16. Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Amleto Di Salle, Ludovico Iovino,
and Alfonso Pierantonio. Mdeforge: an extensible web-based modeling platform. In Cloud-
MDE@ MoDELS, pages 66–75, 2014.

17. Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The grand challenge of
scalability for model driven engineering. In International Conference on Model Driven
Engineering Languages and Systems, pages 48–53. Springer, 2008.

18. Jordi Cabot, Robert Clarisó, Marco Brambilla, and Sébastien Gérard. Cognifying model-
driven software engineering. In Seidl and Zschaler [31], pages 154–160.

19. Jean-Marie Favre and Tam Nguyen. Towards a megamodel to model software evolution
through transformations. Electron. Notes Theor. Comput. Sci., 127(3):59–74, April 2005.

20. Hugo Brunelière, Erik Burger, Jordi Cabot, and Manuel Wimmer. A feature-based survey
of model view approaches. Software and Systems Modeling, 18(3):1931–1952, 2019.

21. Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann. On the need
for artifact models in model-driven systems engineering projects. In Seidl and Zschaler
[31], pages 146–153.

22. Önder Babur, Loek Cleophas, Mark van den Brand, Bedir Tekinerdogan, and Mehmet
Aksit. Models, more models, and then a lot more. In Seidl and Zschaler [31], pages
129–135.

23. Tanja Mayerhofer and Benôıt Combemale. The tool generation challenge for executable
domain-specific modeling languages. In Seidl and Zschaler [31], pages 193–199.

24. Zinovy Diskin, Harald König, Mark Lawford, and Tom Maibaum. Toward product lines
of mathematical models for software model management. In Seidl and Zschaler [31], pages
200–216.

25. Antonio Garćıa-Domı́nguez and Nelly Bencomo. Non-human modelers: Challenges and
roadmap for reusable self-explanation. In Seidl and Zschaler [31], pages 161–171.

26. Robert Bill, Alexandra Mazak, Manuel Wimmer, and Birgit Vogel-Heuser. On the need
for temporal model repositories. In Seidl and Zschaler [31], pages 136–145.

27. Steven Kelly. Modelling by the people, for the people. In Seidl and Zschaler [31], pages
178–183.

28. Martin Gogolla, Frank Hilken, and Andreas Kästner. Some narrow and broad challenges
in MDD. In Seidl and Zschaler [31], pages 172–177.

29. Vinay Kulkarni and Sreedhar Reddy. From building systems right to building right systems
- A generic architecture and its model based realization. In Seidl and Zschaler [31], pages
184–192.

30. Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, Ralf Laemmel, and Alfonso Pieranto-
nio. MDE adoption — a three-legged chair. In Proc. Workshop on Grand Challenges in
Modeling at STAF, 2017.

31. Martina Seidl and Steffen Zschaler, editors. Software Technologies: Applications and Foun-
dations - STAF 2017 Collocated Workshops, Marburg, Germany, July 17-21, 2017, Re-
vised Selected Papers, volume 10748 of Lecture Notes in Computer Science. Springer,
2018.


	Introduction
	Analysis of past challenges
	Technical Challenges
	Social and Community Challenges
	Discussion
	Conclusions

