
PrefetchML: a Framework for Prefetching and Caching
Models

Gwendal Daniel
AtlanMod Team - Inria, Mines

Nantes & Lina
4, Rue Alfred Kastler

Nantes, France
gwendal.daniel@inria.fr

Gerson Sunyé
AtlanMod Team - Inria, Mines

Nantes & Lina
4, Rue Alfred Kastler

Nantes, France
gerson.sunye@inria.fr

Jordi Cabot
ICREA
UOC

Av. Carl Friedrich Gauss, 5
Castelldefels, Spain

jordi.cabot@icrea.cat

ABSTRACT
Prefetching and caching are well-known techniques integrated
in database engines and file systems in order to speed-up
data access. They have been studied for decades and have
proven their efficiency to improve the performance of I/O
intensive applications. Existing solutions do not fit well with
scalable model persistence frameworks because the prefetcher
operates at the data level, ignoring potential optimizations
based on the information available at the metamodel level.
Furthermore, prefetching components are common in rela-
tional databases but typically missing (or rather limited) in
NoSQL databases, a common option for model storage nowa-
days. To overcome this situation we propose PrefetchML,
a framework that executes prefetching and caching strate-
gies over models. Our solution embeds a DSL to precisely
configure the prefetching rules to follow. Our experiments
show that PrefetchML provides a significant execution time
speedup. Tool support is fully available online.

Keywords
Prefetching; MDE; DSL; Scalability; Persistence Framework;
NoSQL

1. INTRODUCTION
Prefetching and caching are two well-known approaches

to improve performance of applications that rely intensively
on I/O accesses. Prefetching consists in bringing objects
into memory before they are actually requested by the ap-
plication to reduce performance issues due to the latency
of I/O accesses. Fetched objects are then stored in mem-
ory to speed-up their (possible) access later on. In contrast,
caching aims at speeding up the access by keeping in mem-
ory objects that have been already loaded.

Prefetching and caching have been part of database man-
agement systems and file systems for a long time and have
proved their efficiency in several use cases [23, 25]. P. Cao

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS ’16, October 02-07, 2016, Saint-Malo, France
c© 2016 ACM. ISBN 978-1-4503-4321-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976767.2976775

et al. [6] showed that integrating prefetching and caching
strategies dramatically improves the performance of I/O-
intensive applications. In short, prefetching mechanisms
works by adding load instructions (according to prefetching
rules derived by static [16] or execution trace analysis [8])
into an existing program. Global policies, (e.g., LRU - least
recently used, MRU - most recently used, etc.) control the
cache contents.

Currently, there is lack of support for prefetching and
caching at the model level. Given that model-driven engi-
neering (MDE) is progressively adopted in the industry [15,
21] such support is required to raise the scalability of MDE
tools dealing with large models where storing, editing, trans-
forming, and querying operations are major issues [19, 28].
These large models typically appear in various engineering
fields, such as civil engineering [1], automotive industry [4],
product lines [24], and in software maintenance and evolu-
tion tasks such as reverse engineering [5].

Existing approaches have proposed scalable model persis-
tence frameworks on top of SQL and NoSQL databases [11,
13,17,22]. These frameworks use lazy-loading techniques to
load into main memory those parts of the model that need
to be accessed. This helps dealing with large models that
would otherwise not fit in memory but adds an execution
time overhead due to the latency of I/O accesses to load
model excerpts from the database, specially when executed
in a distributed environment.

In this sense, this paper proposes a new prefetching and
caching framework for models. We present PrefetchML, a
domain specific language and execution engine, to specify
prefetching and caching policies and execute them at run-
time in order to optimize model access operations. This
DSL allows designers to customize the prefetching rules to
the specific needs of model manipulation scenarios, even pro-
viding several execution plans for different use cases. Our
framework is built on top of the Eclipse Modeling Frame-
work (EMF) infrastructure and therefore it is compatible
with existing scalable model persistence approaches, regard-
less whether those backends also offer some kind of inter-
nal prefetching mechanism. A special version tailored to
the NeoEMF/Graph [3] engine is also provided for further
performance improvements. The empirical evaluation of
PrefetchML highlights the significant time benefits it achieves.

The paper is organized as follows: Section 2 introduces
further the background of prefetching and caching in the
modeling ecosystem while Section 3 introduces the Prefetch-
ML DSL. Section 4 describes the framework infrastructure

http://dx.doi.org/10.1145/2976767.2976775

and its rule execution algorithm and Section 5 introduces
the editor that allows the designer to define prefetching and
caching rules, and the implementation of our tool and its
integration with the EMF environment. Finally, Section 6
presents the benchmarks used to evaluate our prefetching
tool and associated results. Section 7 ends the paper by
summarizing the key points and presenting our future work.

2. STATE OF THE ART
Prefetching and caching techniques are common in rela-

tional and object databases [25] in order to improve query
computation time. Their presence in NoSQL databases is
much more limited, which is problematic due to the increas-
ing popularity of this type of databases as model storage
solution. Moreover, database-level prefetching and caching
strategies do not provide fine-grained configuration of the
elements to load according to a given usage scenario–such
as model-to-model transformation, interactive editing, or
model validation–and are often strongly connected to the
data representation, making them hard to evolve and reuse.

Scalable modeling frameworks are built on top of rela-
tional or NoSQL databases to store and access large mod-
els [3,11]. These approaches are often based on lazy-loading
strategies to optimize memory consumption by loading only
the accessed objects from the database. While lazy-loading
approaches have proven their efficiency in terms of memory
consumption to load and query very large models [9,22], they
perform a lot of fragmented queries on the database, thus
adding a significant execution time overhead. For the rea-
sons described above, these frameworks cannot benefit from
database prefetching solutions nor they implement their own
mechanism, with the partial exception of CDO [11] that pro-
vides some basic prefetching and caching capabilities1. For
instance, CDO is able to bring into memory several objects
of a list at the same time, or loading nested/related elements
up to a given depth. Nevertheless, alternative prefetching
rules cannot be defined to adapt model access to differ-
ent contexts nor it is possible to define rules with complex
prefetching conditions.

Hartmann et al. [14] propose a solution to tackle scal-
ability issues in the context of models@run.time by split-
ting models into chunks that are distributed across multiple
nodes in a cluster. A lazy-loading mechanism allows to vir-
tually access the entire model from each node. However, to
the best of our knowledge the proposed solution does not
provide prefetching mechanism, which could improve the
performance when remote chunks are retrieved and fetched
among nodes.

Optimization of query execution has also been targeted
by other approaches not relying on prefetching but using
a variety of other techniques. EMF-IncQuery [4] is an in-
cremental evaluation engine that computes graph patterns
over an EMF model. It relies on an adaptation of the RETE
algorithm, and results of the queries are cached and incre-
mentally updated using the EMF notification framework.
While EMF-IncQuery can be seen as an efficient EMF cache,
it does not aim to provide prefetching support, and cache
management cannot be tuned by the designer. Hawk [2] is
a model indexer framework that provides a query API. It
stores models in an index and allows to query them using
the EOL [18] query language. While Hawk provides an effi-

1https://wiki.eclipse.org/CDO/Tweaking Performance

cient backend-independent query language, it does not allow
the definition of prefetching plans for the indexed models.

In summary, we believe no existing solution provides the
following desired characteristics of an efficient and config-
urable prefetching and caching solution for models:

1. Ability to define/execute prefetching rules indepen-
dently of the database backend.

2. Ability to define/execute prefetching rules transpar-
ently from the persistence framework layered on top
of the database backend.

3. A prefetching language expressive enough to define
rules involving conditions at the type and instance
level (i.e. loading all instances of a class A that are
linked to a specific object of a class B).

4. A context-dependent prefetching language allowing the
definition of alternative prefetching and caching plans
for specific use cases.

5. A readable prefetching language enabling designers to
easily tune the prefetching and caching rules.

In the following, we present PrefetchML, our prefetching
and caching framework that tackles these challenges.

3. THE PREFETCHML DSL
PrefetchML is a DSL that describes prefetching and ca-

ching rules over models. Rules are triggered when an event
satisfying a particular condition is received. These events
can be the initial model loading, an access to a specific model
element, the setting of a value or the deletion of a model
element. Event conditions are expressed using OCL guards.

Loading instructions are also defined in OCL. The set of
elements to be loaded as a response to an event are char-
acterized by means of OCL expressions that navigate the
model and select the elements to fetch and store in the cache.
Not only loading requests can be defined, the language also
provides an additional construct to control the cache content
by removing cache elements when a certain event is received.
Using OCL helps us to be independent of any specific per-
sistence framework.

Prefetching and caching rules are organized in plans, that
are sets of rules that should be used together to optimize a
specific usage scenario for the model since different kinds of
model accesses may require different prefetching strategies.
For example, a good strategy for an interactive model brows-
ing scenario is to fetch and cache the containment structure
of the model, whereas for a complex query execution scenario
it is better to have a plan that fit the specific navigation path
of the query.

Beyond a set of prefetching rules, each plan defines a cache
that can be parametrized, and a caching policy that manages
the life-cycle of the cached elements.

In what follows, we first introduce a running example and
then we formalize the abstract and concrete syntax of the
PrefetchML DSL. Next Section will introduce how these
rules are executed as part of the prefetching engine.

3.1 Running Example
In order to better illustrate the features of PrefetchML, we

introduce a simple example model. Figure 1 shows a small
excerpt of the Java metamodel provided by MoDisco [5].

https://wiki.eclipse.org/CDO/Tweaking_Performance

A Java program is described in terms of Packages that
are named containers that group ClassDeclarations through
their ownedElements reference. A ClassDeclaration contains
a name and a set of BodyDeclarations. BodyDeclarations are
also named, and its visibility is described by a single Mod-
ifier. ClassDeclarations maintain a reference to their Com-
pilationUnit (the physical file that stores the source code
of the class). This CompilationUnit has a name, a list of
Comments, and a list of imported ClassDeclarations (corre-
sponding to the import clauses in Java programs).

Figure 1: Excerpt of Java Metamodel

Listing 1 presents three sample OCL queries that can be
computed over an instance of the previous metamodel: the
first one returns the Package elements that do not contain
any ClassDeclaration through their ownedElements refer-
ence. The second one returns from a given ClassDeclara-
tion all its contained BodyDeclarations that have a private
Modifier, and the third one returns from a ClassDeclaration
a sequence containing the return Comment elements in the
ClassDeclarations that are imported by the CompilationUnit
associated to the current element.

context Package
de f : isAnEmptyPackage : Boolean =

s e l f . ownedElements→ isEmpty ()

context C la s sDec l a ra t i on
de f : pr ivateBodyDec larat ions : Sequence (

BodyDeclaration) =
s e l f . bodyDec larat ions
→ s e l e c t (bd | bd . mod i f i e r = V i s i b i l i t yK ind : :

Pr ivate)

context C la s sDec l a ra t i on
de f : importedComments : Sequence (Comment) =

s e l f . compi lat ionUnit . imports . compi lat ionUnit .
comments

→ s e l e c t (c | c . content . conta in s (’ @return ’)))

Listing 1: Sample OCL Query

3.2 Abstract Syntax
This section describes the main concepts of PrefetchML

focusing on the different types of rules it offers and how they
can be combined to create a complete prefetch specification.

Figure 2 depicts the metamodel corresponding to the ab-
stract syntax of the PrefetchML language. A PrefetchSpec-
ification is a top-level container that imports several Meta-
models. These metamodels represent the domain on which
prefetching and caching rules are described, and are defined
by their Unified Resource Identifier (URI).

The imported Metamodels concepts (classes, references,
attributes) are used in prefetching Plans, which are named
entities that group rules that are applied in a given execution
context. A Plan can be the default plan to execute in a
PrefetchSpecification if no execution information is provided.

Each Plan contains a CacheStrategy, which represents the
information about the cache policy the prefetcher applies
to keep loaded objects into memory. Currently, available
cache strategies are LRUCache (Least Recently Used) and
MRUCache (Most Recently Used). These Caches define two
parameters: the maximum number of objects they can store
(size), and the number of elements to free when it is full
(chunkSize). In addition, a CacheStrategy can contain a try-
First OCL expression. This expression is used to customize
the default cache replacement strategy: it returns a set of
model elements that should be removed from the cache if it
is full, overriding the selected caching policy.

Plans also contain the core components of the PrefetchML
language: PrefetchingRules that describe tracked model ev-
ents and the loading and caching instructions. We distin-
guish two kinds of PrefetchingRules:

• StartingRules that are prefetching instructions trig-
gered only when the prefetching plan is loaded

• ObjectRules that are triggered when an element satis-
fying a given condition is accessed, deleted, or updated.

ObjectRules can be categorized in three different types: Ac-
cess rules, that are triggered when a particular model ele-
ment is accessed, Set rules that correspond to the setting of
an attribute or a reference, and Delete rules, that are trig-
gered when an element is deleted or simply removed from
its parent. When to fire the trigger is also controlled by
the sourceContext class, that represents the type of the el-
ements that could trigger the rule. This is combined with
the sourceExpression (i.e. the guard for the event) to decide
whether an object matches the rule.

All kinds of PrefetchingRules contain a targetExpression,
that represents the elements to load when the rule is trig-
gered. This expression is an OCLExpression that navigates
the model and returns the elements to load and cache. Note
that if self is used as the targetExpression of an AccessRule
the framework will behave as a standard cache, keeping in
memory the accessed element without fetching any addi-
tional object.

It is also possible to define removeExpressions in Prefetch-
ingRules. When a removeExpression is evaluated, the pre-
fetcher marks as free all the elements it returns from its
cache. Each removeExpression is associated to a remove-
Context Class, that represents the context of the OCL ex-
pression. remove expressions can be coupled with the try-
First expression contained in the CacheStrategy to tune the
default replacement policy of the cache.

3.3 Concrete Syntax
We introduce now the concrete syntax of the PrefetchML

language, which is derived from the abstract syntax meta-
model presented in Figure 2. Listing 2 presents the grammar

Figure 2: Prefetch Abstract Syntax Metamodel

of the PrefetchML language expressed using XText [12], an
EBNF-based language used to specify grammars and gen-
erate an associated toolkit containing a metamodel of the
language, a parser, and a basic editor. The grammar de-
fines the keywords associated with the constructs presented
in the PrefetchML metamodel. Note that OCLExpressions
are parsed as Strings, the model representation of the queries
presented in Figure 2 is computed by parsing it using the
Eclipse MDT OCL toolkit2

grammar f r . i n r i a . atlanmod . Pre f e t ch ing
with org . e c l i p s e . xtext . common . Terminals
import ”http ://www. i n r i a . f r /atlanmod/ Pre f e t ch ing ”

P r e f e t c hSp e c i f i c a t i o n :
metamodel=Metamodel
p lans+=Plan+

;

Metamodel :
’ import ’ nsURI=STRING

;

Plan :
’ plan ’ name=ID (de f au l t ?= ’ d e f au l t ’) ? ’{ ’

cache=CacheStrategy
r u l e s+=(Start ingRule | AccessRule)∗

’} ’
;

CacheStrategy :
(LRUCache{LRUCache} | MRUCache{MRUCache})

(p r op e r t i e s=CachePropert ies) ? (’when f u l l
remove ’ t ryFirstExp=OCLExpression) ?

;

LRUCache :
’ use cache ’ ’LRU’

2http://www.eclipse.org/modeling/mdt/?project=ocl

;

MRUCache :
’ use cache ’ ’MRU’

;

CachePropert ies :
’ [’ ’ s i z e ’ s i z e=INT (’ chunk ’ chunk=INT) ? ’] ’

;

Pre f e tch ingRule :
(Star t ingRule | AccessRule | DeleteRule |

SetRule)
;

Star t ingRule :
’ r u l e ’ name=ID ’ : ’ ’ on s t a r t i n g ’
’ f e t ch ’ targetPatternExp=OCLExpression
(’ remove ’ ’ type ’ removeType=C l a s s i f i e rExp r e s s i o n

removePatternExp=OCLExpression) ?
;

AccessRule :
’ r u l e ’ name=ID ’ : ’ ’ on ac c e s s ’
’ type ’ sourceType=C l a s s i f i e rExp r e s s i o n (

sourcePatternExp=OCLExpression) ?
’ f e t ch ’ targetPatternExp=OCLExpression
(’ remove ’ ’ type ’ removeType=C l a s s i f i e rExp r e s s i o n

removePatternExp=OCLExpression) ?
;

DeleteRule :
’ r u l e ’ name=ID ’ : ’ ’ on d e l e t e ’
’ type ’ sourceType=C l a s s i f i e rExp r e s s i o n (

sourcePatternExp=OCLExpression) ?
’ f e t ch ’ targetPatternExp=OCLExpression
(’ remove ’ ’ type ’ removeType=C l a s s i f i e rExp r e s s i o n

removePatternExp=OCLExpression) ?
;

SetRule :
’ r u l e ’ name=ID ’ : ’ ’ on s e t ’

http://www.eclipse.org/modeling/mdt/?project=ocl

’ type ’ sourceType=C l a s s i f i e rExp r e s s i o n (
sourcePatternExp=OCLExpression) ?

’ f e t ch ’ targetPatternExp=OCLExpression
(’ remove ’ ’ type ’ removeType=C l a s s i f i e rExp r e s s i o n

removePatternExp=OCLExpression) ?
;

OCLExpression : STRING ;

C l a s s i f i e rExp r e s s i o n : ID ;

Listing 2: PrefetchML Language Grammar

Listing 3 provides an example of a PrefetchSpecification
written in PrefetchML. To continue with our running exam-
ple, the listing displays prefetching and caching rules suit-
able for the queries expressed in the running example (List-
ing 1).

The PrefetchSpecification imports the Java Metamodel (line
1). This PrefetchSpecification contains a Plan named sam-
plePlan that uses a LRUCache that can contain up to 100
elements and removes them by chunks of 10 (line 4). It
is also composed of three PrefetchingRules: the first one,
r1 (5-6), is a starting rule that is executed when the plan
is activated, and loads and caches all the Package classes.
The rule r2 (7-8) is an access rule that corresponds to the
prefetching and caching actions associated to the query Pri-
vateBodyDeclarations. It is triggered when a ClassDeclara-
tion is accessed, and loads and caches all the BodyDeclara-
tions and Modifiers it contains. The rule r3 (9-11) corre-
sponds to the query ImportedComments: it is also triggered
when a ClassDeclaration is accessed, and loads the asso-
ciated CompilationUnit, and the Comment contents of its
imported ClassDeclarations. The rule also defines a remove

expression, that removes all the Package elements from the
cache when the load instruction is completed.

1 import ”http ://www. example . org /Java ”
2
3 plan samplePlan {
4 use cache LRU[s i z e =100 ,chunk=10]
5 ru l e r1 : on s t a r t i n g f e t ch
6 Package . a l l I n s t a n c e s ()
7 ru l e r2 : on ac c e s s type C la s sDec la ra t i on f e t ch
8 s e l f . bodyDec larat ions . mod i f i e r
9 ru l e r3 : on ac c e s s type C la s sDec la ra t i on f e t ch

10 s e l f . compi lat ionUnit . imports . compi lat ionUnit .
comments . content

11 remove type Package
12 }

Listing 3: Sample Prefetching Plan

4. PREFETCHML FRAMEWORK INFRAS-
TRUCTURE

In this Section we present the infrastructure of the Prefetch-
ML framework and its integration in the modeling ecosys-
tem (details on its integration on specific modeling frame-
works are provided in the next section). We also detail how
prefetching rules are handled and executed using the run-
ning example presented in the previous Section.

4.1 Architecture
Figure 3 shows the integration of the PrefetchML frame-

work in a typical modeling framework infrastructure: grey
nodes represent standard model access components: a model-
based tool accesses a model through a modeling API, which

delegates to a persistence framework in charge of handling
the physical storage of the model (for example in XML files,
or in a database).

In contrast, the PrefetchML framework (white nodes) re-
ceives events from the modeling framework. When the events
trigger a prefetching rule, it delegates the actual computa-
tion to its Model Connector. This component interacts
with the modeling framework to retrieve the requested ob-
ject, typically by translating the OCL expressions in the
prefetching rules into lower level calls to the framework API.
Section 5 discusses two specific implementations of this com-
ponent.

The PrefetchML framework also intercepts model elements
accesses, in order to search first in its Cache component if
the requested objects are already available. If the cache con-
tains the requested information, it is returned to the mod-
eling framework, bypassing the persistence framework and
improving execution time.

Model-based Tools

Modeling
Framework

Persistence
Framework

PrefetchML
Framework

Database

Model
Connector

OCL
expressions

access events

cached objects

File

Cache

cache
lookup

API calls

Figure 3: PrefetchML Integration in MDE Ecosys-
tem

PrefetchML
Framework

Cache
API

Event
API

PrefetchML
Core

Model
Connector

imports

conformsTo

Model

Fetch
Queries

conformsTo

events

PrefetchML
Metamodel Metamodel

Caching /
Unloading

Model
Access

PrefetchML
Specification

Rule
Store

(0)

(1)

(2)

(3) (4)

(5)

(6)

Figure 4: Prefetch Framework Infrastructure

Figure 4 describes the internal structure of the PrefetchML
Framework. As explained in Section 3, a PrefetchML specifi-

cation conforms to the PrefetchML metamodel. This specifi-
cation imports also the metamodel/s for which we are build-
ing the prefetching plans.

The Core component of the PrefetchML framework is
in charge of loading, parsing and storing these PrefetchML
specifications and then use them to find and retrieve the
prefetching / caching rules associated with an incoming event,
and, when necessary, execute them. This component also
contains the internal cache that retains fetched model ele-
ments in memory. The Rule Store is a data structure that
stores all the object rules (access, update, delete) contained
in the input PrefetchML description. The Model Con-
nector component is in charge of the translation and the
execution of OCLExpressions in the prefetching rules. This
connector can work at the modeling framework level, mean-
ing that it executes fetch queries using the modeling API
itself, or at the database level, translating directly OCL ex-
pressions into database queries.

The CacheAPI component gives access to the cache con-
tents to client applications. It allows manual caching and
unloading operations, and provides configuration facilities.
This API is an abstraction layer that unifies access to the
different cache types that can be instantiated by the Core
component. Note that in our architecture we integrated
prefetching and caching solutions in the sense that the core
component manages its own cache, where only prefetched
elements are stored. While this may result in keeping in
the cache objects that are not going to be recurrently used,
using a LRU cache strategy allows the framework to get rid
off them when memory is needed. In addition, the grammar
allows to define a minimal cache that would act only as a
storage mechanism for the immediate prefetched objects.

The EventAPI is the component that is in charge of re-
ceiving events from the client application. It provides an
API to send access, delete, and update events. These events
are defined at the object level, and contain contextual in-
formation of their encapsulated model element, such as its
identifier, the reference or attribute that is accessed, and the
index of the accessed element. These informations are then
used by the Core Component to find the rules that match
the event.

In particular, when an object event is sent to the Prefetch-
ML framework (1), the Event API handles it and forwards
it to the Core Component, which is in charge of triggering
the associated prefetching and caching rule. To do that,
the Core Component searches in the Rule Store the rules
that corresponds to the event and the object that triggered
it (3). Each OCLExpression in the rules is translated into
fetch queries sent to the Model Connector (4), which is in
charge of the actual query computation over the model (5).
Query results are handled back by the PrefetchML Core,
which is in charge of caching them and freeing the cache
from previously stored objects.

As prefetching operations can be expensive to compute,
the PrefetchML Framework runs in the background, and
contains a pool of working threads that performs the fetch
operations in parallel of the application execution. Model el-
ements are cached asynchronously and available to the client
application through the CacheAPI. Prefetching queries are
automatically aborted if they take too much time and/or
if their results are not relevant (according to the number
of cache hits) in order to keep the PrefetchML Framework
synchronized with the client application, e.g. preventing it

from loading elements that are not needed anymore.
The PrefetchML framework infrastructure is not tailored

to a particular data representation and can be plugged in
any kind of model persistence framework that stores models
conforming to the Ecore metamodel and provides an API
rich enough to evaluate OCL queries. This includes for
example EMF storage implementations such as XMI, but
also scalable persistence layers built on top of the EMF, like
NeoEMF [13], CDO [11], and Morsa [22].

4.2 Rule Processing
We now look at the PrefetchML engine from a dynamic

point of view. Figure 5 presents the sequence diagram asso-
ciated with the initialization of the PrefetchML framework.
When initializing, the prefetcher starts by loading the
PrefetchDescription to execute (1). To do so, it iterates
through the set of plans and stores the rules in the Rule-
Store according to their type (2). In the example provided
in Listing 3 this process saves in the store the rules r2 and
r3, both associated with the ClassDeclaration type. Then,
the framework creates the cache (3) instance corresponding
to the active prefetching plan (or the default one if no active
plan is provided). This creates the LRU cache of the example,
setting its size to 100 and its chunkSize to 10.

Next, the PrefetchML framework iterates over the Start-
ingRules of the description and computes their targetExpres-
sion using the Model Connector (4). Via this component,
the OCL expression is evaluated (in the example the target
expression is Package.allInstances()) and the resulting
elements are returned to the Core component (5) that cre-
ates the associated identifying keys (6) and stores them in
the cache (7). Note that starting rules are not stored in the
Rule Store, because they are executed only once when the
plan is activated, and are no longer needed afterwards.

Once this initial step has been performed, the framework
awaits object events. Figure 6 shows the sequence diagram
presenting how the PrefetchML handles incoming events.
When an object event is received (8), it is encapsulated into
a working task which contains contextual information of the
event (object accessed, feature navigated, and index of the
accessed feature) and asynchronously sent to the prefetcher
(9) that searches in the RuleStore the object rules that have
the same type as the event (10). In the example, if a Class-
Declaration element is accessed, the prefetcher searches as-
sociated rules and returns r2 and r3. As for the diagram
above, the next calls involve the execution of the target ex-
pressions for the matched rules and saving the retrieved ob-
jects in the cache for future calls. Finally, the framework
evaluates the remove OCL expressions (17) and frees the
matching objects from the memory. In the example, this
last step removes from the cache all the instances of the
Package type.

5. TOOL SUPPORT
In this Section we present the tool support for the Prefetch-

ML framework. It is composed of two main components: a
language editor (Section 5.1) that supports the definition of
prefetching and caching rules, and a execution engine with
two different integration options: the EMF API and the
NeoEMF/Graph persistence framework (Sections 5.2 and
5.3). The presented components are part of a set of open
source Eclipse plugins available at https://github.com/atlanmod/
Prefetching Caching DSL.

https://github.com/atlanmod/Prefetching_Caching_DSL
https://github.com/atlanmod/Prefetching_Caching_DSL

Figure 5: PrefetchML Initialization Sequence Diagram

Figure 6: PrefetchML Event Handling Sequence Diagram

5.1 Language Editor
The PrefetchML language editor is an Eclipse-based edi-

tor that allows the creation and the definition of prefetching
and caching rules. It is partly generated from the XText
grammar presented in Section 3.3 and defines utility helpers
to validate and navigate the imported metamodel. The ed-
itor supports navigation auto-completion by inspecting im-
ported metamodels, and visual validation of prefetching and

caching rules by checking reference and attribute existence.
Figure 7 shows an example of the PrefetchML editor that

contains the prefetching and caching plan defined in the run-
ning example of Section 3.

5.2 EMF Integration
Figure 8 shows the integration of PrefetchML within the

EMF framework. Note that only two components must

Figure 7: PrefetchML Rule Editor

be adapted (light grey boxes). The rest are either generic
PrefetchML components or standard EMF modules.

In particular, dark grey boxes represent the standard EMF-
based model access architecture: an EMF-based tool ac-
cesses the model elements through the EMF API, that del-
egates the calls to the PersistenceFramework of choice (XMI,
CDO, NeoEMF,...), which is finally responsible for the model
storage.

The two added/adapted components are:

• An Interceptor that wraps the EMF API and captures
the calls (1) to the EMF API (such as eGet, eSet, or
eUnset). EMF calls are then transformed into Even-
tAPI calls (2) by deriving the appropriate event object
from the EMF API call. For example, an eGet call will
be translated into the accessEvent method call (8) in
Figure 6. Once the event has been processed, the In-
terceptor also searches in the cache the requested ele-
ments as indicated by the Model Connector (3). If they
are available in the cache, they are directly returned
to the EMF-based tool. Otherwise, the Interceptor
passes on the control to the EMF API to continue the
normal process.

• An EMF Model Connector that translates the OCL
expressions in the prefetching and caching rules into
lower-level EMF API calls. The results of those queries
are stored in the cache, ready for the Interceptor to
request them when necessary.

This integration makes event creation and cache accesses
totally transparent to the client application. In addition, it
does not make any assumptions about the mechanism used
to store the models, and therefore, it can be plugged on top
of any EMF-based persistence solution.

Model
Query

PrefetchML
Framework

Cache
API

Event
API

PrefetchML
Core

EMF Model
Connector

Fetch
Queries

events Caching /
Unloading

Rule
Store

EMF
API

EMF-based
Tool

Model
Operation(1)

Event
Creation(2)

Cache
Lookup

(3)

Persistence
Framework

(CDO,
NeoEMF, XMI)

Standard
Computation

(4)

Interceptor

Figure 8: Overview of EMF-Based Prefetcher

5.3 NeoEMF/Graph Integration

To take advantage of the query facilities of graph databases
(a proven good alternative to store large models) and make
sure PrefetchML optimizes as much as possible the rule ex-
ecution time in this context, we designed a Model Con-
nector dedicated to NeoEMF/Graph, a persistence solution
that stores EMF models into graph databases. Note that,
PrefetchML can work with NeoEMF without this dedicated
support by processing calls through the EMF API as ex-
plained in the previous section. Still, offering a native sup-
port allows for better optimizations.

NeoEMF/Graph is a scalable model persistence frame-
work built on top of the EMF that aims at handling large
models in graph databases [3]. It relies on the Blueprints
API [26], which aims to unify graph database accesses through
a common interface. Blueprints is the basis of a stack of
tools that stores and serializes graphs, and provides a pow-
erful query language called Gremlin [27]. NeoEMF/Graph
relies on a lazy-loading mechanism that allows the manipu-
lation of large models in a reduced amount of memory by
loading only accessed objects.

The prefetcher implementation integrated in NeoEMF/-
Graph uses the same mechanisms as the standard EMF
one: it defines an Interceptor that captures the calls to the
EMF API, and a dedicated Graph Connector. While the
EMF Connector computes loading instructions at the EMF
API level, the Graph Connector performs a direct transla-
tion from OCL into Gremlin, and delegates the computa-
tion to the database, enabling back-end optimizations such
as uses of indexes, or query optimizers. The Graph Connec-
tor caches the results of the queries (i.e. database vertices)
instead of the EMF objects, limiting execution overhead im-
plied by object reifications. Since this implementation does
not rely on the EMF API, it is able to evaluate queries signif-
icantly faster than the standard EMF prefetcher (as shown
in our experimental results in Section 6), thus improving the
throughput of the prefetching rule computation. Database
vertices are reified into EMF objects when they are accessed
from the cache, limiting the initial execution overhead im-
plied by unnecessary reifications.

6. EVALUATION
In this Section, we evaluate the performance of our

PrefetchML Framework by comparing the performance of
executing a set of OCL queries when (i) no prefetching is
used, (ii) EMF-based prefetching is active, or (iii) NeoEM-
F/Graph dedicated prefetching is active. In all three cases,
the back-end to store the models to be queried is NeoEM-
F/Graph. This allows to test all three combinations with
the same base configuration. To have a better overview of
the performance gains, each prefetching mechanism is tested
on two different models and with two cache sizes. We also
repeat the process using a good and a bad prefetching plan.
The latter aims to evaluate whether non-expert users choos-
ing a wrong prefetching plan (e.g. one that for instance
prefetches objects that will never be used since they are not
involved in any of the queries / operations in the scenario)
could harm tool efficiency a lot. Each query is executed twice
on each combination to evaluate the benefit of the cache of
PrefetchML in subsequent query executions.

Note that we do not compare our solution with existing
tools that can be related to our one because we could not en-
vision a fair comparison scenario. For instance, Moogle [20]
is a model search approach that creates an index to retrieve

full models from a repository, where our solution aims to
improve performances of queries at the model level. Inc-
Query [4] is also not considered as a direct competitor be-
cause it does not provide a prefetch mechanism. In addition,
IncQuery was primarily designed to execute queries against
models already in the memory which is a different scenario
with a different trade-off.

Experiments are executed on a computer running Fedora
20 64 bits. Relevant hardware elements are: an Intel Core I7
processor (2.7 GHz), 16 GB of DDR3 SDRAM (1600 MHz)
and a SSD hard-disk. Experiments are executed on Eclipse
4.5.2 (Mars) running Java SE Runtime Environment 1.7.
To run our queries, we set the Java virtual machine pa-
rameters -server and -XX:+UseConcMarkSweepGC that are
recommended in the Neo4j documentation.

6.1 Benchmark Presentation
The experiments are run over two large models automati-

cally constructed by the MoDisco [5] Java Discoverer, which
is a reverse engineering tool that computes low-level models
from Java code. The two models used in the experiments are
the result of applying MoDisco discovery tool over two Java
projects: the MoDisco plugin itself, and the Java Develop-
ment Tools (JDT) core plugin. Resulting models contain
respectively 80 664 and 1 557 006 elements, and associated
XMI files are respectively 20 MB and 420 MB large.

As sample queries on those models to use in the exper-
iment we choose three query excerpts extracted from real
MoDisco software modernization use cases:

• BlockStatement: To access all statements contained
in a block

• TypeToUnit: To access a type declaration and navi-
gate to all its imports and comments

• ClassToUnit: To extend the TypeToUnit query by
navigating the body and field declarations of the input
class

The first query performs a simple reference navigation
from the input Block element and retrieves all its State-
ments. The second query navigates multiple references from
the input Type element in order to retrieve the Imports and
Comments contained in its CompilationUnit, and the third
query extends it by adding filtering using the select expres-
sion, and by navigating the BodyDeclarations of the input
Class element in order to collect the declared variables and
fields3.

Good prefetching plans have been created by inspecting
the navigation path of the queries. The context type of each
expression constitutes the source of AccessRules, and navi-
gations are mapped to target patterns. Bad plans contain
two types of prefetching and caching instructions: the first
ones have a source pattern that is never matched during the
execution (and thus should never be triggered), and the sec-
ond ones are matched but loads and caches objects that are
not used in the query.

The queries have been executed using two different cache
configurations. The first one is a large MRU cache that can
contain up to 20% of the input model (C1), and the second
is a smaller MRU cache that can store up to 10% of the

3Details of the queries can be found at https://github.com/
atlanmod/Prefetching Caching DSL

Table 1: Experimental Set Details (MoDisco)
Query #Input #Traversed #Res
BlockStatement 1837 4688 2851
TypeToUnit 348 1895 1409
ClassToUnit 166 3393 2953

Table 2: Experimental Set Details (JDT)
Query #Input #Traversed #Res
BlockStatement 58484 199228 140744
TypeToUnit 1663 16387 13496
ClassToUnit 1347 48961 41925

input model (C2). We choose this cache replacement policy
according to Chou and DeWitt [7] who state MRU is the
best replacement algorithm when a file is being accessed in
a looping sequential reference pattern. In addition, we com-
pare execution time of the queries when they are executed
for the first time and after a warm-up execution to consider
the impact of the cache on the performance.

Queries are evaluated over all the instances of the mod-
els that conform to the context of the query. In order to
give an idea of the complexity of the queries, we present
in Tables 1 and 2 the number of input elements for each
query (#Input), the number of traversed element during
the query computation (#Traversed) and the size of the
result set for each model (#Res).

6.2 Results
Table 3 presents the average execution time (in millisec-

onds) of 100 executions of the presented queries using Eclipse
MDT OCL over the JDT and MoDisco models stored in
the NeoEMF/Graph persistence framework. Columns are
grouped according to the kind of prefetching that has been
used. For each group we show the time when using the good
plan with first cache size, the good plan with the second
cache size and the bad plan with the first cache.

Each cell shows the execution time in milliseconds of the
query the first time it is executed (Cold Execution). In
this configuration the cache is initially empty, and benefits
of prefetching depend only on the accuracy of the plan (to
maximize the cache hits) and the complexity of the prefetch-
ing instructions (the more complex they are the more time
the background process has to advance on the prefetching of
the next objects to access). The second result shows the exe-
cution time of a second execution of the query (Warmed Ex-
ecution), when part of the loaded elements has been cached
during the first computation.

The correctness of query results has been validated by
comparing the results of the different configurations with
the ones of the queries executed without any prefetching
enabled.

6.3 Discussion
The main conclusions we can draw from these results (Ta-

ble 3) are

• EMF-based prefetcher improves the execution time of
first time computations of queries that perform com-
plex and multiple navigations for both JDT and MoDisco
models (ClassToUnit query). However, when the query
is simple such as BlockStatement or only contains in-

https://github.com/atlanmod/Prefetching_Caching_DSL
https://github.com/atlanmod/Prefetching_Caching_DSL

Table 3: Query Execution Time in milliseconds (Cold Execution / Warmed Execution)
Model OCL Query No Pref. EMF Pref. Graph Pref.

C1 (20%) C2 (10%) Inv C1 (20%) C2 (10%) Inv

MoDisco
BlockStatement 2057/696 2193/169 2145/187 2134/722 1687/238 1688/233 2155/734
TypeToUnit 1999/598 2065/83 2072/97 2045/615 1337/155 1418/165 2038/643
ClassToUnit 2703/722 2588/169 2618/188 2798/758 1616/218 1664/233 2787/753

JDT
BlockStatement 15170/8521 16235/318 16700/3044 16180/8868 11688/1288 12446/4256 16234/8638
TypeToUnit 6624/2267 6822/269 6768/336 6832/2347 5270/685 5338/685 6877/2331
ClassToUnit 11637/5421 10780/229 10526/250 11946/5687 7716/873 7817/884 11789/5556

dependent navigations such as TypeToUnit, the EMF
prefetcher results in a small execution overhead since
the prefetch takes time to execute and with simple
queries it cannot save time by fetching elements in the
background while the query is processed.

• EMF-based prefetcher drastically improves the perfor-
mance of the second execution of the query: an impor-
tant part of the navigated objects is contained in the
cache, limiting the database overhead.

• NeoEMF-based prefetcher is faster than the EMF one
on the first execution because queries can benefit from
the database query optimizations (such as indexes), to
quickly prefetch objects to be used in the query when
initial parts of the query are still being executed, i.e.
the prefetcher is able to run faster than the computed
query. This increases the number of cache hits in a
cold setup (and thus the execution time)

• NeoEMF-based prefetcher is slower than the EMF-
based one on later executions because it stores in the
cache the vertices corresponding to the requested ob-
jects and not the objects themselves, therefore extra
time is needed to reify those objects using a low-level
query framework such as the Mogwäı [10]

• Wrong prefetcher plans are not dangerous. Prefetching
does not add a significant execution time overhead and
therefore results are in the same order of magnitude as
when there is no prefetching at all.

• Too small caches reduce the benefits of Prefetching
since we waste time checking for the existence of many
objects that due to the cache size are not there any
longer generating a lot of cache misses. Nevertheless,
even with a small cache we improve efficiency after the
initial object load.

To summarize our results, the PrefetchML framework is
an interesting solution to improve execution time of model
queries over EMF models. The gains in terms of execu-
tion time are positive, but results also show that the EMF
prefetcher is not able to provide first-time improvement for
each kind of query, and additional information has to be
taken into account to provide an optimal prefetching strat-
egy, such as the reuse of navigated elements inside a query,
or the size of the cache.

7. CONCLUSIONS AND FUTURE WORK
We presented the PrefetchML DSL, an event-based lan-

guage that describes prefetching and caching rules over mod-
els. Prefetching rules are defined at the metamodel level and
allow designers to describe the event conditions to activate

the prefetch, the objects to prefetch, and the customization
of the cache policy. Since OCL is used to write the rule con-
ditions, PrefetchML definitions are independent from the
underlying persistence backend and storage mechanism.

Rules are grouped into plans and several plans can be
loaded/unloaded for the same model, to represent fetching
and caching instructions specially suited for a given specific
usage scenario. Some automation/guidelines could be added
to help on defining a good plan for a specific use-case in or-
der to make the approach more user-friendly. However, our
experiments have shown that even if users choose a bad plan
the overhead is really small. The execution framework has
been implemented on top of the EMF as well as NeoEM-
F/Graph, and results of the experiments show a significant
execution time improvement compared to non-prefetching
use cases.

PrefetchML satisfies all the requirements listed in Sec-
tion 2. Prefetching and caching rules are defined using a
high-level DSL embedding the OCL, hiding the underlying
database used to store the model (1). The EMF integration
also provides a generic way to define prefetching rules for
every EMF-based persistence framework (2), like NeoEMF
and CDO. Note that an implementation tailored to NeoEMF
is also provided to enhance performance. Prefetching rules
are defined at the metamodel level, but the expressiveness
of OCL allows to refer to specific subset of model elements
if needed (3). In Section 3 we presented the grammar of
the language, and emphasized that several plans can be cre-
ated to optimize different usage scenario (4). Finally, the
PrefetchML DSL is a readable language that eases designers’
task on writing and updating their prefetching and caching
plan (5). Since the rules are defined at the metamodel level,
created plans do not contain low-level details that would
make plan definition and maintenance difficult.

As future work we plan to work on the automatic gen-
eration of PrefetchML scripts based on static analysis of
available queries and transformations for the metamodel we
are trying to optimize. Another information source to come
up with prefetching plans is the dynamic discovery of fre-
quent access patterns at the model level (e.g. adapting
process mining techniques). This is a second direction we
plan to explore since it could automatically enhance exist-
ing applications working on those models even if we do not
have access to their source code and/or no prefetching plans
have been created for them. Adding an adaptive behavior to
PrefetchML may also allows to detect if a plan is relevant for
a given scenario, and switch-on/off specific rules according
to the context of the execution.

8. REFERENCES
[1] S. Azhar. Building information modeling (BIM):

Trends, benefits, risks, and challenges for the AEC
industry. Leadership and Management in Engineering,
pages 241–252, 2011.

[2] K. Barmpis and D. Kolovos. Hawk: Towards a
scalable model indexing architecture. In Proc. of
BigMDE’13, pages 6–9. ACM, 2013.

[3] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and
D. Launay. Neo4EMF, a Scalable Persistence Layer for
EMF Models. In Proc. of the 10th ECMFA, pages
230–241. Springer, 2014.

[4] G. Bergmann, Á. Horváth, I. Ráth, D. Varró,
A. Balogh, Z. Balogh, and A. Ökrös. Incremental
evaluation of model queries over EMF models. In
Proc. of the 13th MoDELS Conference, pages 76–90.
Springer, 2010.

[5] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot.
MoDisco: A model driven reverse engineering
framework. IST, pages 1012 – 1032, 2014.

[6] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A
study of integrated prefetching and caching strategies.
ACM SIGMETRICS Performance Evaluation Review,
pages 188–197, 1995.

[7] H.-T. Chou and D. J. DeWitt. An evaluation of buffer
management strategies for relational database
systems. Algorithmica, pages 311–336, 1986.

[8] K. M. Curewitz, P. Krishnan, and J. S. Vitter.
Practical prefetching via data compression. In ACM
SIGMOD Record, pages 257–266. ACM, 1993.

[9] G. Daniel, G. Sunyé, A. Benelallam, and M. Tisi.
Improving memory efficiency for processing large-scale
models. In Proc. of BigMDE’14, pages 31–39. CEUR
Workshop Proceedings, 2014.

[10] G. Daniel, G. Sunyé, and J. Cabot. Mogwäı: a
framework to handle complex queries on large models.
In Proc. of the 10th RCIS Conference. IEEE, 2016.

[11] Eclipse Foundation. The CDO Model Repository
(CDO), 2016. url: http://www.eclipse.org/cdo/.

[12] M. Eysholdt and H. Behrens. Xtext: implement your
language faster than the quick and dirty way. In Proc.
of OOPSLA’10, pages 307–309, New York, NY, USA,
2010. ACM.

[13] A. Gómez, G. Sunyé, M. Tisi, and J. Cabot.
Map-based transparent persistence for very large
models. In Proc. of the 18th FASE Conference.
Springer, 2015.

[14] T. Hartmann, A. Moawad, F. Fouquet, G. Nain,
J. Klein, and Y. Le Traon. Stream my models:
reactive peer-to-peer distributed models@ run. time.
In Proc. of the 18th MoDELS Conference, pages
80–89. IEEE, 2015.

[15] J. Hutchinson, M. Rouncefield, and J. Whittle.
Model-driven engineering practices in industry. In
Proc of the 33rd ICSE, pages 633–642. IEEE, 2011.

[16] A. C. Klaiber and H. M. Levy. An architecture for
software-controlled data prefetching. In ACM
SIGARCH Computer Architecture News, pages 43–53.
ACM, 1991.

[17] M. Koegel and J. Helming. EMFStore: a model
repository for EMF models. In Proc. of the 32nd
ICSE, pages 307–308. ACM, 2010.

[18] D. S. Kolovos, R. F. Paige, and F. A. Polack. The
epsilon object language (EOL). In Proc. of the 2nd
ECMDA-FA, pages 128–142. Springer, 2006.

[19] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige,
E. Guerra, J. S. Cuadrado, J. De Lara, I. Ráth,
D. Varró, M. Tisi, et al. A research roadmap towards
achieving scalability in model driven engineering. In
Proc. of BigMDE’13, pages 1–10. ACM, 2013.

[20] D. Lucrédio, R. P. d. M. Fortes, and J. Whittle.
Moogle: A model search engine. In Proc. of the 11th
MoDELS Conference, pages 296–310. Springer, 2008.

[21] P. Mohagheghi, M. A. Fernandez, J. A. Martell,
M. Fritzsche, and W. Gilani. MDE adoption in
industry: challenges and success criteria. In Proc. of
Workshops at MoDELS 2008, pages 54–59. Springer,
2009.

[22] J. E. Pagán, J. S. Cuadrado, and J. G. Molina. Morsa:
A scalable approach for persisting and accessing large
models. In Proc. of the 14th MoDELS Conference,
pages 77–92. Springer, 2011.

[23] R. H. Patterson, G. A. Gibson, E. Ginting,
D. Stodolsky, and J. Zelenka. Informed prefetching
and caching. ACM, 1995.

[24] R. Pohjonen and J.-P. Tolvanen. Automated
production of family members: Lessons learned. In
Proc. of PLEES’02, pages 49–57. IESE, 2002.

[25] A. J. Smith. Sequentiality and prefetching in database
systems. TODS, pages 223–247, 1978.

[26] Tinkerpop. Blueprints API, 2016. url:
blueprints.tinkerpop.com.

[27] Tinkerpop. The Gremlin Language, 2016. url:
gremlin.tinkerpop.com.

[28] J. Warmer and A. Kleppe. Building a flexible software
factory using partial domain specific models. In Proc.
of the 6th DSM Workshop, pages 15–22. University of
Jyvaskyla, 2006.

http://www.eclipse.org/cdo/
blueprints.tinkerpop.com
gremlin.tinkerpop.com

	Introduction
	State of the Art
	The PrefetchML DSL
	Running Example
	Abstract Syntax
	Concrete Syntax

	PrefetchML Framework Infrastructure
	Architecture
	Rule Processing

	Tool Support
	Language Editor
	EMF Integration
	NeoEMF/Graph Integration

	Evaluation
	Benchmark Presentation
	Results
	Discussion

	Conclusions and Future Work
	References

