
Software & Systems Modeling (2019) 18:1773–1794
https://doi.org/10.1007/s10270-018-0671-8

SPEC IAL SECT ION PAPER

Advanced prefetching and caching of models with PrefetchML

Gwendal Daniel1 · Gerson Sunyé1 · Jordi Cabot2

Received: 14 March 2017 / Revised: 24 January 2018 / Accepted: 13 February 2018 / Published online: 3 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Caching and prefetching techniques have been used for decades in database engines and file systems to improve the perfor-
mance of I/O-intensive application. A prefetching algorithm typically benefits from the system’s latencies by loading into
main memory elements that will be needed in the future, speeding up data access. While these solutions can bring a significant
improvement in terms of execution time, prefetching rules are often defined at the data level, making them hard to understand,
maintain, and optimize. In addition, low-level prefetching and caching components are difficult to align with scalable model
persistence frameworks because they are unaware of potential optimizations relying on the analysis of metamodel-level infor-
mation and are less present in NoSQL databases, a common solution to store large models. To overcome this situation, we
propose PrefetchML, a framework that executes prefetching and caching strategies over models. Our solution embeds a DSL
to configure precisely the prefetching rules to follow and a monitoring component providing insights on how the prefetching
execution is working to help designers optimize his performance plans. Our experiments show that PrefetchML is a suitable
solution to improve query execution time on top of scalable model persistence frameworks. Tool support is fully available
online as an open-source Eclipse plug-in.

Keywords Prefetching · MDE · DSL · Scalability · Persistence framework · NoSQL

1 Introduction

Prefetching and caching are two well-known approaches to
improve performance of applications that rely intensively on
I/O accesses. Prefetching consists in bringing objects into
memory before they are actually requested by the applica-
tion to reduce performance issues due to the latency of I/O
accesses. Fetched objects are then stored in memory to speed
up their (possible) access later on. In contrast, caching aims
at speeding up the access by keeping in memory objects that
have been already loaded.

Communicated by Dr. Jörg Kienzle and Alexander Pretschner.

B Gwendal Daniel
gwendal.daniel@inria.fr

Gerson Sunyé
gerson.sunye@inria.fr

Jordi Cabot
jordi.cabot@icrea.cat

1 AtlanMod Team - Inria, IMT-Atlantique & LS2N, 4, Rue
Alfred Kastler, Nantes, France

2 ICREA, UOC, Av. Carl Friedrich Gauss, 5, Castelldefels,
Spain

Prefetching and caching have been part of database man-
agement systems and file systems for a long time and have
proved their efficiency in several use cases [25,28]. P. Cao
et al. [6] showed that integrating prefetching and caching
strategies dramatically improves the performance of I/O-
intensive applications. In short, prefetching mechanisms
work by adding load instructions (according to prefetching
rules derived by static [18] or execution trace analysis [8])
into an existing program. Global policies, (e.g., LRU—least
recently used, MRU—most recently used, etc.) control the
cache contents.

Given that model-driven engineering (MDE) is progres-
sively adopted in the industry [17,23], we believe that the
support of prefetching and caching techniques at the mod-
eling level is required to raise the scalability of MDE tools
dealing with large models where storing, editing, transform-
ing, and querying operations are major issues [21,32]. These
large models typically appear in various engineering fields,
such as civil engineering [1], automotive industry [4], prod-
uct lines [26], and in software maintenance and evolution
tasks such as reverse engineering [5].

Existing approaches have proposed scalablemodel persis-
tence frameworks on top of SQL and NoSQL databases [13,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0671-8&domain=pdf

1774 G. Daniel et al.

15,19,24]. These frameworks use lazy-loading techniques to
load into main memory the parts of the model that need
to be accessed. This helps dealing with large models that
would otherwise not fit in memory but adds an execution
timeoverhead due to the latency of I/O accesses to loadmodel
excerpts from the database, specially when executed in a dis-
tributed environment. Existing frameworks typically rely on
the database prefetching and caching capabilities (when they
exist) to speed up query computation in a generic way (i.e.,
regardless of the context of the performed model manipula-
tion). This facilitates their use in a variety of scenarios but
prevent them from providing model-specific optimizations
that would require understanding the type of the model (i.e.,
its metamodel) to come up with accurate loading strategies.

In this sense, this paper proposes a new prefetching and
caching framework for models. We present PrefetchML, a
domain-specific language and execution engine, to specify
prefetching and caching policies and execute them at run-
time in order to optimize model access operations. This DSL
allows designers to customize the prefetching rules to the
specific needs ofmodel manipulation scenarios, even provid-
ing several execution plans for different use cases. The DSL
itself is generic and could be part of any modeling stack
but our framework is built on top of the Eclipse Modeling
Framework (EMF) infrastructure, and therefore it is com-
patible with existing scalable model persistence approaches,
regardless of whether those backends also offer some kind
of internal prefetching mechanism. A special version tai-
lored to the NeoEMF/Graph [3] engine is also provided for
further performance improvements. The empirical evalua-
tion of PrefetchML highlights the significant time benefits it
achieves.

This paper is an extension of our previous work introduc-
ing PrefetchML [11]. It provides three major new contribu-
tions: (i) a monitoring component that provides insights into
the execution performance to guide developers on improv-
ing their prefetching plans, (ii) a global shared cache and a
set of cache consistency policies extending the cache com-
ponent to ensure cached elements are always consistent with
the model when update operations are performed, and (iii)
a new set of experiments based on the well-known Train
Benchmark [29] including new model usage scenarios when
comparing PrefetchML’s performance on top of NeoEM-
F/Map and NeoEMF/Graph.

The paper is organized as follows: Sect. 2 introduces
further the background of prefetching and caching in the
modeling ecosystemwhile Sect. 3 introduces the PrefetchML
DSL. Section 4 describes the framework infrastructure, its
basic rule execution algorithm, and the consistency policies
we have implemented. Section 5 presents our newmonitoring
component and its integration within the framework. Sec-
tion 6 introduces the editor that allows the designer to define
prefetching and caching rules, and the implementation of our

tool and its integration with the EMF environment. Finally,
Sect. 7 presents the benchmarks used to evaluate our prefetch-
ing tool and associated results. Section 8 ends the paper by
summarizing the key points and presenting our future work.

2 State of the art

Prefetching and caching techniques are common in relational
and object databases [28] in order to improve query computa-
tion time. Their presence in NoSQL databases is much more
limited, which contrasts with the increasing popularity of this
type of databases as model storage solution. Existing work
typically relies on learning techniques to dynamically opti-
mize the loading of NoSQL database records based on their
locality [12,34], or improve memory transfer performance
of in-memory key-value stores [33]. However, these solu-
tions are strongly connected to the data representation (i.e.,
how the information is represented by the database primi-
tives) and do not use conceptual schema information (that
can be partially extracted automatically using schema infer-
ence techniques [27]) that could raise the abstraction level
of prefetching and caching rules and improve their reusabil-
ity across multiple data sources. In addition, database-level
prefetching and caching strategies do not provide fine-
grained configuration of the elements to load according to
a given usage scenario–such as model-to-model transfor-
mation, interactive editing, or model validation–that have
different access patterns that should be optimized specifi-
cally.

Scalable modeling frameworks are built on top of rela-
tional or NoSQL databases to store and access large mod-
els [3,13]. These approaches are often based on lazy-loading
strategies to optimize memory consumption by loading only
the accessed objects from the database. While lazy-loading
approaches have proven their efficiency in terms of mem-
ory consumption to load and query very large models [9,24],
they perform a lot of fragmented queries on the database,
thus adding a significant execution time overhead. For the
reasons described above, these frameworks cannot benefit
from database prefetching solutions nor do they implement
their ownmechanism, with the partial exception of CDO [13]
that provides some basic prefetching and caching capabili-
ties.1 For instance, CDO is able to bring into memory all
the elements of a list at the same time, or load nested/re-
lated elements up to a given depth. Nevertheless, alternative
prefetching rules cannot be defined to adapt model access
to different contexts nor it is possible to define rules with
complex prefetching conditions.

Caching is a common solution used in current scalable
persistence frameworks to improve query execution involv-

1 https://wiki.eclipse.org/CDO/Tweaking_Performance.

123

https://wiki.eclipse.org/CDO/Tweaking_Performance

Advanced prefetching and caching of models with PrefetchML 1775

ing repeated accesses of model elements. However, these
caches are tailored to a specific solution, and they typically
lack advanced configurations such as the replacement policy
to use, the maximum size of the cache, or the number of ele-
ments to drop when the cache is full. In addition, persistence
framework caches are usually defined as internal components
and do not allow client applications to access the content of
the cache.

Hartmann et al. [16] propose a solution to tackle scalability
issues in the context of models@run.time by splitting mod-
els into chunks that are distributed across multiple nodes in a
cluster. A lazy-loading mechanism allows to virtually access
the entire model from each node. However, to the best of our
knowledge, the proposed solution does not provide prefetch-
ing mechanism, which could improve the performance when
remote chunks are retrieved and fetched among nodes.

Optimization of query execution has also been targeted
by other approaches not relying on prefetching but using a
variety of other techniques. EMF-IncQuery [4] is an incre-
mental evaluation engine that computes graph patterns over
an EMF model. It relies on an adaptation of the RETE algo-
rithm, and results of the queries are cached and incrementally
updated when the model is modified using the EMF notifi-
cation framework. While EMF-IncQuery can be seen as an
efficient EMF cache, it does not aim to provide prefetch-
ing support, and cache management cannot be tuned by the
designer. Hawk [2] is a model indexer framework that pro-
vides a query API. It stores models in an index and allows
to query them using the EOL [20] query language. While
Hawk provides an efficient backend-independent query lan-
guage built on top of the Epsilon platform, it does not allow
the definition of prefetching plans for the indexed models.

In summary, we believe that no existing solution provides
the following desired characteristics of an efficient and con-
figurable prefetching and caching solution for models:

1. Ability to define/execute prefetching rules independently
of the database backend.

2. Ability to define/execute prefetching rules transparently
from the persistence framework layered on top of the
database backend.

3. A prefetching language expressive enough to define rules
involving conditions at the type and instance level (i.e.,
loading all instances of a class A that are linked to a
specific object of a class B).

4. A context-dependent prefetching language allowing the
definition of alternative prefetching and caching plans for
specific use cases.

5. A readable prefetching language enabling designers to
easily tune the prefetching and caching rules.

6. A monitoring/quality component providing feedback on
the prefetching and caching plan for a given execution.

In the following sections, we present PrefetchML, our
prefetching and caching framework that tackles these chal-
lenges.

3 The PrefetchML DSL

PrefetchML is a DSL that describes prefetching and caching
rules over models. Rules are triggered when an event satisfy-
ing a particular condition is received. These events can be the
initial model loading, an access to a specific model element,
the setting of a value, or the deletion of a model element.
Event conditions are expressed using OCL guards.

Loading instructions are also defined in OCL. The set of
elements to be loaded as a response to an event are character-
ized by means of OCL expressions that navigate the model
and select the elements to fetch and store in the cache. Not
only loading requests can be defined, the language also pro-
vides an additional construct to control the cache content by
removing cache elements when a certain event is received.
Using OCL helps us to be independent of any specific per-
sistence framework.

Prefetching and caching rules are organized in plans that
are sets of rules that should be used together to optimize a
specific usage scenario for the model since different kinds of
model accesses may require different prefetching strategies.
For example, a good strategy for an interactive model brows-
ing scenario is to fetch and cache the containment structure of
the model, whereas for a complex query execution scenario,
it is better to have a plan that fits the specific navigation path
of the query.

Beyond a set of prefetching rules, eachplandefines a cache
that can be parametrized and a consistency policy that defines
the strategy to use to manage the life cycle of cached element
when the model is updated.

In what follows, we formalize the abstract and concrete
syntax of the PrefetchMLDSL and introduce them through a
running example. The next section will introduce how these
rules are executed as part of the prefetching engine.

3.1 Abstract syntax

This section describes the main concepts of PrefetchML
focusing on the different types of rules it offers and how they
can be combined to create a complete prefetch specification.

Figure 1 depicts the metamodel corresponding to the
abstract syntax of the PrefetchML language. A Prefetch-
Specification is a top-level container that imports several
Metamodels. These metamodels represent the domain on
which prefetching and caching rules are described and are
defined by their unified resource identifier (URI).

The imported Metamodels concepts (classes, references,
attributes) are used in prefetching Plans, which are named

123

1776 G. Daniel et al.

Fig. 1 PrefetchML Abstract Syntax Metamodel

entities that group rules that are applied in a given execu-
tion context. A Plan can be the default plan to execute in
a PrefetchSpecification if no execution information is pro-
vided.

Each Plan contains aCacheStrategy, which represents the
information about the cache policy the prefetcher applies to
keep loaded objects in memory. Currently, available cache
strategies are LRUCache (Least Recently Used) and MRU-
Cache (Most Recently Used). These Caches define four
parameters: (i) the maximum number of objects they can
store (size), (ii) the number of elements to free when the
cache is full (chunkSize), (iii) the consistency policy used to
manage model modifications, and (iv) the integration of the
cache with the running application (details on cache con-
sistency/integration are provided in Sect. 4). In addition, a
CacheStrategy can contain a tryFirst OCL expression. This
expression is used to customize the default cache replace-
ment strategy: It returns a set of model elements that should
be removed from the cache if it is full, overriding the selected
caching policy.

Plans also contain the core components of the PrefetchML
language: PrefetchingRules that describe tracked model ev-
ents and the loading and caching instructions.We distinguish
two kinds of PrefetchingRules:

– StartingRules that are prefetching instructions triggered
only when the prefetching plan is loaded

– ObjectRules that are triggeredwhen an element satisfying
a given condition is accessed, deleted, or updated.

ObjectRules can be categorized in three different types:
Access rules, that are triggered when a particular model ele-
ment is accessed, Set rules that correspond to the setting of
an attribute or a reference, andDelete rules, that are triggered
whenan element is deletedor simply removed from its parent.
When to fire the trigger is also controlled by the sourceCon-
text class (from the imported metamodels) that represents
the type of the elements that could trigger the rule. This is
combined with the sourceExpression (i.e., the guard for the
event) to decide whether an object matches the rule.

All kinds of PrefetchingRules contain a targetExpression,
which represents the elements to load when the rule is trig-
gered. This expression is an OCLExpression that navigates
the model and returns the elements to load and cache. Note
that if self is used as the targetExpression of an AccessRule,
the framework will behave as a standard cache, keeping in
memory the accessed element without fetching any addi-
tional object.

It is also possible to define removeExpressions inPrefetch-
ingRules. When a removeExpression is evaluated, the prefet-

123

Advanced prefetching and caching of models with PrefetchML 1777

cher marks as free all the elements it returns from its cache.
Each removeExpression is associated with a removeContext
Class, which represents the context of the OCL expres-
sion. A remove expressions can be coupled with the tryFirst
expression contained in theCacheStrategy to tune the default
replacement policy of the cache.

3.2 Concrete syntax

We introduce now the concrete syntax of the PrefetchML lan-
guage, which is derived from the abstract syntax metamodel
presented in Fig. 1. Listing 1 presents the grammar of the
PrefetchML language expressed usingXText [14], an EBNF-
based language used to specify grammars and generate an
associated toolkit containing a metamodel of the language, a
parser, and a basic editor. The grammar defines the keywords
associated with the constructs presented in the PrefetchML
metamodel. Note thatOCLExpressions are parsed as Strings,
the model representation of the queries presented in Fig. 1 is
computed by parsing it using the EclipseMDTOCL toolkit.2

grammar f r . i n r i a . atlanmod . Pre fe tch ing
with org . e c l i p s e . x t ex t . common. Terminals
import " h t t p : / /www. i n r i a . f r / atlanmod / Pre fe tch ing "

P re f e t chSpec i f i c a t i on :
metamodel=Metamodel
plans+=Plan+

;

Metamodel :
’ import ’ nsURI=STRING

;

Plan :
’ plan ’ name=ID (d e f au l t ?= ’ de f au l t ’) ? ’{ ’

cache=CacheStrategy
ru l e s +=(Sta r t ingRule | AccessRule)∗

’} ’
;

CacheStrategy :
(LRUCache{LRUCache} | MRUCache{MRUCache})

(p rope r t i e s=CachePropert ies) ? (’when f u l l remove ’
t ryF i r s tExp=OCLExpression) ?

;

LRUCache :
’ use cache ’ ’LRU’

;

MRUCache:
’ use cache ’ ’MRU’

;

CachePropert ies :
’ [’ ’ s i z e= ’ s i ze=INT (’chunk= ’chunk=INT) ? shared= ’ shared ’? ’

pol icy= ’ pol icy=Consis tencyPol icy ’] ’
;

enum Consis tencyPolicy :
DROP_ALL = ’ drop_a l l ’ |
DROP_LINE = ’ drop_l ine ’ |
UPDATE = ’ update ’

;

2 http://www.eclipse.org/modeling/mdt/?project=ocl.

Prefe tchingRule :
(S ta r t ingRule | AccessRule | DeleteRule | SetRule)

;

S ta r t ingRule :
’ ru l e ’ name=ID ’ : ’ ’on s t a r t i n g ’
’ f e t ch ’ t a rge tPa t t e rnExp=OCLExpression
(’ remove ’ ’ type ’removeType=Cla s s i f i e rExp re s s ion

removePatternExp=OCLExpression) ?
;

AccessRule :
’ ru l e ’ name=ID ’ : ’ ’on access ’
’ type ’ sourceType=Cla s s i f i e rExp re s s ion (sourcePatternExp=

OCLExpression) ?
’ f e t ch ’ t a rge tPa t t e rnExp=OCLExpression
(’ remove ’ ’ type ’removeType=Cla s s i f i e rExp re s s ion

removePatternExp=OCLExpression) ?
;

DeleteRule :
’ ru l e ’ name=ID ’ : ’ ’on de l e t e ’
’ type ’ sourceType=Cla s s i f i e rExp re s s ion (sourcePatternExp=

OCLExpression) ?
’ f e t ch ’ t a rge tPa t t e rnExp=OCLExpression
(’ remove ’ ’ type ’removeType=Cla s s i f i e rExp re s s ion

removePatternExp=OCLExpression) ?
;

SetRule :
’ ru l e ’ name=ID ’ : ’ ’on s e t ’
’ type ’ sourceType=Cla s s i f i e rExp re s s ion (sourcePatternExp=

OCLExpression) ?
’ f e t ch ’ t a rge tPa t t e rnExp=OCLExpression
(’ remove ’ ’ type ’removeType=Cla s s i f i e rExp re s s ion

removePatternExp=OCLExpression) ?
;

OCLExpression : STRING ;

C l a s s i f i e rExp re s s ion : ID ;

Listing 1 PrefetchML Language Grammar

3.3 Running example

In order to better illustrate the features of PrefetchML, we
introduce a simple example model. Figure 2 shows a small
excerpt of the Java metamodel provided by MoDisco [5].
A Java program is described in terms of Packages that are
named containers that groupClassDeclarations through their
ownedElements reference. A ClassDeclaration contains a
name and a set of BodyDeclarations. BodyDeclarations are
also named, and its visibility is described by a singleModifier.
ClassDeclarations maintain a reference to their Compilatio-
nUnit (the physical file that stores the source code of the
class). ThisCompilationUnit has a name, a list ofComments,
and a list of imported ClassDeclarations (corresponding to
the import clauses in Java programs).

Listing 2 presents three sample OCL queries that can be
computed over an instance of the previous metamodel: The
first one returns the Package elements that do not contain any
ClassDeclaration through their ownedElements reference.
The second one returns from a given ClassDeclaration all
its contained BodyDeclarations that have a privateModifier,
and the third one returns from aClassDeclaration a sequence
containing the return Comment elements in the ClassDecla-

123

http://www.eclipse.org/modeling/mdt/?project=ocl

1778 G. Daniel et al.

Fig. 2 Excerpt of Java metamodel

rations that are imported by the CompilationUnit associated
with the current element.

context Package
def : isAnEmptyPackage : Boolean =
self .ownedElements→isEmpty()

context ClassDeclaration
def : privateBodyDeclarations : Sequence(BodyDeclaration) =
self . bodyDeclarations
→select (bd | bd.modifier = VisibilityKind : : Private)

context ClassDeclaration
def : importedComments : Sequence(Comment) =
self . compilationUnit . imports . compilationUnit .comments
→select (c | c . content . contains (’@return’)))

Listing 2 Sample OCL Queries

Listing 3 provides an example of a PrefetchSpecification
written in PrefetchML. To continue with our running exam-
ple, the listing displays prefetching and caching rules suitable
for a scenario where all the queries expressed in Listing 2 are
executed in the order they are defined.

The PrefetchSpecification imports the Java Metamodel
(line 1). This PrefetchSpecification contains a Plan named
samplePlan that uses a LRUCache that can contain up to
100 elements and removes them by chunks of ten (line 4).
The cache also defines the shared property, meaning that
elements computed by the prefetching rules and the running
application will be cached together. Finally, the cache uses
the drop_line consistency policy, which removes lines from
the cache corresponding to updated elements. Note that the
consistency policy is not important in this example, because

OCL expressions are side effect free and do not generate
update notifications.

The plan also defines three PrefetchingRules: The first
one, r1 (5–6), is a starting rule that is executed when the
plan is activated, and loads and caches all the Package
classes. The rule r2 (7–8) is an access rule that corre-
sponds to the prefetching and caching actions associatedwith
the query PrivateBodyDeclarations. It is triggered when a
ClassDeclaration is accessed, and loads and caches all the
BodyDeclarations andModifiers it contains. The rule r3 (9–
11) corresponds to the query ImportedComments: It is also
triggered when a ClassDeclaration is accessed and loads
the associated CompilationUnit and the Comment contents
of its imported ClassDeclarations. The rule also defines a
remove expression, which removes all the Package ele-
ments from the cache when the load instruction is completed.

1 impo r t " h t t p : / / www. example . o r g / J a v a "
2
3 plan s amp l eP l a n {
4 use cache LRU[s i z e =100 , chunk =10 , shared , p o l i c y

= d r o p _ l i n e]
5 r u l e r 1 : on s t a r t i n g f e t c h
6 Package . a l l I n s t a n c e s ()
7 r u l e r 2 : on a c c e s s t ype C l a s s D e c l a r a t i o n f e t c h
8 s e l f . b o d yD e c l a r a t i o n s . m o d i f i e r
9 r u l e r 3 : on a c c e s s t ype C l a s s D e c l a r a t i o n f e t c h
10 s e l f . c om p i l a t i o nU n i t . i m p o r t s . c om p i l a t i o nU n i t .

comments . c o n t e n t
11 remove t ype Package
12 }

Listing 3 Sample Prefetching Plan

123

Advanced prefetching and caching of models with PrefetchML 1779

Model-based Tools

Modeling
Framework

Persistence
Framework

PrefetchML
Framework

Database

Model
Connector

OCL
expressions

access events

cached objects

File

Cache

cache
management

API calls

uses

monitoring information

User Modeling
Engineer

configures

Fig. 3 PrefetchML integration in MDE ecosystem

4 PrefetchML framework infrastructure

In this section, we present the infrastructure of the Prefetch-
ML framework and its integration into the modeling ecosys-
tem (details on its integration on specific modeling frame-
works are provided in the next section). We also detail how
prefetching rules are handled and executed using the run-
ning example presented in the previous section and present
the different cache consistency policy and integration level
that can be defined to tune the prefetching algorithm.

4.1 Architecture

Figure 3 shows the integration of thePrefetchML framework
in a typical modeling framework infrastructure: Gray nodes
represent standard model access components: A User uses a
model-based tool that accesses a model through a modeling
API, which delegates to a persistence framework in charge
of handling the physical storage of the model (e.g., in XML
files, or in a database). The elements in this modeling stack
are typically set up by aModeling engineer who configures
them according to the application’s workload (e.g., by select-

ing a scalable persistence framework if the application aims
to handle large models).

The PrefetchML framework (white nodes) receives events
from the modeling framework. When the events trigger a
prefetching rule, it delegates the actual computation to its
Model Connector. This component interacts with the mod-
eling framework to retrieve the requested object, typically
by translating the OCL expressions in the prefetching rules
into lower level calls to the framework API. Sect. 6 dis-
cusses two specific implementations of this component. The
PrefetchML framework also provides monitoring informa-
tion that gives useful insights into the execution to help the
Modeling Engineer to customize the persistence framework
and prefetching plans. Themonitoring component is detailed
in the next section.

The PrefetchML framework also intercepts model ele-
ments accesses, in order to search first in its Cache com-
ponent if the requested objects are already available. If the
cache contains the requested information, it is returned to the
modeling framework, bypassing the persistence framework
and improving execution time. Model modification events
are also intercepted by the framework to update/invalidate

123

1780 G. Daniel et al.

Fig. 4 PrefetchML Framework
Infrastructure

PrefetchML
Framework

Cache
API

Event
API

PrefetchML
Core

Model
Connector

imports

conformsTo

Model

Fetch
Queries

conformsTo

events

PrefetchML
Metamodel Metamodel

Caching /
Unloading

Model
Access

PrefetchML
Specification

Rule
Store

(0)

(1)

(2)

(3) (4)

(5)

(6)

cached values in order to keep the cache content consistent
with the model state.

Figure 4 describes the internal structure of the PrefetchML
Framework. As explained in Sect. 3, a PrefetchML specifica-
tion conforms to the PrefetchML metamodel. This specifica-
tion imports also the metamodel/s for which we are building
the prefetching plans.

The Core component of the PrefetchML framework is
in charge of loading, parsing, and storing these PrefetchML
specifications and then uses them to find and retrieve the
prefetching / caching rules associated with an incoming
event, and, when necessary, execute them. This component
also contains the internal cache that retains fetched model
elements in memory. The core component ensures cache
consistency, by invalidating part or all cached records when
update, create, or delete events are received. The Rule Store
is a data structure that stores all the object rules (access,
update, delete) contained in the input PrefetchML descrip-
tion.

The Model Connector component is in charge of the
translation and the execution of OCLExpressions in the
prefetching rules. This connector can work at the modeling
framework level, meaning that it executes fetch queries using
the modeling API itself, or at the database level, translating
directly OCL expressions into database queries.

The CacheAPI component gives access to the cache con-
tents to client applications. It allows manual caching and
unloading operations and provides configuration facilities.
This API is an abstraction layer that unifies access to the
different cache types that can be instantiated by the core
component. By default, the core component manages its own

cache where only prefetched elements are stored, providing
a fine grain control of the cache content. While this may
result in keeping in the cache objects that are not going to
be recurrently used, using a LRU cache strategy allows the
framework to get rid of them when memory is needed. In
addition, the grammar allows to define a minimal cache that
would act only as a storage mechanism for the immediate
prefetched objects.

TheEventAPI is the component that receives events from
the client application. It provides an API to send access,
delete, and update events. These events are defined at the
object level and contain contextual information of their
encapsulated model element, such as its identifier, the refer-
ence or attribute that is accessed, and the indexof the accessed
element. This information is then used by the core component
to find the rules that match the event.

In particular, when an object event is sent to the Prefetch-
ML framework (1), the Event API handles it and forwards it
to the Core Component, which is in charge of triggering the
associated prefetching and caching rule. To do that, the Core
Component searches in the Rule Store the rules that corre-
spond to the event and the object that triggered it (3). Each
OCLExpression in the rules is translated into fetch queries
sent to the Model Connector (4), which is in charge of the
actual query computation over the model (5). Query results
are handed back by the PrefetchML Core, which is in charge
of caching them and freeing the cache from previously stored
objects (6).

As prefetching operations can be expensive to compute,
the PrefetchML framework runs in the background and con-
tains a pool of working threads that performs the fetch

123

Advanced prefetching and caching of models with PrefetchML 1781

Fig. 5 PrefetchML initialization
sequence diagram

operations in parallel with the application execution. Model
elements are cached asynchronously and are available to the
client application through the CacheAPI.

Note that this infrastructure is not tailored to any particular
data representation and can be plugged into anykind ofmodel
persistence framework that stores models conforming to the
Ecore metamodel and provides an API rich enough to eval-
uate OCL queries. This includes, for example, EMF storage
implementations such as XMI, but also scalable persistence
layers built on top of the EMF, like NeoEMF [15], CDO [13],
and Morsa [24]. However, the efficiency of PrefetchML
(in particular the prefetcher throughput) can vary from one
persistence solution to another because of synchronization
feature and the persistence framework/database ability to
handle multiple queries at the same time. These differences
are highlighted in the experiments we discuss in Sect. 7.

4.2 Rule processing

We now look at the PrefetchML engine from a dynamic point
of view. Figure 5 presents the sequence diagram associated
with the initialization of the PrefetchML framework. When
initializing, the prefetcher starts by loading the PrefetchDe-
scription to execute (1). To do so, it iterates through the set of
plans and stores the rules in the RuleStore according to their
type (2). In the example provided in Listing 3, this process
saves in the store the rules r2 and r3, both associated with
the ClassDeclaration type. Then, the framework creates the
cache (3) instance corresponding to the active prefetching
plan (or the default one if no active plan is provided). This
creates the LRU cache of the example, setting its size to
100, its chunkSize to 10, and the drop line consistency
policy.

Next, the PrefetchML framework iterates over the Start-
ingRules of the description and computes their targetExpres-
sion using the Model Connector (4). Via this component,

the OCL expression is evaluated (in the example, the tar-
get expression is Package.allInstances()) and the
resulting elements are returned to the Core component (5)
which creates the associated identifying keys (6) and stores
them in the cache (7).

Note that starting rules are not stored in the Rule Store,
because they are executed only once when the plan is acti-
vated, and are no longer needed afterward.

Once this initial step has been performed, the framework
awaits object events. Figure 6 shows the sequence diagram
presenting how the PrefetchML handles incoming events.
When an object event is received (8), it is encapsulated into a
working task, which contains contextual information of the
event (object accessed, feature navigated, and index of the
accessed feature), and asynchronously sent to the prefetcher
(9) that searches in theRuleStore the object rules that have the
same type as the event (10). In the example, if a ClassDecla-
ration element is accessed, the prefetcher searches associated
rules and returns r2 and r3. As for the diagram above, the
next calls involve the execution of the target expressions for
the matched rules and save the retrieved objects in the cache
for future calls. Finally, the framework evaluates the remove
OCL expressions (17) and frees the matching objects from
the memory. In the example, this last step removes from the
cache all the instances of the Package type.

4.3 Cache consistency

The PrefetchML DSL presented in Sect. 3 allows to define
prefetching rules that are triggered when an element in the
model is Accessed, Set, and Deleted. However, these events
are simply used to trigger prefetching rules, and updating the
model may result in inconsistencies between the PrefetchML
cache and the actual model state. While this is not a problem
for side effect-free query computation such as OCL (where
no element is modified), it becomes an issue when using

123

1782 G. Daniel et al.

Fig. 6 PrefetchML access event
handling sequence diagram

PrefetchMLon top ofmodel-to-model transformation frame-
works, or EMF API-based applications.

To overcome this limitation, we have defined a set of cache
consistency policies that are embedded in PrefetchML. They
all ensure that the content of the cache is consistent w.r.t the
model, by handling updates with different strategies in order
to limit execution overhead or increase cache hits. Available
policies include:

– Drop all: drop the entire cache every time the model is
updated

– Drop line: drop the cache lines corresponding to the
updated element and all its references

– Update: update the cache lines corresponding to the
updated elementwith the new value, including references

Drop all is the simplest cache consistency policy: It drops
the entire cache each time a model update event is received.
Dropping the entire cache is fast and does not have a sig-
nificant impact on the prefetcher throughput. However, this
policy drops elements that are still consistent with the model
and have an important impact on the prefetcher hit score. Full
drop policy is typically used when model modifications are
localized at a specific point of the execution and concern an
important part of the model. This consistency strategy can be
specified in the cache parameters of a prefetching plan with
the keyword drop-all

Drop line removes from the cache the updated element
and all the elements referencing it. This approach is inter-
esting if few model modifications are performed at multiple
steps of the execution, and dropping the entire cache would
have an important impact on the number of hits. However,
dropping multiple lines is more expensive in terms of execu-
tion time because the framework has to inspect the cache to

find all the elements to remove. This policy is used by default
if no consistency policy is defined in the prefetching plan.

Update policy keeps the cache consistent with the model
by updating all the lines corresponding to themodifiedobject.
This policy is interesting if a very small amount of model
modifications are performed, and the updated objects are
reused later and should stay in the cache. Updating the cache
requires to find the cache lines to update and navigate the
model to find the updated values. This operation is costly and
may have a significant impact on the prefetcher performance
if too many objects are updated during the query execution.
Note that indexing techniques could be used to reduce this
performance issue, but they also require to keep the index
up-to-date with both the cache and the model content.

These different cache policies can be selected by the
modeling engineer to tune PrefetchML according to its appli-
cation workload. For example, an interactive model editor
can benefit from the Update policy, because this kind of
application usually has a lowworkload, with localizedmodel
modifications. On the other hand, in the context of a model-
to-model transformation that typically creates and updates
a lot of model elements, using a lightweight policy such as
drop line is more appropriated.

Figure 7 shows the sequence diagram presenting how
PrefetchML handles model modifications. When an element
is updated, an updateEvent describing the old (o) and new
(n) versions of the updated element is sent to the EventAPI
(8). This event is forwarded to the Core component (9) that
retrieves the consistency policy to use (10) and tells theCache
to update its content according to it (11). Depending on the
policy use, the Cache will drop all its content, invalidate the
lines corresponding to the updated element, or update its con-
tent. The rest of the sequence diagram is similar to the one
presented in Fig. 6, with the particularity that rules are found

123

Advanced prefetching and caching of models with PrefetchML 1783

Fig. 7 PrefetchML update event
handling sequence diagram

and computed from the new version of the element instead
of the old one.

4.4 Shared cache

Aswehave explained throughout this section, thePrefetchML
framework embeds a cache dedicated to keep prefetched
elements. The modeler has precise control over the cache
content and is assured that every object stored in the cache has
been loaded by a PrefetchML rule. This approach is interest-
ing when designers want to choose a cache size that perfectly
fits their needs and are not concerned by the other caches in
the application environment (such as the ones embedded in
themodel persistence framework or the underlying tools they
rely on). However, this isolation of the PrefetchML cache has
a cost: As Fig. 3 shows, this cache is accessed every time a
model access operation is captured, and thus, the framework
searches for the accessed element in the PrefetchML cache
first, and only when it is not found, it delegates to the per-
sistence framework the retrieval of the requested object. The
performance of this preliminary lookup strongly relies on
the correctness of the prefetching plan: If the plan is good,
the cache will have a decent chance to contain the element
and this will improve the computation time, if not, the pro-
gram may waste a significant amount of time scanning the
PrefetchML cache.

To overcome this limitation, we have defined a shared
cache that contains both the elements loaded by prefetching
rules, and by the persistence framework itself. To do so, every
call to an element accessor that is captured by our framework

(even if it does not trigger any prefetching rule) will create
a cache entry at the PrefetchML (shared) cache level (i.e.,
the first cache that is accessed when searching for an object).
This architecture provides two benefits: (i) It caches elements
that are accessed multiple times even if they are not part of a
prefetching rule, improving the PrefetchML cache accuracy
and reducing the time spent in unnecessary lookups and (ii)
it improves the prefetcher throughput when both prefetch-
ing rules and application-level queries (not triggering any
rule) are loading the same elements. In this last scenario, the
PrefetchMLalgorithmwill be notified of every element being
accessed, allowing it to avoid duplicated work and move on
the next rule to compute.

In addition, this shared cache can be seen as a default
caching mechanism on top of model persistence frameworks
that do not define their own cache: The PrefetchML frame-
work keeps in memory the elements that have been accessed
(when the persistence framework does not support this fea-
ture) and automatically retrieves them from the cache when
they are accessed. In this context, a PrefetchML plan con-
taining a simple shared cache declaration can be used to
enhance the persistence framework with a simple caching
strategy and be complemented with additional prefetching
and caching rules if needed. We show in our experiments
(Sect. 7) that sharing the cache between the PrefetchML layer
and the model persistence framework has a positive impact
on query execution time.

Note that in this first version of the framework, we only
consider the integration of PrefetchML cache with the ones
defined at themodel persistence level. Studying the impact of

123

1784 G. Daniel et al.

Fig. 8 Prefetch Abstract syntax
metamodel with monitoring
extensions

low-level caches, such as database caches, operating system
optimizations, andhardware caches, and their integration into
a global caching mechanism is left for future work. Note that
designers can easily disable/enable this shared cache option
using the shared cache parameter in their PrefetchML plans.

5 Planmonitoring

This section details the monitoring component we have inte-
grated to the PrefetchML framework. We first introduce the
new language constructs and framework updates, and then
we present an example of the information a modeler can get
from the framework and how it can be used to customize the
prefetching plan. Finally, we show how this same monitor-
ing information can be employed to dynamically adapt the
PrefetchML algorithm and an appropriate cache integration.

5.1 Language extensions for planmonitoring

Prefetching and caching can significantly improve model
query computation, but this improvement is tightly coupled
to the quality of the plan to execute. Intuitively, a good
prefetching plan is a plan that loads elements before they
are needed by the application and keeps them in memory for
a sufficiently long time to make later accesses faster, without
polluting cache content with irrelevant objects.

While this intuitive approach is easy to conceptualize, it
can be hard to apply in real-life scenarios: The modeler does
not know the exact content of the cache, and multiple rules
may interact with each other, filling/freeing the cache with
different expressions at the same time. Moreover, comparing
the quality of two prefetching plans and/or the impact of an
update on a specific rule is not a straightforward task and
requires to have a close look at the cache content. To help
designers to evaluate the quality of their prefetching plans,

we have defined a monitoring component that presents exe-
cution information allowing them to detect problematic and
missing rules, guards, and interaction between prefetching
instructions.

Figure 8 shows the extended abstract syntax of the
PrefetchML DSL with the new constructs dedicated to mon-
itoring (gray nodes). In addition to its CacheStrategy, now
a PrefetchML Plan can define an optional MonitoringStrat-
egy that collects execution information such as the number
of hits and misses for each rule. Currently available mon-
itoring strategies are SimpleMonitoring that provides these
metrics to the model designer under request (Sect. 5.2) and
AdaptativeMonitoring that uses them together with a set of
user-defined thresholds to optimize the prefetching algorithm
at runtime (Sect. 5.3).

These new language constructs are used to initialize the
monitoring component through the MonitorAPI shown in
Fig. 9. This API defines a set of methods to instantiate
and parameterize a monitor, and access computed metrics.
These metrics are updated each time an element is loaded
by a prefetching rule or accessed from the cache. Monitor-
ing information can be displayed to end users to help them
improve their PrefetchML plans, or used at runtime by the
framework itself to adapt the plan dynamically.

In the following, we detail the metrics computed by the
monitoring component and how they can be used by a mod-
eler to improve prefetching plans.

5.2 Simplemonitoring

SimpleMonitoring is the first monitoring strategy we have
added to the PrefetchML grammar (Fig. 8). It can be added
to a PrefetchML plan by using the keywords use simple
monitoring. Once activated, the framework will collect
informationduring the execution and compute a set ofmetrics

123

Advanced prefetching and caching of models with PrefetchML 1785

Fig. 9 PrefetchML Framework
Infrastructure with Monitoring

PrefetchML
Framework

Cache
API

Event
API

PrefetchML
Core

Model
Connector

imports

conformsTo

Model

Fetch
Queries

conformsTo

events

PrefetchML
Metamodel Metamodel

Caching /
Unloading

Model
Access

PrefetchML
Specification

Rule
Store

(0)

(1)

(2)

(3) (4)

(5)

(6)

Monitor
API

(7)

that will be presented to the modeler to help in the quality
evaluation of the plan. The metrics are the following:

1. HitScore: the total number of elements accessed from
the cache

2. MissScore: the number of elements the persistence
framework had to load because of cache misses

3. MissPerFeature: categorize the cache misses score per
accessed element feature

4. CachedByRule: the number of elements cached by each
prefetching rule

5. HitPerRule: the number of cache hits generated by each
prefetching rule

6. CachedTimestampPerRule: the list of caching instruc-
tion time stamps for each prefetching rule

7. HitTimestampPerRule: the list of cache hit time stamps
for each prefetching rule

8. TotalPrefetchingTime: the total time spent on prefetch-
ing/caching actions

Metrics 1–3 correspond to global accuracy information
that represents the entire prefetching plan usefulness. A
good plan will typically generate a high HitScore and a
low MissScore. Misses are categorized by feature (attribute
or reference), providing insights into a potential new rule
to add to the plan. Metrics 4 and 5 provide fine informa-
tion for each rule within the PrefetchML plan: the number
of cached elements per rule and the number of hits gener-
ated by each rule. This information can be used to evaluate
the usefulness of a specific rule (e.g., by comparing the
ratio Hit Per Rule/CachedByRule to a given threshold).

Finally, metrics 6–8 provide time-based information, show-
ing the impact of a given rule over time. This information
can be used to find rules that are applied at some point of the
computation where they should not, which lets the designer
tune the OCL conditions to control when they are triggered.
The total prefetching time allows determination of which
part of the computation was dedicated to prefetching and
caching instructions. This information is particularly inter-
esting when PrefetchML is applied on top of a backend that
does not handle multi-threaded accesses, emphasizing exe-
cution time bottlenecks.

Listing 4 shows a possible output of the monitoring com-
ponent after the execution of the queries presented in the
running example (Listing 2) with the PrefetchML plan pre-
sented in Listing 3 enabled over a sample model. The table
shows, for each rule, the number of executions, the total and
average computation time, the number of cached elements,
and the number of generated hits. This output format is the
default one provided by PrefetchML, and additional infor-
mation such as time-based metrics is available through the
monitor API.

The table shows that three rules were executed: r1,r2,
and r3. Rule r1 was executed one time, which is the
expected behavior for starting rules that are executed when
the prefetching plan is loaded. The table also shows that
r1 cached 45,000 elements, but only generated 3000 hits,
which is low compared to the total hit score (around 1%).
Loading these 45,000 elements required 6900ms (15%of the
total execution time), which is high compared to the benefit.
Removing the rule from the plan would allow the framework
to use this execution time to increase the throughput of the

123

1786 G. Daniel et al.

other rules. Compared to r1, rules r2 and r3 cached fewer
elements, but generated most of the global hit score (respec-
tively, 52 and 47%).

The last part of the presented listing shows the features
that generated cache misses. In our example, there is only
one feature (Package.ownedElement) that generated all the misses.
This information shows that adding a prefetching rule for this
feature would improve the global hit score and thus improve
the efficiency of the prefetching plan.

Based on the monitoring information, we were able to
detect that r1 should be removed, and a new rule r4 should
be added to prefetch the feature that generated the misses.
Listing 5 shows the updated plan.

1 === PrefetchML Monitoring ===
2 Monitoring started at 12:30:34:145
3 #Hits : 234 000
4 #Misses: 125000
5 #Total Prefetching Time: 45000 ms
6
7 == Rule → #Execution | Tot . Time | Avg. Time | #Cached | #Hits

==
8 r1 → 1 | 6900 | 6900 | 45000 | 3000
9 r2 → 1493 | 14500 | 10 | 12500 | 120000

10 r3 → 5890 | 23600 | 4 | 30456 | 111000
11
12 == Feature → #Misses ==
13 Package.ownedElements → 125000

Listing 4 PrefetchML Monitoring Example

1 p l a n s amp l eP l a n {
2 u s e c a ch e LRU[s i z e =100 , chunk =10]
3 r u l e r 2 : on a c c e s s t y p e C l a s s D e c l a r a t i o n

f e t c h
4 s e l f . b o d yD e c l a r a t i o n s . m o d i f i e r
5 r u l e r 3 : on a c c e s s t y p e C l a s s D e c l a r a t i o n

f e t c h
6 s e l f . c om p i l a t i o nU n i t . i m p o r t s .

c om p i l a t i o nU n i t . comments . c o n t e n t
7 remove t y p e Package
8 r u l e r 4 : on a c c e s s t y p e Package f e t c h
9 s e l f . ownedElemen t s

10 }

Listing 5 Tuned PrefetchML Plan

5.3 Adaptative monitoring

AdaptativeMonitoring is the second monitoring strategy we
have added to the PrefetchML language (Fig. 8). It can
be activated within a PrefetchML plan using the keywords
use adaptative monitoring. When this strategy is
set, the framework collects runtime information (as for the
SimpleMonitoring strategy) and uses a set of heuristics to
dynamically adapt prefetching plans to the query computa-
tion.

We have defined five heuristics that are used by the frame-
work to disable prefetching rules that are not beneficial for the
application. We consider that a rule is harmful if it pollutes
the cache content with useless objects and/or if it reduces
the throughput of the prefetcher by spending execution time
computing loading instructions that are not caching relevant

elements. These heuristics can be parametrized by setting
the threshold values of theAdaptativeMonitoring component
and retrieve:

1. RuleEfficiency: Hitr/Cacher < threshold → dis-
able(r)

2. Time-based RuleEfficiency: Hitr/Cacher < thre-
shold during a period of time t → disable(r)

3. RuleImpact: Hitr/Hit Score < threshold → dis-
able(r)

4. Time-based RuleImpact: Hitr/Hit Score < thre-
shold during a period of time t → disable(r)

5. TimeImpact: TotalT ime > threshold → ∀r , dis-
able(r)

RuleEfficiency evaluates the rule efficiency by compar-
ing the number of hits it has generated with the number of
cached objects. The rule is disabled when this value goes
under a given threshold, meaning that the rule cached too
many objects compared to the number of hits it generated.
While this strategy can be interesting for simple prefetching
plan, it may disable useful rules for more complex plans that
cache elements that are accessed late in the query computa-
tion (typically starting rules). To handle this kind of rules,
we have defined Time-based RuleEfficiency that extends
RuleEfficiency by disabling a rule if its computed ratio is
below a threshold for a given period of time t . RuleImpact
computes the impact of a rule by comparing the number of
hits it generates w.r.t the globalHitScore and disables the rule
if this value goes below a given threshold. This strategy dis-
ables low-impact rules, giving more execution time to other
rules that are generating more hits. Time-based RuleIm-
pact is similar, but it only disables a rule if its computed
ratio is below a threshold for a given period of time. Finally,
TimeImpact is a plan-level strategy that disables all rules if
the prefetching time increases over a given threshold.

All the thresholds and time intervals used to define
the presented heuristics can be configured in PrefetchML
plans using their corresponding keywords: efficiency
Threshold, efficiencyPeriod, impact
Threshold, etc.

Note that in this first version of the adaptative monitor-
ing, component rules can only be disabled, re-enabling rules
is a more complicated task, because computed ratios do not
evolve once rules have been disabled. To allow rules re-
enabling, we plan to add another monitoring layer that keeps
traces of accessed elements and computes which rules would
have prefetched them. Monitoring information could also be
used to create new rules based on the feature misses. While
creating a rule for a single feature is simple, the key point is to
find the optimal rule(s) to reduce the number of misses, with-
out polluting the cache content and the prefetcher throughput.
This could be done by using constraint solvers in order to find
the optimal set of rules to create from a set of misses.

123

Advanced prefetching and caching of models with PrefetchML 1787

Fig. 10 PrefetchML rule editor

6 Tool support

In this section, we present the tool support for the Prefetch-
ML framework. It is composed of two main components:
a language editor (presented in Sect. 6.1) that supports the
definition of prefetching and caching rules and an execution
engine with two different integration options: the EMF API
and the NeoEMF/Graph persistence framework (presented
in Sects. 6.2 and 6.3). The presented components are part
of a set of open-source Eclipse plug-ins available at https://
github.com/atlanmod/Prefetching_Caching_DSL.

6.1 Language editor

The PrefetchML language editor is an Eclipse-based edi-
tor that allows the creation and the definition of prefetching
and caching rules. It is partly generated from the XText
grammar presented in Sect. 3.2 and defines utility helpers
to validate and navigate the imported metamodel. The editor
supports navigation auto-completion by inspecting imported
metamodels and visual validation of prefetching and caching
rules by checking reference and attribute existence. Note that
monitoring constructs defined in Sect. 5 are available in the
editor, allowing to choose a monitoring strategy and define
its thresholds.

Figure 10 shows an example of the PrefetchML editor
that contains the prefetching and caching plan defined in
the running example of Sect. 3. The plan contains an addi-
tion use simple monitoring line that enables simple
monitoring capabilities, providing execution information to
the modeler.

6.2 EMF integration

Figure 11 shows the integration of PrefetchML within the
EMF framework. Note that only two components must
be adapted (light gray boxes). The rest are either generic
PrefetchML components or standard EMF modules.

In particular, dark gray boxes represent the standard
EMF-based model access architecture: An EMF-based tool

accesses the model elements through the EMF API, which
delegates the calls to the PersistenceFramework of choice
(XMI, CDO, NeoEMF,...), which is finally responsible for
the model storage.

The two added/adapted components are:

– An Interceptor that wraps the EMF API and captures
the calls (1) to the EMF API (such as eGet, eSet, or
eUnset). EMF calls are then transformed intoEventAPI
calls (2) by deriving the appropriate event object from the
EMF API call. For example, an eGet is translated into
the accessEvent method call (8) in Fig. 6. Once the event
has been processed, the Interceptor also searches in the
cache the requested elements as indicated by the Model
Connector (3). If they are available in the cache, they
are directly returned to the EMF-based tool. Otherwise,
the Interceptor passes on the control to the EMF API to
continue the normal process.

– An EMF Model Connector that translates the OCL
expressions in the prefetching and caching rules into
lower level EMF API calls. The results of those queries
are stored in the cache, ready for the Interceptor to request
them when necessary.

This integration makes event creation and cache accesses
totally transparent to the client application. In addition, it
does not make any assumptions about the mechanism used
to store the models, and therefore, it can be plugged on top
of any EMF-based persistence solution.

6.3 NeoEMF/graph integration

To take advantage of the query facilities of graph databases (a
proven good alternative to store large models) and make sure
PrefetchML optimizes asmuch as possible the rule execution
time in this context, we designed a Model Connector dedi-
cated to NeoEMF/Graph, a persistence solution that stores
EMF models into graph databases. Note that PrefetchML
can work with NeoEMF without this dedicated support by
processing calls through the EMF API as explained in the
previous section. Still, offering a native support allows for
better optimizations.

NeoEMF/Graph is a scalable model persistence frame-
work built on top of the EMF that aims at handling large
models in graph databases [3]. It relies on the Blueprints
API [30], which aims to unify graph database accesses
through a common interface. Blueprints is the basis of a stack
of tools that stores and serializes graphs, and provides a pow-
erful query language called Gremlin [31]. NeoEMF/Graph
relies on a lazy-loading mechanism that allows the manip-
ulation of large models in a reduced amount of memory by
loading only accessed objects.

123

https://github.com/atlanmod/Prefetching_Caching_DSL
https://github.com/atlanmod/Prefetching_Caching_DSL

1788 G. Daniel et al.

Fig. 11 Overview of
EMF-based prefetcher

Model
Query

PrefetchML
Framework

Cache
API

Event
API

PrefetchML
Core

EMF Model
Connector

Fetch
Queries

events Caching /
Unloading

Rule
Store

EMF
API

EMF-based
Tool

Model
Operation(1)

Event
Creation(2)

Cache
Lookup

(3)

Persistence
Framework

(CDO,
NeoEMF, XMI)

Standard
Computation

(4)

Interceptor

Fig. 12 Overview of
NeoEMF-based prefetcher

Graph
Query

PrefetchML
Framework

Cache
API

Event
API

PrefetchML
Core

Graph
Connector

Fetch
Queries

events Caching /
Unloading

Rule
Store

EMF
API

EMF-based
Tool

Event
Creation

Cache
Lookup

NeoEMF

Interceptor

Graph
Database

The prefetcher implementation integrated in NeoEMF/-
Graph (Fig. 12) uses the same mechanisms as the standard
EMF one: It defines an Interceptor that captures the calls to
the EMF API, and a dedicated Graph Connector. While the
EMF Connector computes loading instructions at the EMF
API level, theGraph Connector performs a direct translation
fromOCL into Gremlin and delegates the computation to the
database, enabling backend optimizations such as uses of
indexes, or query optimizers. The Graph Connector caches
the results of the queries (i.e., database vertices) instead of
the EMF objects, limiting execution overhead implied by
object reifications. Since this implementation does not rely
on the EMF API, it is able to evaluate queries significantly
faster than the standard EMF prefetcher (as shown in our
experimental results in Sect. 7), thus improving the through-
put of the prefetching rule computation. Database vertices
are reified into EMF objects when they are accessed from
the cache, limiting the initial execution overhead implied by
unnecessary reifications.

7 Evaluation

In this section, we evaluate the performance of our
PrefetchML framework by comparing the performance of

executing a set of OCL queries on top of two different
backends: NeoEMF/Graph and NeoEMF/Map when (i) no
prefetching is used and (ii) EMF-based prefetching is active.
Models stored in NeoEMF/Graph are also evaluated with a
third strategy using the dedicated graph-based prefetching
presented in Sect. 6.3.

Queries are executed in two modeling scenarios: single
query execution where queries are evaluated individually on
the models, and multiple query execution where queries are
computed sequentially on the models. The first one corre-
sponds to the worst case scenario where the prefetcher and
the query itself compete to access the database and retrieve
the model elements. The second scenario corresponds to the
optimal prefetching context: Rules target all the queries at
once, and the workflow contains idling intervals between
each evaluation, givingmore execution time to the prefetcher
to load elements from the database.

Note that we do not compare the performance of our solu-
tion with existing tools that can be considered related to ours
because we could not envision a fair comparison scenario.
For instance, Moogle [22] is a model search approach that
creates an index to retrieve full models from a repository,
where our solution aims to improve performances of queries
at the model level. IncQuery [4] is also not considered as
a direct competitor because it does not provide a prefetch

123

Advanced prefetching and caching of models with PrefetchML 1789

mechanism. In addition, IncQuery was primarily designed
to execute queries against models already in the memory,
which is a different scenario with different trade-offs.

Experiments are executed on a computer running Fedora
20 64 bits. Relevant hardware elements are: an Intel Core I7
processor (2.7 GHz), 16GB of DDR3 SDRAM (1600MHz),
and a SSD hard disk. Experiments are executed on Eclipse
4.5.2 (Mars) running Java SE Runtime Environment 1.8.

7.1 Benchmark presentation

The executed queries are adapted from the Train Bench-
mark [29], which is a benchmark used to evaluate the
performance of model transformation tools. It defines the
railwaymetamodel, which describes classes to represent rail-
way networks, such as Route, Semaphore, and Switch. A
complete description of this metamodel can be found on the
benchmark repository3 and in the associated publication [29].
In this experiment, we use four queries adapted from the ones
defined in the benchmark:

– RouteSensors: to compute a subset of the sensors con-
tained in a route.

– RegionSensors: to access all the sensors contained in a
region.

– ConnectedSegments: to navigate all the track elements
connected to a sensor.

– SwitchSet: to retrieve for each entry of a route its corre-
sponding switch elements.

The first query navigates multiple references from aRoute
element in order to retrieve the Sensors it directly and indi-
rectly contains. The second one performs a simple navigation
to retrieve all the Sensor elements contained in a Region. The
third query performs a long navigation sequence to retrieve
all the TrackElements connected to a Route element. The
last query retrieves the Semaphores associated with a given
Route and then navigates them to find the Switch elements
satisfying a condition.4

The prefetching plans used in this benchmark have been
created by inspecting the navigation path of the queries. The
context type of each expression constitutes the source of
AccessRules, and navigations are mapped to target patterns.
The validity of the resulting plans has been checked via a pre-
liminary execution of the queries with the SimpleMonitoring
component enabled. Note that this plan creation strategy can
be reused for any OCL query computation. Additionally and
based on our experience on defining PrefetchML plans, we
have applied amerging strategy to create a single PrefetchML

3 https://github.com/FTSRG/trainbenchmark.
4 Details of the queries can be found at https://github.com/atlanmod/
Prefetching_Caching_DSL.

rule for common segments in navigation paths, in order to
minimize the number of rules that have to be executed by the
framework.

In this evaluation, we do not consider the definition of
bad PrefetchML plans (i.e., plans that contain rules that are
never triggered and/or rules that load elements that are not
needed), but our previous experiments [11] have shown that
these plans have a limited impact on the execution compared
to the default execution without PrefetchML.5

Thequeries havebeen executedwith aMRUcache that can
contain up to 20% of the input model. We choose this cache
replacement policy according to Chou and Dewitt [7] who
state that MRU is the best replacement algorithm when a file
is being accessed in a looping sequential reference pattern.
Another benchmark presenting a different cache configura-
tion is available in our previous work [11]. In addition, we
compare execution timeof thequerieswhen they are executed
for the first time and after a warm-up execution to consider
the impact of the cache on the performance.

Prefetching plans are evaluated in two cache settings: a
first one with an embedded cache dedicated to prefetched
objects, meaning that only elements that have been loaded
by the framework are in the cache, and a second one using
a shared cache storing elements of both the prefetcher and
the persistence framework. In addition, we evaluate for each
cache configuration the impact of the Adaptative Monitoring
component presented in Sect. 5.3. We manually set the Rule-
Efficiency threshold to 0.5 and the RuleImpact one to 0.25,
based on the information provided by the Simple Monitor-
ing component used in our preliminary run.6 Note that the
monitoring component is reset between each execution of the
query in order to keep traces of the prefetching and caching
instructions that are specific to a given execution.

The experiments are run over one of the models provided
with the benchmark, which contains 102,875 elements. The
associated XMI file is 19MB large. Queries are evaluated
over all the instances of themodel that conform to the context
of the query. In order to give an idea of the complexity of the
queries, we present in Table 1 the number of input elements
for each query (#Input), the number of traversed elements
during the query computation (#Traversed), and the size of
the result set for each model (#Res).

7.2 Results

This section describes the results we obtained by running the
experiment presented above.We first introduce the results for
the single query execution scenario, and then we present the

5 Note that this previous experiment embedded a primitive version of
the Adaptative Monitoring component that was able to disable a rule if
it did not generate any hit.
6 Time-based monitoring is not considered in this evaluation.

123

https://github.com/FTSRG/trainbenchmark
https://github.com/atlanmod/Prefetching_Caching_DSL
https://github.com/atlanmod/Prefetching_Caching_DSL

1790 G. Daniel et al.

Table 1 Experimental set details

Query #Input #Traversed #Res

RouteSensors 320 28,493 1296

RegionSensors 320 25,431 15,805

ConnectedSegments 15,805 98,922 67,245

SwitchSet 320 14,957 252

results for the multiple query execution scenario. Note that
the correctness of query results in both scenarios has been
validated by comparing the results of the different config-
urations with the ones of the queries executed without any
prefetching enabled using EMFCompare.7 Presented results
have been obtained by using Eclipse MDT OCL to run the
OCL queries on the different persistence frameworks.

Tables 2 and 3 present the average execution time (in ms)
of ten executions of the presented queries over the bench-
marked model stored in NeoEMF/Graph and NeoEMF/Map,
using the single query execution scenario. Each line presents
the result for the kind of prefetching that has been used: no
prefetching (NoPref.), EMFprefetchingwith dedicated cache
(EMF Pref.) and adaptative monitoring (EMF Pref. (Adapta-
tive)), and EMF prefetching with shared cache (EMF-Pref.
(Shared)) and adaptative monitoring (EMF-Pref. (Shared +
Adaptative)). Note that Table 2 contains an additional line
corresponding to the graph-specific prefetcher.

Table 4 shows the average execution time (in ms) of
ten executions of all the queries over NeoEMF/Graph and
NeoEMF/Map in the multiple query execution scenario.

In the first part of the result tables, the cells show the exe-
cution time in milliseconds of the query the first time it is
executed (Cold Execution). In this configuration, the cache
is initially empty, and benefits of prefetching depend only on
the accuracy of the plan (to maximize the cache hits) and the
complexity of the prefetching instructions (the more com-
plex they are, the more time the background process has to
advance on the prefetching of the next objects to access). In
the second part, results show the execution time of a second
execution of the query when part of the loaded elements has
been cached during the first computation (Warmed Execu-
tion).

7.3 Discussion

The main conclusions we can draw from these results
(Tables 2 to 4) are:

– PrefetchML improves the execution time of all the
queries on top of NeoEMF/Map for both scenarios. Exe-
cution time is improved by around 16% forRegionSensor

7 https://www.eclipse.org/emf/compare/.

and up to 95% for RouteSensors. These results can
be explained by the concurrent nature of the backend
that can be accessed by the query computation and the
PrefetchML framework at the same time without execu-
tion time bottleneck. In addition, NeoEMF/Map does not
contain any model element cache, and the second execu-
tion of the queries directly benefits from the PrefetchML
cache, showing execution time improvement up to 99%
for the RouteSensor query.

– EMF-based prefetcher improves the execution time of
first time computation of queries that perform complex
and multiple navigations (RouteSensors and Connect-
edSegments queries) on top of NeoEMF/Graph. EMF
prefetcher also drastically improves the performance of
the second execution of the queries: An important part
of the navigated objects is contained in the cache, limit-
ing the database overhead. However, when the query is
simple such as RegionSensors or only contains indepen-
dent navigations such as SwitchSet, the EMF prefetcher
results in a small execution overhead since the prefetch
takes time to execute and with simple queries, it cannot
save time by fetching elements in the background while
the query is processed.

– Graph-based prefetcher is faster than the EMF one on the
first execution of the queries in both scenarios because
prefetching queries can benefit from the database query
optimizations (such as indexes), to quickly load objects
to be used in the query when initial parts of the query are
still being executed, i.e., the prefetcher is able to run faster
than the computed query. This increases the number of
cache hits in a cold setup, and this improves the over-
all execution time. On the other hand, the graph-based
prefetcher is slower than the EMF-based one on later
executions because it stores in the cache the vertices cor-
responding to the requested objects and not the objects
themselves; therefore, extra time is needed to reify those
vertices using a low-level query framework such asMog-
waï [10].

– Sharing the cache between the PrefetchML framework
and the running application globally improves the perfor-
mances for all the queries, w.r.t the performances without
sharing the cache. This is particularly true for simple
queries such as RegionSensors, where the prefetcher and
the query are computing the same information at the same
time, and sharing the fetched elements reduces the con-
currency bottlenecks.

– Enabling theAdaptativeMonitoring component improves
the performance of the first execution of simple queries
such as RegionSensors and SwitchSet. The performance
bottleneck of the EMF prefetcher for these kinds of
queries is detected by our heuristics (especially the
RuleEfficiency one), and the component disables the cor-
responding rules to save time. On the other hand, our

123

https://www.eclipse.org/emf/compare/

Advanced prefetching and caching of models with PrefetchML 1791

Table 2 NeoEMF/graph query
execution time in ms

Route Region Connected Switch
Sensors Sensors Segments Set

(a) Cold execution

No Pref. 30,294 1633 14801 915

EMF Pref. 30,028 1982 14625 1047

EMF Pref. (adaptative) 30,190 1851 14834 1012

EMF Pref. (shared) 28,902 1803 13,850 998

EMF Pref. (shared + adaptative) 29251 1712 14,025 951

Graph Pref. 25143 1477 11,811 830

(b) Warmed execution

No Pref. 16,087 908 8887 528

EMF Pref. 259 183 874 130

EMF Pref. (adaptative) 242 175 851 118

EMF Pref. (shared) 236 179 877 130

EMF Pref. (shared + adaptative) 225 171 849 122

Graph Pref. 1140 445 2081 264

Table 3 NeoEMF/Map query
execution time in ms

Route Region Connected Switch
Sensors Sensors Segments Set

(a) Cold execution

No Pref. 33,770 1307 11,935 499

EMF Pref. 2515 1210 10166 410

EMF Pref. (adaptative) 2611 1150 10234 378

EMF Pref. (shared) 1640 1090 7488 353

EMF Pref. (shared + adaptative) 1712 1024 7592 331

(b) Warmed execution

No Pref. 33,279 1129 11,389 271

EMF Pref. 203 167 783 105

EMF Pref. (adaptative) 192 159 775 92

EMF Pref. (shared) 221 161 837 105

EMF Pref. (shared + adaptative) 201 155 786 101

Table 4 Multiple query
execution time in ms

NeoEMF/graph NeoEMF/map

(a) Cold execution

No Pref. 47,312 45,965

EMF Pref. 38,597 16,897

EMF Pref. (adaptative) 36,438 15,785

EMF Pref. (shared) 34,522 13,742

EMF Pref. (shared + adaptative) 32,458 13,005

Graph Pref. 31,479 –

(b) Warmed execution

No Pref. 23,471 47,823

EMF Pref. 1698 1896

EMF Pref. (adaptative) 1583 1812

EMF Pref. (shared) 1681 1793

EMF Pref. (shared + adaptative) 1598 1714

Graph Pref. 3489 –

123

1792 G. Daniel et al.

monitoring component adds a small execution overhead
for queries that are more complex and where no rules
can be disabled, because themonitoring instructions have
a performance impact despite whether they are able to
detect rules to disable or not. The second execution of the
query shows that our monitoring component is now able
to detect that the queried elements are already cached
(due to the reset performed between the two execu-
tions), and thus capable of disabling the prefetching rules
to avoid concurrent access of the underlying database,
improving the query computation performance.

To summarize our results, the PrefetchML framework is
an interesting solution to improve execution time of model
queries over EMF models. The gains in terms of execution
time are always positive for NeoEMF-based implementa-
tions. PrefetchML on top of standard EMF is also always
better on a warmed execution, but for ad hoc scenarios where
most queries may be executed a single time and may not be
related to each other, PrefetchML adds sometimes a small
overhead to the overall query computation. A tuning pro-
cess, taking into account the kind of ad hoc queries typically
executed (e.g., their likely footprint), may be needed to come
up with an optimal prefetching strategy.

In addition,wehave shown that theAdaptativeMonitoring
component can improve the performance of simple queries
by detecting and disabling rules that are harmful in terms
of execution time. Nevertheless, it is also true that the def-
inition of the monitoring thresholds is a complex task. We
leave as further work to provide some assistingmechanism to
semiautomatically define such thresholds based on the struc-
ture of the query at hand. A first step in this direction would
be to use first the Simple Monitoring component to spot the
bottlenecks in the execution.

8 Conclusions and future work

We presented the PrefetchMLDSL, an event-based language
that describes prefetching and caching rules over models.
Prefetching rules are defined at the metamodel level and
allow designers to describe the event conditions to activate
the prefetch, the objects to prefetch, and the customization
of the cache policy. Since OCL is used to write the rule
conditions, PrefetchML definitions are independent from the
underlying persistence backend and storage mechanism.

Rules are grouped into plans and several plans can be load-
ed/unloaded for the same model, to represent fetching and
caching instructions specially suited for a given usage sce-
nario. Note that some automation/guidelines could be added
to help in defining a good plan for a specific use case in
order to make the approach more user-friendly. PrefetchML
embeds a monitoring component that partially addresses this

issue by helpingmodelers to detect those undesired scenarios
and optimize their existing plans. The PrefetchML frame-
work has been implemented on top of the EMF as well as on
NeoEMF/Graph, and experimental results show a significant
execution time improvement compared to non-prefetching
use cases.

PrefetchML satisfies all the requirements listed in Sect. 2.
Prefetching and caching rules are defined using a high-level
DSL embedding the OCL, hiding the underlying database
used to store the model (1). The EMF integration also pro-
vides a generic way to define prefetching rules for every
EMF-based persistence framework (2), like NeoEMF and
CDO. Note that an implementation tailored to NeoEMF is
also provided to enhance performance. Prefetching rules are
defined at the metamodel level, but the expressiveness of
OCL allows to refer to a specific subset of model elements
if needed (3). In Sect. 3, we presented the grammar of the
language and emphasized that several plans can be created
to optimize different usage scenario (4). The PrefetchML
DSL presented in Sect. 3 is a readable language that eases
designers’ tasks of writing and updating their prefetching
and caching plan (5). Since the rules are defined at the meta-
model level, created plans do not contain low-level details
that would make plan definition and maintenance difficult.
Finally, we have integrated a monitoring component in our
framework that can provide a set of metrics allowing mod-
elers to finely optimize their PrefetchML plans (6). This
monitoring component is also used to automatically disable
harmful rules during the execution.

As future work, we plan to work on the automatic gen-
eration of PrefetchML scripts based on static analysis of
available queries and transformations for the metamodel we
are trying to optimize. Another possible optimization source
would be the logs of past runs of tools reading/updating
models conforming to that metamodel. Process mining on
those logs could suggest a first version of potentially good
prefetching plans. Finally, we would also like to work on
the adaptative monitoring component to allow dynamic rule
creation/re-enabling based on the runtime discovery of fre-
quent model access patterns.

Acknowledgements This work has been partially funded by the Elec-
tronic Component Systems for European Leadership Joint Undertaking
under Grant Agreement No. 737494 (MegaM@Rt2 project) and the
Spanish government (TIN2016-75944-R project).

References

1. Azhar, S.: Building information modeling (BIM): trends, benefits,
risks, and challenges for the AEC industry. Leadership and Man-
agement in Engineering, pp. 241–252 (2011)

2. Barmpis, K., Kolovos, D.: Hawk: towards a scalable model index-
ing architecture. In: Proceedings of the BigMDE’13, pp. 6–9. ACM
(2013)

123

Advanced prefetching and caching of models with PrefetchML 1793

3. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.:
Neo4EMF, a scalable persistence layer for EMF models. In: Pro-
ceedings of the 10th ECMFA, pp. 230–241. Springer (2014)

4. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh,
Z., Ökrös, A.: Incremental evaluation of model queries over EMF
models. In: Proceedings of the 13th MoDELS Conference, pp. 76–
90. Springer (2010)

5. Bruneliere, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model
driven reverse engineering framework. IST, pp. 1012–1032 (2014)

6. Cao, P., Felten, E.W., Karlin, A.R., Li, K.: A study of integrated
prefetching and caching strategies. ACM SIGMETRICS Perform.
Eval. Rev. 21(1), 188–197 (1995)

7. Chou, H.-T., DeWitt, D.J.: An evaluation of buffer management
strategies for relational database systems. Algorithmica 1, 311–
336 (1986)

8. Curewitz, K.M., Krishnan, P., Vitter, J.S.: Practical prefetching via
data compression. In: ACM SIGMODRecord, pp. 257–266. ACM
(1993)

9. Daniel, G., Sunyé,G., Benelallam,A., Tisi,M.: Improvingmemory
efficiency for processing large-scale models. In: Proceedings of
BigMDE’14, CEUR Workshop Proceedings, pp. 31–39 (2014)

10. Daniel, G., Sunyé, G., Cabot, J.: Mogwaï: a framework to handle
complex queries on largemodels. In: Proceedings of the 10th RCIS
Conference, pp. 1–12. IEEE (2016)

11. Daniel, G., Sunyé, G., Cabot, J.: PrefetchML: a framework for
prefetching and caching models. In: Proceedings of the 19thMoD-
ELS Conference, pp. 318–328. ACM/IEEE (2016)

12. Dimitrov, M., Kumar, K., Lu, P., Viswanathan, V., Willhalm, T.:
Memory system characterization of big data workloads. In: Pro-
ceedings of the 1st Big Data Conference, pp. 15–22. IEEE (2013)

13. Eclipse Foundation: The CDO Model Repository (CDO) (2016).
http://www.eclipse.org/cdo/

14. Eysholdt, M., Behrens, H.: Xtext: implement your language faster
than the quick and dirty way. In: Proceedings of OOPSLA’10, pp.
307–309, New York, NY, USA. ACM (2010)

15. Gómez, A., Sunyé, G., Tisi, M., Cabot, J.: Map-based transparent
persistence for very largemodels. In: Proceedings of the 18th FASE
Conference. Springer (2015)

16. Hartmann, T., Moawad, A., Fouquet, F., Nain, G., Klein, J.,
Le Traon, Y.: Stream my models: reactive peer-to-peer distributed
models @ run. time. In: Proceedings of the 18th MoDELS Confer-
ence, pp. 80–89. IEEE (2015)

17. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engi-
neering practices in industry. In: Proceedings of the 33rd ICSE,
pp. 633–642. IEEE (2011)

18. Klaiber, A.C., Levy, H.M.: An architecture for software-controlled
data prefetching. In: ACM SIGARCH Computer Architecture
News, pp. 43–53. ACM (1991)

19. Koegel, M., Helming, J.: EMFStore: a model repository for EMF
models. In: Proceedings of the 32nd ICSE, pp. 307–308. ACM
(2010)

20. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object
language (EOL). In: Proceedings of the 2nd ECMDA-FA, pp. 128–
142. Springer (2006)

21. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E.,
Cuadrado, J.S., De Lara, J., Ráth, I., Varró, D., Tisi, M. et al: A
research roadmap towards achieving scalability in model driven
engineering. In: Proceedings of BigMDE’13, pp. 1–10. ACM
(2013)

22. Lucrédio,D., Fortes, R.P.d.M.,Whittle, J.:Moogle:Amodel search
engine. In: Proceedings of the 11thMoDELSConference, pp. 296–
310. Springer (2008)

23. Mohagheghi, P., Fernandez, M.A., Martell, J.A., Fritzsche, M.,
Gilani, W.: MDE adoption in industry: challenges and success cri-
teria. In: Proceedings of Workshops at MoDELS 2008, pp. 54–59.
Springer (2009)

24. Pagán, J.E., Cuadrado, J.S., Molina, J.G.: Morsa: a scalable
approach for persisting and accessing large models. In: Proceed-
ings of the 14th MoDELS Conference, pp. 77–92. Springer (2011)

25. Patterson, R.H., Gibson, G.A., Ginting, E., Stodolsky, D., Zelenka,
J.: Informed prefetching and caching. ACM (1995)

26. Pohjonen, R., Tolvanen, J.-P.: Automated production of family
members: Lessons learned. In: Proceedings of PLEES’02, pp. 49–
57. IESE (2002)

27. Ruiz, D.S., Morales, S.F., Molina, J.G.: Inferring versioned
schemas from NoSQL databases and its applications. In: Proceed-
ings of the 34th ER Conference, pp. 467–480. Springer (2015)

28. Smith, A.J.: Sequentiality and prefetching in database systems.
TODS, pp. 223–247 (1978)

29. Szárnyas, G., Izsó, B., Ráth, I., Varró, D.: The train benchmark:
cross-technology performance evaluation of continuous model
queries. Software & Systems Modeling, pp. 1–29 (2017)

30. Tinkerpop. Blueprints API, (2016). http://blueprints.tinkerpop.
com

31. Tinkerpop. The Gremlin Language, (2016). http://gremlin.
tinkerpop.com

32. Warmer, J., Kleppe, A.: Building a flexible software factory using
partial domain specific models. In: Proceedings of the 6th DSM
Workshop, pp. 15–22. University of Jyvaskyla (2006)

33. Zhang, K., Wang, K., Yuan, Y., Guo, L., Lee, R., Zhang, X.: Mega-
kv: A case for gpus to maximize the throughput of in-memory
key-value stores. In: Proceedings of the VLDB Endowment 8(11),
1226–1237 (2015)

34. Zhu, P., Sun, G., Wang, P., Chen, M.: Improving memory access
performance of in-memory key-value store using data prefetching
techniques. In: Proceedings of the 11th APPTWorkshop, pp. 1–17.
Springer (2015)

GwendalDaniel received his Ph.D.
degree in Computer Science from
the École des Mines de Nantes
in 2017. He is currently work-
ing as a postdoctoral fellow in
the SOM Research Lab at Internet
Interdisciplinary Institute (IN3), a
research center of the Universitat
Oberta de Catalunya (UOC). His
research interests include model
persistence, query, and transfor-
mation techniques, as well as
NoSQL data modeling.

Gerson Sunyé is an Associate Pro-
fessor at the University of Nantes
in the domain of software engi-
neering and distributed architec-
tures. He received the Ph.D. degree
in Computer Science from the Uni-
versity of Paris 6, France, in 1999.
From 1999 to 2001, he was a post-
doctoral researcher at the IRISA
Computer Science laboratory. He
has four years of industry experi-
ence in software development. He
received his Habilitation in 2014.
He is author of several papers
in international conferences and

journals in software engineering. His research interests include soft-
ware testing, design patterns, and large-scale distributed systems.

123

http://www.eclipse.org/cdo/
http://blueprints.tinkerpop.com
http://blueprints.tinkerpop.com
http://gremlin.tinkerpop.com
http://gremlin.tinkerpop.com

1794 G. Daniel et al.

Jordi Cabot received his Ph.D.
degree in Computer Science from
Universitat Politècnica de Catalu-
nya (UPC) in 2006 and his Habil-
itation (French HdR) from the Éc-
ole Doctorale in Nantes in 2012.
He has been a Visiting Researcher
in Milan (Politecnico di Milano)
and Toronto (University of
Toronto) and an Associate Profes-
sor and Inria International Chair
at École des Mines de Nantes
where he led an Inria research
team in Software Engineering.
Since May 2015, he is an ICREA

Research Professor at Internet Interdisciplinary Institute (IN3), a
research center of the Universitat Oberta de Catalunya (UOC), where
he leads the SOM Research Lab. Beyond his core research activities,
he tries to book some time for blogging and other dissemination and
technology transfer actions.

123

	Advanced prefetching and caching of models with PrefetchML
	Abstract
	1 Introduction
	2 State of the art
	3 The PrefetchML DSL
	3.1 Abstract syntax
	3.2 Concrete syntax
	3.3 Running example

	4 PrefetchML framework infrastructure
	4.1 Architecture
	4.2 Rule processing
	4.3 Cache consistency
	4.4 Shared cache

	5 Plan monitoring
	5.1 Language extensions for plan monitoring
	5.2 Simple monitoring
	5.3 Adaptative monitoring

	6 Tool support
	6.1 Language editor
	6.2 EMF integration
	6.3 NeoEMF/graph integration

	7 Evaluation
	7.1 Benchmark presentation
	7.2 Results
	7.3 Discussion

	8 Conclusions and future work
	Acknowledgements
	References

