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Abstract 

Integrity constraints play a fundamental role in the definition of conceptual schemas (CSs) 
of information systems. An integrity constraint defines a condition that must be satisfied in 
each state of the information base (IB). Hence, the information system must guarantee that 
the state of the IB is always consistent with respect to the integrity constraints of the CS. 
This process is known as integrity checking. Unfortunately, current methods and tools do 
not provide adequate integrity checking mechanisms since most of them only admit some 
predefined types of constraints. Moreover, the few ones supporting a full expressivity in 
the constraint definition language present a lack of efficiency regarding the verification of 
the IB. 

In this thesis, we propose a new method to deal with the incremental evaluation of the 
integrity constraints defined in a CS. We consider CSs specified in the UML with 
constraints defined as OCL invariants. We say that our method is incremental since it 
adapts some of the ideas of the well-known methods developed for incremental integrity 
checking in deductive and relational databases. The main goal of these incremental 
methods is to consider as few entities of the IB as possible during the evaluation of an 
integrity constraint. This is achieved in general by reasoning from the structural events that 
modify the contents of the IB. Our method is fully automatic and ensures an incremental 
evaluation of the integrity constraints regardless their concrete syntactic definition. 

The main feature of our method is that it works at the conceptual level. That is, the result 
of our method is a standard CS. Thus, the method is not technology-dependent and, in 
contrast with previous approaches, our results can be used regardless the final technology 
platform selected to implement the CS. In fact, any code-generation method or tool able to 
generate code from a CS could be enhanced with our method to automatically generate 
incremental constraints, with only minor adaptations. Moreover, the efficiency of the 
generated constraints is comparable to the efficiency obtained by existing methods for 
relational and deductive databases. 
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1. Introduction 

Since the very beginning of computer science, one of the main goals of software engineers 
has been to automate as much of the software development process as possible. In fact, the 
software engineering community envisages a future in which, of all the phases of software 
development, software engineers will only be strictly necessary during the specification of 
the information system while the remaining phases (mainly design, implementation and 
test) would be fully automated. The cost of software development could therefore be cut 
because these later phases easily involve well over half the total cost of a development or 
maintenance project. 

The goal of automating information systems building was first stated in the late sixties [84] 
[85]. Additional proposals in this direction appeared in the 1970s [62] and the 1980s [94]. 
However, object-oriented methods truly bloomed in the late 1990s (see [92] for a detailed 
comparison and [79] for a particularly interesting example) when interest in the topic was 
revived. Recently, a number of new alternatives ([56], [74], [24], among many others) and 
standards [69] have emerged. Furthermore, code-generation capabilities of today’s CASE 
tools (i.e. the ability of the tools to automate part of the design and implementation stages) 
are a key issue in their development and marketing strategy. 

Obviously, we are closer to our goal now than we were forty years ago but several 
problems still remain to be addressed. In fact, this goal was recently classified as a grand 
challenge for information systems research [65].  [65] emphasized the central role of the 
conceptual schemas in the automatic development of information systems and presented a 
list of open problems that must be solved before this approach can be widely used in the 
development of industrial information systems. In conceptual modeling, a conceptual 
schema (CS) is the formal specification of functional requirements. CSs basically consist 
of a set of taxonomies of entity types and relationship types, also commonly referred to as 
classes and associations in object-oriented terminology. We refer to the representation of 
the state of the CS (the set of existing entities and relationships, also called objects and 
links in object-oriented terminology) in the information system as the information base 
(IB). 

The list of open problems presented in [65] included the enforcement of integrity 
constraints. An integrity constraint states a condition that must be satisfied in each state of 
the IB. A complete CS must include the definition of all relevant integrity constraints [45]. 
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Thus, most CSs contain a large number of constraints. The information system must 
enforce these constraints efficiently. This process is known as integrity checking.  

In our context, this implies that a fully automatic method is required to generate, from all 
kinds of constraints present in the CS, the elements of the information system (for instance 
code fragments and/or data structures) resulting in such an efficient integrity checking. 
Currently, this method does not yet exist. As discussed in detail in Chapter 9, current 
proposals either only support a subset of all possible integrity constraints or (more 
commonly) the specified constraints are not taken into account during automatic code 
generation. Only a few proposals try to provide an efficient and automatic implementation 
of the constraints present in the CS ([90], [91], [74], [31]) but they achieve only partial 
results. 

The main contribution of this thesis is to provide an automatic method for the incremental 
evaluation of integrity constraints in CSs, in particular, for CSs specified in UML (Unified 
Modeling Language [68]) with constraints specified in OCL (Object Constraint Language 
[67]). Since our method works with UML/OCL schemas, it is not tied to any particular 
technology. Moreover, this technology independence makes it possible to reuse its results 
when generating the system implementation in any technology platform.  

We define our method for an automatic constraint generation from the CSs as an 
incremental method, since it adapts some ideas from incremental methods developed for 
deductive [41] and relational [23] databases to cope with the incremental checking of 
integrity constraints at the conceptual level. Given the basic assumption that the IB is in a 
consistent state prior to its modification, incremental methods exploit available information 
about the structural events applied during modifications of the IB to avoid a complete 
recomputation of the constraints (i.e. to avoid checking every time all entities restricted by 
the constraint). The modification of the IB may correspond to the execution of an 
information system operation or to the concept of transaction as in the database field.  

A structural event can be defined as an elementary change in the population of an entity or 
relationship. The effect of each event depends on the type of the event. Each modeling 
language defines the possible event types. Examples of event types include: insert an entity 
in an entity type, delete an entity from an entity type, update an attribute, insert a 
relationship in a relationship type, etc.  

Given this framework, the rest of the chapter is devoted to illustrate the problems that arise 
when dealing with an efficient checking of OCL constraints (Section 1.1), to provide an 
overall picture of the state of the art in integrity checking (Section 1.2), to present the goals 
and contributions of this thesis (Section 1.3) and to outline the organization of the chapters 
of this thesis (Section 1.4). 
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1.1 Problem description 

Given a CS with a set of integrity constraints, the goal of our method is to ensure an 
incremental integrity checking of all constraints after the application of any arbitrary set of 
structural events over the IB. Moreover, we want the results of our method to be useful 
regardless the target platform used to implement the schema. Therefore, we need to 
provide such incremental checking at the conceptual schema level, i.e. in terms of a set of 
OCL expressions (constraints, derivation rules…) defined over the (processed) CS. 

This section uses a running example to illustrate the main inefficiency problems resulting 
from a direct checking of the OCL constraints as defined by the OCL standard [67]. These 
problems are the ones our method overcomes when processing the original CS in order to 
provide an incremental checking of all integrity constraints. 

1.1.1 Running example 

As a running example throughout the thesis we will use the CS shown in Figure 1.1, meant 
to (partially) model a simple e-commerce application.   

The CS contains information about the sales (Sale entity type) and the products (Product 
entity type) they contain. The reified relationship type SaleLine registers the number of 
products of the same type included in a given sale. Some of the products are classified as 
RestrictedProducts since they may not be available to every kind of customers (for 
instance, chemical products, pills…). 

Sales can be split up into several shipments (Shipment entity type) and shipments can be 
reused to ship several sales. Finally, sales may be associated with registered customers 
(Customer entity type) who benefit from discounts depending on the category (Category 
entity type) they belong to.  

Additionally, we define the following integrity constraints in the CS: 

- ValidShipDate: All sales must be fully delivered within 30 days of the payment 
date. 

- CorrectProduct: All products must have a price greater than zero and a 
maxDiscount of a 60% (which it is the maximum discount allowed in the 
company).  

- NotTooPendingSales: The number of pending sales for a customer may not exceed 
the maximum pending amount permitted in his/her category. 

- AtLeastThreeCustomers: At least three customers must be associated with each 
category. 
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- NumberOfRestrictedProducts:  No more than 20 different types of restricted 
products may be on sale.  

Some constraints can be expressed graphically in the CS, such as the constraint 
AtLeastThreeCustomers, which is expressed as a multiplicity constraint in the customer 
role of the BelongsTo relationship type. The others must be represented textually. In the 
next section we will express them as invariants written in OCL.  

 

Category 

Sale
Purchases 1..* 

name : String 
maxPendingAmount:Money
discount: Percentage 

id : Natural
date: Date 
amount: Money 
paymentDate: Date

SaleLine

quantity: Natural 

0..1
Customer 

Id: Natural 
name : String 
nationality: String 
creditCard: String 

BelongsTo 
3..* 
1 

Product 
id : Natural 
name: String 
price: Money 
maxDiscount:Percentage 
description: String 

1..**

Shipment
id: Natural 
plannedShipDate: Date
address: Address 

1..*

1..*
DeliveredIn

RestrictedProduct 
maxUnits: Natural 

{incomplete}

 

Figure 1.1. The CS of the e-commerce example 

1.1.2 Integrity constraints in the OCL  

Our method assumes that textual constraints are defined as invariants written in OCL. The 
use of a general-purpose (textual) sublanguage like OCL is required to be able to express 
all kinds of constraints since most constraints cannot be expressed using only the graphical 
constructs provided by the conceptual modeling language [33], UML in our case. At the 
time this thesis was written, the most recently adopted specification of the OCL standard 
was [67].  

In OCL, invariants are defined in the context of a specific type (either an entity or 
relationship type), called the context type of the constraint. The actual OCL expression 
stating the constraint condition is called the body of the constraint. The body of a constraint 
is always a boolean expression (i.e. it evaluates to a boolean value) and must be satisfied 
by all instances of the context type. This implies that the evaluation of the body expression 
over every instance of the context type must return a true value. 

Figure 1.2 shows the previous integrity constraints defined for the running example 
expressed in OCL. For instance, in ValidShipDate, Sale is the context type, the variable 
self refers to an entity of Sale, and the date comparison (the body) must hold for all 
possible values of self (i.e. all entities of Sale). Other constraints, such as 
NumberOfRestrictedProducts, require that the operator allInstances be used in their 
definition. AllInstances is a predefined feature on classes that returns the set of all 
instances of the type that exist at the specific time when the expression is evaluated.  
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 context Sale inv ValidShipDate:  
self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)  

context Product inv CorrectProduct:   
self.price>0 and self.maxDiscount<=60  

context Category inv NotTooPendingSales:  
self.customer->forAll(c| c.sale->select(s| s.paymentDate>Time.now())->collect(sa|sa.amount) 
->sum()<=self.maxPendingAmount)  

context Category inv AtLeastThreeCustomers: 
 self.customer->size()>=3 
context RestrictedProduct inv NumberOfRestrictedProducts: 
 RestrictedProduct.allInstances()->size()<=20 

 

Figure 1.2. OCL constraints for the e-commerce example 

Graphical constraints supported by the UML, like cardinality or disjointness constraints, 
can be transformed into a textual OCL representation, as shown in [39], and thus, they can 
also be handled by our method. As an example, Figure 1.2 includes the OCL representation 
of AtLeastThreeCustomers. 

Since constraints must be satisfied in each state of the IB, a direct (naïve) checking of the 
constraints would involve: 1- checking all constraints after each modification of the IB 
(due to the application of a set of structural events over the IB), and 2 – for each constraint, 
evaluating the constraint body over all instances of the context type. 

It is not difficult to see that this naïve strategy involves many irrelevant verifications. 
Therefore, an application generated using this default checking behavior would have a low 
run-time performance.   

In particular, we have identified the following improvements to the default checking 
behavior of OCL integrity constraints: 

1. Avoiding integrity checking of constraints that are irrelevant to the set of structural 
events applied over the IB. We define that an integrity constraint is irrelevant to a 
set of structural events if none of the changes brought about by the events may lead 
to the violation of the constraint.  

2. Checking the constraints only over their relevant entities (those affected by the 
changes applied over the IB). 

3. Generating a (possibly different) alternative representation of a constraint for each 
kind of event that may violate constraint. This new alternative will be specially 
suited to check the constraint after applying over the IB events of that kind. This is 
necessary since the high expressiveness of the OCL language permits to express the 
same constraint in a variety of forms, not all of them equally appropriate.  
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Next sections present these strategies rather informally. The subsequent chapters of this 
thesis contain a more formal description. 

1.1.3 Determining the events that can violate an integrity constraint 

It is not necessary to check all integrity constraints after each modification of the IB. For 
instance, the CorrectProduct constraint cannot be violated by events that insert a new sale, 
change the name of a customer, delete an existing product from the IB, etc. On the 
contrary, events updating the price or maxDiscount attributes of a product or inserting a 
new product can actually violate CorrectProduct. Therefore, CorrectProduct must only be 
verified after modifications of the IB that include events of one of these three types. 
Otherwise, we need not check it.  

We call the structural event types that may violate a constraint the potentially-violating 
structural events (PSEs) for that constraint. At definition time, the PSEs for each constraint 
must be determined and compared at run-time with the particular events applied during the 
modification of the IB. When none of the applied events is an instance of a structural event 
type included in the set of PSEs for a constraint, that constraint can be discarded during the 
integrity checking process. 

A naïve approach in determining the PSEs for an OCL constraint would conclude that any 
insertion, modification or deletion over an entity or relationship type referenced within the 
constraint body may violate the constraint since, obviously, any change 
(insert/update/delete) of a model element not appearing in the expression cannot cause its 
violation.  

Although this strategy is better than a direct checking of the constraint, it is not yet precise 
enough since it would consider as PSEs events that will never violate the constraint. In 
other words, the set of structural event types provided by this naïve solution is a superset of 
the structural event types that may actually violate the constraint. For instance, using this 
approach we would determine that eight types of structural events may violate the 
constraint ValidShipDate: insert / delete / update of the entity type Sale, insert / delete of 
the relationship type DeliveredIn and insert / delete / update of the entity type Shipment. 
Nevertheless, only the modifications of sales (in particular, the update of the paymentDate 
attribute) and shipments (update of the plannedShipDate attribute) and the insertion of a 
new DeliveredIn relationship may actually violate the constraint. The other five events can 
never violate ValidShipDate. For instance, the insertion of a new Sale alone cannot 
possibly violate the constraint. Only when the sale is assigned to a shipment (insertion of a 
new DeliveredIn relationship) a violation may occur. 

In order to precisely determine the PSEs of a constraint, we must consider both the set of 
elements referenced in the constraint and the context in which these elements are 
referenced (understood as the elements and OCL operations surrounding them). For 
instance, the PSEs that may violate AtLeastThreeCustomers constraint differ when, instead 
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of enforcing that all categories must have at least three customers, we want to enforce that 
all categories have less than three customers, even though in both cases we refer the same 
model elements (Category, Customer and the relationship type BelongsTo between them) 

1.1.4 Evaluating an integrity constraint over the relevant instances 

When checking an integrity constraint, it is extremely inefficient to evaluate the body of 
the constraint over all instances of the context type. Assuming, as usual, that the IB was in 
a consistent state prior to its modification, only the set of instances affected by the issued 
structural events can violate the constraint. 

For instance, consider the following scenario. The initial state of a given IB is shown in the 
partial schema of Figure 1.3, in which we represent the OIDs (object identifiers) of an 
imaginary population for each entity type (i.e. s1,s2,… are instances of Sale). The 
population of the relationship type DeliveredIn is represented by the OIDs of the 
participant entity types (for example, the relationship <s1,sh1> indicates that the sale s1 is 
delivered in the shipment sh1). 

 Sale

id : Natural 
date: Date 
amount: Money 
paymentDate: Date 

1..*1..*

Shipment 
id: Natural 
plannedShipDate: Date 
address: Address 

DeliveredIn

s1 
s2 
s3 
s4 
s5 

. . . 

sh1 
sh2 
sh3 
sh4 
sh5 
. . . 

<s1, sh1> 
<s2, sh2> 
<s2, sh3> 
<s2, sh4> 
<s3, sh4> 

. . . 

 

Figure 1.3. Initial state of the IB 

Assume that over this initial state we apply the following structural events: 1 - update of 
the paymentDate of s1, 2 - update of the plannedShipDate of sh2 and 3 - insertion of a new 
relationship between s3 and sh5. After applying these events, ValidShipDate is one of the 
constraints that must be checked (all the issued events are PSEs for this constraint). 
However, given this set of events the only entities of Sale that must be checked (in order to 
ensure that ValidShipDate still holds) are s1 (because of the attribute update), s2 (due to its 
relationship with the modified shipment sh2) and s3 (due to its participation in the new 
relationship with sh5). The constraint condition need not be evaluated over any other sale 
since none have changed during the modification of the IB.  

Note that the computation of the relevant instances for a constraint must consider not only 
the entities of the context type directly modified by the structural events but also the 
entities related, directly or indirectly, to certain modified entities of other types. 
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1.1.5 Generating the best definition of a constraint with respect to a structural event 

Due to the high expressiveness of the OCL, designers have different syntactic possibilities 
for defining each integrity constraint. For example, the constraint ValidShipDate could also 
be expressed using Shipment as a context type:  

context Shipment inv ValidShipDate’:  
self.sale->forAll(s| self.plannedshipDate <= s.paymentDate+30) 

Both representations (the initial ValidShipDate and ValidShipDate’) are correct and 
semantically equivalent. Of all the possible alternatives, the designer chooses one at 
definition time to represent the constraint (we do not assume that the designer uses any 
particular criterion). However, the selected representation may not be the most appropriate 
to check the constraint after the application of events instance of some (or all) of the 
structural event types that are PSEs for the constraint. 

As an example, consider again the scenario introduced in the previous section where we 
drew that to check ValidShipDate only sales s1, s2 and s3 had to be considered. Using the 
original definition of ValidShipDate (see Figure 1.2), the evaluation of the constraint body 
over those sales implies evaluating the following OCL expressions (where we instantiate 
the self variable with the three relevant sales): 

exp  ≡  s1.shipment->forAll(sh| sh.plannedShipDate<=s1.paymentDate+30) 

exp2  ≡  s2.shipment->forAll(sh| sh.plannedShipDate<=s2.paymentDate+30) 

exp3  ≡  s3.shipment->forAll(sh| sh.plannedShipDate<=s3.paymentDate+30) 

If all three expressions return a true value, we may conclude that the IB is still consistent 
regarding ValidShipDate.  

Nevertheless, the integrity checking of ValidShipDate using these three expressions cannot 
be considered incremental yet. Some of the verifications involved in the expressions are 
still irrelevant since we compare the payment date of each sale with all the planned dates of 
the related shipments. In fact, this is only required for s1 where we must ensure that the 
new payment date is coherent with all related shipments. However, for s2 we just need to 
compare its date with the new planned date of shipment sh2, it is not necessary to compare 
the payment date of s2 with the planned date of sh3 or sh4 since they have not been 
changed. Similarly, the payment date of s3 only needs to be compared with the new 
assigned shipment sh5. 

These irrelevant checks are performed because ValidShipDate (as represented in Figure 
1.2) it is not an appropriate syntactic representation for a direct verification of the state of 
the IB after the event types updates of the Shipment entity type or inserts in the DeliveredIn 
relationship type. Instead, after Shipment updates, we should use the alternative 
ValidShipDate’ proposed above. Similarly, after insertions in DeliveredIn we should use a 
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third alternative, using DeliveredIn as the context type. By using the appropriate alternative 
after each applied event, we obtain an incremental checking of the original constraint. For 
some constraints, several appropriate definitions may exist with respect to some (or all) of 
their PSEs.   

1.2 State of the art 

The problem of efficient integrity checking has been widely addressed in the fields of 
deductive and relational databases as part of the solution to integrity checking or 
materialized view maintenance problems. These methods are predecessors to our method, 
which reuses some of their ideas. However, the differences between the expressivity of 
these methods and that of the UML/OCL make it impossible to directly apply them to the 
integrity checking problem in UML/OCL CSs. 

Moreover, we have recently witnessed a growing number of methods that follow the MDD 
(Model-driven development [78]) and MDA (Model-driven architecture [69]) approaches. 
Both approaches give the CS a central role in the development process and promote the 
automatic generation of the system implementation based on its CS, either directly or by 
first transforming the CS into a new model adapted to the specific features and 
characteristics of the target platform. In the latter case, the initial CS is referred to as the 
PIM (platform-independent model) while the specific model is called the PSM (platform-
specific model). Unfortunately, support for the generation of integrity constraints in 
existing MDD and MDA methods and tools is quite unsatisfactory [19]. In fact, these 
methods are unable to generate an implementation of the constraints that efficiently 
ensures a valid IB state and/or lack expressivity in the supported constraint definition 
language.  

Therefore, no method can yet provide an incremental checking of the constraints (as 
methods for relational and deductive databases do) based on the constraints defined in the 
CS and specified using a highly expressive language like OCL.  

In the following sections we introduce the most representative proposals from each field. 
We distinguish between methods for relational and deductive databases although the 
distinction is somewhat artificial since a relational database can be regarded as a type of 
deductive database. 

Chapter 9 describes these methods in more detail and compares their results with those of 
our method. 

1.2.1 Approaches for relational databases 

[21] is, probably, the most prominent proposal in the field of relational databases.  In this 
method, constraints are defined as predicates over the database state using the SQL 
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language. Predicates are defined such that if a predicate is true in a particular state then the 
constraint is violated. These kinds of predicates are known as inconsistency predicates. 

For each constraint, this method creates a production rule (i.e. a trigger) to detect the 
constraint violation. The production rule is fired whenever a structural event that may 
violate the constraint is applied over the database. The firing of the rule starts the 
evaluation of the corresponding predicate. If the predicate is satisfied (meaning that the 
constraint has been violated by the event) the user may define which action the system 
should take. As an example, Figure 1.4 shows the production rule for the constraint 
CorrectProduct. When one of the PSEs for CorrectProduct is applied, the corresponding 
production rule checks that no exist a product with a wrong value in the price and/or 
maxDiscount attributes.  

The constraint definition language is expressive enough (it admits negation, aggregate 
operators, bag semantics, etc) but this approach lacks of precision, since, when determining 
the events that can induce a constraint violation, the result is a superset of the set of events 
that can actually violate the constraint.  

Furthermore, its production rules are unable to check all constraints incrementally. 
Depending on the constraint complexity, the rules may need to examine the whole table 
instead of just the modified tuples. 

In a later work [23], the method was improved to incrementally check all constraints but, 
as a trade-off, the constraint definition language is restricted with respect to [21] (for 
instance, no aggregate operators can be used). 

 CREATE RULE CorrectProduct 
WHEN inserted into product,  
     updated product.price, updated product.maxDiscount 
IF exists Product:( select * 
                    From product: (inserted product  

                           union new updated product.price 
       union new updated product.maxDiscount) 
                  Where price<=0 or maxDiscount>60) 

THEN <ACTION> 
  

Figure 1.4. Production rule for CorrectProduct  

1.2.2 Approaches for deductive databases 

The deductive database field boasts a long tradition of methods devoted to the problem of 
integrity constraint checking ([42], [22], [88], [82] among others). Constraints are defined 
in first-order logic. Only few methods also provide constructs to specify more complex 
constraints (as aggregate operators or bag semantics). Support for all these constructs is 
required in our context since these constructs frequently appear in the definition of OCL 
constraints. See [41] for a survey of these deductive methods and a general discussion of 
their limitations. 
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Some of these approaches do not focus on the problem of integrity checking itself but 
rather on the related problem of materialized view maintenance. A materialized view is a 
view whose tuples are stored in the database instead of being recomputed every time the 
view is queried. Then, the materialized view problem deals with incrementally updating 
the view data in response to changes in the underlying tables in the view definition.   

Integrity constraints may be expressed as inconsistency predicates in deductive databases. 
With this representation, constraints are expressed as views that must be empty (a non-
empty view indicates that the corresponding integrity constraint has been violated). The 
query of the view corresponds to the constraint body in denial form (i.e. the view selects 
the tuples that do not satisfy the constraint body). Therefore, the integrity checking 
problem can be regarded as a subset of the view maintenance problem.   

These approaches share a similar core mechanism. They all represent integrity constraints 
as inconsistency predicates. They then propose a set of rules to control the insertions over 
the predicate representing the constraint. Each rule identifies a situation that could possibly 
induce a constraint violation. Whenever one of the rules is found to be true, the constraint 
is considered violated. Chapter 9 discusses how the methods differ in terms of the 
precision and efficiency of the rules they propose. 

As a simple example, the inconsistency predicate representing the CorrectProduct 
constraint is:  

IcCorrectProduct ← Product(id, name, price, maxDiscount, description) ∧ (price<=0 ∨            
   maxDiscount>60) 

where IcCorrectProduct contains those products with a price value lesser than one or a 
maxDiscount value greater than 60. 

Given this predicate, the rules generated by the previous methods would be: 

IcCorrectProduct ← iProduct(id, name, price, maxDiscount, description) ∧ (price<=0 ∨            
   maxDiscount>60) 

IcCorrectProduct ← uProduct(id, name, price, maxDiscount, description) ∧ (price<=0 ∨            
   maxDiscount>60) 

where the predicate iProduct registers products inserted during the transaction and 
uProduct products that have been modified (perhaps resulting in new values for the price 
or maxDiscount attributes that violate the constraint).  

In fact, updates over attributes are only considered explicitly by [88]. The other approaches 
model updates as deletions followed by insertions, resulting in a loss of precision (and 
efficiency) when processing integrity constraints. We find a similar problem when dealing 
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with events to add (remove) types to an existing entity, neither supported by these 
methods.  

1.2.3 Code-generation methods and tools 

Of all the current tools and methods that use MDA and MDD approaches (see, for 
example, [56],[24], [74], [31], [12], [48]) and are devoted to the automatic code generation 
of an application from its CS, few consider the definition and/or generation of integrity 
constraints [19].  

The differences between them lie in how they decide when a constraint needs to be 
checked and how many entities they take into account each time the constraint is checked. 
Some of them verify all constraint after each structural event. A few ones consider the type 
of the applied events when deciding whether to check a constraint. In particular, they 
determine that an event may induce the violation of a constraint if the event modifies one 
of the elements referenced in the constraint body, but without considering whether the kind 
of change can really induce its violation (i.e. some of the events they take into account are 
irrelevant to the constraint). After one of the relevant events is applied, most methods lack 
of precision when computing the set of entities of the context type that need to be 
evaluated (some methods compute a superset of the really affected instances while others 
compute a subset of them). 

Moreover, all methods depart from the integrity constraints exactly as defined by the 
designer. Thus, their efficiency depends on the concrete syntactic representation of the 
constraint. 

1.3 Objectives and contributions of this thesis 

As discussed above, current code-generation methods fall short when dealing with the code 
generation of integrity constraints defined in a CS. This thesis proposes a new method to 
cope with the incremental integrity checking of OCL constraints specified in UML CSs. 
By dealing with this problem at a conceptual (i.e. platform-independent) level, our method 
is not bound to any technological assumption. Its results can be reused regardless of the 
final technology platform in which the CS is going to be implemented.   

Given an initial CS, the result of our method is a standard conceptual schema CS’ that, 
when executed or directly implemented in a particular technology platform, is able to 
check all constraints incrementally. Then, given a code-generation method M able to 
implement the conceptual schema CS in a technology platform P, when M uses the 
conceptual schema CS’ instead of CS, the automatic generation of CS’ in P results in an 
implementation of the schema that checks all constraints incrementally. Note that M does 
not need to be modified to benefit from CS’. The results of our work can be helpful in any 
platform P2 provided that a code-generation method M2 exists for P2. 
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Additionally, our method meets the following subgoals: 

1. It takes into account the different kinds of constraints that appear in the CS. Depending 
on their complexity, we can distinguish three levels of integrity constraints (adapted 
from [87]): 

1. Intra-entity constraints: Constraints that restrict the values of the attributes of a 
single entity. 

2. Inter-entity constraints: Constraints that restrict the relationships between an entity 
and other entities that are instances of different entity types 

3. Type constraints: Constraints restricting the relationship between a set of entities 
that are instances of the same entity type (for instance, a constraint stating that all 
entities of a given type must have a different value in a given attribute)  

For each kind of constraint, including constraints that combine more than one level, our 
method produces an efficient result (different techniques are required to handle the 
different kinds of constraints).  

2. The efficiency of the incremental integrity checking obtained with our method is 
comparable to that of incremental methods for deductive and relational databases. 

3. The method is feasible, in the sense that it can be integrated with other code-generation 
strategies to generate an implementation of the resulting CS’ in the most popular 
technology platforms. 

An implementation of this method is available at [16]. 

1.4 Thesis structure 

This thesis is structured as follows. The next chapter presents an overview of our method. 
The various steps of the method are presented in Chapters 3 through 6. Chapter 7 then 
presents the architecture of a tool that implements the method. Chapter 8 presents the 
transformation of the resulting CS into a relational database to show the feasibility of our 
method. Chapter 9 discusses related work, including a comparison of the results of our 
method with those of incremental methods for databases and current code-generation tools. 
Finally, Chapter 10 presents some conclusions and related work. 

Some of the results of this thesis have been already published in [14], [15], [17], [18] and 
[19]. 
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2. Method Overview 

This chapter provides an overall picture of our proposal for dealing with incremental 
integrity checking in conceptual schemas. Given an initial conceptual schema CS, the 
result of our method is another conceptual schema CS’ that, when executed or directly 
implemented in a particular technology platform, is able to check all constraints 
incrementally.  

All CASE tools can benefit from our method if, once the designer has defined the 
conceptual schema CS, the tool uses our method to obtain CS’ and then departs from CS’ 
to generate the application code and data structures (Figure 2.1).  

 

Figure 2.1. Application scenario for our method 

CS’ is obtained by means of a sequence of transformation steps over the constraints 
appearing in CS. Some of these transformations also involve the addition of some new 
entity and relationship types to CS. The number of new entity and relationship types is 
linearly proportional to the number of constraints. All existing entity and relationship types 
of CS remain unchanged.  

More precisely, the rationale of our method is to replace each integrity constraint ic 
defined in the CS with a set of equivalent integrity constraints setic’, in which each ic’∈ 
setic’ leads to an incremental evaluation with regards to some of the structural events that 
may violate the original constraint. Our method assumes that the IB is updated at run-time 
with the modifications produced by the applied structural events. Therefore, when 
verifying the constraints, the state of the IB already reflects the changes induced by the 
events.  

Our method can be formalized according to the steps depicted in Figure 2.2. It consists of 
three main steps (steps 1-3) plus a preliminary step (step 0). Each step tackles one of the 
efficiency problems described in the previous chapter.  

Each step is briefly outlined below. The following chapters address each step in detail. As 
an example, we show how the CS in Figure 1.1 and the constraint ValidShipDate are 
processed in each step to obtain an incremental verification for ValidShipDate at the end of 
step 3.  



 

-16- 

 

Figure 2.2. General schema of our method 

Step 0: Simplification of the original constraints 

To facilitate the definition of the different steps, our method assumes that the body of each 
integrity constraint is expressed in a simplified form. In this preliminary step (step 0), this 
simplified representation is automatically obtained from the original body expression. This 
simplification process does not entail a loss of expressive power in the constraints we may 
deal with.   

Roughly, the simplification process reduces the expressivity of the OCL expressions that 
form the body of each constraint by means of applying several transformation rules that 
replace some of the OCL operators in the constraint body with equivalent (more basic) 
ones.  As an example, the rule X->reject(Y) → X->select(not Y) removes the reject 
operator (left part of the rule) from OCL expressions and replaces it with the select 
operator (according to the right part of the rule). 

The constraint ValidShipDate: 
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context Sale inv ValidShipDate:  
self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)  

is already expressed in a simplified form. Thus, it is not modified in this step. 

Step 1: Determining the potentially-violating structural events 

In step 1, our method associates to each constraint of the CS a set of potentially-violating 
structural events. The PSEs are drawn from the syntactical definition of the constraint. In 
general, each constraint presents a different set of PSEs. 

In particular, for ValidShipDate we would obtain the following PSEs: 

1. Update of the attribute paymentDate defined in the type Sale 

2. Update of the attribute plannedshipDate defined in the type Shipment 

3. Insertion of a new relationship in the relationship type DeliveredIn 

Step 2: Obtaining an appropriate syntactic representation for each 
constraint  

For each integrity constraint ici and event type ev, ev ∈ set of PSEs of ici, this step 
determines an appropriate alternative syntactic representation ici,j of ici with respect to ev 
(i.e. an alternative whose verification after the application of structural events of type ev 
yields to an incremental checking of ici). Note that ici,j may be an appropriate alternative 
for several PSEs and that for some PSEs the original ici representation may already be the 
suited one.  

Given the previous ValidShipDate constraint, at the end of this step we would obtain that 
the original ValidShipDate representation (the one defined over the context type Sale) is an 
appropriate representation to check the constraint after modifications of the paymentDate 
attribute. However, after modifications of the plannedShipDate attribute we need to 
generate an alternative representation (ValidShipDate2) of ValidShipDate using Shipment 
as context type as well as another alternative (ValidShipDate3) for assignments of 
shipments to sales using DeliveredIn as context type.  

Figure 2.3 shows the different versions of ValidShipDate and the PSEs associated to each 
one. Each version will be used to verify its own set of PSEs.   
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context Sale inv ValidShipDate: self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30) 
 
context Shipment inv ValidShipDate2: self.sale->forAll(s| self.plannedShipDate<=s.paymentDate+30)  
 
context DeliveredIn inv ValidShipDate3: self.shipment.plannedShipDate<=self.sale.paymentDate+30  

ValidShipDate 
 
 
ValidShipDate2 
 
 
ValidShipDate3 

Update of paymentDate  
 
 
Update of plannedShipDate 
 
 
Insertion over DeliveredIn 

 

Figure 2.3. Alternative representations for ValidShipDate 

Step 3: Redefining the constraints to evaluate over the relevant instances  

Finally, each constraint resulting from step 2 is redefined to be evaluated only over the 
instances of its context type affected by events instance of the event types included in its 
particular subset of PSEs (i.e. those event types for which the constraint is selected as an 
appropriate representation).  

This means that, in the previous example, ValidShipDate should only be evaluated over the 
sales that have changed the value of their paymentDate attribute, ValidShipDate2 should 
only be evaluated over shipments where the value of plannedShipDate has been modified 
while ValidShipDate3 should only be evaluated only over new assignments between sales 
and shipments (i.e. over new relationships in the relationship type DeliveredIn). 

This redefinition requires the addition of several new entity and relationship types to the 
original conceptual schema. As an example, Figure 2.4 shows the main aspects of the CS’ 
resulting from processing the CS of Figure 1.1 to ensure incremental integrity checking of 
ValidShipDate. The basic idea is that each version of ValidShipDate is redefined using as 
new context type the new derived subtypes SaleValidShipDate (new context type for 
ValidShipDate), ShipmentValidShipDate (new context type for ValidShipDate2) and 
DeliveredInValidShipDate (new context type for ValidShipDate3). The definition of 
DeliveredInValidShipDate requires reifying the DeliveredIn relationship type. 

Therefore, now the constraints are no longer verified over the whole population of Sale, 
Shipment and DeliveredIn, respectively, but rather over the population of the derived 
subtypes. Next, we must ensure that the population of these subtypes is exactly the set of 
entities that require verification, so that incremental checking of the constraint can be 
obtained.  

The population of the derived subtypes is defined by means of the corresponding 
derivation rule (specified as a redefinition of the allInstances operation, according to the 
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method proposed in [64]). In the example, the derivation rule for ShipmentValidShipDate 
states that the population of the subtype is the set of shipments for which the value of the 
plannedShipDate attribute has changed (the information about updated shipments is 
recorded in the new uPlannedShipDate entity type). Since the context type of 
ValidShipDate2 is now ShipmentValidShipDate rather than Shipment, the verification of 
ValidShipDate2 becomes incremental because only the updated shipments are considered 
when checking the constraint. A similar reasoning is followed for the constraints 
ValidShipDate and ValidShipDate3.  

Sale

id : Natural
date: Date 
amount: Money 
paymentDate: Date 

Shipment
id: Natural 
plannedShipDate: Date
address: Address 1..*1..*

DeliveredIn

/ShipmentValidShipDate /SaleValidShipDate 

/DeliveredInValidShipDate

<<structural event>> 

uPlannedShipDate 0..1 1 <<structural event>> 

uPaymentDate
0..11

<<structural event>> 

iDeliveredIn 0..1

1

-- The derivation rules 
context ShipmentValidShipDate::allInstances() : Set(Shipment) 
body: uPlannedShipDate.allInstances().shipment 
 
context SaleValidShipDate::allInstances() : Set(Sale) 
body: uPaymentDate.allInstances().sale 
 
context DeliveredInValidShipDate::allInstances() : Set(DeliveredIn) 
body: iDeliveredIn.allInstances().deliveredIn 
 
-- The redefined constraints 
context SaleValidShipDate inv ValidShipDate:  

self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)  
 
context ShipmentValidShipDate inv ValidShipDate2:  

self.sale->forAll(s| self.plannedShipDate<=s.paymentDate+30)  
 
context DeliveredInValidShipDate inv ValidShipDate3:  

self.shipment.plannedShipDate<=self.sale.paymentDate+30 
 

Figure 2.4. Final conceptual schema  

We would like to remark that the quality of the results of our method does not depend on 
the particular representation of the original constraint. In the vast majority of cases, our 
method will always return the same incremental redefinition of the constraint regardless of 
its syntactic representation. For some constraints, the result of the redefinition process may 
differ slightly depending on the original representation. Nevertheless, the various 
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alternatives are equally suitable for verifying the constraint. Therefore, it does not matter 
which particular definition of the constraint is originally provided by the designer. In any 
case, we will obtain an incremental redefinition of the original constraint for each type of 
structural event that may violate it.  

Two alternatives are equally suitable for checking a constraint after a structural event when 
they have the same level of complexity (i.e. the number of entities involved in their 
verification is similar). At the design stage, we do not know the population of the entity 
and relationship types of the schema. The level of complexity is therefore calculated by 
means of abstract expressions that represent the number of entities taken into account in 
each alternative. Thus, we may determine that an expression that requires to evaluate X*Y 
entities is worse than another that requires accessing 1*Y entities. However, we may not 
know whether an expression e1, involving X entities, is better than an expression e2 
involving Y entities. In this case, we assume that e1 and e2 present the same level of 
complexity. 

As an example consider the CS of Figure 2.5 with two possible alternative representations 
for the constraint AuthorNotReviewer stating that a person cannot be an author and a 
reviewer of the same paper. Given the first alternative, our method would determine that, 
after the assignment of a reviewer r to a paper p, it is necessary to check that p is not one of 
the papers written by r. Given the second alternative, it would determine that we must 
check that r is not one of the authors of p. Therefore, the result is not exactly the same but 
for both alternatives our method gets the same efficiency level. At design time we cannot 
possibly know if, after this insertion event, it is better to check the papers of a reviewer or 
the authors of a paper, since this depends on the population of the IB at run-time. 

 Person

id : Natural 
name: String 

0..*0..* Paper 
id: Natural reviewedreviewer

0..*1..* 
authoredauthor 

context Person inv AuthorNotReviewer1:  
self.reviewed->forAll(p:Paper| self.authored->excludes(p))  

context Paper inv AuthorNotReviewer2:   
self.reviewer->forAll(p:Person| self.author->excludes(p))   
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3. Simplifying the original OCL expressions 

Due to the high expressiveness of the OCL, the designer has different syntactic 
possibilities for defining each integrity constraint. For instance, even the simple 
CorrectProduct constraint (Figure 1.2): 

context Product inv CorrectProduct:  self.price>0 and self.maxDiscount<=60  

could be defined as complex as: 

context Product inv CorrectProduct’:   
not Product.allInstances()->exists( price<=0  or  maxDiscount>60)  

Although both representations have exactly the same meaning (both state that the price of 
all products must be greater than zero and the discount lower or equal to sixty), it is clearly 
easier to handle the first alternative than the second one since its definition does not require 
the allInstances operation nor the exists iterator. Nevertheless, designers are free to define 
the constraint as they desire so they could opt for defining CorrectProduct using the 
second alternative (or any other alternative). 

The aim of this chapter is to provide a set of transformation rules to simplify the constraint 
definition. The constraint is simplified in the sense that the transformation rules reduce the 
number of different OCL operators (or their possible combinations) appearing in the 
constraint body. This does not necessarily imply that the resulting definition is shorter or 
easier to understand. We call the obtained representation the simplified form of the 
constraint. This simplified form is automatically obtained from the initial constraint 
definition as provided by the designer.  

This simplification is helpful to facilitate the definition of the next steps of the method 
since they do not need to address the full expressivity of the OCL. In particular, they can 
avoid dealing with the kinds of OCL expressions simplified by the transformation rules. 
Therefore, the next steps always assume that constraints are expressed in their simplified 
form.  

To generate the simplified form, we modify the body of the constraint but we do not 
consider the possibility of rewriting the constraint using a different type as context type. 
The reason is that, as we discussed in the previous chapters, there is not a single best 
context type for a constraint since depending on each event we may require a different 
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context type. The rules for the redefinition of a constraint over a different context type are 
addressed when coping with step 2 of the method (Chapter 5).  

In this chapter, we first describe a set of general rules to simplify the number of different 
OCL operators (and their possible combinations) appearing in the constraint body (Section 
3.1). Then, we focus on two especially useful sets of rules: rules to remove the allInstances 
operation (Section 3.2) and rules to transform an OCL expression into conjunctive normal 
form (Section 3.3). The application of these rules permits to obtain the original 
representation of CorrectProduct from the more complex representation CorrectProduct’. 
Except for rules of section 3.2, specific for integrity constraints, the rest may be applied to 
any OCL expression, including derivation rules and operation pre and postconditions. 

Before applying the rules, each integrity constraint is unfolded. We say that a constraint is 
unfolded when all references to derived elements, query operations and variables resulting 
from let expressions are replaced with their definition. We restrict recursive derived 
elements to be unfolded just once. Additionally, all implicit variables are made explicit. 
This affects specially the self variable and the implicit variables used in iterator 
expressions. As a consequence, the previous CorrectProduct’ is slightly modified by 
adding an explicit iterator variable p inside the exists iterator: 

context Product inv CorrectProduct’:  not Product.allInstances()->exists(p|  
p.price<=0  or  p.maxDiscount>60)  

3.1 Basic rules 

Tables 3.1-3.3 present a list of basic simplification rules. Most of these rules are based on 
the equivalences defined in the OCL standard [67] itself. Some of the rules have also been 
proposed in [28],[38]. 

We group the equivalences by the type of expressions they affect (boolean, collection or 
iterator expressions). In the rules, the capital letters X, Y and Z represent arbitrary OCL 
expressions of the appropriate type (as required by the rule definition). The letter o 
represents an arbitrary object. The expression r1…rn represents a (possibly empty) sequence of 
navigations. 

Note that some rules reduce the number of different operations that can appear in an OCL 
expression (for instance, the rule X->notEmpty()→ X->size()>0 allows to avoid using the 
notEmpty operator) while others limit the possible combinations between different 
operators (for instance, X->select(Y)->forAll(Z) →  X-> forAll(Y implies Z) simplifies the 
select iterator when placed before a forAll). The list does not pretend to be completely 
exhaustive but to include all rules that facilitate the processing of the integrity constraints 
in the next steps of the method.  
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Table 3.1 List of simplifications for boolean operators 

X <> Y →  not X = Y X = true → X 

X = false →  not X not false → true 

not true  → false X and false → false 

X and true → X X or false → X 

X or true → true X>Y and X<=Y → false 

X>Y or X<=Y → true X>Y or X<Y → X<>Y 

not X>=Y → X<Y   not X<Y → X>=Y  

not X<=Y → X>Y not X>Y → X<=Y   

X=Y → (X and Y) or (not X and not Y) 

-- when X and Y are boolean expressions 

 not X=0  X>0 

-- when X evaluates to a natural type 

X->size()<=0 or X->forAll(Y) → 

                                               X->forAll(Y)    

 

 

 

Table 3.2 Simplifications for collection operators 

X->includes(o) → X->count(o)>0 X->excludes(o) →  X->count(o)=0 

X->includesAll(Y) → 

     Y->forAll(y1|X->includes(y1))  

X->excludesAll(Y) → 

     Y->forAll(y1| X->excludes(y1)) 

X->isEmpty() → X->size()=0 X->notEmpty() → X->size()>0 

not X->isEmpty() → X->notEmpty() not X->notEmpty() →  X->isEmpty() 

X->excluding(o) → X->−(Collection{o}) X->including(o) →  

       X->union(Collection{o}) 

X->union(Y).r1…rn->forAll(Z) → X.r1…rn-> 
forAll(Z) and Y.r1…rn ->forAll(Z) 

X=Y  X->includesAll(Y) and Y-> 
includesAll(X) 

-- when X and Y are collections of objects 

X->last()→ X->at(X->size()) X->first()→ X->at(1) 
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Table 3.3 Simplifications for iterator expressions 

X->exists(Y) →   X->select(Y)->size()>0 not X->exists(Y) → X->forAll(not Y) 

not X->forAll(Y)  X->exists(not Y) X->reject(Y) → X->select(not Y) 

X->select(Y)->size()=0 → X->forAll(not Y) X->select(Y)->size()=X->size() → 

     X->forAll(Y)  

X->select(Y)->forAll(Z) → 

                               X->forAll(Y implies Z)  

X->select(Y)->exists(Z) →  

     X->exists(Y and Z) 

X->one(Y) → X->select(Y)->size()=1 X->any(Y) → 

   X->select(Y)->asSequence()->first() 

X.r1....rn.Y.attr.Z → X.r1....rn.Y->collect(attr).Z 

-- where attr represents an arbitrary attribute 

and at least a ri has a multiplicity > 1 

X->isUnique(Y) → X->forAll(x1,x2 | 
x1<>x2 implies x1.Y <> x2.Y) 

X->forAll(Y) and X->forAll(Z)  

                                    X->forAll(Y and Z) 

X->forAll(v| Y [and|or] X->forAll(v2| Z)) 
 X->forAll(v,v2| Y [and|or] Z) 

 

With this set of rules we could partially simplify CorrectProduct’ obtaining as a result the 
following alternative representation:  

context Product inv CorrectProduct’’:  Product.allInstances()->forAll(p| not 
(p.price<=0  or p.maxDiscount>60))  

The next subsections complete the simplification of CorrectProduct’ until we get its 
complete simplified form (the one already used in the original definition of 
CorrectProduct). 

3.2 Removing the allInstances operation 

AllInstances is a predefined feature on classes that gives as a result the set of all instances 
of the type that exists at the specific time when the expression is evaluated. For instance, 
the previous CorrectProduct’’ constraint states that all products (i.e. all instances of the 
Product entity type) must verify the constraint condition.  

Nevertheless, some integrity constraints specified by means of the allInstances operator 
could also be specified using the variable self that represents an arbitrary instance of the 
context type. For instance, CorrectProduct’’ could also be specified as: 
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context Product inv CorrectProduct’’’:  
 not (self.price<=0  or self.maxDiscount>60)  

Since constraints are assumed to be true for all instances of the context type (i.e. for all 
possible values of the self variable), both representations are equivalent. Moreover, 
CorrectProduct’’’ is clearly simpler than CorrectProduct’’. 

We propose two rules to remove the allInstances operation. They are applicable when the 
type over which allInstances is applied coincides with the context type of the constraint. 
They may not be applied if the constraint already contains any explicit or implicit reference 
to the self variable.  

- cet.allInstances()->forAll(v|Y) ↔ Y’, where Y’ is obtained by replacing all 
occurrences of v (the iterator variable) in Y with self. As an example, see the 
previous CorrectProduct’’’ constraint. 

- cet.allInstances()->forAll(v1,v2..vn| Y) ↔ cet.allInstances()->forAll(v2..vn|Y’) where 
Y’ is obtained by means of replacing all the occurrences of v1 in Y with self. In this 
case the allInstances operation is not completely removed but, at least, the 
simplified expression is specified using the self variable which permits a more 
efficient treatment of the constraint in the next steps of the method.  

As an example, consider a constraint UniqueName (context Product inv: 
Product.allInstances()->forAll(p1,p2 | p1<>p2 implies p1.name<>p2.name), where 
we compare each pair of entities of Product. With this rule we replace p1 with self, 
thus obtaining Product.allInstances()->forAll(p2|self<>p2 implies 
self.name<>p2.name). 

3.3 Transforming an OCL expression into conjunctive normal form 

A logical formula is in conjunctive normal form (CNF) if it is a conjunction (sequence of 
ANDs) consisting of one or more clauses, each of which is a disjunction (sequence of ORs) 
of one or more literals (or negated literals). Any logical formula can be translated into CNF 
by applying a well-known set of rules. 

We propose to apply the same set of rules (with the addition of a new rule to deal with the 
if-then-else construct) to normalize the boolean expressions included in the body of the 
OCL constraints. Note that the body of constraint itself must be a boolean expression. 
Besides, boolean expressions appear frequently in OCL constraints, for instance, as 
parameters of the forAll and select iterators.  

The rules are the following: 

 



 

-26- 

1. Eliminate the if-then-else construct and the implies and xor operators using the rules: 
a. X implies Y → not X or Y 

b. if X then Y else Z  → (X implies Y) and (not X implies Z) → (not X or Y) 
and (X or Z)  

c. X xor Y → (X or Y) and not (X and Y) → (X or Y) and (not X or not Y) 

2. Move not inwards until negations be immediately before literals by repeatedly using 
the laws: 

a. not (not X) → X 

b. DeMorgan’s laws: not (X or Y) → not X and not Y 

            not (X and Y) → not X or not Y 

3. Repeatedly distribute or over and by means of: 
a. X or (Y and Z) → (X or Y) and (X or Z) 

Once transformed into conjunctive normal form (and applying the rules to deal with not 
X<=Y and not X>Y expressions, see Section 3.1), CorrectProduct’’’ results in:  

context Product inv CorrectProduct:  self.price>0 and self.maxDiscount<=60  

which is exactly the simplified form for this constraint. 

3.4 Rule application  

Given an expression exp, the simplified form of exp is obtained by applying repetitively 
the previous rules over exp until no rules can be applied. 

The following simple algorithm can be used for this purpose: 

    Algorithm: Obtaining the simplified form of a constraint 

     SimplifiedForm(OCLExpression constraintBody) : OCLExpression 
        OCLExpression result := constraintBody  
        while ( isPossibleToApplyRules(result)  
           rule r := selectRuleToApply(result); 
           result := apply(result, r)  
       fwhile 
     return result 

where isPossibleToApplyRules examines the expression to determine if any simplification 
rule can be applied, selectRuleToApply choose one of the possible rules and apply modifies 
the expression according to that rule. 
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There are no cycles among the proposed set of simplification rules so termination of the 
process is guaranteed. There are a few rules that when applied over an expression X 
produce an output expression that can be used as an input for another rule. However, 
following any sequence of simplifications, X never returns to a state where we can apply 
the first rule over X again.  What it may happen is that some of the applied rules can be 
used again to simplify a subset of X not previously targeted (i.e. there may exist a 
subexpression x ⊂ X’ targeted by those rules). 
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4. Determining the Potentially-Violating Structural 
Events 

The aim of this chapter is to determine which kinds of events, when applied over the IB, 
may induce the violation of a given integrity constraint. This knowledge helps to improve 
the efficiency of the integrity checking process by discarding the verification of those 
constraints not possibly violated by the set of structural events applied during the 
modification of the IB. 

Given a constraint c and an event type ev, we define that ev is a potentially-violating 
structural event (PSE) for c if the application of an structural event of type ev over a 
consistent state of the IB may result in a new state of the IB that does not satisfy c. We 
consider that a constraint c with a body b and defined over a context type ct is not satisfied 
in a state s of an IB when there is an entity e of ct that evaluates b to false in s.  

We call these event types potentially-violating events (PSEs) since defining that the event 
type ev is a PSE for a constraint c does not necessarily imply that c is violated every time 
an event of type ev is applied over the IB (it depends on the exact state of the IB and on the 
parameters of the particular structural event at run-time).  

When computing the set of PSEs, we assume that integrity constraints are represented as 
instances of the OCL metamodel. According to this metamodel, each constraint can be 
regarded as a binary tree, where each node represents an atomic subset of the OCL 
expression (an operation, an access to an attribute or an association …). The tree is a 
binary tree since all OCL predefined operators have at most two parameters, and user-
defined operations have been already unfolded as part of the simplification process 
presented in the previous chapter. 

Given the tree that represents the body of an integrity constraint as an instance of the OCL 
metamodel, our method performs two different steps to determine the PSEs that may 
violate the constraint: 

1. Marking the tree. Each node (i.e. each atomic subset of the OCL expression) is 
marked with information about the kinds of modifications over the model elements 
referenced in the node (an increase in its value, a decrease…) that may induce the 
violation of the constraint. For instance a node representing an access to an attribute 
may be marked with a plus sign to indicate that the constraint could be violated if 
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the attribute value is increased during the IB update. The computation of this 
information depends on the relationships between the different nodes of the tree.  

2. Drawing the PSEs. The method determines the PSEs by taking the mark and the 
subexpression corresponding to each node into account. In short, the method 
identifies which event type may produce the kind of change required by the mark. 
Following the previous example, the method would determine that an update event 
over the attribute referenced in the node may increase its value, and thus, it may 
violate the constraint.  

The rest of the chapter is structured as follows. Section 4.1 presents the different event 
types our method deals with. Section 4.2 introduces some basic concepts about the OCL 
metamodel. Then, in Section 4.3 and Section 4.4 we explain the two previous steps. 
Finally, section 4.5 summarizes the obtained results. 

4.1 List of event types 

To determine the PSEs that may violate an OCL integrity constraint our method reasons 
about the following set of event types. Each one of these event types is instantiated at run-
time to generate the different kinds of modifications over the IB. 

- InsertET(ET): it represents the insertion of a new entity in the entity type ET. The 
new instance may have its attributes initialized but it does not participate in any 
relationship. Example: events of type InsertET(Sale) insert a new sale in the IB. For 
instance, the event InsertET(Sale, 1, ‘26/06/2006’, 1000, ‘26/07/2006’) would insert 
a new sale in the IB, initialized with the values id=1, date=‘26/06/2006’, amount = 
1000 and paymentDate=‘26/07/2006’. 

- UpdateAttribute(Attr,ET): it updates the value of the attribute attr of an entity of the 
entity type ET. When ET is clear from the context (i.e. the name of the attribute is 
not ambiguous) we also refer to this event type as just UpdateAttribute(Attr). 
Example: events of type UpdateAttribute(price, Product) change the price of a 
product. 

- DeleteET(ET): it deletes an entity from an entity type ET. Example: events of type 
DeleteET(Shipment) imply the deletion of a shipment from the IB.  

- SpecializeET(ET): it specializes an entity of a supertype of an entity type ET to ET. 
Example: A SpecializeET(RestrictedProduct) event specializes a product into a 
restricted product. 

- GeneralizeET(ET): it generalizes an entity of a subtype of an entity type ET to ET. 
Example: A GeneralizeET(Product) event transforms restricted products into just 
“common” products.  
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- InsertRT(RT): it inserts a new relationship in the relationship type RT. Example: 
events of type InsertRT(DeliveredIn) create new relationships between pairs of sales 
and shipments. 

- DeleteRT(RT): it removes a relationship from a relationship type RT. Example: 
events of type DeleteRT(DeliveredIn) remove a sale from a shipment.  

Reified entity types (i.e. association classes) have two different facets: the entity type facet 
and the relationship type facet. Since we do not have specific events for dealing with the 
insertion (deletion) of entities of reified entity types, to insert an entity in a reified entity 
type we must combine an InsertET (to create the entity facet) and an InsertRT event (to 
create the relationship facet). Likewise, to delete an entity from a reified entity type we 
combine the DeleteET and DeleteRT events. 

To deal with taxonomy hierarchies, we assume InsertET events over a subtype s are 
preceded by InsertET events over all supertypes of s. DeleteET events over a type t are 
accompanied by DeleteET events over all supertypes and subtypes of t. Similarly, to 
specialize (generalize) an entity e of type t to a type tfinal which is not a direct subtype 
(supertype) we also need to generate the corresponding specialize (generalize) event for all 
types t’ appearing in the path between t and tfinal (at least for one of the paths, if several 
different paths exist).  

We would like to remark that our set of events does not exactly correspond to the kind of 
events defined in the UML language (as defined in the Action packages [68]). The event 
types we use are more basic than those of the UML. Moreover, our independence of a 
particular modeling language allows us to incorporate our results to different predefined 
sets of structural event types providing that we define the correspondence between our 
event types and those different sets. 

Besides, the result of our method in terms of our set of internal event types can be easily 
expressed in terms of the UML event types. For the sake of completeness we provide in the 
next subsection the correspondence between both sets. 

4.1.1 Correspondence with the event types defined in the UML language 

The set of event types allowed in UML behavior specifications [68], is the following: 

- AddSructuralFeatureValueAction(StructuralFeature s): It adds a new value for the 
structural feature s to the object indicated at run-time. In UML 2.0, a structural 
feature is either an attribute or an association end (i.e. a role in a relationship type).  

- CreateLinkAction(Association a): It creates a new link (i.e. relationship) for the 
association (i.e. relationship type) a. 
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- CreateLinkObjectAction(Association a): It creates a new link object for the 
association class (i.e. reified entity type) a. 

- CreateObjectAction(Classifier c): It creates a new instance of the classifier (i.e. 
entity type) c.  

- DestroyLinkAction(Association a): It removes a link from a.  

- DestroyObjectAction(Classifier c): It removes an object from c. 

- ReclassifyObjectAction(Classifier[] newClassifiers, Classifier[] oldClassifiers): It 
adds to the object indicated at run-time the list of classifiers specified in 
newClassifiers and removes those in oldClassifiers. 

- RemoveStructuralFeatureValueAction(StructuralFeature s): It removes the value of 
s in the object indicated at run-time. 

Given this set of event types table 4.1 shows the correspondence between our internal set 
of events (first column) and those of the UML (second column).  

Table 4.1. Correspondence between our events and the UML event types 

Internal event types UML event types 
InsertET(ET) - CreateObjectAction over ET  

- CreateLinkObject over ET (if ET is an association class) 
- Any of the previous events over a subtype of ET (which 

induces an insertion over ET) 
UpdateAttribute(Attr,ET) - AddStrucuturalFeature over Attr (possibly preceded by 

a RemovalStructuralFeatureAction to remove the 
previous attribute value)  

DeleteET(ET) - DestroyObjectAction over ET 
- DestroyLinkAction over ET (if ET is an association 

class)  
- Any of the previous events over a supertype or subtype 

of ET (both induce the deletion of the instance over ET) 
SpecializeET(ET) - ReclassifyObjectAction with ET in the set of new 

classifiers.  
GeneralizeET(ET) - A ReclassifyObjectAction with a direct subtype of ET in 

the set of old classifiers. 
InsertRT(RT) - CreateLinkAction over RT 

- CreateLinkObject over RT (if RT is an association class)
DeleteRT(RT) - DestroyLinkAction over RT 
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4.2 The OCL metamodel 

The representation of the constraints as instances of the OCL metamodel facilitates their 
treatment during the different steps of the method. At the moment of writing this thesis, the 
last adopted specification of the OCL metamodel is [67]. 

The basic structure of the OCL metamodel (see Figure 4.1) consists of the metaclasses 
OCLExpression (abstract superclass of all possible OCL expressions), VariableExp (a 
reference to a variable, as, for example, the variable self), IfExp (an if-then-else 
expression), LiteralExp (constant literals like the integer ‘1’) and PropertyCallExp which 
is a supertype for the metaclasses ModelPropertyCallExp (expressions referring to model 
elements) and LoopExp (iterator expressions).  

ModelPropertyCallExp  (Figure 4.2) can be split into AttributeCallExp (a reference to an 
attribute), NavigationCallExp (a navigation through an association end or an association 
class) and OperationCallExp. This later class is of particular importance, because its 
instances are calls to operations defined in any class of the CS. This includes all the 
predefined operations of the types defined in the OCL Standard Library [67 ch. 11], such 
as the add operator (‘+’) or the ‘and’ operator. These OperationCallExp expressions may 
include a list of arguments if the referred operation has parameters. Note that, as can be 
seen from Figure 4.2, the current version of the OCL standard is not yet completely aligned 
with the last version of the UML 2.0 standard since some of the OCL metaclasses (as 
AssociationEndCallExp) still reference obsolete UML metaclasses as the AssociationEnd 
metaclass, replaced by the metaclass Property in the UML 2.0.  

 
Figure 4.1. Basic structure of the OCL metamodel 
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Figure 4.2. OCL Metamodel fragment for ModelPropertyCallExp  

When expressing a constraint as an instance of the OCL metamodel, the body of the 
constraint can be regarded as a binary tree where each node represents an atomic subset of 
the OCL expression defining the constraint body (an instance of any metaclass of the OCL 
metamodel: an operation, an access to an attribute or an association …).  

The root of the tree is the most external operation of the OCL expression. The left child of 
a node is the source of the node (the part of the OCL expression previous to the node). The 
right child of a node is the body of an iterator expression if the node represents one of the 
predefined iterators defined in the OCL standard (a forAll, select…) or the argument of the 
operation if the node represents a binary operation (such as ‘>’, union, ‘+’,…). In this latter 
case, the source can be regarded as the first operand of the operation. 

We show in Figure 4.3 the constraint ValidShipDate (self.shipment->forAll(sh| 
sh.plannedShipDate<=self.paymentDate+30)) as an instance of the OCL metamodel. The 
forAll iterator (represented as an instance of the metaclass IteratorExp) is the root of the 
tree. The left child of the root is the source of the iterator (self.shipment). In its turn, this 
left child is represented as an instance of the AssocationEndCallExp metaclass 
corresponding to the navigation through the association end shipment. Its source is the 
access to the self variable. The right child of the root is the body of the iterator expression 
(sh.plannedShipDate <= self.paymentDate+30). The root of this right subtree is the 
operation ‘<=’ represented as an instance of the OperationCallExp metaclass having as 
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referred operation the operation called ‘<=’. This node has two children. The first one is its 
source, an access to the attribute plannedShipDate (with a last child representing the access 
to the sh variable). The second one is the operation ‘+’ between the paymentDate attribute 
(left child) and the integer 30 (right child). 

 :OclConstraint

name = ValidShipDate
kind ="inv"

:Class 
name = Sale 

      :IteratorExp

:Operation 
name = "<=" 

:AssociationEndCallExp
:AssociationEnd 

name = "shipment" 

:VariableExp
:VariableDeclaration 
varname = "self" 

:OperationCallExp

:AttributeCallExp

:IntegerLiteralExp 
integerSymbol   = 30 

:Attribute 
name="plannedShipDate" :VariableExp

:VariableDeclaration

name="sh"

  constrainedElement 

body

referredOperation
referredAssociationEnd 

referredVariable 
source 

source body

referredOperation 
source

argument referredAttribute source

referredVariable

name = "forAll"

:Operation 
name = "`+" :OperationCallExp

argument

:AttributeCallExp

:VariableExp

:VariableDeclaration

name="self"

source

referredVariable

source

:Attribute 
name="paymentDate"

referredAttribute

 Figure 4.3. Constraint ValidShipDate as an instance of the OCL metamodel 

As can be seen from the previous figure, a complete representation of the constraint as an 
instance of the OCL metamodel is quite cumbersome. Therefore, from now on we will 
express the constraints using a simplified version of the previous representation. Figure 4.4 
shows ValidShipDate represented in this simplified form, where we combine in the same 
tree node the kind of OCL subexpression and the name of the model element referenced by 
the node. 

Figures 4.5 – 4.8 show the other constraints of the running example (Figure 1.2) expressed 
as instances of the OCL metamodel. 
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:IteratorExp 
         ( forAll) 

:OperationCallExp 
              ( <= )

:AssociationEndCallExp 
          ( shipment ) 

:VariableExp 
      ( self ) 

:AttributeCallExp 
(plannedShipDate )

:VariableExp 
        ( sh ) 

:AttributeCallExp 
     (paymentDate)

:VariableExp 
      ( self )

:OperationCallExp 
              ( + )

:IntegerLiteralExp    
(30 ) 

 

Figure 4.4. Simplified representation of ValidShipDate 

 

 

 

 :OperationCallExp
(and)

:OperationCallExp
(<= )

:AttributeCallExp
(maxDiscount )

:VariableExp
      ( self )

:IntegerLiteralExp    
(60) 

:OperationCallExp 
(>)

:AttributeCallExp 
(price) 

:VariableExp 
      ( self ) 

:IntegerLiteralExp    
(0)

 
Figure 4.5. Constraint CorrectProduct as an instance of the OCL metamodel 
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:IteratorExp 
         ( forAll)

:OperationCallExp 
            ( <= )

:AssociationEndCallExp 
          ( customer ) 

:VariableExp 
      ( self )

:AttributeCallExp 
(maxPendingAmount) 

:VariableExp 
        ( self )

:IteratorExp 
(collect)

:OperationCallExp 
( sum )

:IteratorExp 
         ( select )

:AssociationEndCallExp 
( sale ) 

:VariableExp 
( c )

:OperationCallExp 
           ( > )

:AttributeCallExp 
(paymentDate)

:OperationCallExp 
( Time::now ) 

:AttributeCallExp 
(amount)

:VariableExp 
( s )

:VariableExp 
( sa ) 

 
Figure 4.6. Constraint NotTooPendingSales as an instance of the OCL metamodel 

 

 

:OperationCallExp 
(size) 

:AssociationEndCallExp 
(customer)

:VariableExp 
        (self) 

:OperationCallExp 
(>=)

:IntegerLiteralExp    
(3)

 
Figure 4.7. Constraint AtLeastThreeCustomers as an instance of the OCL metamodel 
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:OperationCallExp
(size) 

:OperationCallExp
(<=)

:IntegerLiteralExp    
(20)

:OperationCallExp
(RestrictedProduct::allInstances)

 
Figure 4.8. Constraint NumberOfRestrictedProducts as an instance of the OCL metamodel 

4.3 Marking the constraint tree 

To compute the PSEs it is not enough with examining each part of the OCL expression 
separately. For instance, to determine whether the constraint AtLeastThreeCustomers  may 
be violated by a customer assignment to a category or by a customer removal from a 
category we can not merely take into account the subexpression self.customer->size(). In 
fact, both events change the value resulting from the evaluation of this subexpression. 
However, since the size operation is involved in a ‘>=’ comparison operator, only 
removing a customer from a category may induce a violation of this constraint. On the 
contrary, if we had used ‘<=’ instead, the expression could be violated only when 
assigning a new customer to the category. 

Therefore, and prior the computation of the PSEs, we need to analyze the relationship 
between the different nodes of the OCL constraint tree. For each node we must determine 
which kind of modifications over the elements referenced by the node may induce a 
constraint violation. The kind of changes depends on the node type and on the information 
propagated by the parent node. Then, we propagate this information to the children node to 
repeat the process, following a preorder traversal of the tree. In a preorder traversal, we 
process all nodes of the tree by first processing the root and then, recursively, processing in 
preorder the children subtrees. To start the process the method assumes that the root node 
is marked with the und symbol (see below).  

There are three different symbols to propagate: 

 ‘+’:  it indicates that the constraint can be violated by an increase in the value or in 
the number of items of the subexpression 

 ‘-‘:  it indicates that the constraint can be violated by a decrease in the value or in 
the number of items of the subexpression 

 ‘und’: it indicates the node does not propagate any kind of information 
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As an example of the first two symbols consider the operation ‘>’. A node representing a 
call to this operation propagates the symbol ‘−‘ to the left child (i.e. the first argument) and 
the symbol ‘+’ to the right child (the second argument).  The semantics of this operation 
justifies this propagation. To violate an expression like ‘A > B’ there are two options: 
decrease the value of A (this is why we propagate the symbol ‘− ‘ to the left) or increase 
the value of B (this explains the ‘+’). 

The symbol ‘und’ is used by operations like ‘and’ or ‘or’. It denotes that the node does not 
influence its children expressions at all. The events that can violate ‘A and B’ are the same 
that violate A plus those of B stand-alone. A forAll also propagates an und to its body since 
the events that can violate the body expression of the iterator are the same events that can 
violate the expression stand-alone.  

Tables 4.2-4.5 show the symbol propagation for all combinations of each kind of node 
(columns) and symbol (rows) that may be received from a parent node. Then, cells indicate 
which symbols must be propagated to the children nodes when that type of node receives 
that symbol from its parent.  

Sometimes a node may propagate more than one symbol to its children. When a node 
receives several symbols from its parent node, the final value that the node propagates is 
obtained by applying the table information to each received symbol. When a node has two 
children the cell states the symbol (or symbols) for each child. For the sake of clarity, 
propagation of und symbols is represented by blank cells. Blank cells can also indicate that 
there is no constraint including such combination.  

First, Table 4.2 shows the propagation of some basic OCL expressions like navigations 
through roles (i.e. association ends) or reified entity types (i.e. association classes) and 
access to attribute values, variables and constants. For variables and constants, the node 
always is a leaf of the tree, and thus, no symbol can be propagated. For navigations we 
propagate the same symbol received. For instance, if the constraint may be violated when a 
navigation through an association end returns more objects (symbol ‘+’), an option to 
increase the number of objects returned by the navigation is to increase the size of the 
collection of objects where the navigation is applied over (that justifies the propagation of 
the ‘+’ symbol). Likewise with the ‘−’ symbol. For attributes we always propagate a ‘+’ 
symbol, since a condition over an attribute may be violated if we create a new instance in 
the IB initialized with a wrong attribute value (it does not matter if the constraint may be 
violated by a decrease or an increase in the attribute value). 
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Table 4.2. Basic OCL expressions 

 1. Navigation 
AssocitationEnd 

2. Navigation  
AssociationClass 

3. Access 
attribute 

5. Access to 
variable  

6. Constant 
expression 

1. und   +   

2. + + + +   

3. − − − +   
 
Then, Table 4.3 deals with the generic operations of all OCL types, which in the OCL 
standard are defined as operations of the OclAny predefined type (all other types are 
subtypes of the OclAny supertype). Among those operations, the ‘=’ operator is an example 
of a node with two children. In this case we propagate both symbols to each child (an equal 
comparison may be violated either by an increase or decrease in the values of any of the 
operands). This default behavior can only be optimized when one of the operands evaluates 
to a natural type and the other is the integer zero. Then, it is enough to propagate a ‘+’ 
symbol to the natural operand (since it evaluates to a natural value, the operand cannot 
possibly take a value < 0, which means that the constraint cannot be violated by a decrease 
in the value of that operand). For oclIsUndefined, oclIsTypeOf and oclIsKindOf operations 
the constraint can be propagated if these operations are applied over a new object (that may 
not satisfy the type condition), thus, we propagate a ‘+’ symbol. The allInstances operation 
is a leaf of the tree so no symbol is propagated. 

Table 4.3. OclAny operations  

 1. = 2. 
oclIsUndefined 

3. 
oclAsType

4. 
oclIsTypeOf

5. 
oclIsKindOf

6.allInstances 

1. und + −  + − +  + +  

2. +    +    

3. −    −    
 
Table 4.4 presents the treatment of operations defined for primitive types. Here, it is worth 
to remark the different behavior of arithmetic operators (as ‘*’ or ‘/’) depending on the 
type of the operands. For natural operands, it is clear that if a constraint can be violated 
when, for instance, the result of a multiplication increases, we can only get this increase by 
growing the value of one (or both) operands (this justifies the propagation of the symbol 
‘+’). This is not true for real or integer operands because they may take negative values. In 
such a case, even a decrease in the value of an operand may result in a higher result after 
their multiplication (for instance, -2*-1<-5*-1). Then, when dealing with real or integer 
values we must propagate always both symbols (‘+’ and ‘−’). As commented before, for 
and and or operations we propagate an und value to both children. For not operators we 
also propagate an und value (a special treatment for not operators is presented in the next 
section).   
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Table 4.4.  Primitive types operations 

 1. +,−,*,/,  
div, mod  
(real,int) 

2. +,* 
(nat) 

3. −,/ 
(nat)  
 

4. <,
<= 

5. >,
>= 

6. max
min 

7. floor
round 

8. abs 9. − 10.  
and 
Or 

11. 
not 

11.size, 
toInt 
toReal 
(string) 

12. 
concat 

1. und       +  − −  +            

2. + + −    + − +  + +   −     +  + + + − + −    + +   + 

3. − + −    + − −  − −   +     −  − − + − + −    − −   − 
 
Finally, Table 4.5 describes the propagation for iterator and collection expressions. A 
forAll can be violated if the number of elements that must verify the forAll body increases 
(that is why we propagate a ‘+’ symbol to the left child) or if some of the elements affected 
by the forAll changes its value in a way that does not satisfy the forAll body. The events 
that may cause this change are the same events that we would obtain when dealing with the 
forAll body stand-alone, and thus, we propagate the und symbol. We follow a similar 
reasoning with the select iterator (see also the special treatment for select expressions when 
obtaining the PSEs in the next section). For the generic iterate operator, we propagate all 
symbols since this generic iterator too expressive to be able to determine a more specific 
treatment. For collection operators (as union, intersection,…) the propagation depends on 
the semantics of each operator. For instance, the result of a union may increase if we 
increase the size of its operands. The asX operation represents the different conversion 
operations between the different collection types (operations asSet, asBag,…). 

As in the previous table, the behavior of the sum operator differs depending of the type of 
the objects where the sum is applied over. When they are of type integer or real, the sum 
(column 4) operator propagates also the symbols in brackets. The sum of an attribute at of 
a set of objects s may increase either when adding to s an object with a positive value in at 
or  when removing from s an object with a negative value in at.  

Table 4.5. Iterator and collection expressions 

 1. 
forAll 

2. select 3. iterate 4.  
sum 

5. count
collect 

6. U,∩,
product

7. − 8. sym 
Differ 

11. size 
asX, 
Flatten 

12.at, 
indexOf,
subseq 

1. und +    + −  + −           + −  + −

2. +   +  + −  + − + (−) +   + +   + +   − + −  + − + + −  + −

3. −   −  + −  + − − (+) −   − −   −   −  + + −  + − − + −  + −
 
The application of these tables over the constraint ValidShipDate is shown in Figure 4.9. 
We start with processing the forAll iterator.  Since it is the root of the tree it does not 
receive any initial information. To mark its children we use cell 4.5:1.1 (Table 4.5 row 1, 
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column 1) which states that the left child must be marked with the ‘+‘ symbol while the 
right must be ‘und’ (shown as a blank symbol in the tree). The left child (the navigation 
through the association end shipment) propagates a ‘+’ to its single child (cell 4.2:2.1). The 
root of the subtree corresponding to the body of the forAll is the node representing the 
operation ‘<=’. This node propagates a ‘+’ to the left child and a ‘−’ to the right one (cell 
4.4:1.4). In its turn, the left child (the access to the attribute plannedShipDate) propagates a 
‘+’ to its child (cell 4.2:2.3). The right child (the plus operator) propagates a ‘−’ to both 
children (cell 4.4:3.2). 

Figures 4.10-4.13 show the results of marking the trees corresponding to the rest of 
constraints. 

:IteratorExp 
         ( forAll)

:OperationCallExp 
              ( <= )

:AssociationEndCallExp 
          ( shipment ) 

:VariableExp 
      ( self ) 

:AttributeCallExp 
(plannedShipDate )

:VariableExp 
        ( sh )

:AttributeCallExp 
     (paymentDate)

:VariableExp 
      ( self )

:OperationCallExp 
              ( + )

:IntegerLiteralExp    
(30 ) 

+ − 

+ 

+ 

+ − − 

+ 

 

Figure 4.9. Marking the tree corresponding to ValidShipDate 

 :OperationCallExp
(and)

:OperationCallExp
(<= )

:AttributeCallExp
(maxDiscount )

:VariableExp
      ( self )

:IntegerLiteralExp    
(60) 

:OperationCallExp 
(>)

:AttributeCallExp 
(price) 

:VariableExp 
      ( self ) 

:IntegerLiteralExp    
(0)

+ − − + 

+ + 

 

Figure 4.10. Result of marking CorrectProduct  
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 :IteratorExp 
         ( forAll)

:OperationCallExp 
            ( <= )

:AssociationEndCallExp 
          ( customer ) 

:VariableExp 
      ( self )

:AttributeCallExp 
(maxPendingAmount) 

:VariableExp 
        ( self )

:IteratorExp 
(collect) 

:OperationCallExp 
( sum )

:IteratorExp 
         ( select )

:AssociationEndCallExp 
( sale ) 

:VariableExp 
( c )

:OperationCallExp 
           ( > )

:AttributeCallExp 
(paymentDate)

:OperationCallExp 
( Time::now ) 

:AttributeCallExp 
(amount) 

:VariableExp 
( s )

:VariableExp 
( sa ) 

− 

+ 

+ + 

+ 

+ 

+ 

+ − 

+ 

+ 

+ 

+ 

+ 

 

Figure 4.11. Result of marking NotTooPendingSales  

 

:OperationCallExp
(size)

:AssociationEndCallExp
(customer)

:VariableExp
        (self)

:OperationCallExp
(>=)

:IntegerLiteralExp    
(3)

− + 

− 

− 

 

Figure 4.12. Result of marking AtLeastThreeCustomers  
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:OperationCallExp
(size) 

:OperationCallExp
(<=)

:IntegerLiteralExp    
(20)

:OperationCallExp
(RestrictedProduct::allInstances)

− + 

+ 

 

Figure 4.13. Result of marking NumberOfRestrictedProducts  

4.4 Drawing the potentially-violating structural events 

Once the tree is marked as explained in the previous section, our method is able to 
determine the PSEs that may violate the integrity constraint. Now, the tree is traversed in 
postorder (we process all nodes of the tree by first recursively processing in postorder the 
children subtrees and then the root). During the traversal we attach to each node of the tree 
the information about the PSEs generated because of that particular node. 

Table 4.6 describes the set of PSEs we determine for each node in terms of the node type 
(columns) and its marks (rows). Among all columns used in the tables of the previous 
section we only include in Table 4.6 those columns with a direct effect on the generation of 
the PSEs.  

When a PSE appears between brackets implies that more sophisticated conditions and 
patterns must be evaluated before considering that event type as a PSE for a constraint 
including a node of that type with that mark. These conditions as well as the meaning of 
the Opp keyword in the last two columns will be explained later on. In what follows we 
discuss in detail each column. 

Table 4.6. Computation of the PSEs 

 1. Navig 
AssEnd 

2. Navig  
AssClass 

3.Access 
Attribute 

4. Access  
to var  

5. 
IsTypeOf 

6. 
IsKindOf 

7. 
allInst 

8. 
not 

9. 
select 

1. 
und 

  UpdAttr 
 

 GenET 
SpeET 

GenET  Opp1  

2. + InsertRT  
(DeleteRT) 

InsertRT  
(DeleteRT) 

UpdAttr 
 

(InsertET)
(SpeET) 

  InsertET 
(SpeET) 

 Opp2 

3. − DeleteRT DeleteRT UpdAttr 
 

(InsertET)
(SpeET) 

  DeleteET 
(GenET) 

  

 

First we discuss the possible options for nodes representing a navigation through an 
association end (column 1). When the association end is labeled with a ‘+’ symbol, the 
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constraint may be violated by an insertion over the association (event type InsertRT) where 
the association end belongs. Remember that ‘+’ pointed out that the constraint could be 
violated due to an increase of the number of elements resulting from the navigation 
through that association end, and thus, the events that can cause the violation are those 
events that increase such number. That is precisely what events of type InsertRT do. In a 
similar way, if it is labeled with a ‘−‘, the critical event is the deletion of a link of the 
association (event type DeleteRT) since we are interested in reducing the number of links 
of the association.  

The DeleteRT event type that appears in brackets is only relevant for navigations included 
in the body expression of a select iterator. A select returns only those objects that evaluate 
the select condition to true. On the contrary, those evaluating the condition to false or 
undefined will not be selected. Since events of type DeleteRT(RT) (where RT is referenced 
in the select condition) may cause the subexpression including the navigation through RT 
to return an undefined value, this event type must also be considered as a PSE for 
constraints that may be violated when the amount of elements returned by a select 
decrease. Note that this PSE is not generated when at the end of the sequence of 
navigations where RT is included in, we find an iterator or a collection operation since 
then, according to the OCL standard, the result is never undefined (even if the iterator or 
the collection operation are applied over an empty collection). 

The same reasoning serves to explain the processing of navigations towards an association 
class. The only difference is that, in this case, the relationship type appearing as a 
parameter of the InsertRT or DeleteRT event type is a reified relationship type instead of a 
simple relationship type. 

For attributes, we have that all kinds of conditions over the attributes may be violated if we 
change the value of the attribute (UpdateAttribute event type).  

When accessing a variable, we need to consider the event types InsertET(ET) and 
SpecializeET(ET) as PSEs for the constraint (where ET represents the type of the variable) 
when the following additional conditions apply: 

- The referenced variable must be the self variable 

- The parent node must be either an AttributeCallExp or a NavigationCallExp 

- The node must not be included inside the body of an iterator expression 

- When the parent node is an AttributeCallExp the condition regarding the attribute 
must compare the attribute value with a constant (as in self.attr>5) or with another 
attribute of the same self instance (as in self.attr1>self.attr2). Conditions comparing 
the value of the attribute with the values of different instances (as in self.role1-
>forAll(i| i.attr>self.attr)) does not generate any PSEs. In such a case, the constraint 
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can only be violated if the navigation self.role1 is not empty which is already 
controlled when processing the part of the subtree dealing with this navigation 
expression. 

- When the parent node is a NavigationCallExp the variable node must be marked 
with a ‘−’ symbol. This case indicates that all new entities of the entity type must 
have a minimum set of relationships with other entities, and thus, if the new created 
entity does not participates in this minimum set, the constraint will be violated. For 
instance, all categories must have at least three customers, and thus, when creating a 
category we must also assign to the category an initial set of customers to avoid 
violating the constraint. 

- The SpecializeET(ET) event is only generated when ET has at least a direct 
supertype, which implies that new instances of ET can be created either by inserting 
a completely new entity or by specializing to ET an existing instance of a supertype 
of ET. Moreover, the constraint body must reference at least an attribute or 
relationship type defined in the supertype. Otherwise the specialized entity would not 
present values in any of the elements referenced in the constraint and thus, it will be 
surely consistent with it. As an example, consider a constraint context 
RestrictedProduct inv: self.maxUnits >0. When specializing an existing product p 
into the restricted product category, p cannot violate the constraint until we issue an 
UpdateAttribute(maxUnits, RestrictedProduct) event type to initialize its maxUnits 
value. Therefore, the specialization of p itself does not violate this constraint. 
Instead, if we restrict RestrictedProduct entities to have a price over 10000, 
specializing a product into a restricted product may induce a constraint violation 
since the product may already present a price over 10000. 

For oclIsTypeOf(Type) and oclIsKindOf(Type) operations the constraint may be violated 
when changing the type of the affected entities. In the first case, when the entity is either 
generalized to a supertype or specialized to a subtype of Type (object.oclIsTypeOf(Type) 
returns true iff the type of object is exactly Type). In the latter, only when it is generalized 
(object.oclIsKindOf(Type) returns true if object is either of type Type or of one of the 
subtypes of Type). Note that, we must generate a PSE for each direct supertype (and 
subtype, for oclIsTypeOf operations) of Type. 

The Type::allInstances operation generates an InsertET(Type) event type as a PSE (and a 
SpecializeET(Type) when Type has at least a supertype) when the corresponding node is 
marked with a ‘+’. When issuing these events the number of instances returned by the 
allInstances operation is increased, and thus, their application over the IB may violate 
constraint containing an allInstances node marked with the ‘+’ symbol. Similarly, when 
the symbol is a ‘−’, it generates a DeleteET(Type) and a GeneralizeET(supertype) for each 
direct supertype of Type.   
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The processing of expressions affected by select and not operators is more complex. The 
effect of the not operator is defined by means of the operation Opp1(). This operation 
replaces the PSEs attached to the child node of the not operator with their opposites (i.e. 
the events violating a not X expression are the opposite events to those PSEs that violate 
X). The exception is when the not operator appears in front of an oclIsUndefined operation, 
where we must change the PSEs of the whole child subtree with their opposites, since even 
changes in one of earlier nodes of the subtree may turn the whole expression to (not) 
undefined. Note that when the not operator appears in front of an equal comparison the 
Opp1() does not have any effect (since the particular node corresponding to the equal 
comparison never holds a PSE). This is perfectly correct since the events that may violate 
the equal comparison are the same as the ones that may violated a not-equal comparison. In 
both cases, any change on one of the operands may cause the comparison to return a false 
value.  

The basic idea for the Opp1 operation is that the opposite of an insertion (specialization) is 
a deletion (generalization) and the opposite of a deletion (generalization) is an insertion 
(specialization). The opposite of an update event is the event itself. The opposite of the 
opposite of an event must return the original event. Therefore, the opposites for each event 
are: 

- Opposite(InsertET(ET))=DeleteET(ET) 

- Opposite(DeleteET(ET))=InsertET(ET) 

- Opposite(UpdateAttribute(Attr,ET))=UpdateAttribute(Attr,ET) 

- Opposite(InsertRT(RT))=DeleteRT(RT) 

- Opposite(DeleteRT(RT))=InsertRT(RT) 

- Opposite(SpecializeET(ET))=GeneralizeET(ETsup) where ETsup is a supertype of ET. 
In particular, ETsup must be the supertype appearing as a parameter of the operation 
oclIsTypeOf operation that has produced the SpecializeET PSE. Note that, even 
though other cells generate also SpecializeET events, among them only the 
oclIsTypeOf operation may appear next to the not operator. 

- Opposite(GeneralizeET(ET))=SpecializeET(ETsub) where ETsub is a subtype of ET. 
In particular, ETsub must be the subtype appearing as a parameter of the operation 
oclIsKindOf or oclIsTypeOf operations that have produced the GeneralizeET PSE. 
As before, other cells generating GeneralizeET events cannot appear next to the not 
operator.  

A similar thing happens with a select expression. When the constraint may be violated by 
an increase in the number of elements returned by a select expression we are interested in 
the events that favor an object to satisfy the select expression. These events are the 
opposite of the events that favor the violation of the select condition. Therefore, we must 
apply the operation Opp2 over the select body to transform all the events initially computed 
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(i.e. those that violate the select condition). This operation simply applies the previous 
opposite function Opp1 to all the PSEs attached to nodes included in the select body (and 
not only to the PSEs of the immediate child as in the not operator).  

Figure 4.14 applies Table 4.6 to the ValidShipDate constraint. Since the traversal is in 
postorder we start by processing the leaves of the tree. First, we process the access to the 
variable self marked with the symbol ‘+‘. The variable does not generate any PSE (it does 
not verify the conditions stated above). After this step, we consider the navigation through 
the shipment association end. According to the table, an association end marked with the 
‘+’ symbol generates an InsertRT event type, in this case, an InsertRT(DeliveredIn). Then, 
we proceed with the right child of the forAll iterator. The access to the sh variable does not 
affect the computation of the PSEs but the access to the plannedShipDate attribute 
produces the UpdateAttribute(plannedShipDate) event type. Finally, the access to the 
attribute paymentDate increases the set of PSEs for the constraint with the 
UpdateAttribute(paymentDate) event type. Note that its child (the access to the self 
variable) neither generates an InsertET event type since the condition over the 
paymentDate attribute involves comparing its value with the value of an attribute of a 
different object. 

Figures 4.15 – 4.18 apply Table 4.6 to the rest of the constraints. For the sake of clarity, in 
the figures we indicate events of type UpdateAttribute(Attr,ET) as just 
UpdateAttribute(Attr) when ET is clear from the context (i.e. the name of the attribute is 
not ambiguous). 

:IteratorExp
         ( forAll) 

:OperationCallExp
              ( <= )

:AssociationEndCallExp 
          ( shipment ) 

:VariableExp 
      ( self )

:AttributeCallExp
(plannedShipDate )

:VariableExp
        ( sh )

:AttributeCallExp
     (paymentDate)

:VariableExp
      ( self )

:OperationCallExp
              ( + )

:IntegerLiteralExp    
(30 ) 

+ − 

+ 

+ 

+ − − 

+ 

InsertRT(DeliveredIn) 

UpdateAttribute(plannedShipDate) 

UpdateAttribute(paymentDate) 

 

Figure 4.14. PSEs for ValidShipDate 
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:OperationCallExp
(and)

:OperationCallExp
(<= )

:AttributeCallExp
(maxDiscount )

:VariableExp
      ( self )

:IntegerLiteralExp    
(60) 

:OperationCallExp 
(>) 

:AttributeCallExp 
(price)

:VariableExp 
      ( self )

:IntegerLiteralExp    
(0)

+ − − + 

+ + UpdateAttribute(price) UpdateAttribute(maxDiscount) 

InsertET(Product) InsertET(Product) 

 

Figure 4.15. PSEs for constraint CorrectProduct  

 

:IteratorExp
         ( forAll)

:OperationCallExp
            ( <= )

:AssociationEndCallExp 
          ( customer ) 

:VariableExp 
      ( self ) 

:AttributeCallExp
(maxPendingAmount)

:VariableExp
        ( self )

:IteratorExp
(collect)

:OperationCallExp
( sum )

:IteratorExp
         ( select )

:AssociationEndCallExp 
( sale ) 

:VariableExp 
( c ) 

:OperationCallExp
           ( >)

:AttributeCallExp
(paymentDate)

:OperationCallExp
( Time::now )

:AttributeCallExp
(amount)

:VariableExp
( s )

:VariableExp 
( sa ) 

− 

+ 

+ + 

+ 

+ 

+ 

+ − 

+ 

+ 

+ 

+ 

InsertRT(BelongsTo) 

UpdateAttribute(amount) 

UpdateAttribute(maxPendingAmount)

InsertRT(Purchases) 

UpdateAttribute(paymentDate) + 

 

Figure 4.16. PSEs for constraint NotTooPendingSales  
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:OperationCallExp
(size)

:AssociationEndCallExp
(customer)

:VariableExp
        (self)

:OperationCallExp
(>=)

:IntegerLiteralExp    
(3)

− + 

− 

− 

DeleteRT(BelongsTo) 
 

InsertET(Category) 
 

 
Figure 4.17. PSEs for constraint AtLeastThreeCustomers  

 

:OperationCallExp
(size)

:OperationCallExp
(<=)

:IntegerLiteralExp    
(20)

:OperationCallExp
(RestrictedProduct::allInstances)

− + 

+ InsertET(RestrictedProduct) 
SpecializeET(RestrictedProduct) 
 

 
Figure 4.18. PSEs for constraint NumberOfRestrictedProducts  

4.5 Summary 

Table 4.7 summarizes the results of processing all example constraints to obtain their set of 
PSEs.  

We would like to remark that the main benefit of determining the PSEs of a constraint is 
that it avoids a lot of unnecessary verifications when checking the state of the IB. With our 
results we may reduce the number of constraints to be considered during the integrity 
checking process since the events that can really violate the constraints are a small subset 
of all events affecting the elements referenced in the constraint body (which is a common 
strategy to compute the PSEs in other methods, see Chapter 9).  

As an example, neither insertions nor deletions of sales and shipments may violate 
ValidShipDate. New sales (shipments) can only induce a constraint violation when we 
assign them to an existing shipment (sale), which implies the issue of an 
InsertRT(DeliveredIn) event type, already a PSE for the constraint. Similarly, the 
DeleteET(Customer) event type is not a PSE for the constraint AtLeastThreeCustomers. 
Deletion of customers not related with a category (though this is a situation not permitted 
in our particular running example) does not decrease the number of costumers per 
category, and thus, it may not induce the violation of the constraint). It is the deletion of 
the link (DeleteRT(BelongsTo) event type) between the customer and the category 
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(deletion that can be a preliminary before deleting the customer itself) what can violate the 
constraint.  

Another relevant example is the constraint NotTooPendingSales. Even though this 
constraint involves three different entity types of the CS, only five event types are PSEs for 
the constraint. 

Table 4.7. Summary of the PSEs for each constraint of the running example 

Constraint PSE 
UpdateAttribute(paymentDate, Sale)  

UpdateAttribute(plannedShipDate, Shipment) 

ValidShipDate 

InsertRT(DeliveredIn)    

InsertET(Product) 

UpdateAttribute(price,Product) 

CorrectProduct 

UpdateAttribute(maxDiscount,Product) 

UpdateAttribute(maxPendingAmount,Category) 

InsertRT(BelongsTo) 

InsertRT(Purchases) 

UpdateAttribute(amount, Sale) 

NotTooPendingSales 

UpdateAttribute(paymentDate,Sale) 

DeleteRT(BelongsTo) AtleastThreeCustomers 

InsertET(Category) 

InsertET(RestrictedProduct) NumberOfRestrictedProducts 

SpecializeET(RestrictedProduct) 
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5. Obtaining an appropriate representation for a 
constraint regarding a structural event 

Due to the high expressiveness of the OCL language, the designer has different syntactic 
possibilities to express each integrity constraint, all of them semantically-equivalent. Two 
constraints c1 and c2 are semantically-equivalent when the IB satisfies c1 iff also satisfies 
c2. 

Among all possible alternatives, the designer chooses one at definition time to represent 
the constraint (we do not assume the designer uses any particular criterion). However, it 
may happen that the selected representation is not the most adequate to efficiently check 
the constraint after an IB update (see the example in Section 1.1.5).  

The aim of this chapter is to generate, for each PSE ev of a constraint c, an appropriate 
alternative representation of c regarding ev. We say that an alternative representation ar of 
a constraint c is an appropriate one with respect to a PSE ev when checking c expressed as 
ar after events of type ev requires taking into account less entities of the IB than the 
entities required to check c using any other alternative representation we may generate. 
The computation of the number of instances involved in the verification of a constraint 
after a given event is addressed in the next chapter. Obviously, for event types that are not 
PSEs for c, we do not need to generate an alternative representation of c since c does need 
to be checked after such events. Moreover, for some event types we could have several 
alternative representations all of them equally appropriate. 

There exist two different ways to generate an alternative representation for a given 
integrity constraint: 1 - we can either replace the body of the constraint with an equivalent 
one (as it happens with the simplification rules of Chapter 3) or 2 – we may rewrite the 
constraint by using a different entity type as a context type for the constraint (for instance, 
using Shipment instead of Sale as a context type for the ValidShipDate constraint). We 
have already addressed the first possibility when simplifying the constraint according to 
the rules of Chapter 3. Therefore, when looking for alternative representations we just need 
to care about the possible alternatives due to context changes. 

To obtain an appropriate alternative for a given PSE, we first select from the set of possible 
context types for the constraint the one that it is most suited with respect to that event type 
(i.e. the one that will result in an efficient incremental checking when verifying the 
constraint after the issue of events of that kind). Then, we generate a new version of the 
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constraint using as a context type, the selected type. The same type may be the best context 
type for several PSEs of the constraint.  

At the end of the process, an integrity constraint ic with a set of PSEs setPSE is split up into 
a set of alternative constraints ic1…icn (where n>=1), each one with its corresponding set of 
PSEs setPSEi (where setPSEi ⊂ setPSE and ∪ setPSEi = setPSE). As an example, Figure 5.1 
shows the generation of alternative constraints for the integrity constraint ic. The original 
constraint is already an appropriate alternative for the PSEs PSE1…PSEf, the alternative 
version ic1 is the best representation for PSEf+1…PSEi and so forth. 

 
Figure 5.1 Generation of several alternatives for the constraint ic.  

5.1 Deciding the best context type for a constraint with respect to a 
specific structural event 

The best context to check an integrity constraint ic after applying an event of type ev over 
the IB is automatically drawn from the node where ev is assigned in the tree representing 
ic. We denote this node by nodeev.   

For some constraints we may have several nodeev nodes (i.e. two different nodes of the tree 
include the same event type ev, as an example see the event type InsertET(Product) in the 
CorrectProduct constraint; Figure 4.15). In such a case, we repeat the process explained in 
this chapter for each nodeev. This implies that we may end up (depending on the constraint 
tree structure) with two different alternatives of the constraint for the same event type, one 
for each different occurrence of the event type in the constraint tree. Then, as it will be 
explained in the next chapter, an issue of an event of that type will require verifying both 
alternatives since each event may induce the violation of a different set of entities in the 
IB, just as if they were different events. For instance, given a constraint stating that the 
salary of an employee must be lower than the salary of his/her boss, after updating the 
salary attribute of an employee e, if e is a boss we must check that the new salary is still 
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greater than the salary of the employees. If e is just an employee we must check that the 
new salary is still lower than the salary of his/her boss.  

To determine the context type, we must consider whether nodeev participates (i.e. is 
included) in an individual condition or in a collection condition. Intuitively, individual 
conditions must be verified for each individual entity (for instance, each individual product 
must satisfy the CorrectProduct constraint). In contrast, collection conditions must be 
verified by the set of entities affected by the condition as a whole (for instance, in 
NotTooPendingSales, the sum of all sales of a customer must satisfy the 
maxPendingAmount condition).  

We define that a node n participates in a collection condition when n is used to compute an 
aggregate operator or a select iterator. Formally, when n verifies that: 

{∃n’| n’∈ PathRoot(n) and ((n’.oclIsTypeOf(OperationCallExp) and n’.referredOperation 
∈ {size, sum, count}) or (n’.oclIsTypeOf(IteratorExp) and n’.name=’select’))} 

where PathRoot(n) is defined as the ordered sequence of nodes encountered between n (the 
first node in the sequence) and the root of the tree (the last one). ReferredOperation is a 
navigation defined in the OCL metamodel (see Figure 4.2) that relates nodes of type 
OperationCallExp with the corresponding operation.  

A node participates in an individual condition if it does not participate in a collection 
condition. 

From Figure 4.14 we may see that all PSEs of ValidShipDate participate in individual 
conditions. The same with the PSEs of CorrectProduct (Figure 4.15). On the contrary, all 
PSEs of AtLeastThreeCustomers (Figure 4.17) and NumberOfRestrictedProducts (Figure 
4.18) are included in collection conditions. In all cases, in their PathRoot we find a size 
operation. Finally, constraint NotTooPendingSales (Figure 4.16) has some events 
participating in individual conditions (InsertRT(BelongsTo) and 
UpdateAttribute(maxPendingAmount)) while the others participate in collection conditions. 
In particular, in the PathRoot of the nodeev corresponding to the PSE 
UpdateAttribute(amount) we find a node representing the sum operation. In the PathRoot 
for the PSEs InsertRT(Purchases) and UpdateAttribute(paymentDate) we find a select 
iterator as well.  

5.1.1. Best context type for events in individual conditions 

Since individual conditions must hold for each individual entity restricted by the 
constraint, the best context type for a PSE included in an individual condition is the type of 
the entity (or relationship) modified (inserted/deleted/updated) by the PSE. Then, when an 
event of that type is issued, we may check the constraint just by applying the constraint 
body over the instance modified by the event.  
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Let ev be a PSE attached to the node nodeev. If nodeev belongs to an individual condition 
then the best context is determined as follows: 

- If ev is an InsertET(ET) event type, ET is the best context type. 

- If ev is an UpdateAttribute(attr,ET) event type, the best context type is the type of 
the elements at the child node of nodeev. The type of the elements in a node n is 
retrieved with the expression n.type where type is a role defined in the OCL 
metamodel (see the association between the OCLExpression and Classifier 
metaclasses in Figure 4.1). For instance, the type of the elements of a node when 
the node is a VariableExp coincides with the type of the variable referred in the 
node. Similarly, the type of the elements in a NavigationCallExp node is the type of 
the participant entity type corresponding to the role traversed in the navigation. In 
general, this best context type coincides with ET, but when ET is part of an entity 
type taxonomy, the best context might be a subtype of ET.  

As an example assume the constraint “context RestrictedProduct inv: 
self.price>10000”. Even though the price attribute is defined in the Product 
supertype, for UpdateAttribute(price,product) events the best context is the 
RestrictedProduct type (which is the type of the self variable, child node of the 
node where the update event is attached to) since only the restricted products must 
satisfy this constraint. 

- If ev is an SpecializeET(ET) or GeneralizeET(ET) event type, the best context type 
depends on the kind of OCL expression represented by nodeev. When nodeev is a 
VariableExp, the best context is the type of the referred variable (obtained as 
explained above). When nodeev is an oclIsKindOf or oclIsTypeOf expression the 
best context depends on the type of the element/s of the child node, computed as 
commented before. For instance, given the constraint context A inv: self.r1-
>forAll(v:X| v.oclIsTypeOf(Y)), the best context for the specialization and 
generalization events is X, since every individual X instance (related with an A 
instance) must verify the oclIsTypeOf condition. 

- If ev is an InsertRT(RT) event type, the best context type depends on the 
multiplicities of RT. When RT is binary relationship type and, at least, one of its 
roles has a maximum multiplicity of 1, we define as the best context the type of the 
participant playing the opposite role. Otherwise, RT is defined as the best context. 
In fact, both alternatives present the same efficiency (when using as a context the 
participant type, we may still obtain the single RT instance updated by the event 
since that participant type participates at most in one relationship). However, 
avoiding, when possible, to select RT as the best context permits to skip its 
reification (which later on will be necessary for all relationship types selected as 
best context types), and thus, to reduce the complexity of the processed CS. 

It is not difficult to see why the best context type for a PSE included in an individual 
condition is the type of the modified instance. Given a constraint c defined over a type t 
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and with a node n (included in an individual condition) marked with an event ev affecting 
instances of type t’, the cost of evaluating the individual condition after applying an event 
of type ev when c is defined using t’ as context type requires checking a single instance of 
t’ (the modified one). Instead, evaluating the individual condition when c is defined over t 
requires first to navigate from t to the related t’ instances. As a result of this navigation we 
may obtain several t’ instances which results in a poorer efficiency in the integrity 
checking since then we are not considering just the modified one.  

Note that, when determining the best context types for individual conditions, we have not 
mentioned the event types DeleteRT and DeleteET. Due to the transformation rules 
presented in Chapter 3, these events always appear in collection conditions. Since 
individual conditions must be verified for each existing entity individually, entities 
removed from the IB are not affected by these events. For instance, CorrectProduct 
constraint only restricts existing products, and thus, the removal of a product can never 
violate the constraint.  

In our running example, the constraint ValidShipDate may be violated by three different 
structural events (Figure 4.14), all of them included in individual conditions: 
InsertRT(DeliveredIn), UpdateAttribute(plannedShipDate,Shipment) and 
UpdateAttribute(paymentDate,Sale). Their best context types are therefore DeliveredIn 
(the relationship type modified by the event), Shipment (the type of the sh variable 
appearing as a child node of the AttributeCallExp node labeled with the 
UpdateAttribute(plannedShipDate) event type) and Sale (the type of the self variable 
appearing as a child node of the AttributeCallExp for the paymentDate attribute) 
respectively. By a similar reasoning we obtain the best context types for the rest of PSEs 
participating in individual conditions (see also Table 5.1): 

- CorrectProduct: the best context for all the PSEs is the Product entity type. Note 
that, for this constraint, both occurrences of the PSE InsertET(Product) generate 
the same best context type since both participate in an individual condition. 

- NotTooPendingSales: the best context for the PSE 
UpdateAttribute(maxPendingAmount) is Category. The best context for the PSE 
InsertRT(BelongsTo) is the Customer entity type because of the multiplicities of the 
BelongsTo relationship type (the other end of the BelongsTo relationship type 
presents a maximum multiplicity of 1). 

5.1.2. Best context type for events in individual conditions 

The same idea cannot be applied to event types included in collection conditions since 
those conditions must be satisfied by the collection as a whole and not by each single entity 
affected by the event. Thus, expressing the constraint using as a context type the type of 
the modified entity or relationship is not useful because, after every modification, the 
whole collection must be recomputed again and the other entities in the collection must 
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also be taken into account. For instance, in a constraint like self.X->collect(attr)-
>sum()>val (where X represents a set of navigations, attr an attribute and val a constant 
value) we do not force each entity∈ X to have a value in attr greater than val, we only 
require the sum of attr for the whole set of entities in X to be greater than val. 

Therefore, to facilitate the verification of the constraint we should use as context type the 
type of the entity used as a starting point to obtain the collection of entities that must verify 
the collection condition. For instance, an InsertRT(Purchases) event (i.e. the assignment of 
a sale s to a customer c) may violate the constraint NotTooPendingSales (Figure 4.16). In 
this case, the maxPendingAmount condition must be satisfied by the set of sales of each 
customer; thus, after assigning s to the customer c, it is enough to check the set of sales of 
c to ensure that the IB still satisfies the constraint. Therefore, we may say that c is the 
entity used as a starting point to obtain the collection of entities (i.e. the set of sales) that 
must verify the maxPendingAmount collection condition. The type of the entity c, 
Customer, is the best context type for all PSEs included in this collection condition.  

To automatically determine the best context type for collection conditions (i.e. the type 
acting as a starting point of the condition) we need, first, to define the auxiliary operation 
PathVar(node). Given a node n, PathVar(n) is defined as the ordered sequence of nodes 
encountered between n (the first node) and the node representing the self variable or the 
allInstances operation (the last node) of the subtree to which n belongs. More precisely, 
PathVar(n) is computed as follows: 

- The first node in the path is n. 

- For each node n included in the path we also include its child node. When the node 
has two children and the node represents an iterator expression (as a forAll, a 
collect or a select) we include the left child in the path (the structure of the iterator 
body is irrelevant to compute the best context type). Otherwise, see the special 
treatment for collection operations at the end of this section. 

- When a node n included in PathVar represents a variable other than self (i.e. 
variables used in select, collect or forAll iterators), we add as a left child the node 
pointed to in n.referredVariable.loopExpr (i.e. the node representing the iterator 
expression; referredVariable and loopExpr are navigations defined in the OCL 
metamodel, see Figure 4.1).  

Given an integrity constraint ic, a PSE ev and the path returned by PathVar(nodeev), then, 
the node origin of a collection condition nodeor is defined as: 

- The left child of the first node n∈ PathVar(nodeev) representing a forAll iterator, 
when a select iterator is not encountered between n and the last node in 
PathVar(nodeev).   
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- Otherwise, the last node in PathVar(nodeev) (i.e. the node representing the self 
variable or an allInstaces operation). Note that this is always the case when the last 
node is the allInstances operation (constraints with a forAll iterator after an 
allInstances operation have been simplified in Chapter 3 by means of reexpressing 
the constraint in terms of the self variable). 

Let ev be an event included in a collection condition. If nodeor does not represent the 
allInstances operation the type of the entities at nodeor is then returned as the best context 
type. When nodeor is an OperationCallExp referencing the allInstances operation, the 
current context type of the constraint is returned as the best context (in fact, other types 
could serve as well as a best context in this case, since the result of the allInstances 
operation is independent from the context type of the constraint, it only depends on the 
entity type where the operation is applied over). 

Note that choosing as best context type a type different from the type t of the entities at 
nodeor does not improve the efficiency of the integrity checking. Given a PSE ev that 
modifies instances of type t’ and included in a collection condition col, to check col after 
an event of type ev, we are forced to navigate from the modified t’ instance to the related 
instance/s of type t to start evaluating col (since t is the starting point to obtain the 
collection of entities that must satisfy col). Moreover, when processing the schema as 
shown in the next chapter, using t as the best context type avoids some redundant 
verifications when the modification of the IB consists of several events affecting a set of t’ 
instances (or any other instances of a type t’’ also involved in the collection condition) 
related with the same t instance. 

As an example, Figure 5.2 shows the PathVar and the nodeor values when nodeev is the 
node corresponding to the PSE UpdateAttribute(paymentDate,Sale) in the constraint tree 
of NotTooPendingSales. The numbers indicate the order in which the nodes are included in 
the PathVar sequence of nodes. In this example, the node representing a navigation 
through the customer role is the origin of the collection condition where this PSE 
participates (the maxPendingAmount condition must be satisfied fore each customer). 
Therefore, Customer (which is the type of the entities at that node) is the best context type 
for this event. Customer is also the best context for the other PSEs included in the same 
collection condition (updates of amount attributes and inserts of Purchases relationships; 
the other PSEs of the constraint are included in individual conditions, see the previous 
section).  

The PathVar for the PSEs of constraints AtLeastThreeCustomers (Figure 4.17) and 
NumberOfRestrictedProducts (Figure 4.18) are much shorter and they just involve one or 
two nodes. In AtLeastThreeCustomers the best context for both PSEs 
(DeleteRT(BelongsTo) and InsertET(Category)) is Category, which is the type of the self 
variable (nodeor of the collection condition). For the second constraint the best context is 
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RestrictedProduct, already the original context type of the constraint since nodeor is the 
node corresponding to the allInstances operation. 

 :IteratorExp 
         ( forAll)

:OperationCallExp 
            ( <= )

:AssociationEndCallExp 
          ( customer ) 

:VariableExp 
      ( self ) 

:AttributeCallExp 
(maxPendingAmount) 

:VariableExp 
        ( self )

:IteratorExp 
(collect) 

:OperationCallExp 
( sum )

:IteratorExp 
         ( select )

:AssociationEndCallExp 
( sale ) 
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( c ) 

:OperationCallExp 
           ( <= )

:AttributeCallExp 
(paymentDate)

:OperationCallExp 
( Time::now ) 

:AttributeCallExp 
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:VariableExp 
( sa ) 

+ 

1 
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+ 

Nodeor 

UpdateAttribute(paymentDate) 
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Figure 5.2. Nodeor for constraint NotTooPendingSales  

For some constraints we do not have a single origin for the collection condition. This 
happens when the collection of entities col affected by the collection condition is obtained 
by means of the union (or intersection, difference,…) of several other collections col1..coln. 
Then, we have different possible PathVars, one for each collection coli. These different 
PathVar sequences are obtained taking a different path every time we find a node 
representing one of the collection operations union, intersection, difference, symmetric 
difference or product.  

In this case, to determine the best context for a PSE ev, we apply the previous process to 
each PathVar(nodeev). Note that different PathVar sequences may result in different best 
contexts for the same PSE. However, each one of these best contexts is only relevant for 
the subset of PathVar sequences resulting in that best context. This information is stored 
together with the PSE in the constraint tree. We will take this information into account 
when computing the instances to check the constraint after the issue of the PSE in the next 
chapter. 
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As an example, consider the example CS of Figure 5.3. Over this example schema we 
could define the following constraint: 

context Department inv WorkOverload: self.employee->forAll(e| e.project-
>union(self.project)->collect(p|p.budget) ->sum()<10000) 

stating that all employees of a department must verify that the sum of the budgets of 
his/her projects plus the budget of the projects assigned to the department as a whole must 
be lower than 10000 euros. 

 EmployeeDepartment

Project
budget: Money

*

*

*

0..1 0..1

1

 
Figure 5.3. Example for collection conditions 

One of the PSEs for this constraint is the event type UpdateAttribute(budget,Project). 
When computing the PathVar for this event we have two possible solutions (Figure 5.4). 
The first one is the path corresponding to the self.project subexpression (nodes 
{1,2,3,4,5B,6B}) while the other corresponds to the self.employee->forAll(e.project…) 
subexpression (nodes {1,2,3,4,5A,6A,7A,8A,9A}).  

 :IteratorExp 
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:OperationCallExp 
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          (employee ) 
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:IntegerLiteralExp 
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:OperationCallExp 
         (union )
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:AttributeCallExp 
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2 5B 
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3 

 
Figure 5.4. PathVars for the UpdateAttribute(budget) event type  
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In the first case, Department is returned as the best context type while in the second one 
Employee is the best context. This means than when issuing the update event over a project 
p, we will have to check: 

1- The constraint as defined over Department for the department d related with p (if any). 
In this scenario we end up verifying that each employee working in d verifies the 
budget condition (due to the budget change of p some employee in d may violate the 
constraint). 

2- The constraint as redefined over Employee for the employee e related with p (if any). 
In this case, we just need to check that e does not violate the budget condition. Other 
employees working in the same department are not affected. 

5.2 Redefining a constraint in terms of a new context type 

Once we have determined the best context type for each PSE ev (see Table 5.1) we must 
redefine the original constraint in terms of these new best contexts. Each new constraint 
representation must be semantically-equivalent to the original one, at least with respect to 
the particular event type ev. Two constraints c1 and c2 are semantically-equivalent with 
respect to a PSE when the application of an event of that type over a consistent state of the 
IB results in a new state of the IB that satisfies c1 iff it also satisfies c2. 

Table 5.1. Summary of the best contexts for all PSEs of the constraints of the running example 

Constraint PSE Individual/ 
Collection 

Best 
Context 

UpdateAttribute(paymentDate, Sale)  Individual Sale 

UpdateAttribute(plannedShipDate, Shipment) Individual Shipment 

ValidShipDate 

InsertRT(DeliveredIn)    Individual DeliveredIn 

InsertET(Product) Individual Product 

UpdateAttribute(price,Product) Individual Product 

CorrectProduct 

UpdateAttribute(maxDiscount,Product) Individual Product 

UpdateAttribute(maxPendingAmount,Category) Individual Category 

InsertRT(BelongsTo) Individual Customer 

InsertRT(Purchases) Collection Customer 

UpdateAttribute(amount, Sale) Collection Customer 

NotTooPendingSales 

UpdateAttribute(paymentDate,Sale) Collection Customer 

DeleteRT(BelongsTo) Collection Category AtleastThreeCustomers 

InsertET(Category) Collection Category 

InsertET(RestrictedProduct) Collection RestrictProd NumberOfRestricted 
Products SpecializeET(RestrictedProduct) Collection RestrictProd 
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The first step is to decide which parts of the initial constraint have to be redefined. Since 
both constraints only need to be equivalent with regards to the particular PSE ev, when 
transforming the constraint to the new context type we need not worry about those literals 
of the original constraint that cannot be violated by events of type ev.  

Given that the body of the initial integrity constraint ic follows the pattern L1 and L2 and … 
and Ln (as CorrectProduct in Figure 4.15) and that ev can only induce a change in the truth 
value of L1, the redefined constraint c’ does not need to include the verification of the 
literals L2…Ln. Since ev does not affect them, if those literals were true before ev was 
executed (we always assume, as usual, that the IB is in a consistent state prior to its 
modification) they will still hold after its execution. When they do not hold it is because 
some other event, ev’, has been applied. The constraint in charge of verifying the IB after 
events of type ev’ will take care of this possible violation. 

To prune the parts of the constraint tree that are irrelevant to an event ev (and thus, those 
parts that can be discarded during the redefinition of the constraint) we apply the following 
process. Let ev be an event attached to a node nodeev. A node nand representing an AND 
condition may be pruned if: 

{nand ∈ PathRoot(nodeev) and ¬∃n’| n’∈PathRoot(nand) and n’.oclIsTypeOf(IteratorExp) 
and n’.name=”select”}.  

Nand nodes are replaced with the child node nchild ∈ PathRoot(nodeev). Consequently, the 
other child of nand (i.e. the other condition) is removed from the tree. 

As an example, consider the tree corresponding to the constraint CorrectProduct (Figure 
4.15). Figure 5.5 shows the simplified trees for each PSE. For events of type 
UpdateAttribute(price,Product) we just need to verify the literal self.price>0. For the PSE 
UpdateAttribute(maxDiscount,Product) it is enough to consider the literal 
self.maxDiscount<=60. Note that the PSE InsertET(Product) appears in both literals, and 
thus, the complete original constraint needs to be verified after events of that type. 

 
:OperationCallExp 
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:AttributeCallExp 
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Figure 5.5. Simplified trees for the PSEs of constraint CorrectProduct  
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Afterwards, when the best context type ct’ determined for the event ev is different from the 
initial context type ct of the constraint c (context ct inv c: X), the second step is to redefine 
the relevant literals of c (i.e. the ones not pruned in the previous step) in terms of ct’ to 
improve the efficiency of the integrity checking. The new constraint representation c’ may 
be obtained applying the following transformation: 

context ct’  inv c’: self.r1.r2. … rn->notEmpty() implies  self.r1.r2. … rn ->forAll(v|X’) 

where X’ results from replacing all occurrences of self in X with v during the 
transformation to c’ and r1…rn are a sequence of roles that permit to navigate from ct’ to ct. 
Obviously, in the CS there may exist several different sequences of navigations that reach 
ct from ct’. Each different sequence would generate a different transformation. However, 
for our purposes, we need to navigate traversing the roles opposite to the ones used in c to 
reach ct’ (we know for sure that ct’ is reached in c, otherwise ct’, ct’<>ct, would never be 
selected as the best context type for the PSE ev). More precisely, we need to navigate using 
the opposite roles of the roles appearing in PathVar(nodeev), being nodeev the node where 
ev is attached to. 

Therefore, given that in c, we navigate from ct to ct’ using the sequence of roles 
r1’.r2’…..rn’, our transformation does the reverse navigation, and thus, in the 
transformation r1 is the opposite role of rn’, r2 is the opposite role of rn-1’ and so forth. 

Note also that when a role ri’ is a navigation from a subtype sub to another entity type 
using a relationship type defined in a supertype of sub, we must add the subexpression 
“select(oclIsKindOf(sub))” (or “any(oclIsKindof(sub))” when the result must be a single 
object) to the corresponding opposite role rj to ensure that only the instances of the subtype 
sub are retrieved by the navigation. Similarly, we will need to add an explicit cast (using 
the oclAsType operator) to the particular subtype in order to access its attributes and roles. 

We would like to remark that c and c’ are semantically-equivalent since both apply the 
same condition (the condition X) to the restricted entities and apply it over all relevant 
entities of ct. Every time we evaluate c’ over an instance of ct’ we reach (and verify) some 
of the instances of ct restricted by c in the original constraint. It may happen that some 
instances of ct are never reached (if they are not related to any instance of ct’) and remain 
unchecked after the verification of the new state of the IB because of the application of an 
event of type ev. However, those instances are not possibly affected by events of type ev 
and thus they are irrelevant to the integrity checking due to events of type ev. 

As an example, the constraint ValidShipDate (self.shipment->forAll(sh| 
sh.plannedShipDate<=self.paymentDate+30) must be redefined over Shipment to verify 
the IB after events of type UpdateAttribute(plannedShipDate,Shipment). According to the 
previous transformation the redefined constraint ValidShipDate2 is: 
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context Shipment inv ValidShipDate2: self.sale->notEmpty() implies 
self.sale->forAll(s| s.shipment->forAll(sh| sh.plannedShipDate<=s.paymentDate+30)) 

where sale is the role that  permits to navigate from a shipment to its related sales. The 
body of the first forAll coincides with the body of the original constraint once all 
references to the self variable have been replaced with references to the variable s of the 
forAll iterator expression.  

We provide some rules to simplify the body of the new constraint c’. After simplifying the 
new constraint with this set of rules we can also apply the simplification rules of Chapter 3 
to obtain a better result. 

1. self.r1.r2.…rn->notEmpty() → true, if the multiplicity of self.r1.r2. … rn is at least 
one, i.e. if all the minimum multiplicities of r1.r2. … rn are at least one. In such a 
case, we know for sure that the navigation will return a non-empty set, and thus, 
that the evaluation of the notEmpty operation will return a true value. 

2. self.r1.r2. … rn->forAll(v|X)  →  X (where all the occurrences of v in X are replaced 
with self.r1.r2. … rn), if the multiplicity of self.r1.r2. … rn is at most one, i.e. if all 
the maximum multiplicities of r1.r2. … rn are at most one. Then, the forAll iterator 
is no longer necessary. 

3. self.r1.r2.….ri.rj… rn->forAll(v|X)  →  self.r1.r2. ….ri-1.rj+1… rn->forAll(v|X), when 
ri and rj are the two roles of the same binary association (see Figure 5.6). When the 
maximum multiplicity of rj is one, the set of objects at rj are the same than those at 
ri-1, and thus, the navigations ri and rj are redundant (in this case the rule is 
applicable even if there is not a forAll iterator after rn). Otherwise, we may have 
more objects at rj, and, in general, this entails that these additional objects are not 
verified in the right hand expression of the rule. However, we can still apply the 
rule if the minimum multiplicity of all opposite roles from r1 to ri-1 is at least one, 
since then, those objects must be related with a (different) instance of the context 
type, and thus, they will be checked when evaluating that instance. When ri may 
have a zero minimum multiplicity, after the simplification we could be enforcing 
some objects not affected in the original constraint. Note that in such a case, the 
notEmpty clause of the general transformation rule will not be simplified by rule 1, 
and thus, we ensure that those objects will never be evaluated. 

4. self.r1.r2… rn->forAll(v1,v2|X) →  self.r1.r2… rn->forAll(v2|X) (where all 
occurrences of v1 in X are replaced with self), if the type of the objects at rn 
coincides with the type of the self variable and all the navigations from r1 to rn are 
redundant. This rule is similar to the rule to simplify the allInstances operation 
presented in Chapter 3. We cannot completely simplify the forAll iterator since the 
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constraint requires a comparison between an object of type t and a set of other 
objects of the same type t. 

5. self.r1.r2...ri->forAll(v| v.rj…rn->forAll(v2|X))  →  self.r1.r2….ri.rj…rn-
>forAll(v2|X)), when X does not contain any reference to v. The two expressions are 
equivalent since in both we apply the condition X over the objects obtained at rn. 
When X contains references to v they must be replaced with the expression 
v2.rn’…rj’ where rn’..rj’ represent the opposite roles of rn…rj (for instance, rn’ is the 
opposite of rn). Note that when, the multiplicity of some rk (where j>=k<=n) is 
greater than 1 then the left hand side must be replaced by the expression 
self.r1.r2…….ri.rj …rn ->forAll(v2| v2.rn’…rj’->forAll(v3| X)) where references to v 
in the original constraint are replaced with v3. This later case only makes sense 
when ri and rj are the two roles of the same relationship type, which implies that the 
new expression can be simplified with rule 3 afterwards. 

6. Given a reified entity type RET (see Figure 5.7): X.ret.b.Y → X.b.Y. According to 
the OCL standard we can navigate to B either by accessing first the reified type or 
directly using the role b of B. In both cases we obtain the same set of entities. 

7. Given a reified entity type RET: context RET inv: self.a.b.r1..rn->forAll(X) → 
context RET inv: self.b.r1..rn->forAll(X). Even though, given an entity e of the RET 
type, the right hand side expression may verify less entities than the left hand 
expression (since e.b may return less entities than e.a.b) those objects will be 
verified when evaluating other entities of RET . 

 B C R2 ri rj 
1..* 1

A R1 ri-1 

D
rj+1R3 

 
Figure 5.6. Abstract example schema for rule 3 

 A Bb

RET

a 

 
Figure 5.7. Example of a reified entity type  

All rules can be applied regardless the other subexpressions forming the constraint body 
except for rule 3 when the constraint body is a disjunction of literals following the pattern: 
self.r1..rn->forAll(X) or … or self.r1…rn->forAll(Y) (where r1..rn represent exactly the same 
sequence of navigations in the disjunctions). In this case, only the literal/s affected by the 
event for which the generated constraint is the appropriate alternative may be simplified. 
Assuming that the event is included in the X condition, the simplified constraint would be: 



 

-67- 

X or self.r1…rn->forAll(Y). Note that the body “X or Y” would not be a correct solution 
since the original constraint does not state that all entities at rn must satisfy X or Y, it states 
that either all entities at rn satisfy X or all entities satisfy Y. Then, if an event over an entity 
e makes that e evaluates X to false, we need to verify that at least all entities (and not just 
e) verify Y.   

Figures 5.8-5.10 show the new alternative constraint representations required as a result of 
the computation of the best context types for the PSEs of all constraints of the running 
example (see Table 5.1). The new generated constraints representations are: 
ValidShipDate2 (ValidShipDate defined over Shipment), ValidShipDate3 (ValidShipDate 
defined over DeliveredIn) and NotTooPendingSales2 (NotTooPendingSales defined over 
Customer). For each constraint redefinition we show the initial result of its transformation 
plus the sequence of rules our method applies in order to obtain the final body of the 
constraint. For the sake of simplicity when applying rule 1 we have applied at the same 
time the sequence of rules: true implies X  not true or X  false or X  X, as defined in 
Chapter 3.  

 

 context Shipment inv ValidShipDate2: self.sale->notEmpty() implies 
self.sale->forAll(s| s.shipment->forAll(sh| sh.plannedShipDate<=s.paymentDate+30)) 

 
 

self.sale->forAll(s| s.shipment->forAll(sh| sh.plannedShipDate<=s.paymentDate+30)) 
 
 

self.sale.shipment->forAll(sh| sh.sale->forAll(s| sh.plannedShipDate<=s.paymentDate+30))
 
 

self ->forAll(sh| sh.sale->forAll(s| sh.plannedShipDate<=s.paymentDate+30)) 
 
 

self.sale-> forAll(s| self.plannedShipDate<=s.paymentDate+30) 

Rule 1 

Rule 5  

Rule 3 

Rule 2  

 

Figure 5.8 Simplification of ValidShipDate when defined over Shipment 
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 context DeliveredIn inv ValidShipDate3: self.sale->notEmpty() implies 
self.sale->forAll(s| s.shipment->forAll(sh| sh.plannedShipDate<=s.paymentDate+30)) 

 
 

self.sale->forAll(s| s.shipment->forAll(sh| sh.plannedShipDate<=s.paymentDate+30)) 
 
 

self.sale.shipment->forAll(sh| sh.plannedShipDate<=self.sale.paymentDate+30) 
 
 

self.shipment->forAll(sh| sh.plannedShipDate<=self.sale.paymentDate+30) 
 
 

self.shipment.plannedShipDate<=self.sale.paymentDate+30 

Rule 1 

Rule 2  

Rule 7 

Rule 2  

 

Figure 5.9 Simplification of ValidShipDate when defined over DeliveredIn 

 

context Customer inv NotTooPendingSales2: self.category->notEmpty() implies 
self.category->forAll(cat| cat.customer->forAll(c| c.sale->select(s|s.paymentDate>Time.now())-> 

collect(sa|sa.amount)->sum()<=cat.maxPendingAmount)) 
 
 

self.category->forAll(cat| cat.customer->forAll(c| c.sale->select(paymentDate>Time.now())-> 
collect(sa|sa.amount)->sum()<=cat.maxPendingAmount)) 

 
 

self.category.customer->forAll(c| c.sale->select(s|paymentDate>Time.now())-> 
collect(sa|sa.amount)-> sum()<=self.category.maxPendingAmount) 

 
 

self->forAll(c| c.sale->select(s|paymentDate>Time.now())-> 
collect(sa|sa.amount)->sum()<=self.category.maxPendingAmount)) 

 
 

self.sale->select(s|paymentDate>Time.now())->collect(sa|amount)-> 
sum()<=self.category.maxPendingAmount 

Rule 1 

Rule 2  

Rule 3 

Rule 2  

 

Figure 5.10 Simplification of NotTooPendingSales  when defined over Customer 
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5.3 Summary 

Table 5.2 summarizes the final results obtained after applying the whole process explained 
in this chapter over all constraints of our running example.  

Although the number of different constraints has increased, we have improved the 
efficiency of the integrity checking since each constraint is specialized to be efficiently 
verified after the issue of some particular types of structural events.  

Table 5.2. Summary of the best constraint representations for each PSE  

Constraint PSE Best alternative 

UpdateAttribute( 

paymentDate, Sale)  

context Sale inv ValidShipDate: self.shipment->forAll(sh| 
sh.plannedShipDate<=self.paymentDate+30)                                    

UpdateAttribute(plannedShi

pDate,Shipment) 

context Shipment inv ValidShipDate2: self.sale->forAll(s| 
self.plannedShipDate<=s.paymentDate+30)  

ValidShip

Date 

InsertRT(DeliveredIn)    Context DeliveredIn inv ValidShipDate3: 
self.shipment.plannedShipDate<=self.sale.paymentDate+30  

InsertET(Product) context Product inv CorrectProduct:  self.price>0 and 
self.maxDiscount<=60  

UpdateAttribute(price, 

Product) 
context Product inv CorrectProduct2:  self.price>0  

Correct 

Product 

UpdateAttribute( 

maxDiscount,Product) 
context Product inv CorrectProduct3: self.maxDiscount<=60  

UpdateAttribute( 

maxPendingAmount, 

Category) 

context Category inv NotTooPendingSales: self.customer-
>forAll(c| c.sale->select(s| s.paymentDate>Time.now())-> 
collect(sa|sa.amount)->sum()<=self.maxPendingAmount)  

InsertRT(BelongsTo) 

InsertRT(Purchases) 

UpdateAttribute( 

Amount, Sale) 

NotTooPen

dingSales 

UpdateAttribute( 

paymentDate,Sale) 

context Customer inv NotTooPendingSales2: self.sale->select(s| 
s.paymentDate>Time.now())->collect(sa|sa.amount)-
>sum()<=self.category.maxPendingAmount 

DeleteRT(BelongsTo) Atleast 

Three 

Customers 
InsertET(Category) 

context Category inv AtLeastThreeCustomers: self.customer-> 
size()>=3 

InsertET( 

RestrictedProduct) 

NumberOf

Restricted 

Products SpecializeET(RestrictedPro

duct) 

context RestrictedProduct inv NumberOfRestrictedProducts: 
RestrictedProduct.allInstances()->size()<=20 
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6. Evaluating the constraints over the relevant instances 

A constraint c defined over a context type t must be satisfied by all instances of t. 
Nevertheless, it is not necessary to check that all instances of t satisfy c every time an event 
of type ev (where ev is one of the PSE for c) is applied over the IB. Only those instances 
relevant to (i.e. affected by) the issue of the event need to be considered. This incremental 
checking (incremental since we reason from the applied events in order to reduce the 
number of instances of t to consider) improves the efficiency of the integrity checking 
process.  

Intuitively, the relevant instances are those instances of t that are related (directly or 
indirectly) to the instance modified by the event. The state of the other instances of t has 
not changed, and thus, they still satisfy c (we assume that the IB was in a consistent state 
prior the issue of the event).  

As an example, consider again the NotTooPendingSales2 constraint (one of the constraints 
generated in the previous chapter, see its tree representation in Figure 6.1). After the 
update of the amount of sale s3 and the insertion of a new purchase for customer c1, the 
relevant instances are just c1 and s3.customer (i.e. the customer that purchased sale s3).  

 
:OperationCallExp
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:AttributeCallExp
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      ( self ) 
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( sum )
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( sale ) 

:VariableExp 
( self ) 

:OperationCallExp
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:AttributeCallExp
(paymentDate)

:OperationCallExp
( Time::now )
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UpdateAttribute(amount) 

InsertRT(Purchases) 

UpdateAttribute(paymentDate) 

:AssociationEndCallExp 
(category )

InsertRT(BelongsTo) 

 
Figure 6.1. Constraint NotTooPendingSales2  
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Given a conceptual schema CS with a set of integrity constraints, the aim of this chapter is 
to generate a CS’ where the definition of all integrity constraints has been modified in 
order to automatically check them only in terms of the relevant instances. CS’ adds to CS 
some auxiliary entity types necessaries to compute the relevant instances. 

In particular, given a constraint c, we create a structural event type for each PSE of c. This 
type is in charge of recording the events of that type issued during the IB update. Then, the 
relevant instances are computed based on the population of these structural event types. 
Finally, our method redefines c so that only the relevant instances are considered during 
the integrity checking of c. The way we compute the relevant instances ensures that a 
constraint will not be verified if no PSE for the constraint has been issued during the IB 
update. Note that, when applying this part of the process over the constraints obtained at 
the end of the previous step (see Chapter 5), their PSEs may be a subset of the whole set of 
PSEs determined in Chapter 4 (for instance, the UpdateAttribute(maxPendingAmount) 
does not appear as a PSE of NotTooPendingSales2 since this is not an appropriate 
alternative representation to check the IB after events of that type). 

The rest of the chapter is structured as follows. Next section describes the number and 
structure of the structural event types. Then, Section 6.2 presents the modifications 
required over the CS to compute the relevant instances and to get an incremental 
evaluation of the constraints. These modifications depend on the structure of the constraint 
tree and on the placement of the PSEs inside the tree. Finally, section 6.3 applies the whole 
process over our running example. 

6.1 Definition of structural event types 

Structural event types are a specific set of entity types required to explicitly record the 
structural events issued during the update of the IB. More concretely, these types are 
devoted to record the information about the entities and relationships modified during the 
application of those events.  

We must define a structural event type for each different structural event included in the 
set of PSEs for some constraint of the CS. Therefore, we create an iET structural event type 
for each InsertET(ET) event type, a dET type for each Delete(ET) event type, a gET type 
for each  GeneralizetET(ET) event type, an sET type for each SpecializeET(ET) event type, 
an uETAttribute for each UpdateAttribute(Attr,ET) event type, an iRT type for each 
InsertRT(RT) event type and a dRT type for each DeleteRT(RT) events type. Note that we 
create at most one structural event type for each possible event type regardless the number 
of constraints having that event type as a PSE. 

As an example, the list of structural event types we will define for the constraint 
NotTooPendingSales2, according to its set of PSEs (see Figure 6.1), is the following: 
uSalePaymentDate (update of the payment date of a sale), uSaleAmount (update of the 
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amount of a sale), iBelongsTo (insertion in the relationship type BelongsTo) and 
iPurchases (insertion in the relationship type Purchases).  

6.1.1 Structure of structural event types 

In the definition of these types we assume that the IB corresponding to the CS is updated at 
run-time with the modifications produced by the structural events. Thus, we can avoid 
redundancies by not including in the structural event type the information about the 
changes produced by the event over the modified entity. We just need to know the 
modified entity. Moreover, all structural event types are stereotyped with the stereotype 
<<structural event>> to differentiate them from the other entity types of the CS.  

Therefore, the structural event types recording insert (InsertET) or update 
(UpdateAttribute) events are defined as types without attributes and with just one 
relationship type relating the structural event type with the corresponding entity type. 
Through this reference we can access the entity modified by the structural event.  

The multiplicity of the relationship type between the structural event type and the entity 
type is ‘1’ in the role next to the entity type and ‘0..1’ in the role next to the structural 
event type. The reason is that an instance of the structural event type must necessarily refer 
to an instance of its entity type while an instance of the entity type may appear, at most 
once, in the structural event type. For the sake of simplicity, the role next to the entity type 
in all these relationship types is always named as ref. 

Figure 6.2 shows, as an example, the structural event type uSalePaymentDate 
corresponding to the UpdateAttribute(paymentDate,Sale) event type. Note that the only 
information recorded for each instance of uSalePaymentDate is a reference to the 
corresponding modified instance in the Sale type to access its information when required. 
Assuming that the population of the Sale entity type is the set of sales {s1,s2,…,sn} and that 
the modification of the IB consist of two modification events over the paymentDate of 
sales s1 and s5, the population of the type uSalePaymentDate would be: <u1,s1>, <u2,s5> 
where ui represents the object identifier of the uSalePaymentDate instances and s1 and s5 
the references to the updated sales. Note that the type uSalePaymentDate does not include 
the information about the new value of the updated sale; we may use the reference towards 
the Sale type to obtain this information.  

 0..11
ref

Sale <<structural event>>
uSalePaymentDate

 

Figure 6.2 Structural event type for the event uSalePaymentDate over Sale 

For structural event types in charge of recording deletion events we cannot follow the 
previous structure since we cannot relate the instance of the structural event type with the 
corresponding deleted entity of the entity type (since it does not exist). However, this does 
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not suppose a problem because to handle constraints including this kind of events as PSE 
(see section 6.2.4) it is enough with knowing whether such an event of that type has been 
issued or not. Therefore, to record DeleteET events we just create a new entity type with no 
attributes nor relationship types. Every time a deletion event is issued we create an empty 
instance in the appropriate dET type.  

Structural event types corresponding to InsertRT(RT) or DeleteRT(RT) events do not 
contain attributes either. They contain as many relationship types as the number of 
participants in RT. Each one of these relationship types relates the structural event type 
with one of the participants of RT. The name of the roles next to the participant entity types 
is always ref concatenated to the name of the role of that participant type in RT (as usual, if 
the name of the role is not defined it is assumed to be the name of participant). Note that 
the types dRT (recording deletion events over RT) are perfectly possible since their 
instances do not point to the deleted relationship (which no longer exists in the IB) but to 
their participants.  

As an example, Figure 6.3 shows the structural event type for the event 
InsertRT(Purchases). The type iPurchases presents two relationship types, with Customer 
and Sale, since these entity types are the participants of Purchases. 

refCustomer 1 

Customer 

*

<<structural event>>
0..1

1

SalePurchases

*0..1
refSale

iPurchases
 

Figure 6.3 Structural event type for the event insertRT over Purchases 

When defining the multiplicity of the relationship types between the structural event type 
and the set of participants we distinguish between types for deletion events (dRT) and types 
for insertion (iRT) events.  

For iRT types, the multiplicity on the participant type role is always ‘1’ since every new 
relationship must be related with an instance of the participant entity type. The multiplicity 
of the role of the structural event type is ‘0..*’ since, in general, an entity of a participant 
entity type can participate in many relationships of the relationship type (for instance, if we 
assign a set of sales to the same customer, several instances of iPurchases will refer to the 
same customer entity). We restrict this multiplicity to ‘0..x’ when the instances of the 
participant entity type cannot participate in more than x relationships (as sale instances, 
which are related to at most a single customer). 

For dRT types, the multiplicity on the participant type role becomes ‘0..1’, because, after 
deleting the relationship, and thus, creating a new instance in the dRT type, it may happen 
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that later events delete also some of the participants of the relationship. This is not possible 
for iRT types since we cannot delete the participant without deleting before the relationship 
itself. 

Note that we cannot remove the instance in dRT when deleting one of the relationship 
participants since we may still need the information about the deleted relationship to 
compute the relevant instances for constraints including this deletion event as PSE. We can 
only delete it when all participant entities are deleted. Constraints including as a PSE the 
event type DeleteRT(RT), either navigate RT from E1 to E2 or from E2 to E1, where E1 and 
E2 are the participant entity types of RT. When, after deleting a relationship from RT, the 
participant E1 is also deleted, the information about the deleted link is irrelevant for 
constraints that navigate RT from E1 to E2. In such a case, it is the deletion of E1 what must 
be taken into account. However, for constraints navigating RT from E2 to E1, the 
information about the deleted relationship is required when computing the affected E2 
entities as part of the process of determining the relevant instances for the integrity 
checking process. 

For instance, consider the constraint AtLeastThreeCustomers. The constraint can be 
violated by a deletion over BelongsTo. If we delete the relationship between a category cat 
and a customer cus, a new instance of dBelongsTo (Figure 6.4) is created. Even if, 
afterwards, we also delete the customer cus, the instance in dBelongsTo allows us to know 
that the category cat needs to be considered when checking the constraint.  

refCategory 0..1

Category 

*

<<structural event>>
0..1

0..1

CustomerBelongsTo

*0..1
refCustomer

dBelongsTo
 

Figure 6.4 Structural event type for the event type DeleteRT(BelongsTo) 

When an InsertRT(RT) or DeleteRT(RT) event type appears in a node having as a child 
node the self variable in the OCL tree for a constraint defined using RT as a context type, 
these events must also be treated as InsertET and DeleteET event types (and the 
corresponding structural event type must be generated) since RT is not only a relationship 
type but also a reified type, and thus, it has also an entity type facet. In fact, if that it is the 
only place where they appear, they do not need to be handled as InsertRT or DeleteRT 
events. When both structural event types must be created (i.e. the types for the InsertRT 
and the InsertET events or the types for the DeleteRT and the DeleteET events) we change 
the name of the structural event type for the InsertET (DeleteET) event into iET’ (dET’) to 
avoid name conflicts with the structural event type for the InsertRT (DeleteRT) event 
(since ET is a reified type, ET=RT).  
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6.1.2 Instantiating the structural event types 

In general, each structural event type will contain as many instances as events of that type 
have been executed over the corresponding entity or relationship type. For instance, the 
structural event type uSalePaymentDate will contain an instance for each sale that has 
changed its payment date during the update of the IB, iPurchases an instance for each new 
relationship between a customer and a sale, dBelongsTo an instance for each deleted 
relationship, etc. 

To improve the efficiency of these types (i.e. to minimize their population, which results in 
fewer entities to consider during the integrity checking) we adapt the concept of net effect 
[21] and define two additional rules for insertions and deletions over structural event types: 

- Before inserting an instance in an uETAttribute type we must check that the same 
instance does not appear previously in the types iET or uETAttribute, as well. For 
instance, if we update three times the payment date of the same sale during a single 
IB update, we only need to record this fact once. 

- When deleting an entity or a relation, the corresponding instance is also deleted 
from the types iET (iRT), gET, sET and uETAttribute if existing. In addition, if the 
entity (relation) appears in iET (iRT) we do not need to record that it has been 
deleted. For instance, if we update the payment date of a sale s and later on, during 
the same modification of the IB, we delete s we do not need to worry about its 
payment date update. Moreover, if s was inserted during the same IB update we 
neither record its deletion. 

6.2 Schema modification  

After the application of a set of events over the IB, we must verify all constraints having as 
PSEs some of the issued events. The aim of this section is to modify the initial CS in order 
to obtain a CS’ where the constraints are automatically verified only over the relevant 
instances (thanks to the event information recorded in the previous structural event types). 
This constraint redefinition process depends on the structure of the tree representing the 
constraint body and on the placement of its PSEs in that tree. In the following we classify 
the different types of constraints and explain the schema modifications for each type. 

6.2.1 Constraint classification  

We may distinguish three different types of integrity constraints: instance, partial instance 
and class constraints. Roughly, we classify a constraint as instance if we can always 
compute the exact subset of the population of its context type we need to take into account 
when checking it. A constraint is a class constraint if we have to consider the whole 
population of the context type to check the constraint. Finally, in some cases we may need 
to consider the whole context type population or just a subset of it depending on the 
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particular structural events issued during the IB update. In this case we say the constraint is 
a partial instance constraint. 

NotTooPendingSales2 is an example of instance constraint. On the contrary, 
NumberOfRestrictedProducts is a class constraint. The reason is that after inserting a new 
restricted product we need to count all instances of the entity type RestrictedProduct to 
verify the number of restricted products is still less than 20; it is not enough to consider 
only the new product to verify the constraint. As an example of a partial instance constraint 
consider the following constraint MaximumCustomers, stating that no category may hold 
more than half the total amount of customers: context Category inv: self.customer-
>size()<= Customer.allInstances()->size()/2. Note that if we assign a new customer to a 
category, we only need to check the constraint over that particular category. However, if 
we remove a customer from the IB, we need to verify all categories, including those where 
the removed customer did not work since now the total number of customers has 
decreased. 

A constraint can be classified into exactly one of those types by examining the structure of 
the tree representing the constraint body and the placement of its PSEs in it. Intuitively, a 
constraint will be classified as instance if all its PSEs are included in a subtree depending 
on a contextual instance (i.e. a self variable). A constraint will be a class constraint when 
all subtrees are defined using the allInstances operation. A partial instance constraint is a 
constraint where some PSEs are included in subtrees related to a self variable and some in 
subtrees started by an allInstances operation.  

More formally, given a constraint c with a set of PSEs setPSE we define that c is an instance 
constraint when for each event type ev∈ setPSE, the last node n of PathVar(nodeev) is a 
node of type VariableExp having as a referred variable the self variable. As usual, nodeev 
refers to the node where ev is attached.  

On the other hand, we define that c is a class constraint when for each event type ev∈ 
setPSE, the last node n of PathVar(nodeev) is a node of type OperationCallExp having as a 
referred operation the allInstances predefined operation. The constraint is still a class 
constraint when it contains events included in a subtree starting with the self variable as 
long as the same events also appear in a node included in a subtree starting with the 
allInstances operation (if after the event we need to verify all instances of the context type, 
it is irrelevant to additionally check particular instances of the type as well).  

A constraint is a partial instance constraint when it is neither an instance nor a class 
constraint (i.e. when some of its PSEs satisfy the first condition while others satisfy the 
second one). 

Applying the previous definitions over the example integrity constraints generated at the 
end of the previous chapter (Table 5.2) we obtain that ValidShipDate, ValidShipDate2 , 
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ValidShipDate3, CorrectProduct, CorrectProduct2, CorrectProduct3, NotTooPendingSales, 
NotTooPendingSales2 and AtLeastThreeCustomers are instance constraints while 
NumberOfRestrictedProducts is a class constraint. 

6.2.2 Schema modification for instance constraints 

To ensure that an instance constraint is only evaluated over the relevant instances we create 
a new derived entity type meant to contain the exact set of instances of the context type 
that need to be verified.  

This new entity type, called ETConstraint (i.e. the name of the entity type concatenated to 
the name of the constraint) is defined as a derived subtype of the original constraint context 
type. Then, we replace the original constraint with a new constraint with the same body but 
having as a context type the new ETConstraint type. This is possible because, as a subtype, 
ETConstraint contains all attributes and relationship types of its supertype. As an example, 
Figure 6.5 includes the redefinition of the constraint NotTooPendingSales2 over the new 
CustomerNotTooPendingSales2 entity type. 

When the context type is a relationship type we are forced to reify it in order to be able to 
define this new subtype. 

 Customer

/CustomerNotTooPendingSales2 

context CustomerNotTooPendingSales2 inv NotTooPendingSales2:  
self.sale->select(s| s.paymentDate>Time.now())-
>collect(sa|sa.amount)->sum()<=self.category.maxPendingAmount 
 
 

 

Figure 6.5. Redefinition of the NotTooPendingSales2 constraint  

Next, we need to address the computation of the population of the ETConstraint entity 
type, i.e. how to automatically define its derivation rule (section 6.2.2.2) using the set of 
events recorded in the structural event types. In short, the population of ETConstraint is the 
union of instances of the context type affected by each structural event appearing in the 
structural event types corresponding to the set of PSEs for the constraint (section 6.2.2.1).  

6.2.2.1 Computing the instances of the context type affected by a structural event 

Roughly, the relevant instances for a constraint c defined over a context type t after the 
issue of an event ev (where the type of ev is one of the PSEs for c) are the ones related with 
the instance i modified by ev.  

Therefore, the basic idea is that the OCL expression required to compute such related 
instances will consist of the sequence of navigations nav required to navigate back from i 
to the instances of t. The application of nav over i returns the set of instances we need to 
verify because of ev.  
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Let c be a constraint defined over a context type t and ev a PSE (appearing in the nodeev) 
for c. Then, the sequence of navigations nav required to compute the relevant instances for 
an event of type ev are obtained with Inverse(PathVar(nodeev)) where Inverse: 

- Discards all nodes of the PathVar not representing navigations through relationship 
types (i.e. nodes not instance of the NavigationCallExp metaclass) 

- Reverses all nodes of type NavigationCallExp by means of replacing the role 
associated to the node with the opposite role of the relationship type. If the node 
represents a navigation from a participant type to a reified type (i.e. a node of type 
AssociationClassCallExp) the opposite role is the one navigating back from the 
reified type to that participant. Reversely, the opposite role of a navigation from the 
reified type to one of the relationship participants is the navigation from the 
participant to the reified type. 

- If necessary, adds the subexpression “select(o| o.oclIsKindOf(t))” at the end of the 
navigation path. When t belongs to a taxonomy, the previous computed navigation 
path may return a set of objects of type t’, where t’ is a supertype of t. Since the 
context of the constraint is t only those objects that are instance of t (or instance of 
one of the subtypes of t) are relevant to the constraint. In such cases the select 
expression ensures that only objects of type t are considered. 

As an example, consider the event UpdateAttribute(paymentDate, Sale) over the constraint 
NotTooPendingSales2. Figure 6.6 shows the ordered sequence of nodes resulting from the 
application of PathVar over the node including the update paymentDate event type. The 
sequence contains a single node representing a navigation through an association end (the 
association end sale of the relationship type Purchases). Therefore, Inverse just returns the 
node AssociationEndCallExp(customer), i.e. the opposite role of sale in Purchases. Then, 
to obtain the affected customers after a paymentDate update, we just navigate from the 
modified sale s to the related customer applying over s the navigation through the customer 
role. 

When Inverse returns an empty sequence of navigations it means that the instance 
modified by the event is exactly the instance of the context type we need to take into 
account when verifying the constraint. 

If the same PSE appears in different nodes of the tree, to compute the affected instances we 
repeat the process for each node and combine the result afterwards by means of the union 
operator. Similarly, when a node may have different PathVar expressions we combine the 
sets of affected instances computed for the indicated paths (see section 5.1.2). 
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Figure 6.6. PathVar for the UpdateAttribute(paymentDate,Sale) event type  

6.2.2.2 Derivation rule definition 

The derivation rule for the ETConstraint entity type must ensure that the set of instances of 
the type are exactly the set of instances we need to check. It must include, for each instance 
of the structural event types corresponding to the PSEs of the constraint, the computation 
of the affected instances of the context type, as explained above.  

Using the work of [64] we define the population of a derived entity type by means of 
redefining its predefined allInstances operation (i.e. the population of the derived type will 
be the set of instances returned by the allInstances operation). 

We first obtain all instances of an structural event type evt (where evt records events 
included in the set of PSEs for the constraint) by means of the expression 
evt.allInstances(). Then, for each instance, we use the relationship types between the 
structural event types and its corresponding entity types to access the modified entities (see 
Section 6.1). Then, over the obtained set of modified entities we apply the sequence of 
navigations computed in section 6.2.2.1 to retrieve the relevant instances of the context 
type. We combine this set of instances with the results of repeating the process with the 
other structural event types corresponding to the PSEs of the constraint. 

Note that when the structural event type corresponds to an InsertRT or a DeleteRT event 
type, we have different possibilities when accessing the modified instance since we may 
access any of the participants of the relationship type. The right participant to navigate to is 
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determined by the first navigation in the sequence of navigations required to compute the 
affected instances of the context type due to that event. If such navigation requires 
navigating to the participant p, from the instances of the structural event type we will 
access that participant. 

As an example, consider the previous NotTooPendingSales2 constraint. In this case, the 
derivation rule for the derived subtype CustomerNotTooPendingSales2 must select, 
according to the PSEs for the constraint (see Figure 6.1), all customers that have purchased 
a sale (i.e. all customers participating in a new relationship of the Purchases relationship 
type, recorded in the iPurchases structural event type). These customers are obtained by 
means of the subexpression iPurchases.allInstances().refCustomer, where we first retrieve 
all new Purchases relationships and from them we obtain the related customers (the 
Inverse(PathVar) expression for the node including the InsertRT(Purchases) event type 
results in the customer role, which must be applied over the new purchases relationship). 
Similarly, we select the customers being assigned to a category (customers participating in 
a new relationship of the BelongsTo relationship type, recorded in the iBelongsTo type).  

The derivation rule must also select those customers related to sales that have been 
modified the value of its payment date (uSalePaymentDate type) or amount (uSaleAmount 
type) attribute values. This last set of customers is obtained by applying the role customer 
over each updated sale (reached from the uSalePaymentDate and uSaleAmount types by 
means of the ref role). 

Therefore, the derivation rule for CustomerNotTooPendingSales2  is the following: 

context CustomerNotTooPendingSales2::allInstances() : Set(Customer) 
body:  iPurchases. allInstances().refCustomer->union(  

iBelongsTo. allInstances().refCustomer->union(  
            uSalePaymentDate.allInstances().ref.customer->union( 
           uSaleAmount.allInstances().ref.customer)))->asSet() 

We would like to remark that the derivation rule returns a set (and not a bag) of instances. 
This permits to avoid a redundant checking of the relevant instances even if they are 
affected by several of the events issued during the IB update (for instance, a customer that 
purchases a new sale and that it is related to an existing sale that has changed its amount 
attribute).  Moreover, if none of the issued events is a PSE for the constraint the population 
of ETConstraint will be empty, and thus, the constraint will not be verified. 

6.2.3 Schema modification for class constraints  

For class constraints it is unnecessary to compute the affected instances after the issue of 
one of their PSEs since we always need to consider the whole population of the context 
type. However, it is still relevant to modify the schema in order to verify the constraint 
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only after modifications of the IB where at least an event ev (where the type of ev appears 
in the list of PSEs for the constraint) is applied over the IB. 

Given a class constraint c defined over a context type t, with body X and with a set of PSEs 
setPSE recorded in the structural event types setSET = {evt1, evt2,…evtn}, the redefined 
constraint c’ follows the pattern: 

context t inv: if evt1.allInstances()->notEmpty() or evt2.allInstances()->notEmpty() 
or ... evtn.allInstances()->notEmpty() then X endif 

Note that we do not retrieve the exact instances modified during the IB update; we just 
check if at least an event instance of one of the PSEs has been issued.  

As an example, after processing the class constraint NumberOfRestrictedProducts we 
obtain the following result:  

context RestrictedProduct inv NumberOfRestrictedProducts: if 
iRestrictedProduct.allInstances()->notEmpty() or 
sRestrictedProduct.allInstances()->notEmpty() then 
RestrictedProduct.allInstances()->size()<=20 endif 

6.2.4 Schema modification for partial instance constraints  

A partial instance constraint c can be checked incrementally only when none of the PSE 
events applied over the IB appears related to subexpressions started by an allInstances 
operation in the constraint tree. Otherwise, we must check the constraint over all instances 
of the context type.  

To process this kind of constraints we split their set of PSEs into two different groups: the 
set of instance PSEs and the set of class PSEs, depending on the kind of subexpression 
where they are included (i.e. depending on the type of last node of their PathVar 
expression as explained in section 6.2.1). If a PSE is included in both kinds of 
subexpressions is considered a class PSE. 

For the set of instance PSEs we apply the same treatment explained in section 6.2.2, and 
thus, we create the new derived subtype ETConstraint and change the context of the 
constraint to ETContraint. There is only a slight difference regarding the generation of the 
derivation rule for the subtype, as we will explain below.  

Afterwards, we create an additional derived subtype, called ETConstraint’, under the 
context type, and define also over ETConstraint’ a copy of the original constraint. Its 
population will be the same population of the context type if some class PSE has been 
applied over the IB. Otherwise, its population will be empty. Therefore, the derivation rule 
for ETConstraint’ is (evt1…evtn represent the structural event types for the class PSEs):  
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context ETConstraint’::allInstances(): Set(ET)  
body 
   if ( evt1.allInstances()->notEmpty() or evt2.allInstances->notEmpty() or … 
         evtn.allInstances()->notEmpty())  then ETConstraint.allInstances() endif 
where evt1..evtn represent the structural event types corresponding to the class PSEs. 

Finally, once we have created this new ETConstraint’ subtype, we define the derivation 
rule for the ETConstraint type created for the instance PSEs. Its derivation rule will be:  

if (ETConstraint’.allInstances()->isEmpty()) then dr endif 

where dr is the derivation rule defined according to section 6.2.2.2 but considering only the 
instance PSEs.  

This way we ensure that when the transaction includes a class PSE we check all instances 
of the original context entity type (ETConstraint’ will contain the same instances as the 
context type) and avoid redundant checkings (ETConstraint will be empty). Otherwise, we 
may check the constraint incrementally (ETConstraint will contain the affected instances 
of the context type whereas ETConstraint’ will be empty).  

Figure 6.7 shows the constraint MaximumCustomers (context Category inv: self.customer-
>size()<= Customer.allInstances()->size()/2) after being processed as explained in this 
section. Notice that, when a DeleteET(Customer) event is issued, dCustomer becomes not 
empty. As a consequence, the population of CategoryMaximumCustomers’ is equivalent to 
the population of the category type and we check all categories to verify that all of them 
satisfy the constraint. At the same time, CategoryMaximumCustomers becomes empty 
(even if some InsertRT(BelonsTo) event has been issued as well). On the contrary, when 
only events of type InsertRT(BelonsTo) are applied over the IB, 
CategoryMaximumCustomers’ is empty and the integrity checking just considers the 
relevant categories included in CategoryMaximumCustomers. 

 Category 

 /CategoryMaximumCustomers 

-- The redefined constraints 
context CategoryMaximumCustomers inv MaximumCustomers: 
  self.customer->size()<= Customers.allInstances()->size() / 2  
 
context CategoryMaximumCustomers’ inv MaximumCustomers’: 
  self.customer->size()<= Customers.allInstances()->size() / 2  
 
 

-- The derivation rules 
context CategoryMaximumCustomers::allInstances():Set(Category) 
body: if CategoryMaximumCustomers’.allInstances->isEmpty() then 
           iBelongsTo.allInstances().refCategory endif 
 
context CategoryMaximumCustomers’::allInstances():Set(Category) 
body: if dCustomer.allInstances->notEmpty() then   
           Category.allInstances() endif 

 /CategoryMaximumCustomers’ 

Figure 6.7. Schema modification for MaximumCustomers partial instance constraint 
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6.3 Application to the running example 

In what follows we show the new conceptual schema generated as a result of processing all 
constraints obtained at the end of Chapter 5 (see Table 5.2) in order to ensure their 
incremental verification after all kinds of events.  

To facilitate the presentation of the results we split the new schema into several subsets, 
one for each group of related constraints (each group refers to the different constraint 
alternatives produced for each one of the original constraints of the running example). The 
entity or relationship types not appearing in these figures remain unmodified from the 
original schema (Figure 1.1). 

From Figure 6.8 it is worth to note the reification of the DeliveredIn relationship type, 
necessary to process the constraint ValidShipDate3. For the same reason, the 
InsertRT(DeliveredIn) event type is treated as an InsertET event type when creating the 
corresponding structural event type iDeliveredIn. 

 

 
Sale

id : Natural
date: Date 
amount: Money 
paymentDate: Date 

Shipment
id: Natural 
plannedShipDate: Date
address: Address 

1..* 1..*

DeliveredIn

/SaleValidShipDate 

/DeliveredInValidShipDate3

/ShipmentValidShipDate2 

-- The derivation rules 
context SaleValidShipDate::allInstances() : Set(Sale) body: uSalePaymentDate.allInstances().ref 
context ShipmentValidShipDate2::allInstances() : Set(Shipment) body: uShipmentPlannedShipDate.allInstances().ref 
context DeliveredInValidShipDate3::allInstances() : Set(DeliveredIn) body: iDeliveredIn.allInstances().ref 
 
-- The redefined constraints 
context SaleValidShipDate inv ValidShipDate: self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)  
context ShipmentValidShipDate2 inv ValidShipDate2: self.sale->forAll(s| self.plannedShipDate<=s.paymentDate+30)  
context DeliveredInValidShipDate3 inv ValidShipDate3: self.shipment.plannedShipDate<=self.sale.paymentDate+30 

<<structural event>> 
uShipmentPlannedShipDate

<<structural event>> 
iDeliveredIn 

<<structural event>> 
uSalePaymentDate 

ref ref 

ref

1 
0..1 

1 0..1

1 
0..1 

 

Figure 6.8. Schema modification for ValidShipDate, ValidShipDate2 and ValidShipDate3 integrity 
constraints 
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/ProductCorrectProduct 

-- The derivation rules 
context ProductCorrectProduct::allInstances() : Set(Product) body: iProduct.allInstances().ref 
context ProductCorrectProduct2::allInstances() : Set(Product) body: uProductPrice.allInstances().ref 
context ProductCorrectProduct3::allInstances() : Set(Product) body: uProductMaxDiscount.allInstances().ref 
 
-- The redefined constraints 
context ProductCorrectProduct inv CorrectProduct: self.price>0 and self.maxDiscount<=60 
context ProductCorrectProduct2 inv CorrectProduct2: self.price>0   
context ProductCorrectProduct3 inv CorrectProduct3: self.maxDiscount<=60

<<structural event>> 
uProductPrice 

ref 

Product

id : Natural
name: String 
price: Money 
maxDiscount:Percentage
description: String

<<structural event>> 
uProductMaxDiscount ref

<<structural event>> 
iProduct ref

/ProductCorrectProduct2 /ProductCorrectProduct3 

1 

1

1
0..1 

0..1

0..1

 
Figure 6.9. Schema modification for CorrectProduct, CorrectProduct2 and CorrectProduct3 

integrity constraints  

 

 Sale 
Purchases 1..* 

id : Natural 
date: Date 
amount: Money 
paymentDate: Date

0..1
Customer

id: Natural 
name : String 
nationality: String 
creditCard: String

Category 
name : String 
maxPendingAmount:Money 
discount: Percentage 

BelongsTo

3..*1 

/CategoryNotTooPendingSales 

refCategory

*

0..1 
0..1

0..1refCustomer

<<structural event>> 
iBelongsTo 

refSale

*

0..1

0..1 
0..1 refCustomer

<<structural event>> 
iPurchases 

/CustomerNotTooPendingSales2 

<<structural event>> 
uCategoryMaxPending

Amount 

ref 
1 

0..1 

<<structural event>> 
uSaleAmount 

ref
1 
0..1

-- The derivation rules 
context CategoryNotTooPendingSales::allInstances() : Set(Category)  
body: uCategoryMaxPendingAmount.allInstances().ref 
 
context CustomerNotTooPendingSales2::allInstances() : Set(Customer)  
body: iBelongsTo.allInstances().refCustomer->union( iPurchases. allInstances().refCustomer->union(  
           uSalePaymentDate.allInstances().ref.customer->union(uSaleAmount.allInstances().ref.customer)))->asSet() 
 
-- The redefined constraints 
context CategoryNotTooPendingSales inv NotTooPendingSales: self.customer->forAll(c| c.sale-
>select(s|paymentDate>Time.now())->collect(sa|sa.amount)->sum()<=self.maxPendingAmount) 
context CustomerNotTooPendingSales2 inv NotTooPendingSales2: self.sale->select(s| s.paymentDate>Time.now())-
>collect(sa|sa.amount)->sum()<=self.category.maxPendingAmount   

 

Figure 6.10. Schema modification for NotTooPendingSales and NotTooPendingSales2 integrity 
constraints. The type uSalePaymentDate appears in Figure 6.8 and it is not repeated here 
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Category

name : String 
maxPendingAmount:Money
discount: Percentage 

Customer 
Id: Natural 
name : String 
nationality: String 
creditCard: String 

BelongsTo

3..*1

/CategoryAtLeastThreeCustomers

refCategory

*
<<structural event>> 

dBelongsTo 

0..1

0..1 
0..1 refCustomer 

-- The derivation rule 
context CategoryAtLeastThreeCustomers::allInstances() : Set(Category)  
body: iCategory.allInstances().ref->union(dBelongsTo.allInstances().refCategory)->asSet() 
 
-- The redefined constraint 
context CategoryAtLeastThreeCustomers inv AtLeastThreeCustomers: self.customer->size()>=3 

<<structural event>> 
iCategory 

ref

0..1 1 

 
Figure 6.11. Schema modification for AtLeastThreeCustomers integrity constraint  

context RestrictedProduct inv NumberOfRestrictedProducts: 
   if iRestrictedProduct.allInstances()->notEmpty() or sRestrictedProduct.allInstances()->notEmpty() then 
RestrictedProduct.allInstances()->size()<=20 endif 

<<structural event>> 
iRestrictedProduct 

ref <<structural event>> 
sRestrictedProduct 

ref
1 0..1 0..1

RestrictedProduct

maxUnits: Natural 1

 
Figure 6.12. Schema modification for NumberOfRestrictedProducts integrity constraint  

6.4 Summary and discussion of the results 

With this step we complete the processing of the original constraints. As a result, our 
method has returned a new conceptual schema where all constraints have been redefined in 
order to get their incremental evaluation after arbitrary modifications of the IB. The cost of 
verifying the new constraints is much lower than the cost of verifying the original ones. As 
a trade-off, the size of the CS has been increased with the addition of new types, 
constraints and derivation rules. In the following we comment both aspects of the 
processed schema. 

Defining the cost of checking a constraint as the number of entities that must be taken into 
account during its evaluation, Tables 6.1-6.5 illustrate, for each one of the original 
constraints, the differences between a direct checking of the constraint and the cost of 
checking the new version. Obviously, at design time we cannot determine the exact 
complexity of the constraints since the cost depends on the exact population of the entity 
and relationship types. We must represent these values by means of abstract variables. 
However, the abstract formulas we use are rich enough to stand out the cost differences. 
Although not explicited in the tables, an additional efficiency gain of the processed schema 
is that when the modification of the IB does not include any of the PSEs for a constraint c, 
c is not verified (i.e. the cost is zero). This is not restricted in the original schema. 
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In all tables, the column PSE shows the PSEs of the original constraint. Column Incr 
Constraint refers to the name of the specialized constraint generated for that PSE in the 
processed CS (note that even if the name of the new constraint coincides with that of the 
original one, in the processed schema the new constraint has been redefined to be 
evaluated over the relevant instances, and thus, their cost may be different). Column cost 
old and cost new refer to the cost of evaluating the original and the processed constraints 
after the issue of an event of the event type appearing in the first column.  

In Table 6.1 (cost comparison for ValidShipDate constraint), Ps stands for the number of 
instances of Sale, Nsh for the average number of shipments per sale and Ns for the average 
number of sales per shipment. A direct verification of the original ValidShipDate 
constraint always involves considering all sales and for each sale all the related shipments. 
Therefore, the number of instances accessed during its evaluation is Ps plus Ps multiplied 
by the average number of shipments for each sale (Nsh). Instead, after a sale update, in the 
new schema we just access to that sale and its related shipments (because of the 
redefinition of ValidShipDate over the relevant instances). After a shipment update, we 
simply retrieve the updated shipment and then compare it with the assigned sales (thanks to 
the use of the new specialized constraint ValidShipDate2). Finally, after the insertion of a 
new relationship between a sale s and a shipment sh, comparing s and sh suffices to verify 
ValidShipDate3. 

Table 6.1. Cost comparison for ValidShipDate 

PSE Incr Constraint Cost old Cost new 
UpdateAttr(paymentDate, Sale)  ValidShipDate Ps + Ps x Nsh 1+1xNsh 

UpdateAttr(plannedShipDate, Shipment) ValidShipDate2 “ 1+1xNs 

InsertRT(DeliveredIn)    ValidShipDate3 “ 2 

Table 6.2 shows the costs for CorrectProduct. Pp stands for the number of instances of 
Product. The difference is that in the processed constraint we restrict the verification 
process to the inserted/updated product. 

Table 6.2. Cost comparison for CorrectProduct 

PSE Incr Constraint Cost old Cost new 
InsertET(Product) CorrectProduct Pp  1 

UpdateAttribute(price,Product) CorrectProduct2 “ 1 

UpdateAttribute(maxDiscount,Product) CorrectProduct3 “ 1 

 

Table 6.3 shows the cost comparison for NotTooPendingSales constraint.  In the table, Pca 
stands for the number of instances of Category, Ncu for the average number of customers 
per category and Nsa for the average number of sales per customer. The cost of evaluating 
the original constraint always implies accessing all categories (Pca), for each category all 
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its customers (resulting in a cost of Pca x Ncu) and for each customer all its sales (this adds 
to the previous cost the number of accessed sales, determined by the expression Pca x Ncu x 
Nsa). On the contrary, with the processed constraints the verification of the IB after a 
category update involves just that category instead of the whole population of the Category 
type. After the other events the cost is even lower since we merely access the affected 
customer and his/her sales. For instance, after the update of sale s, the number of involved 
instances is s, the customer that has purchased s, all sales of that customer and the category 
where the customer belongs to.  

Table 6.3. Cost comparison for NotTooPendingSales 

PSE Incr Constraint Cost old Cost new 
UpdateAttr(maxPendingAmount, 
Category) 

NotTooPendingSales Pca + Pca x Ncu + 
Pcax NcuxNsa 

1+1xNcu +      
1xNcuxNsa 

InsertRT(BelongsTo) NotTooPendingSales2 “ 1+1xNsa+1 

InsertRT(Purchases) NotTooPendingSales2 “ 1+1xNsa+1 

UpdateAttribute(paymentDate,Sale) NotTooPendingSales2 “ 1+1+1xNsa+1 

UpdateAttribute(amount, Sale) NotTooPendingSales2 “ 1+1+1xNsa+1 

 

In Table 6.4 we provide the cost comparison for AtLeastThreeCustomers. Pca stands for the 
number of instances of Category and Ncu for the average number of customers per 
category. The cost of evaluating the original constraint always implies accessing all 
categories (Pca) and for each category all its customers (resulting in a cost of Pca x Nca). 
After the redefinition, the verification involves just computing the number of customers of 
the modified category.  

Table 6.4. Cost comparison for AtLeastThreeCustomers 

PSE Incr Constraint Cost old Cost new 
InsertET(Category) AtLeastThreeCustomers Pca +Pca x Ncu 1+1xNcu 

DeleteRT(BelongsTo) AtLeastThreeCustomers “ 1+1xNcu 

 

Finally, Table 6.5 shows the costs for RestrictedProduct. Prp stand for the number of 
instances of restricted product. Since this is a class constraint, after the PSEs of the 
constraint, the cost of evaluating the processed constraint coincides with the cost of 
evaluating the original constraint. The difference is that in the processed schema, the 
constraint is only evaluated after IB updates containing at least a PSE for the constraint 
while in the original one this was not controlled. 
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Table 6.5. Cost comparison for RestrictedProduct 

PSE Incr Constraint Cost old Cost new 
InsertET(RestrictedProduct) RestrictedProduct Prp Prp 

SpecializeET(RestrictedProduct) RestrictedProduct “ “ 

 

In order to get these efficiency improvements, we incur in additional costs with respect to 
the size of the CS and with respect to the small overhead required, at execution time, to 
record the issued events in the structural event types during the modification of the IB.  

The size of the CS increases because of the addition of the structural event types, the 
derived subtypes (for instance and partial instance constraints), their derivation rules and 
the generated alternative constraint representations. However, the designer does not need 
to be aware of this additional complexity since the processed CS will be automatically 
processed by code-generation tools. Moreover, the number of new model elements in the 
CS is linear with respect to the number of integrity constraints in the CS. The number of 
structural event types depends on the number of different PSEs of the constraints (if two 
constraints share the same PSE, only a structural event type is created). The number of 
derived subtypes is equal to the number of instance constraints plus twice the number of 
partial instance constraints. The number of alternative constraints generated depends on the 
number of PSEs (counting as different PSEs those appearing more than once in the 
constraint body) for each constraint. At most, a different constraint for each PSE will be 
generated.  

Nevertheless, we believe the efficiency gain we get with our method sufficiently justifies 
such additional complexity in a vast majority of situations. The exception would be those 
types with a low population expected at run-time. For them, the difference between a direct 
verification and an incremental one after some events may be small, and thus, the 
additional complexity required to do an incremental verification could not be justified.  
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7. Tool implementation 

The method presented in this thesis has been implemented in a prototype tool. The tool can 
be downloaded from [16]. Some of the tool features have been developed by Carol 
Cervelló [25] and Raúl Solana [81].  

Figure 7.1 shows the general picture of the tool architecture. Given an XMI file [70] 
representing the initial conceptual schema CS, and a set of constraints expressed in their 
concrete (textual) syntax, the tool loads the schema and the constraints information into 
main memory (with the help of the MDR tool [60] for the import/export of the XMI file 
and the Dresden OCL tool [31] for parsing and loading the constraints), process them and 
returns the XMI file corresponding to the processed schema CS’ and a textual file with the 
set of redefined constraints and with the derivation rules for the new derived subtypes.  

 

Figure 7.1. Tool architecture 

In its implementation, our tool relies on different existing technologies and standards. In 
the following we briefly introduce each of them (Section 7.1) and explain how they fit in 
our overall architecture (Section 7.2). Note that, due to lack of support for the latest 
versions of the UML and OCL standards, our tool works with version [71] of the UML 
metamodel and version [67] of the OCL metamodel. 

7.1 Underlying technologies 

7.1.1. XMI 

XMI (XML Metadata Interchange, [70]) is an OMG standard for sharing objects instances 
of a MOF-compliant metamodel (Meta-Object Facility, [72]) using XML documents. In 
our case, these objects are instances of the UML Metamodel. Therefore, through XMI we 
can interchange UML models by means of XML documents. 



 

-92- 

In particular, XMI defines which XML tags are used to represent serialized models in 
XML. Each MOF-compliant metamodel met is translated into a XML Schema or a DTD 
(XML Document Type Definitions). Then, models instance of met are translated into XML 
documents that are consistent with their corresponding DTD or XML Schema. 

As an example, Figure 7.2 shows an excerpt of the XMI representation for our e-commerce 
schema used as a running example. The tags <UML:Package>, <UML:Class>, 
<UML:Attribute>, etc, are the ones defined by XMI to store UML models. The elements 
inside the tags represent the information about the actual conceptual schema. In this 
example, we may see that the schema contains a class called Category (<UML:Class> tag) 
member of the Company package (<UML:Package> tag) and with an attribute name 
(<UML:Attribute> tag) with multiplicity 1 (<UML:MultiplicityRange> tag).  

 <UML:Package xmi.id = '.:0000000000000888' name = 'company' visibility = 'public' 
          isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false'> 
          <UML:Namespace.ownedElement> 
            <UML:Class xmi.id = '.:0000000000000834' name = 'Category' visibility = 'public' 
              isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false' 
              isActive = 'false'> 
              <UML:Classifier.feature> 
                <UML:Attribute xmi.id = '.:000000000000082D' name = 'name' visibility = 'private' 
                  isSpecification = 'false' ownerScope = 'instance' changeability = 'changeable'> 
                  <UML:StructuralFeature.multiplicity> 
                    <UML:Multiplicity xmi.id = '.:000000000000082C'> 
                      <UML:Multiplicity.range> 
                        <UML:MultiplicityRange xmi.id = '.:000000000000082B' lower = '1' upper = '1'/> 
                      </UML:Multiplicity.range> 
                    </UML:Multiplicity> 
                  </UML:StructuralFeature.multiplicity> 
                  <UML:StructuralFeature.type> 
                    <UML:Class xmi.idref = '.:0000000000000823'/> 
                  </UML:StructuralFeature.type> 
                </UML:Attribute>  

Figure 7.2. Partial XMI representation for the e-commerce example  

7.1.1. JMI  

The JMI (Java Metadata Interface, [46]) specification enables the implementation of a 
dynamic, platform-independent infrastructure to manage the creation, storage, access, 
discovery, and exchange of metadata based on a MOF-compliant metamodel, again, the 
UML and OCL metamodels in our case.  

In particular, JMI defines the standard Java interfaces for all elements of the UML 
metamodel; an interface for each metaclass defined in the UML metamodel. For non-
abstract metaclasses it specifies an additional interface to be used as a factory for creating 
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new instances of that metaclass. Through these interfaces, an application can discover, 
access and manipulate UML models. As an example, Figure 7.3 shows the interface 
corresponding to the Generalization metaclass, with the appropriate methods to get/set the 
parent type, the discriminator and the subtype. 

JMI also provides metamodel and metadata interchange via XMI. This implies that JMI 
permits to import a UML model from an XMI file and export it back to its XMI 
representation after its modification by means of the methods defined in the set of Java 
interfaces defined by JMI.  

 public interface Generalization extends jmi.uml15.core.Relationship {
    public java.lang.String getDiscriminator(); 
    public void setDiscriminator(java.lang.String newValue); 
    public tudresden.ocl20.core.jmi.uml15.core.GeneralizableElement getChild(); 
    public void setChild(tudresden.ocl20.core.jmi.uml15.core.GeneralizableElement newValue); 
    public tudresden.ocl20.core.jmi.uml15.core.GeneralizableElement getParent(); 
    public void setParent(tudresden.ocl20.core.jmi.uml15.core.GeneralizableElement newValue); 
    public tudresden.ocl20.core.jmi.uml15.core.Classifier getPowertype(); 
    public void setPowertype(tudresden.ocl20.core.jmi.uml15.core.Classifier newValue); 
}  

Figure 7.3. JMI interface for the Generalization metaclass  

7.1.2. MDR 

MDR (Metadata Repository, [60]) is an extended implementation of JMI. Since JMI is just 
a specification, it cannot be used on its own. Instead, we must rely on a JMI-compliant 
tool. The main function of this kind of tools (being MDR the most relevant representative) 
is to provide a class implementation for all interfaces specified by JMI. 

MDR also offers an API with an extended functionality to query, create and manage UML 
models and its elements. For instance, with the API offered by MDR the user could create 
a completely new model from scratch.  

Moreover, to implement the required XMI import/export functionality (as defined by JMI), 
MDR defines an internal repository (in main memory) where it stores all the information 
about the models and model elements loaded by the user.  

7.1.4. Dresden OCL Toolkit 

Dresden OCL Toolkit [31] complements MDR with appropriate support for OCL 
expressions. It uses JMI and MDR to specify and implement all the Java classes 
corresponding to the OCL metamodel. Then, it offers the possibility of transforming OCL 
expressions expressed in a concrete (textual) syntax form into their abstract form (i.e. as 
instances of the OCL metamodel). 

The transformation process is split up in two different steps: 
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- Parsing: Creation of a concrete syntax tree from the textual constraint. The parser 
is based on a tailored, hand-optimized L-attributed grammar of OCL2.0. It 
enhances the popular LALR(1) parser generator SableCC to create a lexer, and a 
syntax analyzer. The parsing step permits to detect ill-formed OCL expressions 
(i.e. expressions inconsistent with the OCL grammar)  

- Analysis: the attribute evaluator module performs the transformation from the 
concrete syntax tree to the abstract syntax tree (i.e. the representation of the 
constraints as an instance of the OCL metamodel). During this step the references 
to UML model elements appearing in the constraint are linked to appropriate 
objects created during the previous loading of the UML model from the XMI file. 
For instance, for nodes of type AssociationEndCallExp (Figure 4.2) the association 
referredAssociationEnd is linked to the corresponding AssociationEnd object. The 
toolkit is able to detect semantic errors in this phase. For instance, expressions 
referencing model elements not existing in the conceptual schema or with an 
incorrect type or an incorrect multiplicity (as, for instance, association ends with a 
maximum multiplicity > 1 that are treated in the OCL expression as if they 
returned a single object). 

The toolkit handles all kind of OCL expressions, including integrity constraints, derived 
elements and pre/postconditions of operations. In principle, it supports the complete OCL 
syntax although the current version of the tool still presents some bugs that limit a little bit 
the expressions that are recognized as valid OCL expression for the tool. For an updated 
list of these limitations refer to the bug list in the project web page.  

7.2 Tool architecture 

Our tool is implemented as a set of Java classes extended with the libraries of the Dresden 
OCL toolkit (for the parsing and loading of OCL constraints) and MDR (for the 
import/export of UML models from XMI files).  

As a first step, the tool permits to import both the UML model and the OCL constraints 
from an XMI file and a textual file, respectively (Figure 7.4). Then, the user can choose to 
generate the processed schema. The generation process starts by loading the UML/OCL 
model into main memory (with the previous auxiliary tools). The tool internally stores the 
CS and the constraints as instances of the UML and OCL metamodels. Then, it applies the 
steps described in chapters 3-6 over this metamodel representation.  

Finally, it exports the generated schema to an XMI representation by means of executing 
the methods provided by the MDR library. Figure 7.5 shows part of the schema of Figure 
1.1 once processed to get an incremental checking of the ValidShipDate constraint. 
ArgoUML [2]  is used to display the exported XMI file. Note that ArgoUML does not 
graphically show multiplicities of associations ends when the multiplicity value is exactly 
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one. Moreover, due to limitations of the MDR implementation of the UML metamodel we 
cannot mark an entity type as derived; only derived attributes and relationship types are 
allowed. Therefore, we stereotype all created derived subtypes with the «derived» 
stereotype. 

To save back the modified constraints and the derivation rules to a textual representation 
we have developed our own transformation algorithm since this functionality was not yet 
provided by the Dresden OCL tool (in fact, this part of our tool is now offered as part of 
the latest version of the Dresden OCL toolkit). 

Apart from this basic functionality (generating the processed schema to get an incremental 
integrity checking of all constraints), the tool also provides some auxiliary operations that 
are useful for potential users willing to partially apply our method. For instance, the user 
may be interested in just knowing which event types are the PSEs for a single constraint 
(Figure 7.6) or in knowing the list of constraints that can be violated by certain type of 
event (Figure 7.7).  

 

 

Figure 7.4. Main form of our tool 
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Figure 7.5. Processed schema 

 

 

Figure 7.6. Retrieving information about the PSEs for CorrectProduct 
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Figure 7.7. Information about the constraints that may be violated by the selected event type 

 

 

 

Figure 7.8. Incremental expression to verify ValidShipDate after 
UpdateAttribute(plannedShipDate,Shipment) events  
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Moreover, instead of generating the processed schema, the tool can also report the user 
about which OCL expression exp could be used instead of a constraint c in order to check c 
after the application of a single event over the IB [18]. Iff exp is satisfied by the entity 
affected by the event, the IB is still consistent with c. Otherwise the issue of the event has 
induced a constraint violation. As an example, the expression exp required to verify 
ValidShipDate after a plannedShipDate update over a shipment sh would be sh.sale-
>forAll(sa: Sale | sh.plannedShipDate <= (sa.paymentDate + 30)) (see Figure 7.8; the self 
variable would correspond to the updated shipment sh in this example). We would like to 
remark that, with this functionality, the designer is the one in charge of generating an 
implementation of the schema that benefits from exp to incrementally check the constraint 
in the final technology platform (i.e., the designer is responsible for including the 
verification of exp whenever and wherever it is necessary). 

 



 

-99- 

 

 

8. Implementing the processed CS in a relational 
database 

The main advantage of our method is that it is technologically-independent. This implies 
that any implementation of the processed CS results automatically in an incremental 
checking of all integrity constraints no matter the target technology platform. To show the 
feasibility of our approach, we show how a direct implementation of the processed CS in a 
relational database results in a database schema where constraints are checked 
incrementally. 

The required steps to obtain the relational schema from our processed CS are the 
following: 

1. Transformation of entity and relationship types  

2. Transformation of structural event types  

3. Automatic data maintenance for structural event types 

4. Generation of derived subtypes  

5. Generation of the integrity constraints 

At the end of the last step, each constraint has been transformed into a relational view that 
returns those rows of the IB not verifying the constraint (an empty result indicates that the 
IB state is consistent with the constraint). Therefore, at the end of each IB update, we may 
detect if the new IB state satisfies all constraints and, when it does not, which are the 
constraints that do not hold and, for those constraints, which entities are the ones violating 
the constraint. 

To be incremental, and according to the changes done to the original CS, the views 
corresponding to the processed constraints are defined over the population of the derived 
subtypes (also represented as views in the database). In its turn, the population of the 
derived subtypes is defined in terms of the population of the tables corresponding to the 
structural event types created to record the events issued during the IB update. Therefore, 
the process of querying the views to check the constraints is highly efficient since we only 
access a small portion of the whole IB (i.e. the part affected by the applied structural 
events). 
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The next subsections address each step. Each subsection is illustrated with partial 
examples. The full generation of the running example can be found at the end of the 
chapter. 

We would like to remark that most of these transformation steps are not specific to our 
processed CS. Instead, any method generating a relational schema from a standard CS 
needs to deal with the same transformation steps, except for step 3. 

8.1 Transformation of entity and relationship types 

This first step is the most well-known. As usual (see [24],[10]), entity types are 
transformed into a corresponding set of tables (called domain tables) and relationship types 
are transformed into tables or foreign keys (depending on the multiplicities of the 
relationship type). For instance, the Sale table (Figure 8.1) represents the Sale entity type 
and the Purchases relationship type (represented by means of the customer column and the 
corresponding foreign key). 

In a similar way, generalization/specialization relationships are also transformed as a 
foreign key between the subtype and the supertype (vertical mapping strategy [24]). As an 
example, see the creation of the tables Product and RestrictedProduct in Section 8.6.  

 crea te table Sale ( 
id  In teger  Pr im ary K ey, sa leda te D a te, am ount D ecim al(8 ,2), 
paym en tD ate D a te, 
C ustom er In teger  R E FE R E N C E S C ustom er(id )); 

 

Figure 8.1. Sale domain table 

8.2 Transformation of structural event types 

Since structural event types are a special kind of entity types their basic transformation (as 
done for entity types) is to create a table for each structural event type. We call these tables 
event tables. The main specificity of event tables is that they must be empty at the 
beginning of each transaction. We can obtain this behavior automatically when defining 
the event tables as temporary tables (temporary tables are part of the SQL:1999 standard 
[58]). 

Temporary tables are tables whose data is truncated at the end of each transaction (when 
specifying on commit delete rows in the table definition). Therefore, we create a temporary 
table for each structural event type. As for domain tables, the DBMS guarantees that 
concurrent users modifying the table do not interfere and that data is only visible to its own 
user.  
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Since structural event types merely contained references to the related entity type/s, the 
columns of event tables are just the set of columns required to store the primary key of the 
referenced type/s. The referenced type/s is not modified. 

We neither define primary key nor foreign keys for event tables. It is not necessary since, 
as shown in the next section, their data is updated automatically, and thus, we can ensure 
their correctness.  

As an example, Figure 8.2 shows the SQL sentence to create the temporary table 
corresponding to the structural event type uSaleAmount. The id column stores the id of the 
updated sale.  

 crea te globa l tem porary table uSa leA m oun t (id  In teger) 
on  com m it delete row s;  

Figure 8.2. Temporary table for the UpdateAttribute(amount,Sale) event type 

8.3 Automatic updating of event tables 

Data in these tables reflects the changes done by the user over the domain tables. 
Therefore, insertion and removal of tuples in event tables should be done automatically and 
transparently to the user. 

If the relational database supports the definition of active rules (i.e. triggers) this automatic 
update can be addressed by means of monitoring the changes over the domain tables in 
order to record in the event tables the modifications issued by the user.  

For each event table we create a trigger in the corresponding domain table. For iET (or iRT 
or sET) event tables we create an after insert trigger in the ET (RT) domain table. For 
uETAttribute event tables we create an after update of attribute on ET trigger over the ET 
table. For dET (or dRT or gET) event tables we create an after delete trigger over the ET 
(RT) table.  

Triggers are defined as after triggers to avoid irrelevant insertions on the event tables. If 
the event issued by the user cannot be accomplished because of some exception raised by 
the database management system (for instance, due to a violation of a primary key) we do 
not need to register it. 

As an example, to record in the event table uSaleAmount the references to sales updated 
during the transaction we define the trigger shown in Figure 8.3. For each row in the table 
Sale that has changed its value in the column amount, the trigger creates a new tuple in the 
uSaleAmount event table.  
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create trigger tuSaleAmount  
after update of Amount on Sale 
FOR each row 
BEGIN 
   Insert into uSaleAmount values (:new.id); END IF; 
End;  

Figure 8.3.  Trigger for UpdateAttribute(amount,Sale) events  

When working at the database level we must tackle the problem of distinguishing between 
insertion and specialization events over tables corresponding to subtypes in the conceptual 
schema. In both cases, these events end up inserting a new row in the domain table 
corresponding to the subtype entity type.  

To detect if the new tuple in the subtype domain table appears because of an insertion 
event (event that must be recorded in the iSubType event table for integrity checking 
purposes) or because of an specialization event (that must be recorded in the sSubType 
event table) we must check if the related tuple in the supertype domain table has been 
inserted during the same transaction or it existed prior to starting the current transaction. In 
the former, the subtype insertion is due to an insertion event while in the latter is produced 
by a specialization event.  

We know that the supertype entity existed already in the database when there is not a tuple 
in the iSuperType event table recording the insertion of that entity. As an example, 
consider the triggers for the event tables iRestrictedProduct and sRestrictedProduct in 
Section 8.6. Note that, this approach requires generating the event table for insertions over 
the supertype even if that event is not a PSE for any of the constraints. 

In a similar way we may deal with the distinction between delete and generalization 
events. A deletion of a tuple in the subtype corresponds to a deletion event when the 
related tuple is also deleted from the supertype table and a generalization event otherwise. 
Note that, due to the foreign key between the subtype and the supertype, the user must 
delete first the tuple in the subtype and then, if necessary, the related tuple in the supertype. 
Then, to distinct both situations, we may initially consider all deletion events as 
generalization events and transform some of them to deletion events if the supertype tuple 
is also deleted afterwards. 

Processing of events over relationship types that do not appear as a separate table in the 
database (for instance, the BelongsTo relationship type, represented by a foreign key in the 
Customer table) is slightly different. In such a case, triggers cannot be defined over the 
domain table (since it does not exist) and must be defined over the table containing the 
foreign key. We consider as insertions over the relationship type insertions on the table or 
updates of the foreign key column (the new value represents the new participant in the 
relationship). Deletions over the relationship type are induced by deletions over the table or 
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updates of the foreign key column (the old value refers to the participant of the deleted 
relationship).  

As an example, Figure 8.4 shows the trigger in charge of monitoring the event 
DeleteRT(BelongsTo) (that must be recorded in the dBelongsTo event table) over the 
Customer entity type. 

 create or replace trigger tdBelongsTo 
after delete or update of category on Customer 
FOR each row 
BEGIN 
  Insert into dBelongsTo values (:old.category, :old.id); 
End;  

Figure 8.4. Trigger for DeleteRT(BelongsTo) events  

When creating the triggers to populate the event tables we also need to take into account 
the rules proposed in Chapter 6 (Section 6.1.2) to minimize the population of the event 
tables.  Their influence in the definition of the trigger effect is the following (see the 
examples in Section 8.6, including a new version for the trigger of Figure 8.4, extended 
according to these rules): 

- Before inserting a tuple in an event table uETAttrib (recording updates over an 
attribute attr of an entity e of type ET) the trigger must check that e does not exist 
already in the same table or in the event table for the event iET (if existing).  

- When deleting an entity or a relation, the trigger must delete the corresponding tuple in 
the event tables iET (or iRT), sET, gET and from all event tables uETAttribute, if 
existing. In addition, if the entity (relation) appeared in iET (iRT) the trigger do not 
need to record that it has been deleted in the dET (or dRT) table. This last scenario 
models a situation in which the same entity is first inserted and then deleted from the 
database during the same transaction. 

We would also like to point out that these triggers only modify the state of the event tables 
and not the state of domain tables. Moreover, since no triggers are defined over the event 
tables, no termination problems occur. Confluence is also guaranteed (when an event fires 
more than one trigger each trigger modifies a different event table).   

We have found useful to create triggers for all deletion events (even if the event is not a 
PSE for any constraint, and thus, we do not need to record it) in order to apply the second 
of the previous rules for avoiding verifications over inexistent objects. For instance, a 
trigger for deletions of sales could be useful to check if the removed sale has been 
previously inserted or updated during the same IB update. Since, afterwards, it has been 
deleted, the trigger may remove the corresponding tuples from the iSale and uSaleAttrib 
tables.  
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8.4 Generation of derived subtypes 

Once the event tables have been created, we can define the derived subtypes as views over 
the data of the event tables referenced in the derivation rule of the subtype.  

The view query expression may be obtained automatically from the OCL derivation rule of 
the derived subtype using existing translation patterns ([30], [24]).  

Figure 8.5 shows the view corresponding to the CustomerNotTooPendingSales2 subtype 
(see Figure 6.10). The solution may not be unique; depending on the translation patterns 
we may obtain different (equivalent) view definitions.  The customers returned by the view 
are those appearing in the iBelongsTo and iPurchases event tables plus the ones related 
with sales included in the uSaleAmount and uSalePaymentDate event tables. 

 create view CustomerNotTooPendingSales2 as  
select * from Customer where id IN  
 ((select customer from iBelongsTo)  union 
 (select customer from iPurchases) union  
 (select s.customer from uSaleAmount u, Sale s where u.id=s.id) union  
 (select s.customer from uSalePaymentDate u, Sale s where u.id=s.id)); 

 

Figure 8.5. View for the CustomerNotTooPendingSales2 derived subtype 

8.5 Generation of integrity constraints 

A simple strategy when generating integrity constraints in a database is to generate them in 
the form of inconsistency predicates. For each constraint we generate a view that returns a 
non-empty result if and only if the constraint has been violated during the transaction. 
When defining constraints as inconsistency predicates we can report the user about the data 
that violates the constraint (the tuples retrieved querying the view are the ones violating the 
integrity constraint). 

The SELECT clause of the view is generated from the constraint definition (in denial form) 
in a similar way as done for derived subtypes. To ensure an incremental verification of the 
constraint, the FROM clause of the view query is expressed in terms of the derived subtype 
used as a context type of the constraint.  

As an example, Figure 8.6 shows the view corresponding to the NotTooPendingSales2 
constraint. Note that, since the constraint is defined over the view 
CustomerNotTooPendingSales2, it is only evaluated over the relevant customers (i.e. the 
ones affected by the events issued during the transaction). Sysdate is a predefined operation 
that returns the current date (equivalent to the Time::now operation used in the OCL 
definition of the constraint). 
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 create view NotTooPendingSales2 as  
select cu.* from CustomerNotTooPendingSales2 cu, Category c  
where cu.category=c.name and c.maxPendingAmount <  

(select nvl(sum(s.amount),0) from sale s where  s.customer=cu.id and 
s.paymentDate>sysdate); 

 

Figure 8.6. View for the NotTooPendingSales2 constraint  

Class constraints (once modified as explained in Chapter 6, Section 6.2.3) are also 
transformed into views. However, for class constraints the views are defined over the 
domain table corresponding to the context type of the constraint. As an example, see the 
constraint NumberOfRestrictedProducts in Section 8.6. 

Before committing the transaction, the user (or the application which is being executed) 
must query all generated views to check if all integrity constraints still hold. If any view is 
not empty, a violation occurred and the transaction must be rolled back (or an appropriate 
repair action must be triggered). 

8.6. Transformation of the running example  

In what follows we provide the complete implementation of the processed schema for our 
running example, as finally shown in Figures 6.8-6.12. 

8.6.1 Creation of the domain tables 

The following SQL scripts create the domain tables for the running example of Figure 1.1. 
These scripts (and all other scripts in this section) have been tested over an Oracle 9i 
database.  

We use the vertical mapping strategy [24] for the Product-RestrictedProduct hierarchy. 

-- Table representing the Category entity type 
create table Category ( name varchar2(10) primary key, maxPendingAmount 
Decimal(6,2), discount Decimal(6,2)); 
 
-- Table for the Customer entity type and the BelongsTo relationship type 
(represented as a foreign key) 
create table Customer ( id Integer Primary Key, name varchar2(30), 
nationality char(3), creditCard char(10), category varchar2(10) 
REFERENCES Category(name) not null); 
 
-- Sale entity type and Purchases  relationship type. The original date 
attribute has been renamed to avoid conflicts with the Date reserved 
word. 
create table Sale ( id Integer Primary Key, saledate Date, amount 
Decimal(8,2), paymentDate Date,Customer Integer REFERENCES Customer(id)); 
 
-- Shipment entity type  
create table Shipment ( id Integer Primary Key, plannedShipDate Date, 
address varchar2(50)); 
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-- Table representing the DeliveredIn relationship type 
create table DeliveredIn( sale Integer REFERENCES Sale(id),  
shipment Integer REFERENCES Shipment(id), primary key (sale, shipment)); 
 
-- Product entity type  
create table Product(  
id Integer Primary Key REFERENCES Product (id), name varchar2(20), price 
decimal(6,2), maxDiscount number(2), description varchar2(50)); 
 
-- RestrictedProduct entity type  
create table RestrictedProduct( 
id Integer Primary Key REFERENCES Product (id), maxUnits number(3)); 
 
-- SaleLine reified relationship type 
create table SaleLine( 
sale Integer REFERENCES Sale (id), product Integer REFERENCES Product 
(id), quantity number(2), primary key (sale, product)); 

 

8.6.2 Creation of the event tables 

For each event type appearing in Figures 6.8-6.12 we define its event table. 

-- Table for InsertET(Category)  
create global temporary table iCategory (id Varchar2(10)) on commit 
delete rows; 
 
-- Table for InsertET(Product)  
create global temporary table iProduct (id Integer)on commit delete rows; 
 
-- Table for InsertET(RestrictedProduct)  
create global temporary table iRestrictedProduct (id Integer) on commit 
delete rows; 
 
-- Table for InsertRT(DeliveredIn)  
create global temporary table iDeliveredIn 
(Sale Integer, Shipment Integer) on commit delete rows; 
 
-- Table for InsertRT(BelongsTo)  
create global temporary table iBelongsTo 
(Category Varchar2(10), Customer Integer) on commit delete rows; 
 
-- Table for InsertRT(Purchases)  
create global temporary table iPurchases 
(Customer Integer, Sale Integer) on commit delete rows; 
 
-- Table for SpecializeET(RestrictedProduct)  
create global temporary table sRestrictedProduct (id Integer) on commit 
delete rows; 
  
-- Table for UpdateAttribute(amount, Sale) 
create global temporary table uSaleAmount (id Integer) 
on commit delete rows; 
 
-- Table for UpdateAttribute(paymentDate, Sale) 
create global temporary table uSalePaymentDate (id Integer) on commit 
delete rows; 



 

-107- 

 
-- Table for UpdateAttribute(plannedShipDate,Shipment) 
create global temporary table uShipmentPlannedShipDate (id Integer) 
on commit delete rows;  
 
-- Table for UpdateAttribute(price, Product) 
create global temporary table uProductPrice (id Integer) 
on commit delete rows; 
 
-- Table for UpdateAttribute(maxDiscount, Product) 
create global temporary table uProductMaxDiscount (id Integer) 
on commit delete rows; 
 
-- Table for UpdateAttribute(maxPendingAmount, Category) 
create global temporary table uCategoryMaxPendingAmount (id Varchar2(10)) 
on commit delete rows; 
 
-- Table for DeleteRT(BelongsTo)  
create global temporary table dBelongsTo 
(Category varchar2(10), Customer Integer) on commit delete rows; 
 

8.6.3 Triggers for the automatic update of event tables 

- Triggers for InsertET, InsertRT and SpecializeET events 

-- Trigger for insertions over the iProduct table  
create trigger tiProduct after insert on Product 
FOR each row 
BEGIN  Insert into iProduct values (:new.id); End; 
 
-- Trigger for insertions over the iRestrictedProduct table. We check 
whether the insertion on RestrictedProduct is due to an specialization 
event or an insertion event  
create trigger tiRestrictedProduct after insert on RestrictedProduct 
FOR each row 
DECLARE v_ExistsU number; 
BEGIN 
   Select count(*) into v_ExistsU From iProduct where id=:new.id; 
   IF (v_ExistsU>0) THEN Insert into iRestrictedProduct values (:new.id); 
END IF; 
End; 
 
-- Trigger for insertions over the sRestrictedProduct table  
create trigger tsRestrictedProduct after insert on RestrictedProduct 
FOR each row 
DECLARE v_ExistsU number; 
BEGIN 
   Select count(*) into v_ExistsU From iProduct where id=:new.id; 
   IF (v_ExistsU=0) THEN Insert into sRestrictedProduct values (:new.id); 
END IF; 
End; 
 
-- Trigger for insertions over the iCategory table  
create trigger tiCategory after insert on Category 
FOR each row BEGIN  Insert into iCategory values (:new.name); End; 
 
-- Trigger for insertions over iDeliveredIn  
create trigger tiDeliveredIn after insert on DeliveredIn 
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FOR each row 
BEGIN Insert into iDeliveredIn values (:new.sale, :new.shipment); End; 
 
-- Trigger for insertions over iBelongsTo 
create trigger tiBelongsTo after insert or update of category on Customer 
FOR each row  
BEGIN  Insert into iBelongsTo values (:new.category,:new.id); End; 
 
-- Trigger for insertions over iPurchases 
create trigger tiPurchases after insert or update of customer on Sale 
FOR each row  
BEGIN  Insert into iPurchases values (:new.customer,:new.id); End; 

 

- Triggers for update attribute events 

-- Trigger for insertions over the uSaleAmount table  
create trigger tuSaleAmount  
after update of Amount on Sale FOR each row 
DECLARE v_ExistsU number; 
BEGIN 
   Select count(*) into v_ExistsU From uSaleAmount where id=:new.id; 
   IF (v_ExistsU=0) THEN Insert into uSaleAmount values (:new.id);END IF; 
End; 
 
-- Trigger for insertions over the uSalePaymentDate table  
create trigger tuSalePaymentDate  
after update of PaymentDate on Sale FOR each row 
DECLARE v_ExistsU number; 
BEGIN 
   Select count(*) into v_ExistsU From uSalePaymentDate where id=:new.id; 
   IF (v_ExistsU=0) THEN Insert into uSalePaymentDate values (:new.id); 
END IF; 
End; 
 
-- Trigger for insertions over the uShipmentPlannedShipDate table  
create trigger tuShipmentPlannedShipDate  
after update of PlannedShipDate on Shipment FOR each row 
DECLARE v_ExistsU number; 
BEGIN 
   Select count(*) into v_ExistsU From uShipmentPlannedShipDate where 
id=:new.id; 
   IF (v_ExistsU=0) THEN Insert into uShipmentPlannedshipDate values 
(:new.id); 
   END IF; 
End; 
 
-- Trigger for insertions over uProductPrice  
create trigger tuProductPrice  
after update of Price on Product FOR each row 
DECLARE v_ExistsI NUMBER; v_ExistsU number; 
BEGIN 
   Select count(*) into v_ExistsI From iProduct where id=:new.id; 
   Select count(*) into v_ExistsU  From uProductPrice where id=:new.id; 
   IF (v_ExistsU=0) and (v_ExistsI=0)  THEN 
       Insert into uProductPrice values (:new.id); 
   END IF; 
End; 
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-- Trigger for insertions over uProductMaxDiscount  
create trigger tuProductMaxDiscount  
after update of MaxDiscount on Product FOR each row 
DECLARE v_ExistsI NUMBER; v_ExistsU number; 
BEGIN 
   Select count(*) into v_ExistsI From iProduct where id=:new.id; 
   Select count(*) into v_ExistsU  From uProductMaxDiscount where 
id=:new.id; 
   IF (v_ExistsU=0) and (v_ExistsI=0)  THEN 
       Insert into uProductMaxDiscount values (:new.id); 
   END IF; 
End; 
 
-- Trigger for insertions over the uCategoryMaxPendingAmount table  
create trigger tuCategoryMaxPendingAmount  
after update of MaxPendingAmount on Category FOR each row 
DECLARE v_ExistsI NUMBER; v_ExistsU number; 
BEGIN 
   Select count(*) into v_ExistsI From iCategory where id=:new.name; 
   Select count(*) into v_ExistsU  From uCategoryMaxPendingAmount where 
id=:new.name; 
   IF (v_ExistsU=0) and (v_ExistsI=0)  THEN 
       Insert into uCategoryMaxPendingAmount values (:new.name); 
   END IF; 
End; 

 

- Triggers for DeleteET, DeleteRT and GeneralizeET events 

-- Trigger for deletions over the BelongsTo relationship type. BelongsTo 
is represented as a foreign key in the Customer table 
create or replace trigger tdBelongsTo 
after delete or update of category on Customer FOR each row 
DECLARE v_ExistsI NUMBER;  
begin 
   Select count(*) into v_ExistsI From iBelongsTo where customer=:old.id 
and category=:old.category; 
   if (v_ExistsI=0)  then 
     Insert into dBelongsTo values (:old.category, :old.id);      
  else delete from iBelongsTo where category=:old.category and 
customer=:old.id; 
   end if; 
End; 
 
-- Triggers to delete unnecessary rows of the structural event types 
after delete SQL sentences. These triggers do not correspond to any PSE 
but improve the efficiency of the final schema by means of removing 
irrelevant tuples from the event tables. 
create or replace trigger tdProduct 
after delete on Product FOR each row 
begin 
  Delete from iProduct where id=:old.id; 
  Delete from uProductPrice where id=:old.id; 
  Delete from uProductMaxDiscount where id=:old.id; 
End; 
 
create or replace trigger tdRestrictedProduct 
after delete on RestrictedProduct FOR each row  
BEGIN 
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  Delete from iRestrictedProduct where id=:old.id; 
  Delete from sRestrictedProduct where id=:old.id; 
End; 
 
create or replace trigger tdCategory 
after delete on Category FOR each row  
BEGIN 
  Delete from iCategory where id=:old.name; 
  Delete from uCategoryMaxPendingAmount where id=:old.name; 
End; 
 
create or replace trigger tdSale 
after delete on Sale FOR each row 
BEGIN 
  Delete from uSaleAmount where id=:old.id; 
  Delete from uSalePaymentDate where id=:old.id; 
  Delete from iPurchases where sale=:old.id; 
End; 
 
create or replace trigger tdShipment 
after delete on Shipment FOR each row 
BEGIN 
  Delete from uSaleAmount where id=:old.id; 
  Delete from uSalePaymentDate where id=:old.id; 
End; 
 
create or replace trigger tdDeliveredIn 
after delete on DeliveredIn FOR each row 
BEGIN Delete from iDeliveredIn where sale=:old.sale and 
shipment=:old.shipment; End; 

 

8.6.4 Definition of derived subtypes 
-- View representing the SaleValidShipDate derived subtype 
create view SaleValidShipDate as  
select * from Sale where id IN (select * from uSalePaymentDate);  
  
-- View representing the ShipmentValidShipDate2 derived subtype 
create view ShipmentValidShipDate2 as  
select * from Shipment where id IN (select * from 
uShipmentPlannedShipDate);  
 
-- View representing the DeliveredInValidShipDate3 derived subtype 
create view DeliveredInValidShipDate3 as  
select * from DeliveredIn where (sale,shipment) IN (select sale,shipment 
from iDeliveredIn); 
 
-- View representing the ProductCorrectProduct derived subtype 
create view ProductCorrectProduct as  
select * from Product where id IN (select * from iProduct);  
 
-- View representing the ProductCorrectProduct2 derived subtype 
create view ProductCorrectProduct2 as  
select * from Product where id IN (select * from uProductPrice); 
 
-- View representing the ProductCorrectProduct3 derived subtype 
create view ProductCorrectProduct3 as  
select * from Product where id IN (select * from uProductMaxDiscount) ; 
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-- View representing the CategoryNotTooPendingSales derived subtype 
create view CategoryNotTooPendingSales as  
select * from Category where name IN (select * from 
uCategoryMaxPendingAmount) ; 
 
-- View representing the CustomerNotTooPendingSales2 derived subtype 
create view CustomerNotTooPendingSales2 as  
select * from Customer where id IN  
 ((select customer from iBelongsTo)  union 
 (select customer from iPurchases) union  
 (select s.customer from uSaleAmount u, Sale s where u.id=s.id) union  
 (select s.customer from uSalePaymentDate u, Sale s where u.id=s.id)); 
 
-- View representing the CategoryAtLeastThreeCustomers derived subtype 
create view CategoryAtLeastThreeCustomers as  
select * from Category where name IN  
((select * from iCategory) union (select category from dBelongsTo)); 

    

8.6.5 Definition of the integrity constraints 
-- View representing the ValidShipDate constraint  
create view ValidShipDate as  
select * from SaleValidshipDate s where exists  
 (select * from DeliveredIn d, Shipment sh where s.id=d.sale and  
d.shipment=sh.id and 
  not sh.plannedshipDate<=s.paymentDate+30); 
 
-- View representing the ValidShipDate2 constraint  
create view ValidShipDate2 as  
select * from ShipmentValidshipDate2 sh where exists  
 (select * from DeliveredIn d, Sale s where s.id=d.sale and  
d.shipment=sh.id and 
  not sh.plannedshipDate<=s.paymentDate+30); 
 
-- View representing the ValidShipDate3 constraint  
create view ValidShipDate3 as  
select d.* from DeliveredInValidShipDate3 d, Shipment sh, Sale s where 
d.sale=s.id and d.shipment=sh.id and not 
sh.plannedshipDate<=s.paymentDate+30; 
 
-- View representing CorrectProduct 
create view CorrectProduct as  
select * from ProductCorrectProduct p where not (p.price>0 and 
p.maxDiscount<=60); 
 
-- View representing CorrectProduct2 
create view CorrectProduct2 as  
select * from ProductCorrectProduct2 p where not (p.price>0); 
 
-- View representing CorrectProduct3 
create view CorrectProduct3 as  
select * from ProductCorrectProduct3 p where not (p.maxDiscount<=60); 
 
-- View representing NotTooPendingSales  
create view NotTooPendingSales as  
select * from CategoryNotTooPendingSales c where exists ( 
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  select * from customer cu where cu.category=c.name and (select 
sum(s.amount) from sale s where s.customer=cu.id and 
s.paymentDate>sysdate) > c.maxPendingAmount); 
 
-- View representing NotTooPendingSales2 
create view NotTooPendingSales2 as  
select cu.* from CustomerNotTooPendingSales2 cu, Category c where 
cu.category=c.name and (select nvl(sum(s.amount),0) from sale s where 
s.customer=cu.id and s.paymentDate>sysdate) > c.maxPendingAmount; 
 
-- View representing AtLeastThreeCustomers  
create view AtLeastThreeCustomers as  
select * from CategoryAtLeastThreeCustomers c where not ((select count(*) 
from customer cu where cu.category=c.name)>=3); 
 
-- View representing NumberOfRestrictedProducts 
-- If there is a tuple in iRestrictedProduct or sRestrictedProduct we 
verify the constraint. The dual table is an auxiliary table defined by 
Oracle containing a single tuple with empty values. We use this table to 
show the error message. 
create view NumberOfRestrictedProducts as  
select ‘ErrorInNumberOfRestrictedProductsConstraint’ as error from dual 
where exists(select * from iRestrictedProduct union select * from 
sRestrictedProduct) and (select count(*) from RestrictedProduct)>20;  
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9. Related work 

Two kinds of related work are relevant to this thesis. On the one hand, there is a long 
tradition of methods devoted to the problem of integrity checking in the database field (see 
Section 9.1). We will show that the efficiency of the incremental checking we get with our 
processed schema is comparable to the efficiency obtained with those methods.  

On the other hand there are an increasing number of methods and tools that provide code-
generation capabilities from CSs and that may include facilities for providing an efficient 
integrity checking mechanism when generating the implementation of the CS in the final 
technology platform (see Section 9.2). We will show that the efficiency provided by these 
methods is worse than the efficiency that could be obtained if directly implementing our 
processed schema. This is true even when comparing the efficiency of the generated 
implementations only for those technology platforms that these existing methods and tools 
are focused on. Besides, all of them always depart from the integrity constraints exactly as 
defined by the designer, and thus, the quality of their results depends on the particular 
syntactic definition of the constraint chosen by the designer when specifying the CS. 

In what follows we compare our method with the most representative proposals of both 
groups. The comparison is based on the expressiveness of the constraint definition 
language (remember the classification between intra, inter, and type constraints in Section 
1.3) and on the efficiency of the provided techniques for integrity checking. 

9.1 Approaches in the database field 

A lot of research has been devoted to the problem of guaranteeing the consistency of the 
database data with respect to the integrity constraints defined in the database schema.  

There are different perspectives to deal with this problem. We can classify the methods 
according to the checking time (run-time or compile-time) and to the kind of response to 
constraint violations (checking or maintenance). Thus, we have four different families of 
methods [53]: 

- Integrity checking at run-time: With this approach, whenever a transaction is to be 
committed, all integrity constraints are verified. If a constraint is violated in the 
new database state, the transaction is aborted.  
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- Integrity checking at compile-time: Theorem provers or proof assistants are applied 
over the set of predefined transactions that may be applied over the database in 
order to ensure that their application will never induce a constraint violation. This 
implies that at run-time it is not necessary to verify the constraints but, on the other 
hand, we must foresee all possible transactions that may be applied over the IB. 
Moreover, current methods usually restrict the kind of predefined transactions that 
the user may define. 

- Integrity maintenance at run-time: When, before committing a transaction, the 
method detects that a constraint is not satisfied, additional modification events (also 
called repair actions) are generated in order to ensure that the database is left in a 
consistent state. ECA-rules and derivation rules are the most common mechanisms 
used to detect violations and generate repair actions. The method must ensure that 
the rule application terminates and that the generated updates preserve the semantic 
effect of the original transaction. 

- Integrity maintenance at compile-time: The set of predefined transactions are 
analyzed at compile-time and extended with a set of appropriate repair actions. 
Again, the method must guarantee that the process terminates. Confluence is also 
desirable.  

The approach closest to our own method is integrity checking at run-time (our processed 
constraints are checked at run-time and we do not provide any mechanism to generate the 
corresponding repair actions). Therefore, all methods included in the following comparison 
follow (or can be adapted to) this approach. For relevant references regarding the other 
families of approaches, we refer to [55], [86] (maintenance at run-time) and to [77] and 
[53] (maintenance at compile-time). 

In general, all methods present two main limitations as compared to the one proposed in 
this thesis: 1 – limitations with respect to the expressivity of the constraint definition 
language or 2 – limitations with respect to the kind of structural event types considered.  

Regarding the first problem, some of the proposals do not allow the definition of aggregate 
operators, select expressions or bag semantics, which frequently appear in the definition of 
OCL constraints.  

Regarding the second one, most of them only consider insertion and deletion events over 
relations (which may correspond either to an entity type or a relationship type of the CS). 
Our richer set of event types allows us to provide more fine-grained results. For instance, 
assume that we distinguish between two kinds of event types X and Y while one of these 
previous methods m mixes them in a single event type Z. When applying m over a 
constraint c we may obtain that c must be verified after applying an event of type Z. 
Therefore, we will have to verify c after all database updates including X or Y, even if 
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possibly, only the operations including X (or Y) may really violate c, as it could be detected 
by our method.  

For the sake of clarity, when presenting the different methods we distinguish among 
methods developed for relational databases, methods for deductive databases and methods 
for object(-relational) databases. We are aware that this classification is not necessarily 
strict. 

9.1.1. Approaches for relational databases 

Probably, the most relevant proposal in this field is [21]. In this proposal, constraints are 
defined as SQL predicates over the database state. They generate a production rule (similar 
to the trigger concept in current database systems) for each constraint. The rule is executed 
whenever a PSE for the constraint is applied over the database. When the rule is fired, the 
constraint condition is evaluated. If the condition does not hold a given action is taken. 
These actions are not automatically generated, they must be manually defined by the 
designer and may be as simple as rolling back the constraint.  

As far as expressivity is concerned, this method is powerful enough to deal with all kind of 
constraints we can define in OCL (it supports all SQL constructs that would be required to 
map the different OCL operators into SQL ones). 

However, this method lacks of precision when computing the PSEs for the constraints 
since it may consider as a PSEs for a given constraint certain structural events that may 
never violate it. For instance, the method would determine that the insertion of a new 
shipment may violate the constraint ValidShipDate of our example (Figure 1.2), when it is 
not the insertion of a shipment but the insertion of a new relationship between a shipment 
and a sale what can really violate it.  

Another drawback of this method is that not all constraints are checked incrementally. 
Depending on the constraint, a complete recomputation of the constraint is required to 
check that the IB satisfies it. A constraint c defined over a type t can be incrementally 
checked only when all operators appearing in c are operators over attributes or 
relationships of t and no recursive navigations exist over t. 

Lately, in [23], this method is improved to incrementally check all constraints but, as a 
trade-off, they need to restrict the constraint definition language (for instance, no aggregate 
operators can be used). 

9.1.2 Approaches for deductive databases 

There is a long tradition of methods devoted to the problem of integrity constraint checking 
in the deductive database field.  
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Some of the approaches do not focus on the problem of integrity checking itself but on the 
related problem of materialized view maintenance. A materialized view is a view whose 
tuples are stored in the database instead of being recomputed every time the view is 
queried. Then, the view materialization problem aims at incrementally updating the view 
data in response to changes in the tables underlying the view definition.  Since integrity 
constraints can be represented as inconsistency predicates, i.e. as views that must be empty 
(a non-empty view indicates that the corresponding constraint has been violated), the 
problem of integrity checking can be regarded as a subset of the view maintenance 
problem.   

These approaches share a similar core mechanism. They all represent integrity constraints 
as inconsistency predicates. As an example, the representation of ValidShipDate as an 
inconsistency predicate would be the following (where S stands for Sale, Sh for Shipment, 
D for DeliveredIn, pd for paymentDate and psh for plannedShipDate): 

IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ psd>pd+30  

where IcValidShipDate becomes non-empty (i.e. it is violated) whenever two related sale and 
shipment instances verify that the plannedShipDate goes beyond 30 days after the 
paymentDate of the sale. 

Then, these methods propose a set of rules to control the insertions over the predicate 
representing the constraint (the predicate IcValidShipDate in our example). Each rule identifies 
a situation that could possibly induce a constraint violation. Whenever one of the rules is 
found to be true, the constraint is considered violated. The methods differ in terms of the 
precision and efficiency of the rules they propose. 

A common drawback of most of these proposals is that they are not powerful enough to 
deal with the whole expressiveness of the OCL (i.e. they do not support the constructs that 
would be required to map the OCL constraints to the logic language they use as a 
constraint definition language), as done by our method. In particular, OCL allows negation, 
bag semantics and aggregation operations while these methods hardly cover all these 
constructs (see [41] for a survey and a general discussion of their limitations).  

In the following we present the most representative approaches in this field. Most recent 
approaches do not improve the efficiency of the results but adapt the methods to different 
contexts as: 1- distributed databases where we may not have access to the original 
materialized view when computing the changes required to maintain the view [82] or 2 - 
environments with autonomous data sources, where the result of the incremental 
computation is affected by interfering updates [83].  We would also like to remark the 
proposal of [29], where some of the ideas presented in the next subsection are adapted to 
be integrated within the technology possibilities provided by current database systems. 
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9.1.2.1 Urpí and Olivé’s Method 

This proposal [88],[89]  is based on the computation of the insertion, deletion and 
modification internal events over a derived predicate. This derived predicate may represent 
the inconsistency predicate corresponding to an integrity constraint. In such a case, only 
insertion events over the derived predicate are relevant (the predicate is always empty 
when beginning the transaction). 

Roughly, an insertion event over a derived predicate (i.e. indicating a violation of the 
constraint in our case) may be generated when the transaction includes a structural event 
that makes true a predicate pi appearing in the rule body for the derived predicate. The 
possible structural events are an insertion event, a modification event or a deletion event 
(when in the rule body, pi appears negated). 

After pi becomes true we have to evaluate the derived predicate to check whether now the 
whole rule body holds, and thus, a new fact must be inserted in the derived predicate. Since 
[89] the method takes into account inclusion dependencies, exclusion dependencies, 
alternative keys and referential integrity constraints among the different predicates pi when 
proposing the rules that may generate an insertion event over the derived predicate. 

Applied to the previous ValidShipDate constraint, the method would generate the 
following set of rules to incrementally check the constraint: 

1. IcValidShipDate ← uS(s,pd’) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ psd>pd’+30  
2. IcValidShipDate ← S(s,pd) ∧ iD(s,sh) ∧ Sh(sh, psd) ∧ psd>pd+30  
3. IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ uSh(sh, psd’) ∧ psd’>pd+30  

where iX(y) means that the entity y of type X has been inserted and uX means that it has 
been updated.   

After applying our method to the same constraint, we obtain the following three 
incremental constraints (see Figure 6.8): 

a. context SaleValidShipDate inv:  
self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)  

b. context ShipmentValidShipDate2 inv:  
self.sale->forAll(s| self.plannedShipDate<=s.paymentDate+30)  

c. context DeliveredInValidShipDate3 inv:  
self.shipment.plannedShipDate<=self.paymentDate+30 

where SaleValidShipDate was created to hold the set of sales that have been updated, 
ShipmentValidSihpDate contains the modified shipments and DeliveredInValidShipDate 
the inserted DeliveredIn relationships.  
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When comparing both results, we may realize that the constraints we get are equivalent to 
rules 1, 3 and 2, respectively. Constraint a checks only the updated sales, as rule number 1, 
and for each updated sale both methods compare its paymentDate with the 
plannedShipDate of all its shipments. Similarly, constraint b and rule 3 are only evaluated 
over updated shipments, and for each one, they verify that their plannedShipDate is correct 
with respect to the paymentDate of the related sales. Finally, both, constraint c and rule 2, 
consider just the sale and the shipment participating in the inserted DeliveredIn 
relationship. 

The main limitation of this method is that all constraints must be specified as closed first-
order formulae, not expressive enough to represent all constraints that can be specified 
with OCL. As an example, among the five integrity constraints of our running example, 
only ValidShipDate and CorrectProduct can be handled by this method. 

Our method can also be more efficient in the treatment of constraints with existential 
quantifiers after insertion or updating events. As an example, consider a constraint stating 
that at least a sale per shipment must be of an amount greater than 10000. After every 
single sale update resulting in a new amount under 10000, this method would check that at 
least another sale of the same shipment is still over 10000. Hence, a certain shipment sh 
may be reconsidered several times, one for each updated sale assigned to sh. On the 
contrary, we first compute the set of affected shipments after all sale updates and then 
check the constraint condition on each of them. In this way, we avoid rechecking the same 
shipment several times. 

On the contrary, we must recognize that our method behaves worse than this method after 
deletion events in constraints whose definition includes a negated atomic literal 
representing a relationship type RT. For instance, this happens for constraints defining that 
every instance of an entity type A must be related with all instances of an entity type B. An 
OCL representation of such constraint could be: context A inv: self.b-
>size()=B.allInstances(). Its representation as an inconsistency predicate would be: Ic ← 
∀a,b A(a) ∧ ¬RT(a,b) ∧ B(b)  

In this situation, this method directly detects that the constraint is violated after the deletion 
of a relationship of RT not followed by the deletion of the corresponding instance in B 
while our method requires to check that the A participant of the deleted relationship is still 
related with all entities of the B entity type.  

9.1.2.2 The Counting algorithm 

The counting algorithm (included in [42]) can be used to maintain views that use negation, 
aggregation, bag semantics (i.e. views with duplicates) and the union operator. It neither 
supports recursive views nor the difference set operator. 
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Similarly to the previous method, it associates n delta rules to each derived predicate p 
(where n is the number of predicates pi appearing in the body of the derivation rule for p). 
Each delta rule computes the changes over p due to the changes (insertions and deletions) 
over pi during the transaction. 

The application of the method over ValidShipDate produces the following set of delta 
rules. For the sake of simplicity we use the same notation as in the previous method. 

1. IcValidShipDate ← iS(s,pd) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ psd>pd+30 
2. IcValidShipDate ← S(s,pd) ∧ iD(s,sh) ∧ Sh(sh, psd) ∧ psd>pd+30  
3. IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ iSh(sh, psd) ∧ psd>pd+30  

There are some noteworthy differences with respect to our method. First of all, this method 
only distinguishes between insertion and deletion events, modification events are modeled 
as a deletion event followed by an insertion event. This hinders the precision of the 
computation of constraint violations. For instance, an update of the amount attribute of a 
sale s is transformed as a deletion of s plus an insertion of s with the new value in the 
amount attribute. Since we have generated an insertion event over Sale, according to rule 
1, ValidShipDate will be verified by comparing the payment date of s with the planned 
ship date of all shipments related with s. Clearly, this is an unnecessary verification since 
the update of a sale amount (which was the original event intended by the user) cannot 
violate ValidShipDate. 

Another difference is the behavior with respect to the aggregate operators. The counting 
algorithm is able to keep track of additional derived information stored in the entity types 
of the CS. For instance, we could record in the Category type the number of customers 
assigned to that category. Then, when verifying AtLeastThreeCustomers, this algorithm 
could detect whether the constraint is violated after the removal of a customer from a 
category c, without recalculating the number of customers still belonging to c (as required 
in our method). Thus, they improve efficiency of integrity checking but need to incur in the 
extra cost of having to materialize and keep up to date such derived information (i.e. after 
the customer removal, the value of the number of customers for the category c must be 
decreased). 

9.1.2.3 The DRed algorithm and the Ceri and Widom’s method 

The DRed algorithm (included in [42]) incrementally maintains recursive views that use 
negation and aggregation but does not support bag semantics. 

This algorithm is a three phase algorithm. In the first place, it deletes from the derived 
predicate all tuples related with deleted predicates during the transaction (even if there 
exist some other derivation that makes the derived predicate still true in the new state). 
Then, it puts back all the tuples that have alternative derivations. Finally, it inserts in the 
derived predicate tuples due to insertion events over the base predicates appearing in the 
rule body. To handle views defined by a recursive rule, the method applies these three 
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steps successively. The Ceri and Widom’s method [22] (do not confuse with their method 
for relational databases reviewed in section 9.1.1) follows a similar approach but it does 
not support aggregate operations  

Note that, in our case, only the third step is relevant (and similar to the previous methods) 
since the view corresponding to an integrity constraint is always empty before starting the 
database update.  

The main limitations of this method are its lack of support for update events (see the 
comment in the previous section) and the redundant computation of aggregate operators. 
An aggregate (or exists) operator, as the size operator in the AtLeastThreeCustomers 
constraint, is computed after each customer removal to verify the category where the 
customer belonged still verifies the constraint. Instead, we first compute which is the set of 
affected categories and compute the operator over them. This way, when several customers 
belonged to the same category we avoid computing several times the size operator. 

9.1.2.4 Christiansen and Martinenghi’s method 

This approach [26] is quite different from the ones reviewed up to now. Unlike previous 
approaches, which only consider single updates, this method is applied to predefined sets 
of events provided by the designer at compile-time. These sets of events are called 
parametric transaction patterns.  

Once a specific transaction is proposed, and before it is executed, the corresponding 
pattern is instantiated and checked for consistency so that only consistency-preserving 
transactions are eventually passed on to the database.  

The basic idea of the method is that when considering a transaction pattern instead of a 
single event, the rules generated to verify a given constraint may be more efficient than 
rules generated considering isolated events. Obviously, this forces the designer to provide 
in advance all relevant transaction patterns. An ad-hoc update of the database cannot 
benefit from this patterns, and thus, it would suffer from all problems commented for 
previous methods. 

Another problem of the method is that it must face undecidability results since this 
approach has a direct correspondence with the query containment problem (which is also 
known to be undecidable in general). This makes impossible to achieve a general and 
optimal solution for all cases [26]. 

9.1.3 Approaches for object(-relational) databases  

Few approaches are specific for object-oriented or object-relational databases [57]. Due to 
the use of an object model, they must face new problems, mainly dereferencing the 
references between objects, unnesting nested relations and handling inheritance 
relationships between the different relations. 
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[54] introduces an algorithm for incrementally maintaining views for object-relational 
databases. The object-relational view definition language may contain aggregates but it 
presents some limitations regarding the presence of nested select statements. The only 
events supported are insertion and deletion events. It neither distinguishes between 
specialization and insertion events either (nor between generalization and deletion events). 

As a first step, the method replaces all object references with explicit joins. Then it creates 
two triggers for each table t appearing in the view query, one for insertions over t and the 
other for deletions. In this step, tables inheriting from t and inherited tables of t are also 
included. Then, whenever an insert (deletion) in t is detected the insert (deletion) trigger 
evaluates the atomic conditions in the view query affecting t and when the inserted 
(deleted) tuple satisfies them, the trigger activates the view maintenance algorithm. Finally, 
the view maintenance algorithm consists of joining the inserted (deleted) tuples of t with 
the rest of the tables in the view query. The result set is added (removed) from the view. 

Note that the method always creates both triggers, without considering at this phase of the 
process if the kind of event may really violate the constraint. 

To deal with views with aggregate operators, they first remove the operators from the view 
and apply the previous procedure. Next, the aggregate operators are applied over the result 
set and merged with the existing tuples in the view. Therefore, the semantics of the 
aggregate operators are not used to provide a better incremental maintenance.  

[6] proposes a solution to the problem of incrementally maintaining (a subset of) 
materialized OQL views defined over an ODMG-compliant schema. In particular, the 
views may not contain aggregate operators, set operators (union, intersection, difference) 
nor duplicates (i.e. bag semantics). The view is transformed to an algebraic form.  

When computing the events to be monitored (the ones that may change the view 
population) they lack of precision since they assume that all kinds of events over the 
elements referenced in the view (tables, object references, attributes) affect the view.  

Then, for each event type they generate an incremental maintenance plan. The article 
provides a thorough discussion on the efficiency of the generated plans when applied over 
a real database and how its efficiency is influenced by the size of the tables, the selectivity 
of the view, the ratio of update events against query events and so forth. 

9.2 Comparison with current CASE, MDA and MDD tools 

We have recently witnessed an explosion of tools and methods promising a full and 
automatic generation of the application code from its specification. Even more, nowadays, 
code-generation capabilities of CASE tools are a key issue in their development and 
marketing strategy. 



 

-122- 

At the present moment, almost all methods and tools are able to generate the skeleton of 
Java classes or relational schemas from the CS. A few also generate the code of the 
application operations when its behavior is specified with state diagrams or action 
semantics [68].  

Nevertheless, most methods and tools tend to skip the integrity constraints specified in the 
schema when generating the system implementation. All of them present important 
limitations regarding the expressivity of the constraints they can handle and/or the 
efficiency of the generated code [19].   

Since they do not work purely at a conceptual level (as a result they do not provide a 
processed conceptual schema but the translation of the schema in terms of the target 
technology) to study their constraint code-generation capabilities we must examine the 
efficiency of the generated implementation in the final technology platform. We will focus 
on these two technologies: 1 – Relational databases and 2 – Object-oriented languages, in 
particular Java. Even though some tools also deal with other technologies (like .NET or 
C++), this decision does not restrict the set of tools to study since these two technologies 
are the most widely covered ones. 

We have chosen the most representative examples from all different kinds of tools (from 
CASE tools extended with code-generation capabilities to full model-driven development 
methods). For each group we have selected the tools we believe are the most representative 
or the ones offering a better constraint support. Obviously, this classification is somewhat 
arbitrary and some of the tools could be classified in more than category. Moreover, we 
have included in the study all tools supporting a textual language to define integrity 
constraints, commonly OCL or similar. Support for such a language is required in order to 
be able to specify all possible kinds of constraints in a conceptual schema [33]. 

At the end, we provide a summary table for all methods and tools mentioned in this 
chapter. 

9.2.1 CASE Tools 

Even though the initial goal of CASE tools was to facilitate the modeling of software 
systems, almost all of them have extended their functionality to offer, at least to some 
extent, code-generation capabilities. From all CASE tools (see [63] for an exhaustive list) 
we have selected the following ones: Poseidon, Rational Rose, MagicDraw, 
Objecteering/UML and Together. In what follows we comment them in detail: 

a) Poseidon [37] is a commercial extension of ArgoUML [2]. Its Java generation 
capabilities are quite simple. It does not allow the definition of OCL constraints and it does 
not take the multiplicity constraints into account either. Only distinguishes two different 
multiplicity values: ‘one’ and ‘greater than one’. In fact, when the multiplicity is greater 
than one the values of the multivalued attributed created in the corresponding Java class 
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are not restricted to be of the correct type (see in Figure 9.1 the customer attribute of the 
Category class corresponding to the Category entity type defined in our running example; 
the customer attribute could hold any kind of objects and not just customer instances).  

The generation of the relational schema is not much more powerful either. Just the primary 
keys constraints are supported. The designer must explicitly indicate which attributes act as 
a primary key for the entity type by means of modifying the corresponding property in the 
attribute definition.  

 public class Category { 
 
    private String name; 
    private int maxPendingAmount; 
    private int discount; 
    public java.util.Collection customer = new java.util.TreeSet(); 
} 
 
public class Customer { 
 
    private int id; 
    private String name; 
    private String nationality; 
    private String creditCard; 
    public Category category; 
    public java.util.Collection sale = new java.util.TreeSet(); 
}  

Figure 9.1. Category and Customer classes as generated by Poseidon 

b) Rational Rose [75]. The Java generation process is similar to that of Poseidon. The 
database generation is better because the class diagram can be complemented with the 
definition of additional properties. For instance, the CorrectProduct constraint can be 
specified as a property of the price (Figure 9.2) and maxDiscount attributes. Given this 
information, the tool adds to the Product table the constraint check(price>0) to control the 
correct product price (and likewise with maxDiscount). Unfortunately, the allowed 
expressivity of these additional properties is limited to simple restrictions over the values 
of individual attributes.  

Recently, a Rational Rose plug-in [34] is available to permit the definition of OCL 
constraints on rose models. However, these constraints are not considered when generating 
the application code.  
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Figure 9.2. Properties of the Price attribute in Rational Rose 

c) MagicDraw [61] offers a specific UML profile to define relational schemas which 
allows improving the code generation for that kind of databases. In this way, the user may 
annotate the class diagram with all the necessary information (primary and foreign keys, 
unique constraints and checks over attributes).  

Figure 9.3 shows the (simplified) relational schema definition for the Category and 
Customer entity types, once annotated with the profile. The tool partially generates this 
relational schema from the initial CS. The schema includes the primary keys of each table 
and the foreign key from Customer to Category (relating the cat attribute of customer with 
the category’s name). In the same way we may stereotype the attributes to include simple 
checks as the ones required in CorrectProduct.  The other constraints cannot be specified 
since relational databases do not provide any predefined mechanism to check them (and 
MagicDraw neither generates itself any code fragment to do it). 

Though MagicDraw allows the definition of OCL constraints, they are completely omitted 
in subsequent steps of the code generation process. For instance, when generating the 
relational schema corresponding to the initial conceptual schema, MagicDraw is unable to 
transform CorrectProduct in the corresponding checks in the relational schema. Even if we 
have first defined CorrectProduct in OCL, we are forced to manually define the constraint 
again in the relational schema. 
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Figure 9.3. PSM for the relational schema in MagicDraw 

d) Objecteering/UML [80] presents as a special feature with respect to the previous tools 
that supports (and generates the appropriate checking code) any multiplicity value in the 
relationship types. When generating the Java code it uses a predefined library to enforce 
the cardinality constraints. Moreover, it creates a set of triggers during the generation of 
the relational schema in the database. For instance, the trigger in Figure 9.4 checks that a 
category still contains more than three customers after the deletion of a customer. 
Otherwise, it stops the customer deletion process by raising an exception that rollbacks the 
transaction. The starting point for the database generation is, as in the previous tool, a 
schema annotated with a specific profile that can be semi-automatically obtained from the 
initial CS. It does not allow the definition of integrity constraints in OCL. 

 CREATE TRIGGER TI_cat_cust_DELET
 ON customer 
 FOR DELETE AS 
 IF NOT((SELECT COUNT(*) 
     FROM customer, deleted 
     WHERE employee.department = deleted.department) >=3) 
 BEGIN 
   ROLLBACK TRANSACTION 
   RAISERROR 20501, "cust_cat : Deletion forbidden, 

 cat_cust_FK minimum cardinality constraint violation" 
 END  

Figure 9.4. Trigger to control the minim number of customers per category 

e) Together [12] offers similar capabilities to Rational Rose regarding the database 
generation. Moreover, it includes full OCL support to define constraints and 
pre/postconditions in the CS.  

Nevertheless, when generating the Java code, only intra-entity constraints (see Section 1.3) 
are correctly generated. Moreover the generation is not efficient since constraints are 
verified after every single method of the class and not only after those methods possibly 
violating the constraints. As an example, see the Java class corresponding to the Product 
entity type in Figure 9.5. Even if we define the contract of the method setName (stating 
that the method just updates the name attribute) the generated class verifies that the value 
of the price attribute is correct after the method execution. The constraint is converted to a 
method (named inv$0 in the Figure) returning a true boolean value if the constraint holds 
and false otherwise.  

<<table>>
Customer

<<PK>>-name : varchar2
-cat : varchar2 

<<table>>
Category

<<PK>>-name : varchar2

BelongsTo
<<FK>>

{columns=cat}

{columns=name}
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For the sake of clarity we have simplified a little bit the original code generated by 
Together as well as removed the code fragment in charge of verifying the pre and 
postcondition of the setName method. 

 public class Product { 
  public int id; 
  public String name; 
  public int price; 
  public int maxDiscount; 
  public String description; 
 
  void setName(String newName) { 
      PrePost oclPreState = preSetName(this, newName); 
      assert (PrePost.checkPost(oclPreState, null) &&  allInvariants(this)); 
  } 
    
  static boolean inv$0(Product self) { 
     java.lang.Boolean bool18 = java.lang.Boolean.valueOf(self.price > 0); 
     return (bool18 != null ? (bool18).booleanValue() : false); 
  } 
 
  static boolean allInvariants(Product self) {return inv$0(self);} 
}  

Figure 9.5. Product class as generated by Together 

Regarding inter-entity constraints, Together generates an uncompleted integrity checking 
code which does not suffices to detect constraint violations. For instance, when generating 
ValidShipDate constraint, the checking code will verify the constraint after all kinds of 
modifications over the attributes of Sale but, surprisingly, changes over shipment objects 
does not induce the verification of the constraint as well. This means that after updating the 
paymentDate of a Sale, the checking code would detect a constraint violation whereas after 
updates of the paymentShipDate of a Shipment no violation will ever be detected. 

9.2.2 MDA Tools 

Although, in fact, most of the tools evaluated in this whole section 9.2 are usually 
considered as MDA-tools we reserve this specific category to the tools closest to the MDA 
standard [69]. Therefore, we classify in this category tools having as their main goal to 
support the definition and execution of model transformations from PIMs to PSMs and 
from the PSMs to the final code. We evaluate in this section some of the most well-known 
MDA tools: ArcStyler, OptimalJ and AndroMDA. 

ArcStyler [44] concentrates in the generation of Java, J2EE and .NET applications (with its 
cartridge architecture the designer can define additional transformations). When 
generating Java programs, the generated code is like the one in Poseidon, with the only 
difference that automatically creates a set of methods to modify the attributes representing 
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the associations of the original class diagram. ArcStyler also includes the Dresden OCL 
tool (see section 9.2.4) to define and generate the constraints. 

OptimalJ [27] is devoted to generate J2EE applications where all the business logic 
concentrates in the Java classes (Enterprise Java Beans in this case). It only supports 
constraints over attributes using constant values or regular expressions. For more complex 
constraints, the designer must write the corresponding Java code directly.  

AndroMDA [1] is an open source code generation framework that follows the MDA 
paradigm. According to the tool information, it takes model(s) from CASE-tool(s) and 
generates fully deployable applications. AndroMDA supports the definition of OCL query 
expressions and transforms them to the Hibernate-QL or EJB-QL query languages. 
However, no explicit support for OCL constraints is provided. 

9.2.3 MDD Methods 

In this section we group several well-known MDD methods although some of them may 
not follow the MDA approach nor use OMG standard languages.  

OO-Method [35] is based on the formal language OASIS, although it admits the definition 
of UML class diagrams with constraints defined in an OCL-like language. Integrity 
constraints may include aggregate operators but type-level constraints are not allowed. 
Constraints are checked over the objects instance of the Java classes implementing the CS. 
Each time a method of a Java class is executed, all constraints defined on that class are 
verified (and not only the constraints that may be affected by that method execution). To 
check the constraints, they add a special method in each Java class (Figure 9.6). The 
method contains a set of conditions (one for each constraint defined on the class). When a 
condition is not satisfied, the method throws an exception.  

 Protected void checkIntegrityConstraints() throws Error
{ 
  if (! ((price<0) || (maxDiscount>60))) 
  throw new error (“Constraint Violation. Invalid product”); 
} 

 

Figure 9.6. Java method on the Product class verifying the CorrectProduct  constraint 

WebML [24] is specialized in the generation of web applications. It presents little support 
for defining integrity constraints. It only admits the definition of validity predicates on the 
web page forms. A validity predicate is a boolean expression that checks the correctness of 
the value entered by the user in a form included in a web page. The boolean expression 
may consist of boolean operators, arithmetic operators, comparisons (=,>,<,…) and 
constant values.  

Executable UML [56] proposes to specify the behavior of an application in sufficient detail 
so that it can be directly executed. Specifications in executable UML consist merely of 
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class diagrams, state diagrams and action semantics to describe the operation behavior. 
Using a model compiler, then, the specification is internally transformed into Java or C++. 
It supports a predefined set of constraints like cardinality constraints, unique constraints or 
checks over the attribute’s values. These constraints are afterwards expressed using the 
Action Language they provide.  For more general ones, the designer must define them 
using this Action Language directly. That is, the designer is forced to define them in an 
imperative way and not declaratively (although action languages may contain query 
expressions they are basically an imperative language). Figure 9.7 shows the 
NumberOfRestrictedProducts constraint expressed in the action language. Tools following 
this approach (like BridgePoint [3] or iUML [20]) are mainly used in the real time and 
embedded domains. 

 select many restrictedproducts  
from instances of RestrictedProduct 
Return (cardinality restrictedproducts)<=20)  

Figure 9.7. NumberOfRestrictedProducts  defined with an Action Language 

9.2.4 OCL Tools 

This section evaluates all tools generating code from OCL constraints. Tools supporting 
OCL with other purposes (as model validation [40] or verification [4]) are not considered.  

Dresden OCL [31] generates the Java classes corresponding to the entity types in the CS, 
including all constraints except for the type-level constraints, which are not supported. 
Integrity constraints are checked only after modifications over the attributes and 
associations (represented also as attributes in the Java classes) referenced in the constraint 
definition. This represents an efficiency improvement regarding previous methods, but, as 
shown in Chapter 4, this strategy is still inefficient since not all kinds of changes over the 
associations may violate a given constraint. For instance, they would determine that 
AtLeastThreeCustomers may also be violated when assigning a customer to a category. 
This is exactly the same limitation of [90]. 

OCLtoSQL is another tool comprised in the previous toolkit, based on the method 
proposed in [30]. It generates a relational schema implementing the CS. Additionally, for 
each constraint, it creates an SQL view. Similarly to the methods seen in section 9.1, the 
view selects those tuples of the database not satisfying the constraint, and thus, a non-
empty view indicates that the constraint has been violated. As an example, Figure 9.8 
shows the view corresponding to the CorrectProduct constraint. Note that the view selects 
those products not verifying the price or the maxDiscount condition. The views are not 
efficient since they examine the whole table population instead of considering only those 
tuples modified during the transaction (in the example, the view accesses all products and 
not just the inserted or updated ones). 
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 CREATE OR REPLACE VIEW CorrectProduct as
(select * from Product SELF where not (SELF.price>0) or not 
(SELF.maxDiscount<=60); 

 

Figure 9.8. View for the CorectProduct constraint 

The code-generation capabilities of Octopus [48] are more limited. For each integrity 
constraint, it creates a new method in the Java class corresponding to the context type of 
the constraint. To know whether the constraint holds we must execute this method. If the 
constraint does not hold the method throws an exception. However, the decision about 
when the constraint needs to be verified (i.e. when we should call this method) is left to the 
designer, no hints are provided. OCLE [8] and KMF [47] provide a similar functionality. 

OCL2J [32] generates a Java implementation of the CS including all intra-entity and inter-
entity integrity constraints. As in Together, the constraint verification is inefficient since 
constraints are checked before and after executing any method of the class. 

OCL4Java [93] forces the designer to explicitly link the integrity constraints with the 
methods that may violate them. Then, when generating the Java code for the methods, the 
constraints are added as preconditions and postconditions for the method (i.e. the constraint 
is verified at the beginning and at the end of the method execution). 

BoldSoft [11] permits to execute an OCL expression over a set of objects stored in main 
memory or in the database (in this latter case, the expressivity is restricted, for instance, 
operators as count, collect, difference, asSet, asBag and so forth are not allowed). 
However, the tool is focused in the definition of derived elements and not in the integrity 
checking of constraints.  

Finally, we would like to mention a couple of methods that, instead of generating the Java 
code required to verify the constraints, transform the body of each OCL constraint in terms 
of one of the constraint languages used in design by contract tools for Java, as iContract 
[49] (see [9] for the OCL-iContract translation) or JML [51] (see [43] for the OCL-JML 
translation). These tools allow annotating the Java classes with information about the 
invariants, pre and postconditions of the class. Then, a tool precompiler transforms these 
annotations in pure Java code. Nevertheless, the final code is inefficient as well since the 
precompiler transforms the class invariants by means of adding their verification to all 
(public) methods of the class, as done by the previous reviewed methods providing a direct 
implementation of the OCL constraints. 

9.2.5 Summary information 

The following table summarizes the comparison of the different tools. For each tool we 
indicate its expressivity and efficiency regarding the Java and relational database 
generation of the integrity constraints (ICs).  
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In the expressivity columns, the symbol X means that the tool does not support any kind of 
constraint definition while the symbol √ means a full constraint support and n/a indicates 
that the tool does not generate code for checking the defined constraints in that technology. 
Otherwise, we explicitly indicate the type of constraints admitted. Likewise for efficiency 
columns. In the DB efficiency column, cells are defined as DBMS when the tool relies on 
the constraint constructs offered by the database-management system (primary keys, 
checks…) to check the constraints.  

Table 9.1. Tool comparison 

Java DB Tools 

Expressivity Efficiency Expressivity Efficiency 

Poseidon X n/a PK DBMS 

Rational Rose X n/a PK, intra DBMS 

Magic Draw X n/a PK, intra DBMS 

Objecteering cardinality √ PK,cardinality √ 

Together √ 
ICs are verified after every 

method 
PK, intra DBMS 

ArcStyler 
Uses 

DresdenOCL 
n/a PK, intra DBMS 

OptimalJ intra √ PK, intra DBMS 

AndroMDA X n/a PK, intra DBMS 

OO-Method Intra, inter 
ICs are verified after every 

method 
PK DBMS 

WebML intra √ PK DBMS 

ExecutableUML  
intra,predefined 

IC types 
√ n/a n/a 

DresdenOCL Intra, inter 
ICs are verified after 

methods modifying the 
constrained elements 

n/a n/a 

OCLtoSQL n/a n/a √ 
Views evaluate 

all table 
population 

Octopus Intra, inter n/a n/a n/a 

OCLE Intra, inter n/a n/a n/a 

KMF Intra, inter n/a n/a n/a 

OCL2J Intra, inter 
ICs are verified before and 

after every method 
n/a n/a 

OCL4Java intra, inter 
ICs must be manually 
linked to problematic 

methods 
n/a n/a 
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10. Conclusions and further research 

10.1 Conclusions 

The specification of a complete CS must include the definition of all relevant integrity 
constraints. Consequently, most CSs require the definition of a large number of constraints. 
These constraints must be taken into account when generating the implementation of the 
information system. This generation should be done automatically and yield an information 
system that efficiently (i.e. incrementally) checks all integrity constraints.  

Current methods and tools offer little support for defining and generating constraints in 
CSs. Most tools only admit certain predefined constraint types. The few ones that allow 
full expressivity in the constraint definition language produce an inefficient 
implementation regarding the constraint integrity checking.  

These limitations difficult the use of constraints in CSs. Designers are forced to either 
manually generate the (efficient) implementation of the constraints or search for an 
alternative way to represent the constraints in the CS, usually as postconditions in the 
contracts of system operations. A postcondition states a set of conditions that must be 
satisfied by the IB when an operation is completed. When constraints are not supported, 
designers must include in the postcondition of an operation op the verifications of all 
integrity constraints that could possibly be violated after executing op.  This is a tedious 
and error-prone task. 

This thesis has presented a fully automatic method for generating an efficient 
implementation for all kinds of integrity constraints in a CS. The generated implementation 
checks all constraints incrementally. By incremental we mean that the integrity checking 
process exploits available information about the applied structural events to consider as 
few entities of the IB as possible during the verification of the integrity constraints. We 
believe that our method is a new step towards the fulfillment of the goal of automating 
information systems, which is still a grand challenge for information systems research [65]. 
An implementation of our method is available at [16].   

The main characteristic of our method is that it works at a conceptual level. As a result, it 
produces a standard CS, and thus, the method is technology-independent. Therefore, unlike 
earlier approaches, our results can be used regardless of the final technology platform 
chosen to implement the CS. In fact, any code-generation method or tool able to generate 
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code from a CS could be enhanced with our method to automatically generate incremental 
constraints with only minor adaptations.  

We have divided our method into different steps to facilitate its integration and adoption. 
Some tools may prefer to incorporate just part of the developed techniques to get a partial 
efficiency improvement. This is especially important because processing a CS with our 
method implies creating new entity and relationship types and new constraints that must 
also be considered when implementing the system in the final technology platform. 
Although the number of new model elements is linearly proportional to the number of 
constraints in the original CS, this does increase the size and the complexity of the final 
implementation. Therefore, when a low population is expected at run-time for some entity 
and relationship types (meaning that there is not much difference between an incremental 
and a direct checking of the related constraints), it may be preferable to only partially 
process the constraints defined over those types (or not process them at all). [13] offers 
some more considerations on this topic. 

Another important aspect of our method is that it handles integrity constraints at an event-
grained level. For each PSE of a constraint c, the method provides a specialized version of 
c to get the maximum efficiency when verifying c after the application of that particular 
event. This implies that, even when a constraint cannot be verified incrementally after 
some of its PSEs, the method ensures an incremental verification for the rest of its PSEs. 

The efficiency of the generated constraints is comparable to that of existing methods for 
relational and deductive databases. In this sense, we may regard our method as a leverage 
of those previous methods. Our method combines their efficiency with the technology-
independence benefits of working at a higher-abstraction level. 

The different techniques developed as part of the method presented in this thesis can be 
applied to solve similar problems in related areas. For instance, [7] partially adapts our 
method to incrementally verify the consistency of CSs and presents some experimental 
results to show the efficiency gain obtained when applying incremental techniques. 

10.2 Further research 

We would like to comment four possible lines of further research. The first two would 
extend our method to adapt other techniques from the database field as [76] and [52]. The 
adoption of these techniques at a conceptual level could improve the integrity checking of 
some constraints. The third line of research pretends to reuse the method developed in this 
thesis as a basis for solving the related problem of materialization of derived types. The 
fourth line would study in detail the applicability of our method to the problem of model 
consistency checking. A model (i.e. conceptual schema) is correct when verifies the well-
formedness rules of the conceptual modeling language used to specify the schema. These 
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rules are usually expressed as constraints over the metamodel formalizing the modeling 
language. Each research line is sketched below in more detail. 

10.2.1 Extending the CS with summary information. 

[76] proposes a method to improve integrity checking of constraints containing aggregate 
operators in relational databases. This method adds several new attributes to the entity 
types of the CS to store certain information that can speed up the integrity checking.  

As an example, given the constraint AtLeastThreeCustomers (context Category inv: 
self.customer->size()>=3; Figure 1.2), when we remove a customer from a category cat 
we need to count again all the customers belonging to cat to see if the constraint still holds. 
To avoid this recomputation, this method proposes adding a new attribute in the Category 
entity type to record the number of customers belonging to that category. Then, after 
removing a customer from a category cat we could verify the constraint simply by 
checking that cat.numberOfCustomers − 1 >= 3 where numberOfCustomers is the name of 
the new attribute that records the number of customers in the category. Not all aggregation 
operators can benefit from this technique [73]. 

This technique improves integrity checking. However, in a way, it only moves the 
efficiency problem, since now the attribute numberOfCustomers must be efficiently kept 
up to date, which is not a trivial task (see Section 10.2.3). [76] also proposes a method to 
determine when this is worthwhile, but the decision is based on technologically dependent 
parameters (such as the number of page I/O operations). Nevertheless, the applicability of 
their ideas to the problem of integrity checking in CSs deserves further investigation. 

10.2.2 Evaluating a pre-test before verifying a constraint  

Our computation to determine when a constraint must be verified takes into account the 
type of the events applied during the modification of the IB. The method proposed in [52] 
refines the process by considering not only the type of the events but also the parameters of 
the applied events when deciding whether a given constraint must in fact be evaluated.  

For each event this method proposes to evaluate a pre-test on the parameters of the event. 
If the pre-test is successful, then we need not check the constraint. If it fails nothing can be 
said about it and the usual integrity checking must be performed. Obviously, the pre-test is 
useful only as long as the cost of evaluating the pre-test is cheaper than the cost of 
evaluating the whole constraint. Pre-tests are obtained from the syntactic definition of the 
integrity constraint. 

This method is unable to generate pre-tests for constraints including aggregate operators. 
However, pre-tests could be especially useful in such cases. For instance, given a 
constraint context Sale inv: self.saleLine->select(quantity>10)-> size()<5 (stating that 
sales must not have five or more sale lines with more than 10 products each) a pre-test 
could serve to detect if an event ev of type UpdateAttribute(quantity, SaleLine) over a sale 
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line sl forces to check the constraint. In this case, the pre-test would consist in evaluating if 
the quantity attribute of sl satisfies the select condition. Only when the pre-test fails (i.e. 
when the new value of the quantity attribute of sl is greater than 10) the constraint must be 
checked.  Otherwise, if the pre-test succeeds (i.e. the new value of the quantity attribute of 
sl is lower or equal to 10), the event does not increase the number of sales lines selected for 
the sale s in which sl is included (since sl does not satisfy the select condition), and thus, 
the constraint may not be violated. 

10.2.3 Materialization of derived types  

In general, CSs contain many derived entity and relationship types together with their 
corresponding derivation rules [64]. For efficiency reasons, some of these types may be 
materialized. When a derived type is materialized, its population is explicitly stored in the 
CS instead of being recomputed each time the type is queried. Then, changes in the 
population of base types referenced in its derivation rule may imply changes in the stored 
population of the materialized type. The propagation of these changes should be 
completely automatic. According to [65], this is still an open issue. 

The problem of an incremental maintenance of materialized derived types is closely related 
to the problem of incremental integrity checking addressed in this thesis. Our problem can 
be regarded as a subset of this problem (in fact, incremental integrity checking is addressed 
in this manner in some of the proposals in the database field, see Chapter 9).  

We believe that the techniques developed in this PhD Thesis can feasibly be extended to 
cover this more general problem as well.  

10.2.4 Model consistency checking  

Models (i.e. CSs) must be consistent with the well-formedness rules of the conceptual 
modeling language used to specify them. These rules restrict the possible combinations of 
the different model elements in the CS. For instance, all schemas specified in UML must 
be consistent with all well-formedness rules defined in the UML language. These rules 
include: “When an association specializes another association both must have the same 
number of participants”, “an association class cannot be defined between itself and 
something else”, “ a multiplicity must define at least one valid cardinality greater than 
zero” and so forth [68]. 

This problem has become more relevant due to the growing interest in tools for defining 
new modeling languages for particular domains  [59], [5], [50] (known as Domain-Specific 
Languages) and the increasing number of large CSs. 

Since well-formedness rules are usually defined as integrity constraints over the 
metamodel that formalizes the modeling language, our approach could be integrated with 
these tools to improve the efficiency of model consistency checking. 
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A first attempt in this direction has already been done [7], where the authors adopt steps 1 
(determination of PSEs) and 3 (computation of relevant instances) of our method in the 
development of the SAP (meta)modeling infrastructure. We believe it is worth to study 
also the impact of step 2 and other parameters and techniques that may be specific of this 
particular problem (as the appropriate checking time or the minimum size of the models 
and/or the metamodels so that the application of incremental techniques is worthwhile). 
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Appendix. Case study  

As an additional example, in this appendix we show the complete application of our 
method over the CS of Figure A.1. This CS is an excerpt of the EU-Rent Car Rentals 
Specification [36], an in-depth specification of the EU-Rent case study, which is a widely 
known case study being promoted as a basis for demonstration of product capabilities. EU-
Rent presents a car rental company with branches in several countries that provides typical 
rental services. EU-Rent was originally developed by Model Systems, Ltd. 

The excerpt of Figure A.1 contains information about the rentals (RentalAgreement entity 
type), the company branches (Branch entity type), the rented cars (Car) and the people 
related with the company either as a renter (Customer), as a driver (EU_RentPerson) or 
even as a blacklisted person (BlackListed). For each rental, the CS includes information 
about the customer, the rental date, the initial and ending date of the rental, the car being 
rented and the branches where the car will be pick up and drop off. Rentals may be 
canceled (CanceledReservation) or closed (ClosedRental) when the rental has been 
successfully finished.  

Additionally, [36] defines the constraints shown in Figure A.2 for this part of the EU-Rent 
system (yet in [36] they are specified as proposed in [66], we reexpress them as standard 
OCL invariants). 

In sections A.1-A.4 we apply the different steps of our method to this case study. Then, in 
section A.5 we discuss the efficiency improvements of the integrity checking in the 
processed CS with respect to the efficiency of the integrity checking in the original CS of 
figure A.1.  
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Figure A.1. EU-Rent CS  
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 -- The dates for the rental are correct  
context Closedrental inv CorrectInterval: 

self.beginning.value< self.initEnding.value and self.actualReturn.value>self.beginning.value 
 

-- The pick up and drop off  countries appear in the list of visited  countries for the rental 
context RentalAgreement inv VisitsBranchCountries:  

self.country->includes(self.pickupBranch.country) and self.country->includes( 
self.dropOffBranch.country) 

 

-- An EU_RentPerson  must be over 25 
context   EU_RentPerson inv Is25OrOlder: (DateTime::now()-self.birthDate) >=25*365 
 

-- The id is an identifier for the EU_RentPerson type 
context   EU_RentPerson inv IdIsKey:  

EU_RentPerson::allInstances()->select(p|p.id=self.id)->size()<2 
 

-- No two rentals may exist for the same customer in an overlapping date interval 
context Customer inv RentalsDoNotOverlap: 

not self.rentalAgreement-> reject(rA| rA.oclIsKindOf(CanceledReservation))->exists(rA | 
self.rentalAgreement->select(rAOther | rAOther.beginning.value> rA.beginning.value)-
>exists(rAOther| rAOther.beginning.value <= rA.agreedEnding.value)) 

 

-- Loyalty members must have no faults and, at least, a rental done  during the last year 
context LoyaltyMember inv MeetsLoyalPerformance: 

self.rentalAgreement.beginning->exists(dT| dT.value>(DateTime::now()-365)) and 
self.faults->isEmpty() 

 

-- A car can only be assigned to a single active rental 
context Car inv OnlyOneAssignment: 

self.rentalAgreement->select(rA |not(rA.oclIsTypeOf(CanceledReservation)) and 
not(rA.oclIsTypeOf(Closedrental)))->size()<=1 

 

-- Cargroups must have a quota value defined for each branch 
context   CarGroup inv QuotaForAllBranches:  

self.CarGroupQuota->size()=Branch::allInstances()->size() 
 

-- BlackListed people cannot rent  
context  BlackListed inv NoRentals:  

self.rentalsAsDriver->select(rA| rA.beginning.value > self.blackListedDate)-> 
forAll(rA2|rA2.oclIsTypeOf(CanceledReservation)) 

 

-- Drivers need one-year of experience and a license with an expiration date beyond the rental date 
context   DrivingLicense inv ValidLicense:  

(DateTime::now()-self.issue)> 365 and self.eu_RentPerson.rentalsAsDriver.agreedEnding-> 
forAll(d|d.value<self.expirationDate)  

Figure A.2. OCL constraints for the EU-Rent CS 

A.1 Step 0: Simplification of the original constraints 

Before applying our method we use the rules of Chapter 3 in order to simplify the body of 
the original constraints. 
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As a result, four of the previous ten constraints (VisitsBranchCountries, 
RentalsDoNotOverlap, MeetsLoyalPerformance and NoRentals), have been simplified. 
Figure A.3. shows the new body for these constraints. 

VisitsBranchCountries has been simplified by means of the rule X->includes(o) → X-
>count(o)>0 applied on both includes operators. For RentalsDoNotOverlap, we have 
applied the following list of rules (some of them several times): not X->exists(Y)  X-
>forAll(not Y),  X->reject(Y)  X->select(not Y), X->select(Y)->forAll(Z)  X->forAll(Y 
implies Z), X implies Y  not X or Y, not (not X)  X, not X>Y  X<=Y and not X<=Y 

 X>Y. After these rules we obtain the following (intermediate) body: 
self.rentalAgreement->forAll(rA:RentalAgreement | rA.oclIsKindOf(CanceledReservation) 
or self.rentalAgreement->forAll(rAOther: RentalAgreement | (rAOther.beginning.value 
<= rA.beginning.value) or (rAOther.beginning.value > rA.agreedEnding.value))). Over 
this body, we finally apply rule X->forAll(v| Y [and|or] X->forAll(v2| Z))  X-
>forAll(v,v2| Y [and|or] Z) to obtain the final body shown in Figure A.3. 

To simplify MeetsLoyalPerformance we just use X->exists(Y)  X->select(Y)->size()>0 
(to remove the exists iterator) and X->isEmpty()  X->size()=0 (to remove the isEmpty 
operator). Finally, NoRentals is simplified by means of rule X->select(Y)->forAll(Z)  X-
>forAll(Y implies Z) (to remove the select iterator) and rules X implies Y  not X or Y and 
not X>Y  X<=Y (to remove the implies operator introduced by the first simplification 
rule).  

 context RentalAgreement inv VisitsBranchCountries:  
(self.country->count(self.pickupBranch.country)) > 0) and ((self.country-> 
count(self.dropOffBranch.country)) > 0 

 

context Customer inv RentalsDoNotOverlap:  
self.rentalAgreement-> forAll(rA, rAOther| rA.oclIsKindOf(CanceledReservation) or  
 (rAOther.beginning.value>rA.beginning.value or rAOther.beginning.value <= 
rA.agreedEnding.value)) 

 

context LoyaltyMember inv MeetsLoyalPerformance: 
 (self.rentalAgreement.beginning->select(dT: DateTime | dT.value > ((DateTime::now()) - 
365))->size()) > 0) and ((self.faults->size()) = 0 

 

context  BlackListed inv NoRentals:  
self.rentalsAsDriver->forAll(rA2: RentalAgreement | (rA2.beginning.value <= 
self.blackListedDate) or rA2.oclIsTypeOf(CanceledReservation))  

Figure A.3. Simplified constraints 

A.2 Step 1: Determining the potentially-violating structural events 

According to the part of the method defined in Chapter 4, the PSEs for the constraints of 
Figure A.2 (or Figure A.3 for the simplified ones) are the following: 
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- CorrectInterval. This constraint may be violated when “closing”, i.e. specializing, 
an existing RentalAgreement instance since the new ClosedRental instance may not 
verify the constraint. Changes in the different dates involved in the comparison 
may also violate the constraint. Therefore, the list of PSEs is the following: 

o InsertRT(RentedAt)  
o InsertRT(InitialEnding) 
o UpdateAttribute(value, DateTime) 
o InsertRT(ReturnedAt) 
o SpecializeET(ClosedRental)  

- VisitsBranchCountries. Removals of links from a rental to related Branch 
instances, probably as a previous step to change the pick up or drop off branch, may 
violate the constraint. A reduction on the number of countries visited during the 
rental may also violate it since the discarded country could be the one where the 
pick up or drop off the car was planned. List of PSEs: 

o DeleteRT(Visits) 
o DeleteRT(PickUpBranch) 
o InsertET(RentalAgreement) 
o DeleteRT(DropOffBranch) 
o DeleteRT(IsLocatedIn) 

- Is25OrOlder. Only the insertion of a new person or changes on the birthDate 
attribute of an existing person may violate this constraint. List of PSEs: 

o InsertET(EU_RentPerson) 
o UpdateAttribute(birthDate, EU_RentPerson) 

- IdisKey. Changes on the id attribute or insertions of a new person may violate this 
constraint. List of PSEs: 

o InsertET(EU_RentPerson) 
o UpdateAttribute(id, EU_RentPerson) 

- RentalsDoNotOverlap. Apart from changes over the dates of existing rentals, a 
reactivation, i.e. generalization, of a closed or cancelled reservation may induce a 
constraint violation. List of PSEs: 

o InsertRT(RentedAt) 
o GeneralizeET(RentalAgreement) 
o UpdateAttribute(value,DateTime) 
o InsertRT(AgreedEnding) 
o InsertRT(Rents) 

- MeetsLoyalPerformance. The relevant changes for this constraint are the removal 
of a rental from a LoyaltyMember, the transformation of a customer into a loyal 
member or the insertion of a new fault for a loyal member. List of PSEs: 
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o DeleteRT(Rents) 
o DeleteRT(RentedAt) 
o UpdateAttribute(value,DateTime) 
o InsertRT(HasFaults) 
o InsertET(LoyaltyMember) 
o SpecializeET(LoyaltyMember) 

- OnlyOneAssignment. The assignment of a new rental to a car or the reactivation of 
a closed or canceled rental may induce its violation. List of PSEs: 

o InsertRT(AssignedCar) 
o GeneralizeET(RentalAgreement) 

- QuotaForAllBranches. Any change on the number of quotes for the group or on the 
number of existing branches may induce its violation. List of PSEs: 

o InsertRT(CarGroupQuota) 
o DeleteRT(CarGroupQuota) 
o InsertET(Branch) 
o DeleteET(Branch) 
o InsertET(CarGroup) 

- NoRentals. Adding rentals to a blacklisted customer, transforming a customer into a 
blacklisted one or changing the dates of related rentals may violate the constraint; 
reactivating an existing rental may violate it as well. List of PSEs: 

o InsertRT(Drives) 
o InsertRT(RentedAt) 
o UpdateAttribute(blackListedDate, BlackListed) 
o GeneralizeET(RentalAgreement) 
o UpdateAttribute(value, DateTime) 
o SpecializeET(BlackListed) 

- ValidLicense. A license may become invalid when changing its issue or expiration 
date or when relating the license with a new rental that may not satisfy the date 
condition stated in the constraint. 

o UpdateAttribute(issue, DrivingLicense) 
o InsertRT(HasDrivLic) 
o InsertRT(Drives) 
o InsertRT(AgreedEnding) 
o UpdateAttribute(value, DateTime) 
o UpdateAttribute(expirationDate, DrivingLicense) 
o InsertET(DrivingLicense) 
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A.3 Step 2: Determining an appropriate syntactic representation for each 
constraint 

Once we know the PSEs for each constraint c, we can determine for each PSE ev of c, an 
appropriate representation of c regarding ev, as presented in Chapter 5. 

Tables A.1-A.10 show the results of this step. In all tables, the first column contains the 
PSEs for the constraint, the second column the best context type to express the constraint 
with respect to that particular PSE and the third column the final constraint representation, 
which may be either the original one or a new generated alternative. 

Table A.1. Alternative constraint representations for CorrectInterval. Thanks to the multiplicities 
of the relationships type between RentalAgreement and DateTime, we can use ClosedRental as best 
context for all PSEs except for the update of the value of a DateTime instance. Note that this PSE 
appears four times in the OCL tree representing the constraint (once for every access to the value 
attribute). All of them share DateTime as the best context. However, not all of them generate the 
same alternative representation since their PathVar expression differs. 

PSE Context Best alternative 

InsertRT(RentedAt)  ClosedRental 

SpecializeET(ClosedRe
ntal) 

ClosedRental 

context Closedrental inv CorrectInterval: 

self.beginning.value< self.initEnding.value and 
self.actualReturn.value>self.beginning.value 

InsertRT(InitialEnding) 

 
ClosedRental 

context Closedrental inv CorrectInterval2: 

self.beginning.value< self.initEnding.value  

InsertRT(ReturnedAt) 
ClosedRental 

 

context Closedrental inv CorrectInterval3: 

self.actualReturn.value>self.beginning.value 

context DateTime inv CorrectInterval4: self.rentalBeg-
>select(r| r.oclIsKindOf(ClosedRental)) -> forAll(r|  
r.beginning.value< r.initEnding.value and 
r.oclAsType(ClosedRental).actualReturn.value>r.beginning.va
lue) 

context DateTime inv CorrectInterval5: self.rentalIni-
>select(r| r.oclIsKindOf(ClosedRental)) -> forAll(r|  
r.beginning.value< r.initEnding.value) 

UpdateAttribute(value, 
DateTime) 

 

DateTime 

context DateTime inv CorrectInterval6: self.closedRental-> 
forAll(r|  r.actualReturn.value>r.beginning.value) 
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Table A.2. Alternative constraint representations for VisitsBranchCountries. All PSEs share the 
same context type. However, depending on the PSE, we avoid checking the whole constraint. 

PSE Context Best alternative 
DeleteRT(Visits) RentalAgreement 

DeleteRT(IsLocatedIn) RentalAgreement 

InsertET 

(RentalAgreement) 

RentalAgreement 

context RentalAgreement inv VisitsBranchCountries:  

(self.country->count(self.pickupBranch.country)>0) and 
(self.country-> count(self.dropOffBranch.country)) > 0 

  

DeleteRT 

(DropOffBranch) 

RentalAgreement  context RentalAgreement inv VisitsBranchCountries2:  

(self.country-> count(self.dropOffBranch.country)) > 0 

DeleteRT 

(PickUpBranch) 

RentalAgreement context RentalAgreement inv VisitsBranchCountries3:  

(self.country->count(self.pickupBranch.country)>0)  

 
 

 

Table A.3. Alternative constraint representations for Is25OrOlder.  

PSE Context Best alternative 
InsertET(EU_RentPerson) EU_RentPerson 

UpdateAttribute(birthDate, 
EU_RentPErson) 

EU_RentPerson 

context   EU_RentPerson inv Is25OrOlder: 
(DateTime::now()-self.birthDate) >=25*365 

 

 

Table A.4. Alternative constraint representations for IdISKey  

PSE Context Best alternative 
InsertET(EU_RentPerson) EU_RentPerson 

UpdateAttribute(id, 
EU_RentPerson) 

EU_RentPerson 

context   EU_RentPerson inv IdIsKey:  

EU_RentPerson::allInstances()->select(p|p.id=self.id) -
>size()<2 
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Table A.5. Alternative constraint representations for RentalsDoNotOverlap. Since this constraint 
states a condition that must be satisfied for every pair of rentals done by a customer, for most of its 
PSEs the best context is RentalAgreement.  

PSE Context Best alternative 
InsertRT(Rents) RentalAgreement 

GeneralizeET 

(RentalAgreement) 
RentalAgreement 

InsertRT 
(AgreedEnding) 

RentalAgreement 

InsertRT(RentedAt) RentalAgreement  

context RentalAgreement inv RentalsDoNotOverlap:  

self.customer.rentalAgreement->forAll(rAOther|  
self.oclIsKindOf(CanceledReservation) or 
((rAOther.beginning.value <= self.beginning.value) or 
(rAOther.beginning.value > self.agreedEnding.value))) 

context DateTime inv RentalsDoNotOverlap2: 

self.rentalBeg->forAll(r: RentalAgreement | 
r.customer.rentalAgreement->forAll(rAOther| 
rA.oclIsKindOf(CanceledReservation) or 
((rAOther.beginning.value <= r.beginning.value) or 
(rAOther.beginning.value > r.agreedEnding.value)))) 

UpdateAttribute(value, 
DateTime) 

 

DateTime 
context DateTime inv RentalsDoNotOverlap3: 

self.rentalAgr->forAll(r: RentalAgreement | 
r.customer.rentalAgreement->forAll(rAOther| 
rA.oclIsKindOf(CanceledReservation) or 
((rAOther.beginning.value <= r.beginning.value) or 
(rAOther.beginning.value > r.agreedEnding.value)))) 

 

Table A.6. Alternative constraint representations for MeetsLoyalPerformance. Both literals of the 
constraint are collection conditions, which  makes LoyaltyMember the best context for all the PSEs. 
We distinguish between PSEs affecting one or both literals. 

PSE Context Best alternative 
InsertET 

(LoyaltyMember) LoyaltyMember 

SpecializeET(Loyalty
Member) 

LoyaltyMember 

context LoyaltyMember inv MeetsLoyalPerformance: 

 (self.rentalAgreement.beginning->select(dT: DateTime | 
dT.value > ((DateTime::now()) - 365))->size()) > 0) and 
((self.faults->size()) = 0 

DeleteRT(Rents) LoyaltyMember 

DeleteRT(RentedAt) LoyaltyMember 

UpdateAttribute(  
value,DateTime) 

LoyaltyMember 

context LoyaltyMember inv MeetsLoyalPerformance2 

self.rentalAgreement.beginning->select(dT: DateTime | dT.value 
> ((DateTime::now()) - 365))->size()) > 0 

InsertRT(HasFaults) LoyaltyMember context LoyaltyMember inv meetsLoyalPerformance3 

self.faults->size() = 0 
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Table A.7 Alternative constraint representations for OnlyOneAssignment. 

PSE Context Best alternative 
InsertRT(AssignedCar) Car 

GeneralizeET 

(RentalAgreeement) 

Car 

context Car inv OnlyOneAssignment: self.rentalAgreement-
>select(rA |not( rA.oclIsTypeOf(CanceledReservation)) and 
not(rA.oclIsTypeOf(Closedrental)))->size()<=1 

 
Table A.8. Alternative constraint representations for QuotaForAllBranches. 

PSE Context Best alternative 
InsertRT(CarGroupQuota) CarGroup 

DeleteRT(CarGroupQuota) CarGroup 

InsertET(CarGroup) CarGroup 

InsertET(Branch) CarGroup 

DeleteET(Branch) CarGroup 

context   CarGroup inv quotaForAllBranches:  

self.CarGroupQuota->size()=Branch::allInstances()->size() 

 
Table A.9. Alternative constraint representations for NoRentals. For PSEs modifying a blacklisted 
instance, we have to verify all his/her rentals. However, for PSEs inserting or modifying a rental it 
is more efficient to verify just that rental.  

PSE Context Best alternative 
SpecializeET 

(BlackListed) 
BlackListed 

UpdateAttribute(black
ListedDate) 

BlackListed 

 context  BlackListed inv NoRentals:  

self.rentalsAsDriver->forAll(rA2: RentalAgreement | 
(rA2.beginning.value <= self.blackListedDate) or 
rA2.oclIsTypeOf(CanceledReservation)) 

InsertRT(RentedAt) RentalAgreement 

GeneralizeET 

(RentalAgreement) 

 

RentalAgreement  

context  RentalAgreement inv NoRentals2:  

self.driver->select(d| d.oclIsKindOf(BlackListed))-> 
forAll(d| self.beginning.value <= 
d.oclAsType(BlackListed).blackListedDate or 
self.oclIsTypeOf(CanceledReservation)) 

UpdateAttribute(value,
DateTime) 

DateTime 

 context  DateTime inv NoRentals3:  

self.rentalBeg->forAll(r| r.driver->select(d| 
d.oclIsKindOf(BlackListed))-> forAll(d| 
r.beginning.value<=d.oclAsType(BlackListed).blackListed
Date or r.oclIsTypeOf(CanceledReservation))) 

InsertRT(Drives) Drives 

context  Drives inv NoRentals4:  

(self.rentalsAsDriver.beginning.value <= self.driver-
>any(d| d.oclIsKindOf(BlackListed)). 

oclAsType(BlackListed).blackListedDate or 
(self.rentalsAsDriver.oclIsTypeOf(CanceledReservation)) 
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Table A.10. Alternative constraint representations for ValidLicense. When changing the driver 
license we must check all related rentals. Instead, when adding a new rental we just need to verify 
that rental. When updating an existing rental we must compare the rental with all its drivers. 

PSE Context Best alternative 

InsertET(DrivingLicense) DrivingLicense 

context   DrivingLicense inv ValidLicense:  

(DateTime::now()-self.issue)> 365 and 
self.eu_RentPerson.rentalsAsDriver.agreedEnding-> 
forAll(d|d.value<self.expirationDate) 

UpdateAttribute(issue,Driv
ingLicense) 

DrivingLicense 
context   DrivingLicense inv ValidLicense2:  

(DateTime::now()-self.issue)> 365  

UpdateAttribute(expiration
Date, DrivingLicense) 

DrivingLicense 

InsertRT(HasDrivLic) 

 
DrivingLicense 

context   DrivingLicense inv ValidLicense3:  

self.eu_RentPerson.rentalsAsDriver.agreedEnding-> 
forAll(d|d.value<self.expirationDate) 

InsertRT(Drives) Drives 

context   Drives inv ValidLicense4:  

self.rentalsAsDriver.agreedEnding.value<self.driver.dri
vingLicense.expirationDate 

InsertRT(AgreedEnding) RentalAgreement 

context   RentalAgreement inv ValidLicense5:  

self.driver.drivingLicense->forAll(d| 
self.agreedEnding.value < d.expirationDate) 

UpdateAttribute(value,Dat
eTime) 

DateTime 

context   DateTime inv validLicense6:  

self.rentalAgr->forAll(r| r.driver.drivingLicense-
>forAll(d| r.agreedEnding.value<d.expirationDate)) 

 

A.4 Step 3: Redefining the constraints to evaluate the relevant instances  

As a last step, our method modifies the CS to ensure that each alternative resulting from 
step 2 is only evaluated over the instances of its context type affected by events of one of 
the event types included in its particular subset of PSEs. As explained in Chapter 6, this 
implies extending the CS with a set of structural event types and derived subtypes, 
generating the appropriate derivation rules for the derived subtypes and redefining the 
constraints by means of using them as context types. 

Figures A.4-A.13 show the processed schema for each group of constraints (i.e. for each 
set of alternatives generated from the same original constraint). In each figure, only the 
relevant part of the schema is shown. 
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/DateTimeCorrectInterval4

/ClosedRentalCorrectInterval2/ClosedRentalCorrectInterval3

/ClosedRentalCorrectInterval
<< structural event >>

sClosedRental

<< structural event >>
iReturnedAt

<< structural event >>
i InitialEnding

<< structural event >>
iRentedAt

<< structural event >>
uDateTimeValue

ClosedRental RentalAgreement

DateTime

  rentalIni+ *

initEnding+
1

InitialEnding

rentalAgr+
*

agreedEnding+
1

AgreedEnding

rentalBeg+
*

beginning+

1

RentedAt

*

actualReturn+ 1

ReturnedAt

0..1

ref+

1

0..1

ref RentalAgreement+

1

*

ref DateTime+ 1

ref RentalAgreement+1

0..1

ref DateTime+
1

*

iReturnedAt+
0..1

ref ClosedRental+ 1

   '

0..1 ref+

1

*

ref DateTime+
1

/DateTimeCorrectInterval5

/DateTimeCorrectInterval6

 

-- The derivation rules 
context ClosedRentalCorrectInterval::allInstances() : Set(ClosedRental) body: sClosedRental.allInstaces().ref-
>union(iRentedAt.allInstances().refRentalAgreement->select(r| r.oclIsKindOf(ClosedRental)))->asSet() 
context ClosedRentalCorrectInterval 2::allInstances() : Set(ClosedRental) body:  
iInitialEnding.allInstances().refRentalAgreement->select(r|r.oclIsKindOf(ClosedRental)) 
context ClosedRentalCorrectInterval 3::allInstances() : Set(ClosedRental) body: iReturnedAt.allInstances().refClosedRental 
context DateTimeCorrectInterval 4::allInstances() : Set(DateTime) body: uDateTimeValue.allInstances().ref 
context DateTimeCorrectInterval 5::allInstances() : Set(DateTime) body: uDateTimeValue.allInstances().ref 

context DateTimeCorrectInterval 6::allInstances() : Set(DateTime) body: uDateTimeValue.allInstances().ref 

 
-- The redefined constraints 
context ClosedRentalCorrectInterval inv CorrectInterval: 
self.beginning.value< self.initEnding.value and self.actualReturn.value>self.beginning.value  
context ClosedRentalCorrectInterval2 inv CorrectInterval2: self.beginning.value< self.initEnding.value 
context ClosedRentalCorrectInterval3 inv CorrectInterval3: self.actualReturn.value>self.beginning.value 
context DateTimeCorrectInterval4 inv CorrectInterval4: self.rentalBeg->select(r| r.oclIsKindOf(ClosedRental)) -> forAll(r|  
r.beginning.value< r.initEnding.value and r.oclAsType(ClosedRental).actualReturn.value>r.beginning.value) 
context DateTime inv CorrectInterval5: self.rentalIni->select(r| r.oclIsKindOf(ClosedRental)) -> forAll(r|  
r.beginning.value< r.initEnding.value) 
context DateTime inv CorrectInterval6: self.closedRental-> forAll(r|  r.actualReturn.value>r.beginning.value) 

 

Figure A.4. Schema modification for CorrectInterval, CorrectInterval2 , CorrectInterval3, 
CorrectInterval4, CorrectInterval5 and CorrectInterval6  integrity constraints. Note that the 

subexpression select(r| r.oclIsKindOf(ClosedRental) is added to the computation of the relevant 
instances for some of the events to ensure that only ClosedRental instances are taken into account. 
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<< structural event>>
dDropOffBranch

<< structural event >>
dPickUpBranch

<< structural event >>
dIsLocatedIn<< structural event >>

dVisits

/RentalAgreementVisitsBranchCountries3

/RentalAgreementVisitsBranchCountries2

/RentalAgreement VisitsBranchCountries

<< structural event >>
iRentalAgreement

Country

BranchRentalAgreement

pickUpRental+

*

pickupBranch+
1PickUpBranch

dropOff Rental+* dropOff Branch+
1

DropOf fBranch

*

1..*
Visits

*

1

IsLocatedIn

0..1

ref
+

1

0..1

ref Branch+0..1

*

ref Country+

0..1

*

ref RentalAgreement+0..1

*

ref Country+

0..1

0..1

ref RentalAgreement+

0..1

*

ref Branch+

0..1

*

ref Branch+

0..1

0..1

ref RentalAgreement+

0..1

 
 
 

-- The derivation rules 
context RentalAgreementVisitsBranchCountries::allInstances() : Set(RentalAgreement) body: 
dVisits.allInstances().refRentalAgreement->union(dIsLocatedIn.allInstances().refBranch.pickUpRental-
>union(dIsLocatedIn.allInstances().refBranch.dropOffRental->union(iRentalAgreement.allInstances().ref)))-> asSet() 
context RentalAgreementVisitsBranchCountries 2::allInstances() : Set(RentalAgreement) body:  
dDropOffBranch.allInstances().refRentalAgreement 
context RentalAgreementVisitsBranchCountries 3::allInstances() : Set(RentalAgreement) body: 
dPickUpBranch.allInstances().refRentalAgreement 
 

-- The redefined constraints 
context RentalAgreementVisitsBranchCountries inv VisitsBranchCountries:  
(self.country->count(self.pickupBranch.country)>0) and (self.country-> count(self.dropOffBranch.country)) > 0 
context RentalAgreementVisitsBranchCountries2 inv VisitsBranchCountries2:  
 (self.country-> count(self.dropOffBranch.country)) > 0 
context RentalAgreementVisitsBranchCountries3 inv VisitsBranchCountries3:  
(self.country->count(self.pickupBranch.country)>0) 

 
Figure A.5. Schema modification for VisitsBranchCountries,VisitsBranchCountries2, and 

VisitsBranchCountries3 integrity constraints. Note that, after DeleteRT(IsLocatedIn) events, we 
must consider both the rentals related with the affected branch as pickUpRentals and as a 

dropOffRentals, since this PSE appears in both subexpressions of the constraint 

 

<< structural ev ent>>
uEU_RentPersonBirthDate

<< structural ev ent >>
iEU_RentPerson

/EU_RentPersonIs25OrOlder

EU_RentPerson 0..1ref+1

0..1
ref+1

 
 

-- The derivation rules 
context EU_RentPersonIs25OrOlder::allInstances() : Set(EU_RentPerson) body: iEU_RentPerson.allInstaces().ref-
>union(uEU_RentPersonBirthDate.allInstances().ref)->asSet() 
 
-- The redefined constraints 
context   EU RentPersonIs25OrOlder inv Is25OrOlder: (DateTime::now()-self.birthDate) >=25*365  

Figure A.6. Schema modification for Is25OrOlder integrity constraint 
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<< structural ev ent>>
uEU_RentPersonId

<< structural ev ent >>
iEU_RentPersonEU_RentPerson

0..1ref+1

0..1ref+1

 
 
 

-- The redefined constraints 
context   EU_RentPerson inv IdIsKey: 
if iEU_RentPerson.allInstances->notEmpty() or uEU_RentPersonId.allInstances->notEmpty() 
then EU_RentPerson::allInstances()->select(p|p.id=self.id) ->size()<2 endif 

 
Figure A.7. Schema modification for IdIsKey  integrity constraint. This constraint is not handled as  

partial instance constraint because all the PSEs attached to the subexpression beginning with the 
self variable also appear in the subexpression that starts with the allInstances operation 

<< structural ev ent >>
iRents/RentalAgreementRentalsDoNotOverlap

Customer

<< structural ev ent>>
gRentalAgreement

<< structural ev ent >>
iAgreedEnding

RentalAgreement

<< structural ev ent >>
iRentedAt

DateTime << structural ev ent>>
uDateTimeValue

rentalAgr+ *

agreedEnding+

1

AgreedEnding

*

ref DateTime+

1

0..1

ref RentalAgreement+ 1

0..1

ref+

1

rentalBeg+ *

beginning+
1

RentedAt

ref RentalAgreement+
1

0..1

*

ref DateTime+
1

1..* renter+ 1Rents

0..1

ref+1

/DateTimeRentalsDoNotOverlap2

0..1

ref RentalAgreement+
1 *

ref Customer+1

/DateTimeRentalsDoNotOverlap3

 
-- The derivation rules 
context RentalAgreementRentalsDoNotOverlap::allInstances() : Set(RentalAgreement) body: 
iRents.allInstances().refRentalAgreement->union(gRentalAgreement.allInstaces().ref-
>union(iAgreedEnding.allInstances().refRentalAgreement->union(iRentedAt.allInstances().refRentalAgreement)))->asSet() 
context DateTimeRentalsDoNotOverlap 2::allInstances() : Set(RentalAgreement) body:  uDateTimeValue.allInstances().ref 
context DateTimeRentalsDoNotOverlap 3::allInstances() : Set(RentalAgreement) body:  uDateTimeValue.allInstances().ref 
 
-- The redefined constraints 
context RentalAgreementRentalsDoNotOverlap inv RentalsDoNotOverlap:  
self.customer.rentalAgreement->forAll(rAOther|  self.oclIsKindOf(CanceledReservation) or ((rAOther.beginning.value <= 
self.beginning.value) or (rAOther.beginning.value > self.agreedEnding.value))) 
context DateTimeRentalsDoNotOverlap2 inv RentalsDoNotOverlap2: 
self.rentalBeg->forAll(r: RentalAgreement | r.customer.rentalAgreement->forAll(rAOther| r.oclIsKindOf(CanceledReservation) or 
((rAOther.beginning.value <= r.beginning.value) or (rAOther.beginning.value > r.agreedEnding.value)))) 
context DateTime inv RentalsDoNotOverlap3: 
self.rentalAgr->forAll(r: RentalAgreement | r.customer.rentalAgreement->forAll(rAOther| rA.oclIsKindOf(CanceledReservation) 
or ((rAOther.beginning.value <= r.beginning.value) or (rAOther.beginning.value > r.agreedEnding.value))))  

Figure A.8. Schema modification for RentalsDoNotOverlap, RentalsDoNotOverlap2, and 
RentalsDoNotOverlap3 integrity constraints  
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FaultSeriousness

<< structural ev ent >>
sLoyaltyMember

/LoyaltyMemberMeetsLoyalPerformance

<< structural ev ent >>
iHasFaults

EU_RentPerson

LoyaltyMember

Customer

DateTime

RentalAgreement

<< structural ev ent >>
uDateTimeValue

0..1

ref+ 1

rentalBeg+ *

beginning+

1

RentedAt

1..*

renter+

1

Rents
<< structural ev ent >>

dRentedAt

*

ref DateTime+

0..1

0..1

ref RentalAgreement+

0..1

<< structural ev ent>>
dRents

0..1

ref RentalAgreement+0..1

*

ref Customer+0..1

0..1

ref EU_RentPerson+

1

/LoyaltyMemberMeetsLoyalPerformance2

/LoyaltyMemberMeetsLoyalPerformance3

ref+

1
0..1

<< structural ev ent >>
iLoyaltyMemberref+

1 0..1

1

f aults+

*HasFaults

0..1

1 ref Faults

 
-- The derivation rules 
context LoyaltyMemberMeetsLoyalPerformance::allInstances() : Set(LoyaltyMember) body: iLoyaltyMember.allInstances().ref -> 
union (sLoyaltyMember.allInstaces().ref) ->asSet() 
context LoyaltyMemberMeetsLoyalPerformance 2::allInstances() : Set(LoyaltyMember) body:   dRents.allInstances().refCustomer-
>select(c| c.oclIsKindOf(LoyaltyMember))-> union ( dRentedAt.allInstances().refRentalAgreement.renter->select(c| 
c.oclIsKindOf(LoyaltyMember))->union(uDateTimeValue.allInstances().ref.rentalBeg.renter->select(c| 
c.oclIsKindOf(LoyaltyMember))))->asSet() 
context LoyaltyMemberMeetsLoyalPerformance 3::allInstances() : Set(LoyaltyMember) body: 
iHasFaults.allInstances().refEU_RentPerson->select(c|c.oclIsKindOf(LoyaltyMember)) 
 
-- The redefined constraints 
context LoyaltyMemberMeetsLoyalPerformance inv meetsLoyalPerformance: 
 (self.rentalAgreement.beginning->select(dT: DateTime | dT.value > ((DateTime::now()) - 365))->size()) > 0) and ((self.faults->size()) 
= 0 
context LoyaltyMemberMeetsLoyalPerformance2 inv meetsLoyalPerformance2: 
self.rentalAgreement.beginning->select(dT: DateTime | dT.value > ((DateTime::now()) - 365))->size()) > 0 
context LoyaltyMemberMeetsLoyalPerformance3 inv meetsLoyalPerformance3: self.faults->size() = 0  

Figure A.9. Schema modification for MeetsLoyalPerformance, , MeetsLoyalPerformance2 and 
MeetsLoyalPerformance3  integrity constraints  

<< structural ev ent >>
iAssignedCar

/CarOnlyOneAssignment

<< structural ev ent >>
gRentalAgreementRentalAgreement

Car

car+ 0..1

rentalAgreement+ *
AssignedCar

0..1

ref+

1

0..1

ref RentalAgreement+

1

*

ref Car+

1

 
 
 

-- The derivation rule 
context CarOnlyOneAssignment::allInstances() : Set(Car) body:       
iAssignedCar.allInstaces().refCar->union(gRentalAgreement.allInstances().ref.car)->asSet() 
 
-- The redefined constraint 
context CarOnlyOneAssignment inv onlyOneAssignment: self.rentalAgreement->select(rA |not( 
rA.oclIsTypeOf(CanceledReservation)) and not(rA.oclIsTypeOf(Closedrental)))->size()<=1 

 

Figure A.10. Schema modification for OnlyOneAssignment integrity constraint  
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/CarGroupQuotaForAllBranches

<< structural ev ent >>
dBranch

<< structural ev ent >>
iBranch

<< structural ev ent >>
iCarGroup

<< structural ev ent >>
iCarGroupQuota

Branch
CarGroup

1..* 1..*

CarGroupQuota

*

ref CarGroup+

1

*

ref Branch+
0..1

*

ref Branch+
1

<< structural ev ent >>
dCarGroupQuota

0..1

ref Banch+1

*

ref CarGroup+
0..1

0..1

ref CarGroup+ 1

/CarGroupQuotaForAllBranches'

 

 
 -- The derivation rules 

context CarGroupQuotaForAllBranches::allInstances() : Set(CarGroup) body: 
if CarGroupQuotaForAllBranches’.allInstances()->isEmpty() then iCarGroupQuota.allInstances().refCarGroup-> 
union(dCarGroupQuota.allInstances().refCarGroup->union(iCarGroup.allInstances().ref))) ->asSet() endif 
context CarGroupQuotaForAllBranches’::allInstances() : Set(CarGroup) body:           
if (dBranch.allInstances()->union(iBranch.allInstances())->notEmpty() then CarGroup.allInstances() endif 
 
-- The redefined constraints 
context CarGroupQuotaForAllBranches inv quotaForAllBranches:          
self.CarGroupQuota->size()=Branch::allInstances()->size() 
context CarGroupQuotaForAllBranches’ inv quotaForAllBranches’:          
self.CarGroupQuota->size()=Branch::allInstances()->size()  

Figure A.11. Schema modification for QuotaForAllBranches  integrity constraint. Even though we 
have a single alternative for this constraint we split it in two derived subtypes and two redefined 

constraints because it is a partial instance constraint (the PSEs DeleteRT(Branch) and 
InsertET(Branch) are class PSEs, and thus, after their issue we must check all existing CarGroup 

instances)  
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  d

<< structural event >>
iBlackListed /BlackListedNoRentals

<< structural event >>
gRentalAgreement

<< structural event >>
uDateTimeValue

BlackListed

<< structural event >>
iDrives

EU_RentPerson

<< structural ev ent >>
iRentedAt

DateTime

RentalAgreement

0..1

ref RentalAgreement+

1 rentalBeg+ *

beginning+
1

RentedAt

*

ref DateTime
+

1

0..1 ref+

1

0..1

ref+1

/RentalAgreementNoRentals2 /DrivesRentals4

/DateTimeNoRentals3

0..1

ref+
1

<< structural event>>
uBlackListedBlackListedDate 0..1

ref+

1

rentalsAsDriver+

1..*

driver+

1..*

Drives
ref+

1
0..1

 

-- The derivation rules 
context BlackListedNoRentals::allInstances() : Set(BlackListed) body: sBlackListed.allInstaces().ref-
>union(uBlackListedBlackListedDate.allInstances().ref)->asSet() 
context RentalAgreementNoRentals 2::allInstances() : Set(RentalAgreement) body:  
iRentedAt.allInstances().refRentalAgreement->union(gRentalAgreement.allInstances().ref)->asSet() 
context DateTimeNoRentals 3::allInstances() : Set(DateTime) body: uDateTimeValue.allInstances().ref 
context DrivesNoRentals 4::allInstances() : Set(Drives) body: iDrives.allInstances().ref 

 
-- The redefined constraints 
context  BlackListed NoRentals inv NoRentals:  
self.rentalsAsDriver->forAll(rA2: RentalAgreement | (rA2.beginning.value <= self.blackListedDate) or 
rA2.oclIsTypeOf(CanceledReservation)) 
context  RentalAgreementNoRentals2 inv NoRentals2:  
self.driver->select(d| d.oclIsKindOf(BlackListed))-> forAll(d| self.beginning.value <= 
d.oclAsType(BlackListed).blackListedDate or self.oclIsTypeOf(CanceledReservation)) 
context  DateTimeNoRentals3 inv NoRentals3:  
self.rentalBeg->forAll(r| r.driver->select(d| d.oclIsKindOf(BlackListed))-> forAll(d| 
r.beginning.value<=d.oclAsType(BlackListed).blackListedDate or r.oclIsTypeOf(CanceledReservation))) 
context  DrivesNoRentals4 inv NoRentals4:  
(self.rentalsAsDriver.beginning.value <= self.driver->any(d| d.oclIsKindOf(BlackListed)). 
oclAsType(BlackListed).blackListedDate or (self.rentalsAsDriver.oclIsTypeOf(CanceledReservation))  

Figure A.12. Schema modification for NoRentals, NoRentals 2, NoRentals 3  and NoRentals 4 
integrity constraints. Note that the relationship type Drives has been reified since it is the context 

type of one of the alternative constraints. This implies that the InsertRT(Drives) event type is 
treated as an InsertET(Drives) event. 
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<< structural event >>
iDrives

/RentalAgreementValidLicense5

a

/DrivesValidLicense4

/DrivingLicenseValidLicense

/DateTimeValidLicense6

<< structural event >>
iDrivingLicense

<< structural event >>
iAgreedEnding

<< structural ev ent >>
uDateTimeValue

DateTime

<< structural event>>
iHasDrivLic

EU_RentPerson
RentalAgreement DrivingLicense

1
1

HasDrivLic

0..1

ref EU_RentPerson+

1 0..1

ref Driv ingLicense
+1

rentalAgr+*

agreedEnding+
1

AgreedEnding

0..1

ref+

1

ref RentalAgreement+1

0..1

0..1

ref+
1

*

ref DateTime
+

1

<< structural ev ent>>
uDrivingLicenseIssue

0..1

ref+1

<< structural ev ent>>
uDrivingLicenseExpirationDate

0..1

ref+ 1

/DrivingLicenseValidLicense2

/DrivingLicenseValidLicense3

rentalsAsDriv er+

1..* driver+

1..*

Drives
ref+

1
0..1

 

-- The derivation rules 
context DrivingLicenseValidLicense::allInstances() : Set(DrivingLicense) body: iDrivingLicense.allInstaces().ref 
context DrivingLicenseValidLicense2::allInstances() : Set(DrivingLicense)  body:  uDrivingLicenseIssue.allInstances().ref 
context DrivingLicenseValidLicense3::allInstances() : Set(DrivingLicense)  body:  
uDrivingLicenseExpirationDate.allInstances().ref->union(iHasDrivLic.allInstances().refDrivingLicense)->asSet() 
context DrivesValidLicense 4::allInstances() : Set(Drives) body: iDrives.allInstances().ref 
context RentalAgreementValidLicense 5::allInstances() : Set(RentalAgreement) body: 
iAgreedEnding.allInstances().refRentalAgreement 
context DateTimeValidLicense 6::allInstances() : Set(DateTime) body: uDateTimeValue.allInstances().ref 
 
-- The redefined constraints 
context   DrivingLicenseValidLicense inv ValidLicense: (DateTime::now()-self.issue)> 365 and 
self.eu_RentPerson.rentalsAsDriver.agreedEnding-> forAll(d|d.value<self.expirationDate) 
context   DrivingLicenseValidLicense2 inv ValidLicense2: (DateTime::now()-self.issue)> 365 
context   DrivingLicenseValidLicense3 inv ValidLicense3:  
self.eu_RentPerson.rentalsAsDriver.agreedEnding-> forAll(d|d.value<self.expirationDate) 
context   DrivesValidLicense4 inv ValidLicense4:  
self.rentalsAsDriver.agreedEnding.value<self.driver.drivingLicense.expirationDate 
context   RentalAgreementValidLicense5 inv ValidLicense5:  
self.driver.drivingLicense->forAll(d| self.agreedEnding.value<d.expirationDate) 
context   DateTimeValidLicense6 inv ValidLicense6:  
self.rentalAgr->forAll(r| r.driver.drivingLicense->forAll(d| r.agreedEnding.value<d.expirationDate)) 

 

Figure A.13. Schema modification for ValidLicense, ValidLicense2, ValidLicense3, ValidLicense4, 
ValidLicense5 and ValidLicense6 integrity constraints.  
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A.5 Efficiency of the processed CS 

Once we have completed the processing of the original CS we have obtained a new 
conceptual schema where all constraints have been redefined in order to get their 
incremental evaluation after arbitrary modifications of the IB.  

Defining the cost of checking a constraint as the number of entities that must be taken into 
account during its evaluation, Tables A.11-A.20 compare, for each one of the original 
constraints, the cost of a direct checking of the constraint with the cost obtained when 
checking the new version. Although not explicited in the tables, an additional efficiency 
gain of the processed schema is that when the modification of the IB does not include any 
of the PSEs for a constraint c, c is not verified (i.e. the cost is zero). This is not restricted in 
the original schema. 

In all tables, the column PSE shows the PSEs of the original constraint. Column Incr 
Constraint refers to the name of the specialized constraint generated for that PSE in the 
processed CS (note that even if the name of the new constraint coincides with that of the 
original one, in the processed schema the new constraint has been redefined to be 
evaluated over the relevant instances, and thus, their cost may be different). Column cost 
refers to the cost of evaluating the processed constraints after the issue of an event of the 
event type appearing in the first column. The cost of evaluating the original constraint is 
always the same regardless the PSE applied over the IB. 

In the cells, Px stands for the population of the type X (for instance, Pcountry represents the 
number of instances of Country). Nx-y stands for the (average) number of entities of X 
related with an entity of Y (for instance, Nrental-country represents the average number of 
country visited by a rental agreement). Y may be either the name of a role or the name of 
the destination type (when no ambiguity exists). We usually abbreviate the names of the 
types in the formulas by using the first two letters of the type name. 

Table A.11. Constraint CorrectInterval. CostCorrectInterval = PCl + PCl x 3 (i.e. we access the whole 
population of ClosedRental plus the related dates of each rental instance). Note that when updating 
a date, we need to add the cost of the three generated alternatives affected by this event. 

PSE Incr Constraint Cost 

InsertRT(RentedAt)  CorrectInterval 4 

SpecializeET(ClosedRental) CorrectInterval 4 

InsertRT(InitialEnding) CorrectInterval2 3 

InsertRT(ReturnedAt) CorrectInterval3 3 

UpdateAttribute(value, 
DateTime) 

 

CorrectInterval4, 
CorrectInterval5, 
CorrectInterval6  

(1+Nda-rentalBeg  +  Nda-rentalBeg x 3) + (1+Nda-

rentalIni +Nda-rentalIni x 2) + (1+Nda-Cl + Nda-Cl x 2) 
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Table A.12. Constraint VisitsBranchCountires. CostVisitsBranchCountries = PRe + PRe x (Nra-co + 4) (i.e. 
we access the whole population of RentalAgreement plus, for each rental instance, the visited 
countries, the related pickup and dropoff branches and the countries where the branches are located 
in).  

PSE Incr Constraint Cost 

DeleteRT(Visits) VisitsBranchCountries 1+ (Nra-co + 4) 

DeleteRT(IsLocatedIn) VisitsBranchCountries 
1+ (NBr-pi+ NBr-dr) + (NBr-pi+ NBr-dr) x (Nra-co 
+4) 

InsertET(RentalAgreement) VisitsBranchCountries 1+ (Nra-co + 4) 

DeleteRT(DropOffBranch) VisitsBranchCountries2 1+ (Nra-co +2) 

DeleteRT(PickUpBranch) VisitsBranchCountries3 1+ (Nra-co + 2) 

 

Table A.13. Constraint Is25OrOlder. CostIs25OrOlder = PEU. 

PSE Incr Constraint Cost 
InsertET(EU_RentPerson)  

UpdateAttribute(birthDate) 
Is25OrOlder 1 

 

Table A.14. Constraint IdIsKey. CostIdIsKey = PEUxPEU (we compare each person with all other 
existing people). 

PSE Incr Constraint Cost 
InsertET(EU_RentPerson)  

UpdateAttribute(id) 
IsIsKey 

PEUxPEU 

 

 

Table A.15. Constraint RentalsDoNotOverlap. CostRentalsDoNotOverlap = PCu +PCu x (Ncu-ra^2 + Ncu-

ra^2 x 3) (i.e. we access the whole population of Customer plus, for each rental combination, the 
related dates). 

PSE Incr Constraint Cost 
InsertRT(Rents)  

GeneralizeET(RentalAgreement) 

InsertRT(AgreedEnding) 

InsertRT(RentedAt) 

RentalsDoNotOverlap 4+ 2xNcu-ra  

UpdateAttribute(value,DateTime) 

 

RentalsDoNotOverlap2, 
RentalsDoNotOverlap3 

1+ Nda-rentalBeg+ Nda-rentalBeg x 
(3+2xNcu-ra) + Nda-rentalAgr+ Nda-rentalAgr 
x (3+2xNcu-ra) 
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Table A.16. Constraint MeetsLoyalPerformance. CostMeetsLoyalPerformance = PLo +  PLo x (Nlo-ra + Nlo-

rax1 + Nlo-fa) (i.e. we access the whole population of LoyaltyMember plus, for each loyal member, 
his/her rental agreements and their dates, and the related faults). 

PSE Incr Constraint Cost 
InsertET(LoyaltyMember) 

SpecializeET(LoyaltyMember) 
MeetsLoyalPerformance 1 + 2xNlo-ra + Nlo-fa 

DeleteRT(Rents) MeetsLoyalPerformance2 1 + 2x Nlo-ra  

DeleteRT(RentedAt) MeetsLoyalPerformance2 1+ Nra-cu + Nra-cu x (2xNlo-ra ) 

UpdateAttribute(value,DateTime) MeetsLoyalPerformance2 
1 + Nda-rentalBeg + Nda-rentalBeg x Nra-cu + 
Nda-rentalBeg x Nra-cu x (2xNlo-ra) 

InsertRT(HasFaults) MeetsLoyalPerformance3 1+ Nlo-fa 

 

Table A.17. Constraint OnlyOneAssignment. CostOnlyOneAssignment = PCa +  PCa x Nca-ra  (i.e. we 
access the whole population of Car plus, for each car, its rental agreements). 

PSE Incr Constraint Cost 
InsertRT(AssignedCar) 

GeneralizeET(RentalAgreeement) 
OnlyOneAssignment 1 +  Nca-ra 

 

Table A.18. Constraint QuotaForAllBranches. CostQuotaForAllBranches = PCa+  PCa x (Nca-carGroupQuota +  

PBr) (i.e. we access the whole population of CarGroup plus, for each car group, its quotes and all 
existing branches, as required by the allInstances operation). 

PSE Incr Constraint Cost 
InsertRT(CarGroupQuota) 

DeleteRT(CarGroupQuota) 

InsertET(CarGroup) 

QuotaForAllBranches 1+  Nca-carGroupQuota +  PBr 

InsertET(Branch) 

DeleteET(Branch) 

QuotaForAllBranches 
PCa+  PCa x (Nca-carGroupQuota +  PBr) 
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Table A.19. Constraint NoRentals. CostNoRentals = PBl +  PBl x (NBl-ra + NBl-rax1) (i.e. we access the 
whole population of BlackListed plus, for each black listed person, his/her rental agreements and 
their dates). 

PSE Incr Constraint Cost 

SpecializeET(BlackListed) 

UpdateAttribute(BlackListedDate) 
NoRentals 1 +  2xNBl-ra  

InsertRT(RentedAt) 

GeneralizeET(RentalAgreement) 

NoRentals2 

 
2 + Nra-Neu  

UpdateAttribute(value,DateTime) NoRentals3 1 + 2xNda-ra+  Nda-ra x Nra-Neu  

InsertRT(Drives) NoRentals4 4 

 

Table A.20. Constraint ValidLicense. CostValidLicense = PDr +  PDr x (1 + Neu—ra + Neu—rax1) (i.e. we 
access the whole population of DrivingLicense plus, for each license, the corresponding 
eu_rentPerson as well as his/her rental agreements and their dates). 

PSE Incr Constraint Cost 

InsertET(DrivingLicense) ValidLicense 2 + 2xNeu-ra 

UpdateAttribute(issue) ValidLicense 2 1 

UpdateAttribute(expirationDate) 

InsertRT(HasDrivLic) 
ValidLicense 3 2 + 2x Neu--ra  

InsertRT(Drives) ValidLicense4 5 

InsertRT(AgreedEnding) ValidLicense5 2 + 2xNra-eu  

UpdateAttribute(value,DateTime) ValidLicense6 1 + 2xNda-rentalAgr + 2xNda-rentalAgr x Nra-eu  
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