
UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTAMENT DE LLENGUATGES I SISTEMES INFORMÀTICS

JORDI CABOT SAGRERA

INCREMENTAL INTEGRITY CHECKING

 IN UML/OCL CONCEPTUAL SCHEMAS

PhD. DISSERTATION

ADVISOR: Dr. ERNEST TENIENTE LÓPEZ

BARCELONA

2006

A dissertation presented by Jordi Cabot Sagrera in partial fulfillment of the

requirements for the degree of Doctor per la Universitat Politècnica de Catalunya

A la Marta

A l’Enric, la Núria i la Neus

Acknowledgements

First and foremost, I would like to thank Ernest Teniente. With him I have learnt how to
research and, most important, how to enjoy researching. Thanks Ernest for your scientific
rigor, guidance, patience, complicity and friendship during our long discussions. You
always let me find the right answer at my own pace, even when this took me some time.

I would also like to thank the examiners of the thesis board: Dr. Antoni Olivé, Dr. Piero
Fraternali, Dr. Martin Gogolla, Dr. Óscar Pastor and Dra. Maria Ribera Sancho; for
accepting to be members of this board and for the fruitful discussions on the thesis topics.

I am also indebted to many people who in some way have helped me to get here. Special
thanks are due to Antoni Olivé. No matter his duties, he was always there whenever I
needed him. I have benefited many times from his experience and advice. Thanks also to
all my colleagues in the Grup de Modelització Conceptual (Anna, Cristina, Dolors, Jordi,
Maria, Ruth and Xavier), in the Secció de Sistemes d’Informació and in the Estudis
d’Informàtica, Multimèdia i Telecomunicacions for trusting me and giving me their best
support during this thesis. I know that this has not always been an easy task. I also want to
express my gratitude to Santi Ortego. He was my first mentor (I will never forget that) and,
above all, he is a friend.

I am also very grateful to Piero Fraternali, who let me join the web engineering group at
Politecnico di Milano for a five-month period. With him I learnt to take a different
perspective on my own work. I had insightful discussions and exchanged ideas with many
of the group members, especially with Marco Brambilla, Sara Comai, Giovanni Toffetti
and Alessandro Bozzon.

Thanks also to Carol Cervelló and Raúl Solana. With your help, implementing the method
presented in this thesis has been really hard. Without it, it would have been impossible.

Finally, I thank my family (Marta, Enric, Núria and Neus), who has always believed in me.
Marta, your continuous support during all these years has been more important than you
think. I have taken your strength, courage and determination whenever mine were missing.

This work has been partially supported by the Ministerio de Ciencia y Tecnología under
project TIN2005-06053.

Abstract

Integrity constraints play a fundamental role in the definition of conceptual schemas (CSs)
of information systems. An integrity constraint defines a condition that must be satisfied in
each state of the information base (IB). Hence, the information system must guarantee that
the state of the IB is always consistent with respect to the integrity constraints of the CS.
This process is known as integrity checking. Unfortunately, current methods and tools do
not provide adequate integrity checking mechanisms since most of them only admit some
predefined types of constraints. Moreover, the few ones supporting a full expressivity in
the constraint definition language present a lack of efficiency regarding the verification of
the IB.

In this thesis, we propose a new method to deal with the incremental evaluation of the
integrity constraints defined in a CS. We consider CSs specified in the UML with
constraints defined as OCL invariants. We say that our method is incremental since it
adapts some of the ideas of the well-known methods developed for incremental integrity
checking in deductive and relational databases. The main goal of these incremental
methods is to consider as few entities of the IB as possible during the evaluation of an
integrity constraint. This is achieved in general by reasoning from the structural events that
modify the contents of the IB. Our method is fully automatic and ensures an incremental
evaluation of the integrity constraints regardless their concrete syntactic definition.

The main feature of our method is that it works at the conceptual level. That is, the result
of our method is a standard CS. Thus, the method is not technology-dependent and, in
contrast with previous approaches, our results can be used regardless the final technology
platform selected to implement the CS. In fact, any code-generation method or tool able to
generate code from a CS could be enhanced with our method to automatically generate
incremental constraints, with only minor adaptations. Moreover, the efficiency of the
generated constraints is comparable to the efficiency obtained by existing methods for
relational and deductive databases.

Contents

CHAPTER 1. INTRODUCTION... 1

1.1 PROBLEM DESCRIPTION.. 3
1.2 STATE OF THE ART.. 9
1.3 OBJECTIVES AND CONTRIBUTIONS OF THIS THESIS ... 12
1.4 THESIS STRUCTURE ... 13

CHAPTER 2. METHOD OVERVIEW... 15

CHAPTER 3.SIMPLIFYING THE ORIGINAL OCL EXPRESSIONS..................... 21

3.1 BASIC RULES ... 22
3.2 REMOVING THE ALLINSTANCES OPERATION .. 24
3.3 TRANSFORMING AN OCL EXPRESSION INTO CONJUNCTIVE NORMAL FORM.......... 25
3.4 RULE APPLICATION .. 26

CHAPTER 4. DETERMINING THE POTENTIALLY-VIOLATING
STRUCTURAL EVENTS.. 29

4.1 LIST OF EVENT TYPES... 30
4.2 THE OCL METAMODEL ... 33
4.3 MARKING THE CONSTRAINT TREE .. 38
4.4 DRAWING THE POTENTIALLY-VIOLATING STRUCTURAL EVENTS 44
4.5 SUMMARY.. 50

CHAPTER 5. OBTAINING AN APPROPRIATE REPRESENTATION FOR A
CONSTRAINT REGARDING A STRUCTURAL EVENT................................ 53

5.1 DECIDING THE BEST CONTEXT TYPE FOR A CONSTRAINT WITH RESPECT TO A

SPECIFIC STRUCTURAL EVENT .. 54
5.2 REDEFINING A CONSTRAINT IN TERMS OF A NEW CONTEXT TYPE 62
5.3 SUMMARY.. 69

CHAPTER 6. EVALUATING THE CONSTRAINTS OVER THE RELEVANT
INSTANCES... 71

6.1 DEFINITION OF STRUCTURAL EVENT TYPES .. 72
6.2 SCHEMA MODIFICATION... 76
6.3 APPLICATION TO THE RUNNING EXAMPLE .. 84
6.4 SUMMARY AND DISCUSSION OF THE RESULTS .. 86

CHAPTER 7. TOOL IMPLEMENTATION.. 91

7.1 UNDERLYING TECHNOLOGIES .. 91

7.2 TOOL ARCHITECTURE ...94

CHAPTER 8. IMPLEMENTING THE PROCESSED CS IN A RELATIONAL
DATABASE ...99

8.1 TRANSFORMATION OF ENTITY AND RELATIONSHIP TYPES100
8.2 TRANSFORMATION OF STRUCTURAL EVENT TYPES..100
8.3 AUTOMATIC UPDATING OF EVENT TABLES ..101
8.4 GENERATION OF DERIVED SUBTYPES ..104
8.5 TRANSFORMATION OF THE RUNNING EXAMPLE...104

CHAPTER 9. RELATED WORK..113

9.1 APPROACHES IN THE DATABASE FIELD..113
9.2 COMPARISON WITH CURRENT CASE, MDA AND MDD TOOLS121

CHAPTER 10. CONCLUSIONS AND FURTHER RESEARCH...............................131

10.1 CONCLUSIONS...131
10.2 FURTHER RESEARCH ..132

REFERENCES...137

APPENDIX. CASE STUDY..143

-1-

1. Introduction

Since the very beginning of computer science, one of the main goals of software engineers
has been to automate as much of the software development process as possible. In fact, the
software engineering community envisages a future in which, of all the phases of software
development, software engineers will only be strictly necessary during the specification of
the information system while the remaining phases (mainly design, implementation and
test) would be fully automated. The cost of software development could therefore be cut
because these later phases easily involve well over half the total cost of a development or
maintenance project.

The goal of automating information systems building was first stated in the late sixties [84]
[85]. Additional proposals in this direction appeared in the 1970s [62] and the 1980s [94].
However, object-oriented methods truly bloomed in the late 1990s (see [92] for a detailed
comparison and [79] for a particularly interesting example) when interest in the topic was
revived. Recently, a number of new alternatives ([56], [74], [24], among many others) and
standards [69] have emerged. Furthermore, code-generation capabilities of today’s CASE
tools (i.e. the ability of the tools to automate part of the design and implementation stages)
are a key issue in their development and marketing strategy.

Obviously, we are closer to our goal now than we were forty years ago but several
problems still remain to be addressed. In fact, this goal was recently classified as a grand
challenge for information systems research [65]. [65] emphasized the central role of the
conceptual schemas in the automatic development of information systems and presented a
list of open problems that must be solved before this approach can be widely used in the
development of industrial information systems. In conceptual modeling, a conceptual
schema (CS) is the formal specification of functional requirements. CSs basically consist
of a set of taxonomies of entity types and relationship types, also commonly referred to as
classes and associations in object-oriented terminology. We refer to the representation of
the state of the CS (the set of existing entities and relationships, also called objects and
links in object-oriented terminology) in the information system as the information base
(IB).

The list of open problems presented in [65] included the enforcement of integrity
constraints. An integrity constraint states a condition that must be satisfied in each state of
the IB. A complete CS must include the definition of all relevant integrity constraints [45].

-2-

Thus, most CSs contain a large number of constraints. The information system must
enforce these constraints efficiently. This process is known as integrity checking.

In our context, this implies that a fully automatic method is required to generate, from all
kinds of constraints present in the CS, the elements of the information system (for instance
code fragments and/or data structures) resulting in such an efficient integrity checking.
Currently, this method does not yet exist. As discussed in detail in Chapter 9, current
proposals either only support a subset of all possible integrity constraints or (more
commonly) the specified constraints are not taken into account during automatic code
generation. Only a few proposals try to provide an efficient and automatic implementation
of the constraints present in the CS ([90], [91], [74], [31]) but they achieve only partial
results.

The main contribution of this thesis is to provide an automatic method for the incremental
evaluation of integrity constraints in CSs, in particular, for CSs specified in UML (Unified
Modeling Language [68]) with constraints specified in OCL (Object Constraint Language
[67]). Since our method works with UML/OCL schemas, it is not tied to any particular
technology. Moreover, this technology independence makes it possible to reuse its results
when generating the system implementation in any technology platform.

We define our method for an automatic constraint generation from the CSs as an
incremental method, since it adapts some ideas from incremental methods developed for
deductive [41] and relational [23] databases to cope with the incremental checking of
integrity constraints at the conceptual level. Given the basic assumption that the IB is in a
consistent state prior to its modification, incremental methods exploit available information
about the structural events applied during modifications of the IB to avoid a complete
recomputation of the constraints (i.e. to avoid checking every time all entities restricted by
the constraint). The modification of the IB may correspond to the execution of an
information system operation or to the concept of transaction as in the database field.

A structural event can be defined as an elementary change in the population of an entity or
relationship. The effect of each event depends on the type of the event. Each modeling
language defines the possible event types. Examples of event types include: insert an entity
in an entity type, delete an entity from an entity type, update an attribute, insert a
relationship in a relationship type, etc.

Given this framework, the rest of the chapter is devoted to illustrate the problems that arise
when dealing with an efficient checking of OCL constraints (Section 1.1), to provide an
overall picture of the state of the art in integrity checking (Section 1.2), to present the goals
and contributions of this thesis (Section 1.3) and to outline the organization of the chapters
of this thesis (Section 1.4).

-3-

1.1 Problem description

Given a CS with a set of integrity constraints, the goal of our method is to ensure an
incremental integrity checking of all constraints after the application of any arbitrary set of
structural events over the IB. Moreover, we want the results of our method to be useful
regardless the target platform used to implement the schema. Therefore, we need to
provide such incremental checking at the conceptual schema level, i.e. in terms of a set of
OCL expressions (constraints, derivation rules…) defined over the (processed) CS.

This section uses a running example to illustrate the main inefficiency problems resulting
from a direct checking of the OCL constraints as defined by the OCL standard [67]. These
problems are the ones our method overcomes when processing the original CS in order to
provide an incremental checking of all integrity constraints.

1.1.1 Running example

As a running example throughout the thesis we will use the CS shown in Figure 1.1, meant
to (partially) model a simple e-commerce application.

The CS contains information about the sales (Sale entity type) and the products (Product
entity type) they contain. The reified relationship type SaleLine registers the number of
products of the same type included in a given sale. Some of the products are classified as
RestrictedProducts since they may not be available to every kind of customers (for
instance, chemical products, pills…).

Sales can be split up into several shipments (Shipment entity type) and shipments can be
reused to ship several sales. Finally, sales may be associated with registered customers
(Customer entity type) who benefit from discounts depending on the category (Category
entity type) they belong to.

Additionally, we define the following integrity constraints in the CS:

- ValidShipDate: All sales must be fully delivered within 30 days of the payment
date.

- CorrectProduct: All products must have a price greater than zero and a
maxDiscount of a 60% (which it is the maximum discount allowed in the
company).

- NotTooPendingSales: The number of pending sales for a customer may not exceed
the maximum pending amount permitted in his/her category.

- AtLeastThreeCustomers: At least three customers must be associated with each
category.

-4-

- NumberOfRestrictedProducts: No more than 20 different types of restricted
products may be on sale.

Some constraints can be expressed graphically in the CS, such as the constraint
AtLeastThreeCustomers, which is expressed as a multiplicity constraint in the customer
role of the BelongsTo relationship type. The others must be represented textually. In the
next section we will express them as invariants written in OCL.

Category

Sale
Purchases 1..*

name : String
maxPendingAmount:Money
discount: Percentage

id : Natural
date: Date
amount: Money
paymentDate: Date

SaleLine

quantity: Natural

0..1
Customer

Id: Natural
name : String
nationality: String
creditCard: String

BelongsTo
3..*
1

Product
id : Natural
name: String
price: Money
maxDiscount:Percentage
description: String

1..**

Shipment
id: Natural
plannedShipDate: Date
address: Address

1..*

1..*
DeliveredIn

RestrictedProduct
maxUnits: Natural

{incomplete}

Figure 1.1. The CS of the e-commerce example

1.1.2 Integrity constraints in the OCL

Our method assumes that textual constraints are defined as invariants written in OCL. The
use of a general-purpose (textual) sublanguage like OCL is required to be able to express
all kinds of constraints since most constraints cannot be expressed using only the graphical
constructs provided by the conceptual modeling language [33], UML in our case. At the
time this thesis was written, the most recently adopted specification of the OCL standard
was [67].

In OCL, invariants are defined in the context of a specific type (either an entity or
relationship type), called the context type of the constraint. The actual OCL expression
stating the constraint condition is called the body of the constraint. The body of a constraint
is always a boolean expression (i.e. it evaluates to a boolean value) and must be satisfied
by all instances of the context type. This implies that the evaluation of the body expression
over every instance of the context type must return a true value.

Figure 1.2 shows the previous integrity constraints defined for the running example
expressed in OCL. For instance, in ValidShipDate, Sale is the context type, the variable
self refers to an entity of Sale, and the date comparison (the body) must hold for all
possible values of self (i.e. all entities of Sale). Other constraints, such as
NumberOfRestrictedProducts, require that the operator allInstances be used in their
definition. AllInstances is a predefined feature on classes that returns the set of all
instances of the type that exist at the specific time when the expression is evaluated.

-5-

 context Sale inv ValidShipDate:
self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)

context Product inv CorrectProduct:
self.price>0 and self.maxDiscount<=60

context Category inv NotTooPendingSales:
self.customer->forAll(c| c.sale->select(s| s.paymentDate>Time.now())->collect(sa|sa.amount)
->sum()<=self.maxPendingAmount)

context Category inv AtLeastThreeCustomers:
 self.customer->size()>=3
context RestrictedProduct inv NumberOfRestrictedProducts:
 RestrictedProduct.allInstances()->size()<=20

Figure 1.2. OCL constraints for the e-commerce example

Graphical constraints supported by the UML, like cardinality or disjointness constraints,
can be transformed into a textual OCL representation, as shown in [39], and thus, they can
also be handled by our method. As an example, Figure 1.2 includes the OCL representation
of AtLeastThreeCustomers.

Since constraints must be satisfied in each state of the IB, a direct (naïve) checking of the
constraints would involve: 1- checking all constraints after each modification of the IB
(due to the application of a set of structural events over the IB), and 2 – for each constraint,
evaluating the constraint body over all instances of the context type.

It is not difficult to see that this naïve strategy involves many irrelevant verifications.
Therefore, an application generated using this default checking behavior would have a low
run-time performance.

In particular, we have identified the following improvements to the default checking
behavior of OCL integrity constraints:

1. Avoiding integrity checking of constraints that are irrelevant to the set of structural
events applied over the IB. We define that an integrity constraint is irrelevant to a
set of structural events if none of the changes brought about by the events may lead
to the violation of the constraint.

2. Checking the constraints only over their relevant entities (those affected by the
changes applied over the IB).

3. Generating a (possibly different) alternative representation of a constraint for each
kind of event that may violate constraint. This new alternative will be specially
suited to check the constraint after applying over the IB events of that kind. This is
necessary since the high expressiveness of the OCL language permits to express the
same constraint in a variety of forms, not all of them equally appropriate.

-6-

Next sections present these strategies rather informally. The subsequent chapters of this
thesis contain a more formal description.

1.1.3 Determining the events that can violate an integrity constraint

It is not necessary to check all integrity constraints after each modification of the IB. For
instance, the CorrectProduct constraint cannot be violated by events that insert a new sale,
change the name of a customer, delete an existing product from the IB, etc. On the
contrary, events updating the price or maxDiscount attributes of a product or inserting a
new product can actually violate CorrectProduct. Therefore, CorrectProduct must only be
verified after modifications of the IB that include events of one of these three types.
Otherwise, we need not check it.

We call the structural event types that may violate a constraint the potentially-violating
structural events (PSEs) for that constraint. At definition time, the PSEs for each constraint
must be determined and compared at run-time with the particular events applied during the
modification of the IB. When none of the applied events is an instance of a structural event
type included in the set of PSEs for a constraint, that constraint can be discarded during the
integrity checking process.

A naïve approach in determining the PSEs for an OCL constraint would conclude that any
insertion, modification or deletion over an entity or relationship type referenced within the
constraint body may violate the constraint since, obviously, any change
(insert/update/delete) of a model element not appearing in the expression cannot cause its
violation.

Although this strategy is better than a direct checking of the constraint, it is not yet precise
enough since it would consider as PSEs events that will never violate the constraint. In
other words, the set of structural event types provided by this naïve solution is a superset of
the structural event types that may actually violate the constraint. For instance, using this
approach we would determine that eight types of structural events may violate the
constraint ValidShipDate: insert / delete / update of the entity type Sale, insert / delete of
the relationship type DeliveredIn and insert / delete / update of the entity type Shipment.
Nevertheless, only the modifications of sales (in particular, the update of the paymentDate
attribute) and shipments (update of the plannedShipDate attribute) and the insertion of a
new DeliveredIn relationship may actually violate the constraint. The other five events can
never violate ValidShipDate. For instance, the insertion of a new Sale alone cannot
possibly violate the constraint. Only when the sale is assigned to a shipment (insertion of a
new DeliveredIn relationship) a violation may occur.

In order to precisely determine the PSEs of a constraint, we must consider both the set of
elements referenced in the constraint and the context in which these elements are
referenced (understood as the elements and OCL operations surrounding them). For
instance, the PSEs that may violate AtLeastThreeCustomers constraint differ when, instead

-7-

of enforcing that all categories must have at least three customers, we want to enforce that
all categories have less than three customers, even though in both cases we refer the same
model elements (Category, Customer and the relationship type BelongsTo between them)

1.1.4 Evaluating an integrity constraint over the relevant instances

When checking an integrity constraint, it is extremely inefficient to evaluate the body of
the constraint over all instances of the context type. Assuming, as usual, that the IB was in
a consistent state prior to its modification, only the set of instances affected by the issued
structural events can violate the constraint.

For instance, consider the following scenario. The initial state of a given IB is shown in the
partial schema of Figure 1.3, in which we represent the OIDs (object identifiers) of an
imaginary population for each entity type (i.e. s1,s2,… are instances of Sale). The
population of the relationship type DeliveredIn is represented by the OIDs of the
participant entity types (for example, the relationship <s1,sh1> indicates that the sale s1 is
delivered in the shipment sh1).

 Sale

id : Natural
date: Date
amount: Money
paymentDate: Date

1..*1..*

Shipment
id: Natural
plannedShipDate: Date
address: Address

DeliveredIn

s1
s2
s3
s4
s5

. . .

sh1
sh2
sh3
sh4
sh5
. . .

<s1, sh1>
<s2, sh2>
<s2, sh3>
<s2, sh4>
<s3, sh4>

. . .

Figure 1.3. Initial state of the IB

Assume that over this initial state we apply the following structural events: 1 - update of
the paymentDate of s1, 2 - update of the plannedShipDate of sh2 and 3 - insertion of a new
relationship between s3 and sh5. After applying these events, ValidShipDate is one of the
constraints that must be checked (all the issued events are PSEs for this constraint).
However, given this set of events the only entities of Sale that must be checked (in order to
ensure that ValidShipDate still holds) are s1 (because of the attribute update), s2 (due to its
relationship with the modified shipment sh2) and s3 (due to its participation in the new
relationship with sh5). The constraint condition need not be evaluated over any other sale
since none have changed during the modification of the IB.

Note that the computation of the relevant instances for a constraint must consider not only
the entities of the context type directly modified by the structural events but also the
entities related, directly or indirectly, to certain modified entities of other types.

-8-

1.1.5 Generating the best definition of a constraint with respect to a structural event

Due to the high expressiveness of the OCL, designers have different syntactic possibilities
for defining each integrity constraint. For example, the constraint ValidShipDate could also
be expressed using Shipment as a context type:

context Shipment inv ValidShipDate’:
self.sale->forAll(s| self.plannedshipDate <= s.paymentDate+30)

Both representations (the initial ValidShipDate and ValidShipDate’) are correct and
semantically equivalent. Of all the possible alternatives, the designer chooses one at
definition time to represent the constraint (we do not assume that the designer uses any
particular criterion). However, the selected representation may not be the most appropriate
to check the constraint after the application of events instance of some (or all) of the
structural event types that are PSEs for the constraint.

As an example, consider again the scenario introduced in the previous section where we
drew that to check ValidShipDate only sales s1, s2 and s3 had to be considered. Using the
original definition of ValidShipDate (see Figure 1.2), the evaluation of the constraint body
over those sales implies evaluating the following OCL expressions (where we instantiate
the self variable with the three relevant sales):

exp ≡ s1.shipment->forAll(sh| sh.plannedShipDate<=s1.paymentDate+30)

exp2 ≡ s2.shipment->forAll(sh| sh.plannedShipDate<=s2.paymentDate+30)

exp3 ≡ s3.shipment->forAll(sh| sh.plannedShipDate<=s3.paymentDate+30)

If all three expressions return a true value, we may conclude that the IB is still consistent
regarding ValidShipDate.

Nevertheless, the integrity checking of ValidShipDate using these three expressions cannot
be considered incremental yet. Some of the verifications involved in the expressions are
still irrelevant since we compare the payment date of each sale with all the planned dates of
the related shipments. In fact, this is only required for s1 where we must ensure that the
new payment date is coherent with all related shipments. However, for s2 we just need to
compare its date with the new planned date of shipment sh2, it is not necessary to compare
the payment date of s2 with the planned date of sh3 or sh4 since they have not been
changed. Similarly, the payment date of s3 only needs to be compared with the new
assigned shipment sh5.

These irrelevant checks are performed because ValidShipDate (as represented in Figure
1.2) it is not an appropriate syntactic representation for a direct verification of the state of
the IB after the event types updates of the Shipment entity type or inserts in the DeliveredIn
relationship type. Instead, after Shipment updates, we should use the alternative
ValidShipDate’ proposed above. Similarly, after insertions in DeliveredIn we should use a

-9-

third alternative, using DeliveredIn as the context type. By using the appropriate alternative
after each applied event, we obtain an incremental checking of the original constraint. For
some constraints, several appropriate definitions may exist with respect to some (or all) of
their PSEs.

1.2 State of the art

The problem of efficient integrity checking has been widely addressed in the fields of
deductive and relational databases as part of the solution to integrity checking or
materialized view maintenance problems. These methods are predecessors to our method,
which reuses some of their ideas. However, the differences between the expressivity of
these methods and that of the UML/OCL make it impossible to directly apply them to the
integrity checking problem in UML/OCL CSs.

Moreover, we have recently witnessed a growing number of methods that follow the MDD
(Model-driven development [78]) and MDA (Model-driven architecture [69]) approaches.
Both approaches give the CS a central role in the development process and promote the
automatic generation of the system implementation based on its CS, either directly or by
first transforming the CS into a new model adapted to the specific features and
characteristics of the target platform. In the latter case, the initial CS is referred to as the
PIM (platform-independent model) while the specific model is called the PSM (platform-
specific model). Unfortunately, support for the generation of integrity constraints in
existing MDD and MDA methods and tools is quite unsatisfactory [19]. In fact, these
methods are unable to generate an implementation of the constraints that efficiently
ensures a valid IB state and/or lack expressivity in the supported constraint definition
language.

Therefore, no method can yet provide an incremental checking of the constraints (as
methods for relational and deductive databases do) based on the constraints defined in the
CS and specified using a highly expressive language like OCL.

In the following sections we introduce the most representative proposals from each field.
We distinguish between methods for relational and deductive databases although the
distinction is somewhat artificial since a relational database can be regarded as a type of
deductive database.

Chapter 9 describes these methods in more detail and compares their results with those of
our method.

1.2.1 Approaches for relational databases

[21] is, probably, the most prominent proposal in the field of relational databases. In this
method, constraints are defined as predicates over the database state using the SQL

-10-

language. Predicates are defined such that if a predicate is true in a particular state then the
constraint is violated. These kinds of predicates are known as inconsistency predicates.

For each constraint, this method creates a production rule (i.e. a trigger) to detect the
constraint violation. The production rule is fired whenever a structural event that may
violate the constraint is applied over the database. The firing of the rule starts the
evaluation of the corresponding predicate. If the predicate is satisfied (meaning that the
constraint has been violated by the event) the user may define which action the system
should take. As an example, Figure 1.4 shows the production rule for the constraint
CorrectProduct. When one of the PSEs for CorrectProduct is applied, the corresponding
production rule checks that no exist a product with a wrong value in the price and/or
maxDiscount attributes.

The constraint definition language is expressive enough (it admits negation, aggregate
operators, bag semantics, etc) but this approach lacks of precision, since, when determining
the events that can induce a constraint violation, the result is a superset of the set of events
that can actually violate the constraint.

Furthermore, its production rules are unable to check all constraints incrementally.
Depending on the constraint complexity, the rules may need to examine the whole table
instead of just the modified tuples.

In a later work [23], the method was improved to incrementally check all constraints but,
as a trade-off, the constraint definition language is restricted with respect to [21] (for
instance, no aggregate operators can be used).

 CREATE RULE CorrectProduct
WHEN inserted into product,
 updated product.price, updated product.maxDiscount
IF exists Product:(select *
 From product: (inserted product

 union new updated product.price
 union new updated product.maxDiscount)
 Where price<=0 or maxDiscount>60)

THEN <ACTION>

Figure 1.4. Production rule for CorrectProduct

1.2.2 Approaches for deductive databases

The deductive database field boasts a long tradition of methods devoted to the problem of
integrity constraint checking ([42], [22], [88], [82] among others). Constraints are defined
in first-order logic. Only few methods also provide constructs to specify more complex
constraints (as aggregate operators or bag semantics). Support for all these constructs is
required in our context since these constructs frequently appear in the definition of OCL
constraints. See [41] for a survey of these deductive methods and a general discussion of
their limitations.

-11-

Some of these approaches do not focus on the problem of integrity checking itself but
rather on the related problem of materialized view maintenance. A materialized view is a
view whose tuples are stored in the database instead of being recomputed every time the
view is queried. Then, the materialized view problem deals with incrementally updating
the view data in response to changes in the underlying tables in the view definition.

Integrity constraints may be expressed as inconsistency predicates in deductive databases.
With this representation, constraints are expressed as views that must be empty (a non-
empty view indicates that the corresponding integrity constraint has been violated). The
query of the view corresponds to the constraint body in denial form (i.e. the view selects
the tuples that do not satisfy the constraint body). Therefore, the integrity checking
problem can be regarded as a subset of the view maintenance problem.

These approaches share a similar core mechanism. They all represent integrity constraints
as inconsistency predicates. They then propose a set of rules to control the insertions over
the predicate representing the constraint. Each rule identifies a situation that could possibly
induce a constraint violation. Whenever one of the rules is found to be true, the constraint
is considered violated. Chapter 9 discusses how the methods differ in terms of the
precision and efficiency of the rules they propose.

As a simple example, the inconsistency predicate representing the CorrectProduct
constraint is:

IcCorrectProduct ← Product(id, name, price, maxDiscount, description) ∧ (price<=0 ∨
 maxDiscount>60)

where IcCorrectProduct contains those products with a price value lesser than one or a
maxDiscount value greater than 60.

Given this predicate, the rules generated by the previous methods would be:

IcCorrectProduct ← iProduct(id, name, price, maxDiscount, description) ∧ (price<=0 ∨
 maxDiscount>60)

IcCorrectProduct ← uProduct(id, name, price, maxDiscount, description) ∧ (price<=0 ∨
 maxDiscount>60)

where the predicate iProduct registers products inserted during the transaction and
uProduct products that have been modified (perhaps resulting in new values for the price
or maxDiscount attributes that violate the constraint).

In fact, updates over attributes are only considered explicitly by [88]. The other approaches
model updates as deletions followed by insertions, resulting in a loss of precision (and
efficiency) when processing integrity constraints. We find a similar problem when dealing

-12-

with events to add (remove) types to an existing entity, neither supported by these
methods.

1.2.3 Code-generation methods and tools

Of all the current tools and methods that use MDA and MDD approaches (see, for
example, [56],[24], [74], [31], [12], [48]) and are devoted to the automatic code generation
of an application from its CS, few consider the definition and/or generation of integrity
constraints [19].

The differences between them lie in how they decide when a constraint needs to be
checked and how many entities they take into account each time the constraint is checked.
Some of them verify all constraint after each structural event. A few ones consider the type
of the applied events when deciding whether to check a constraint. In particular, they
determine that an event may induce the violation of a constraint if the event modifies one
of the elements referenced in the constraint body, but without considering whether the kind
of change can really induce its violation (i.e. some of the events they take into account are
irrelevant to the constraint). After one of the relevant events is applied, most methods lack
of precision when computing the set of entities of the context type that need to be
evaluated (some methods compute a superset of the really affected instances while others
compute a subset of them).

Moreover, all methods depart from the integrity constraints exactly as defined by the
designer. Thus, their efficiency depends on the concrete syntactic representation of the
constraint.

1.3 Objectives and contributions of this thesis

As discussed above, current code-generation methods fall short when dealing with the code
generation of integrity constraints defined in a CS. This thesis proposes a new method to
cope with the incremental integrity checking of OCL constraints specified in UML CSs.
By dealing with this problem at a conceptual (i.e. platform-independent) level, our method
is not bound to any technological assumption. Its results can be reused regardless of the
final technology platform in which the CS is going to be implemented.

Given an initial CS, the result of our method is a standard conceptual schema CS’ that,
when executed or directly implemented in a particular technology platform, is able to
check all constraints incrementally. Then, given a code-generation method M able to
implement the conceptual schema CS in a technology platform P, when M uses the
conceptual schema CS’ instead of CS, the automatic generation of CS’ in P results in an
implementation of the schema that checks all constraints incrementally. Note that M does
not need to be modified to benefit from CS’. The results of our work can be helpful in any
platform P2 provided that a code-generation method M2 exists for P2.

-13-

Additionally, our method meets the following subgoals:

1. It takes into account the different kinds of constraints that appear in the CS. Depending
on their complexity, we can distinguish three levels of integrity constraints (adapted
from [87]):

1. Intra-entity constraints: Constraints that restrict the values of the attributes of a
single entity.

2. Inter-entity constraints: Constraints that restrict the relationships between an entity
and other entities that are instances of different entity types

3. Type constraints: Constraints restricting the relationship between a set of entities
that are instances of the same entity type (for instance, a constraint stating that all
entities of a given type must have a different value in a given attribute)

For each kind of constraint, including constraints that combine more than one level, our
method produces an efficient result (different techniques are required to handle the
different kinds of constraints).

2. The efficiency of the incremental integrity checking obtained with our method is
comparable to that of incremental methods for deductive and relational databases.

3. The method is feasible, in the sense that it can be integrated with other code-generation
strategies to generate an implementation of the resulting CS’ in the most popular
technology platforms.

An implementation of this method is available at [16].

1.4 Thesis structure

This thesis is structured as follows. The next chapter presents an overview of our method.
The various steps of the method are presented in Chapters 3 through 6. Chapter 7 then
presents the architecture of a tool that implements the method. Chapter 8 presents the
transformation of the resulting CS into a relational database to show the feasibility of our
method. Chapter 9 discusses related work, including a comparison of the results of our
method with those of incremental methods for databases and current code-generation tools.
Finally, Chapter 10 presents some conclusions and related work.

Some of the results of this thesis have been already published in [14], [15], [17], [18] and
[19].

-14-

-15-

2. Method Overview

This chapter provides an overall picture of our proposal for dealing with incremental
integrity checking in conceptual schemas. Given an initial conceptual schema CS, the
result of our method is another conceptual schema CS’ that, when executed or directly
implemented in a particular technology platform, is able to check all constraints
incrementally.

All CASE tools can benefit from our method if, once the designer has defined the
conceptual schema CS, the tool uses our method to obtain CS’ and then departs from CS’
to generate the application code and data structures (Figure 2.1).

Figure 2.1. Application scenario for our method

CS’ is obtained by means of a sequence of transformation steps over the constraints
appearing in CS. Some of these transformations also involve the addition of some new
entity and relationship types to CS. The number of new entity and relationship types is
linearly proportional to the number of constraints. All existing entity and relationship types
of CS remain unchanged.

More precisely, the rationale of our method is to replace each integrity constraint ic
defined in the CS with a set of equivalent integrity constraints setic’, in which each ic’∈
setic’ leads to an incremental evaluation with regards to some of the structural events that
may violate the original constraint. Our method assumes that the IB is updated at run-time
with the modifications produced by the applied structural events. Therefore, when
verifying the constraints, the state of the IB already reflects the changes induced by the
events.

Our method can be formalized according to the steps depicted in Figure 2.2. It consists of
three main steps (steps 1-3) plus a preliminary step (step 0). Each step tackles one of the
efficiency problems described in the previous chapter.

Each step is briefly outlined below. The following chapters address each step in detail. As
an example, we show how the CS in Figure 1.1 and the constraint ValidShipDate are
processed in each step to obtain an incremental verification for ValidShipDate at the end of
step 3.

-16-

Figure 2.2. General schema of our method

Step 0: Simplification of the original constraints

To facilitate the definition of the different steps, our method assumes that the body of each
integrity constraint is expressed in a simplified form. In this preliminary step (step 0), this
simplified representation is automatically obtained from the original body expression. This
simplification process does not entail a loss of expressive power in the constraints we may
deal with.

Roughly, the simplification process reduces the expressivity of the OCL expressions that
form the body of each constraint by means of applying several transformation rules that
replace some of the OCL operators in the constraint body with equivalent (more basic)
ones. As an example, the rule X->reject(Y) → X->select(not Y) removes the reject
operator (left part of the rule) from OCL expressions and replaces it with the select
operator (according to the right part of the rule).

The constraint ValidShipDate:

-17-

context Sale inv ValidShipDate:
self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)

is already expressed in a simplified form. Thus, it is not modified in this step.

Step 1: Determining the potentially-violating structural events

In step 1, our method associates to each constraint of the CS a set of potentially-violating
structural events. The PSEs are drawn from the syntactical definition of the constraint. In
general, each constraint presents a different set of PSEs.

In particular, for ValidShipDate we would obtain the following PSEs:

1. Update of the attribute paymentDate defined in the type Sale

2. Update of the attribute plannedshipDate defined in the type Shipment

3. Insertion of a new relationship in the relationship type DeliveredIn

Step 2: Obtaining an appropriate syntactic representation for each
constraint

For each integrity constraint ici and event type ev, ev ∈ set of PSEs of ici, this step
determines an appropriate alternative syntactic representation ici,j of ici with respect to ev
(i.e. an alternative whose verification after the application of structural events of type ev
yields to an incremental checking of ici). Note that ici,j may be an appropriate alternative
for several PSEs and that for some PSEs the original ici representation may already be the
suited one.

Given the previous ValidShipDate constraint, at the end of this step we would obtain that
the original ValidShipDate representation (the one defined over the context type Sale) is an
appropriate representation to check the constraint after modifications of the paymentDate
attribute. However, after modifications of the plannedShipDate attribute we need to
generate an alternative representation (ValidShipDate2) of ValidShipDate using Shipment
as context type as well as another alternative (ValidShipDate3) for assignments of
shipments to sales using DeliveredIn as context type.

Figure 2.3 shows the different versions of ValidShipDate and the PSEs associated to each
one. Each version will be used to verify its own set of PSEs.

-18-

context Sale inv ValidShipDate: self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)

context Shipment inv ValidShipDate2: self.sale->forAll(s| self.plannedShipDate<=s.paymentDate+30)

context DeliveredIn inv ValidShipDate3: self.shipment.plannedShipDate<=self.sale.paymentDate+30

ValidShipDate

ValidShipDate2

ValidShipDate3

Update of paymentDate

Update of plannedShipDate

Insertion over DeliveredIn

Figure 2.3. Alternative representations for ValidShipDate

Step 3: Redefining the constraints to evaluate over the relevant instances

Finally, each constraint resulting from step 2 is redefined to be evaluated only over the
instances of its context type affected by events instance of the event types included in its
particular subset of PSEs (i.e. those event types for which the constraint is selected as an
appropriate representation).

This means that, in the previous example, ValidShipDate should only be evaluated over the
sales that have changed the value of their paymentDate attribute, ValidShipDate2 should
only be evaluated over shipments where the value of plannedShipDate has been modified
while ValidShipDate3 should only be evaluated only over new assignments between sales
and shipments (i.e. over new relationships in the relationship type DeliveredIn).

This redefinition requires the addition of several new entity and relationship types to the
original conceptual schema. As an example, Figure 2.4 shows the main aspects of the CS’
resulting from processing the CS of Figure 1.1 to ensure incremental integrity checking of
ValidShipDate. The basic idea is that each version of ValidShipDate is redefined using as
new context type the new derived subtypes SaleValidShipDate (new context type for
ValidShipDate), ShipmentValidShipDate (new context type for ValidShipDate2) and
DeliveredInValidShipDate (new context type for ValidShipDate3). The definition of
DeliveredInValidShipDate requires reifying the DeliveredIn relationship type.

Therefore, now the constraints are no longer verified over the whole population of Sale,
Shipment and DeliveredIn, respectively, but rather over the population of the derived
subtypes. Next, we must ensure that the population of these subtypes is exactly the set of
entities that require verification, so that incremental checking of the constraint can be
obtained.

The population of the derived subtypes is defined by means of the corresponding
derivation rule (specified as a redefinition of the allInstances operation, according to the

-19-

method proposed in [64]). In the example, the derivation rule for ShipmentValidShipDate
states that the population of the subtype is the set of shipments for which the value of the
plannedShipDate attribute has changed (the information about updated shipments is
recorded in the new uPlannedShipDate entity type). Since the context type of
ValidShipDate2 is now ShipmentValidShipDate rather than Shipment, the verification of
ValidShipDate2 becomes incremental because only the updated shipments are considered
when checking the constraint. A similar reasoning is followed for the constraints
ValidShipDate and ValidShipDate3.

Sale

id : Natural
date: Date
amount: Money
paymentDate: Date

Shipment
id: Natural
plannedShipDate: Date
address: Address 1..*1..*

DeliveredIn

/ShipmentValidShipDate /SaleValidShipDate

/DeliveredInValidShipDate

<<structural event>>

uPlannedShipDate 0..1 1 <<structural event>>

uPaymentDate
0..11

<<structural event>>

iDeliveredIn 0..1

1

-- The derivation rules
context ShipmentValidShipDate::allInstances() : Set(Shipment)
body: uPlannedShipDate.allInstances().shipment

context SaleValidShipDate::allInstances() : Set(Sale)
body: uPaymentDate.allInstances().sale

context DeliveredInValidShipDate::allInstances() : Set(DeliveredIn)
body: iDeliveredIn.allInstances().deliveredIn

-- The redefined constraints
context SaleValidShipDate inv ValidShipDate:

self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)

context ShipmentValidShipDate inv ValidShipDate2:

self.sale->forAll(s| self.plannedShipDate<=s.paymentDate+30)

context DeliveredInValidShipDate inv ValidShipDate3:

self.shipment.plannedShipDate<=self.sale.paymentDate+30

Figure 2.4. Final conceptual schema

We would like to remark that the quality of the results of our method does not depend on
the particular representation of the original constraint. In the vast majority of cases, our
method will always return the same incremental redefinition of the constraint regardless of
its syntactic representation. For some constraints, the result of the redefinition process may
differ slightly depending on the original representation. Nevertheless, the various

-20-

alternatives are equally suitable for verifying the constraint. Therefore, it does not matter
which particular definition of the constraint is originally provided by the designer. In any
case, we will obtain an incremental redefinition of the original constraint for each type of
structural event that may violate it.

Two alternatives are equally suitable for checking a constraint after a structural event when
they have the same level of complexity (i.e. the number of entities involved in their
verification is similar). At the design stage, we do not know the population of the entity
and relationship types of the schema. The level of complexity is therefore calculated by
means of abstract expressions that represent the number of entities taken into account in
each alternative. Thus, we may determine that an expression that requires to evaluate X*Y
entities is worse than another that requires accessing 1*Y entities. However, we may not
know whether an expression e1, involving X entities, is better than an expression e2
involving Y entities. In this case, we assume that e1 and e2 present the same level of
complexity.

As an example consider the CS of Figure 2.5 with two possible alternative representations
for the constraint AuthorNotReviewer stating that a person cannot be an author and a
reviewer of the same paper. Given the first alternative, our method would determine that,
after the assignment of a reviewer r to a paper p, it is necessary to check that p is not one of
the papers written by r. Given the second alternative, it would determine that we must
check that r is not one of the authors of p. Therefore, the result is not exactly the same but
for both alternatives our method gets the same efficiency level. At design time we cannot
possibly know if, after this insertion event, it is better to check the papers of a reviewer or
the authors of a paper, since this depends on the population of the IB at run-time.

 Person

id : Natural
name: String

0..*0..* Paper
id: Natural reviewedreviewer

0..*1..*
authoredauthor

context Person inv AuthorNotReviewer1:
self.reviewed->forAll(p:Paper| self.authored->excludes(p))

context Paper inv AuthorNotReviewer2:
self.reviewer->forAll(p:Person| self.author->excludes(p))

-21-

3. Simplifying the original OCL expressions

Due to the high expressiveness of the OCL, the designer has different syntactic
possibilities for defining each integrity constraint. For instance, even the simple
CorrectProduct constraint (Figure 1.2):

context Product inv CorrectProduct: self.price>0 and self.maxDiscount<=60

could be defined as complex as:

context Product inv CorrectProduct’:
not Product.allInstances()->exists(price<=0 or maxDiscount>60)

Although both representations have exactly the same meaning (both state that the price of
all products must be greater than zero and the discount lower or equal to sixty), it is clearly
easier to handle the first alternative than the second one since its definition does not require
the allInstances operation nor the exists iterator. Nevertheless, designers are free to define
the constraint as they desire so they could opt for defining CorrectProduct using the
second alternative (or any other alternative).

The aim of this chapter is to provide a set of transformation rules to simplify the constraint
definition. The constraint is simplified in the sense that the transformation rules reduce the
number of different OCL operators (or their possible combinations) appearing in the
constraint body. This does not necessarily imply that the resulting definition is shorter or
easier to understand. We call the obtained representation the simplified form of the
constraint. This simplified form is automatically obtained from the initial constraint
definition as provided by the designer.

This simplification is helpful to facilitate the definition of the next steps of the method
since they do not need to address the full expressivity of the OCL. In particular, they can
avoid dealing with the kinds of OCL expressions simplified by the transformation rules.
Therefore, the next steps always assume that constraints are expressed in their simplified
form.

To generate the simplified form, we modify the body of the constraint but we do not
consider the possibility of rewriting the constraint using a different type as context type.
The reason is that, as we discussed in the previous chapters, there is not a single best
context type for a constraint since depending on each event we may require a different

-22-

context type. The rules for the redefinition of a constraint over a different context type are
addressed when coping with step 2 of the method (Chapter 5).

In this chapter, we first describe a set of general rules to simplify the number of different
OCL operators (and their possible combinations) appearing in the constraint body (Section
3.1). Then, we focus on two especially useful sets of rules: rules to remove the allInstances
operation (Section 3.2) and rules to transform an OCL expression into conjunctive normal
form (Section 3.3). The application of these rules permits to obtain the original
representation of CorrectProduct from the more complex representation CorrectProduct’.
Except for rules of section 3.2, specific for integrity constraints, the rest may be applied to
any OCL expression, including derivation rules and operation pre and postconditions.

Before applying the rules, each integrity constraint is unfolded. We say that a constraint is
unfolded when all references to derived elements, query operations and variables resulting
from let expressions are replaced with their definition. We restrict recursive derived
elements to be unfolded just once. Additionally, all implicit variables are made explicit.
This affects specially the self variable and the implicit variables used in iterator
expressions. As a consequence, the previous CorrectProduct’ is slightly modified by
adding an explicit iterator variable p inside the exists iterator:

context Product inv CorrectProduct’: not Product.allInstances()->exists(p|
p.price<=0 or p.maxDiscount>60)

3.1 Basic rules

Tables 3.1-3.3 present a list of basic simplification rules. Most of these rules are based on
the equivalences defined in the OCL standard [67] itself. Some of the rules have also been
proposed in [28],[38].

We group the equivalences by the type of expressions they affect (boolean, collection or
iterator expressions). In the rules, the capital letters X, Y and Z represent arbitrary OCL
expressions of the appropriate type (as required by the rule definition). The letter o
represents an arbitrary object. The expression r1…rn represents a (possibly empty) sequence of
navigations.

Note that some rules reduce the number of different operations that can appear in an OCL
expression (for instance, the rule X->notEmpty()→ X->size()>0 allows to avoid using the
notEmpty operator) while others limit the possible combinations between different
operators (for instance, X->select(Y)->forAll(Z) → X-> forAll(Y implies Z) simplifies the
select iterator when placed before a forAll). The list does not pretend to be completely
exhaustive but to include all rules that facilitate the processing of the integrity constraints
in the next steps of the method.

-23-

Table 3.1 List of simplifications for boolean operators

X <> Y → not X = Y X = true → X

X = false → not X not false → true

not true → false X and false → false

X and true → X X or false → X

X or true → true X>Y and X<=Y → false

X>Y or X<=Y → true X>Y or X<Y → X<>Y

not X>=Y → X<Y not X<Y → X>=Y

not X<=Y → X>Y not X>Y → X<=Y

X=Y → (X and Y) or (not X and not Y)

-- when X and Y are boolean expressions

 not X=0 X>0

-- when X evaluates to a natural type

X->size()<=0 or X->forAll(Y) →

 X->forAll(Y)

Table 3.2 Simplifications for collection operators

X->includes(o) → X->count(o)>0 X->excludes(o) → X->count(o)=0

X->includesAll(Y) →

 Y->forAll(y1|X->includes(y1))

X->excludesAll(Y) →

 Y->forAll(y1| X->excludes(y1))

X->isEmpty() → X->size()=0 X->notEmpty() → X->size()>0

not X->isEmpty() → X->notEmpty() not X->notEmpty() → X->isEmpty()

X->excluding(o) → X->−(Collection{o}) X->including(o) →

 X->union(Collection{o})

X->union(Y).r1…rn->forAll(Z) → X.r1…rn->
forAll(Z) and Y.r1…rn ->forAll(Z)

X=Y X->includesAll(Y) and Y->
includesAll(X)

-- when X and Y are collections of objects

X->last()→ X->at(X->size()) X->first()→ X->at(1)

-24-

Table 3.3 Simplifications for iterator expressions

X->exists(Y) → X->select(Y)->size()>0 not X->exists(Y) → X->forAll(not Y)

not X->forAll(Y) X->exists(not Y) X->reject(Y) → X->select(not Y)

X->select(Y)->size()=0 → X->forAll(not Y) X->select(Y)->size()=X->size() →

 X->forAll(Y)

X->select(Y)->forAll(Z) →

 X->forAll(Y implies Z)

X->select(Y)->exists(Z) →

 X->exists(Y and Z)

X->one(Y) → X->select(Y)->size()=1 X->any(Y) →

 X->select(Y)->asSequence()->first()

X.r1....rn.Y.attr.Z → X.r1....rn.Y->collect(attr).Z

-- where attr represents an arbitrary attribute

and at least a ri has a multiplicity > 1

X->isUnique(Y) → X->forAll(x1,x2 |
x1<>x2 implies x1.Y <> x2.Y)

X->forAll(Y) and X->forAll(Z)

 X->forAll(Y and Z)

X->forAll(v| Y [and|or] X->forAll(v2| Z))
 X->forAll(v,v2| Y [and|or] Z)

With this set of rules we could partially simplify CorrectProduct’ obtaining as a result the
following alternative representation:

context Product inv CorrectProduct’’: Product.allInstances()->forAll(p| not
(p.price<=0 or p.maxDiscount>60))

The next subsections complete the simplification of CorrectProduct’ until we get its
complete simplified form (the one already used in the original definition of
CorrectProduct).

3.2 Removing the allInstances operation

AllInstances is a predefined feature on classes that gives as a result the set of all instances
of the type that exists at the specific time when the expression is evaluated. For instance,
the previous CorrectProduct’’ constraint states that all products (i.e. all instances of the
Product entity type) must verify the constraint condition.

Nevertheless, some integrity constraints specified by means of the allInstances operator
could also be specified using the variable self that represents an arbitrary instance of the
context type. For instance, CorrectProduct’’ could also be specified as:

-25-

context Product inv CorrectProduct’’’:
 not (self.price<=0 or self.maxDiscount>60)

Since constraints are assumed to be true for all instances of the context type (i.e. for all
possible values of the self variable), both representations are equivalent. Moreover,
CorrectProduct’’’ is clearly simpler than CorrectProduct’’.

We propose two rules to remove the allInstances operation. They are applicable when the
type over which allInstances is applied coincides with the context type of the constraint.
They may not be applied if the constraint already contains any explicit or implicit reference
to the self variable.

- cet.allInstances()->forAll(v|Y) ↔ Y’, where Y’ is obtained by replacing all
occurrences of v (the iterator variable) in Y with self. As an example, see the
previous CorrectProduct’’’ constraint.

- cet.allInstances()->forAll(v1,v2..vn| Y) ↔ cet.allInstances()->forAll(v2..vn|Y’) where
Y’ is obtained by means of replacing all the occurrences of v1 in Y with self. In this
case the allInstances operation is not completely removed but, at least, the
simplified expression is specified using the self variable which permits a more
efficient treatment of the constraint in the next steps of the method.

As an example, consider a constraint UniqueName (context Product inv:
Product.allInstances()->forAll(p1,p2 | p1<>p2 implies p1.name<>p2.name), where
we compare each pair of entities of Product. With this rule we replace p1 with self,
thus obtaining Product.allInstances()->forAll(p2|self<>p2 implies
self.name<>p2.name).

3.3 Transforming an OCL expression into conjunctive normal form

A logical formula is in conjunctive normal form (CNF) if it is a conjunction (sequence of
ANDs) consisting of one or more clauses, each of which is a disjunction (sequence of ORs)
of one or more literals (or negated literals). Any logical formula can be translated into CNF
by applying a well-known set of rules.

We propose to apply the same set of rules (with the addition of a new rule to deal with the
if-then-else construct) to normalize the boolean expressions included in the body of the
OCL constraints. Note that the body of constraint itself must be a boolean expression.
Besides, boolean expressions appear frequently in OCL constraints, for instance, as
parameters of the forAll and select iterators.

The rules are the following:

-26-

1. Eliminate the if-then-else construct and the implies and xor operators using the rules:
a. X implies Y → not X or Y

b. if X then Y else Z → (X implies Y) and (not X implies Z) → (not X or Y)
and (X or Z)

c. X xor Y → (X or Y) and not (X and Y) → (X or Y) and (not X or not Y)

2. Move not inwards until negations be immediately before literals by repeatedly using
the laws:

a. not (not X) → X

b. DeMorgan’s laws: not (X or Y) → not X and not Y

 not (X and Y) → not X or not Y

3. Repeatedly distribute or over and by means of:
a. X or (Y and Z) → (X or Y) and (X or Z)

Once transformed into conjunctive normal form (and applying the rules to deal with not
X<=Y and not X>Y expressions, see Section 3.1), CorrectProduct’’’ results in:

context Product inv CorrectProduct: self.price>0 and self.maxDiscount<=60

which is exactly the simplified form for this constraint.

3.4 Rule application

Given an expression exp, the simplified form of exp is obtained by applying repetitively
the previous rules over exp until no rules can be applied.

The following simple algorithm can be used for this purpose:

 Algorithm: Obtaining the simplified form of a constraint

 SimplifiedForm(OCLExpression constraintBody) : OCLExpression
 OCLExpression result := constraintBody
 while (isPossibleToApplyRules(result)
 rule r := selectRuleToApply(result);
 result := apply(result, r)
 fwhile
 return result

where isPossibleToApplyRules examines the expression to determine if any simplification
rule can be applied, selectRuleToApply choose one of the possible rules and apply modifies
the expression according to that rule.

-27-

There are no cycles among the proposed set of simplification rules so termination of the
process is guaranteed. There are a few rules that when applied over an expression X
produce an output expression that can be used as an input for another rule. However,
following any sequence of simplifications, X never returns to a state where we can apply
the first rule over X again. What it may happen is that some of the applied rules can be
used again to simplify a subset of X not previously targeted (i.e. there may exist a
subexpression x ⊂ X’ targeted by those rules).

-28-

-29-

4. Determining the Potentially-Violating Structural
Events

The aim of this chapter is to determine which kinds of events, when applied over the IB,
may induce the violation of a given integrity constraint. This knowledge helps to improve
the efficiency of the integrity checking process by discarding the verification of those
constraints not possibly violated by the set of structural events applied during the
modification of the IB.

Given a constraint c and an event type ev, we define that ev is a potentially-violating
structural event (PSE) for c if the application of an structural event of type ev over a
consistent state of the IB may result in a new state of the IB that does not satisfy c. We
consider that a constraint c with a body b and defined over a context type ct is not satisfied
in a state s of an IB when there is an entity e of ct that evaluates b to false in s.

We call these event types potentially-violating events (PSEs) since defining that the event
type ev is a PSE for a constraint c does not necessarily imply that c is violated every time
an event of type ev is applied over the IB (it depends on the exact state of the IB and on the
parameters of the particular structural event at run-time).

When computing the set of PSEs, we assume that integrity constraints are represented as
instances of the OCL metamodel. According to this metamodel, each constraint can be
regarded as a binary tree, where each node represents an atomic subset of the OCL
expression (an operation, an access to an attribute or an association …). The tree is a
binary tree since all OCL predefined operators have at most two parameters, and user-
defined operations have been already unfolded as part of the simplification process
presented in the previous chapter.

Given the tree that represents the body of an integrity constraint as an instance of the OCL
metamodel, our method performs two different steps to determine the PSEs that may
violate the constraint:

1. Marking the tree. Each node (i.e. each atomic subset of the OCL expression) is
marked with information about the kinds of modifications over the model elements
referenced in the node (an increase in its value, a decrease…) that may induce the
violation of the constraint. For instance a node representing an access to an attribute
may be marked with a plus sign to indicate that the constraint could be violated if

-30-

the attribute value is increased during the IB update. The computation of this
information depends on the relationships between the different nodes of the tree.

2. Drawing the PSEs. The method determines the PSEs by taking the mark and the
subexpression corresponding to each node into account. In short, the method
identifies which event type may produce the kind of change required by the mark.
Following the previous example, the method would determine that an update event
over the attribute referenced in the node may increase its value, and thus, it may
violate the constraint.

The rest of the chapter is structured as follows. Section 4.1 presents the different event
types our method deals with. Section 4.2 introduces some basic concepts about the OCL
metamodel. Then, in Section 4.3 and Section 4.4 we explain the two previous steps.
Finally, section 4.5 summarizes the obtained results.

4.1 List of event types

To determine the PSEs that may violate an OCL integrity constraint our method reasons
about the following set of event types. Each one of these event types is instantiated at run-
time to generate the different kinds of modifications over the IB.

- InsertET(ET): it represents the insertion of a new entity in the entity type ET. The
new instance may have its attributes initialized but it does not participate in any
relationship. Example: events of type InsertET(Sale) insert a new sale in the IB. For
instance, the event InsertET(Sale, 1, ‘26/06/2006’, 1000, ‘26/07/2006’) would insert
a new sale in the IB, initialized with the values id=1, date=‘26/06/2006’, amount =
1000 and paymentDate=‘26/07/2006’.

- UpdateAttribute(Attr,ET): it updates the value of the attribute attr of an entity of the
entity type ET. When ET is clear from the context (i.e. the name of the attribute is
not ambiguous) we also refer to this event type as just UpdateAttribute(Attr).
Example: events of type UpdateAttribute(price, Product) change the price of a
product.

- DeleteET(ET): it deletes an entity from an entity type ET. Example: events of type
DeleteET(Shipment) imply the deletion of a shipment from the IB.

- SpecializeET(ET): it specializes an entity of a supertype of an entity type ET to ET.
Example: A SpecializeET(RestrictedProduct) event specializes a product into a
restricted product.

- GeneralizeET(ET): it generalizes an entity of a subtype of an entity type ET to ET.
Example: A GeneralizeET(Product) event transforms restricted products into just
“common” products.

-31-

- InsertRT(RT): it inserts a new relationship in the relationship type RT. Example:
events of type InsertRT(DeliveredIn) create new relationships between pairs of sales
and shipments.

- DeleteRT(RT): it removes a relationship from a relationship type RT. Example:
events of type DeleteRT(DeliveredIn) remove a sale from a shipment.

Reified entity types (i.e. association classes) have two different facets: the entity type facet
and the relationship type facet. Since we do not have specific events for dealing with the
insertion (deletion) of entities of reified entity types, to insert an entity in a reified entity
type we must combine an InsertET (to create the entity facet) and an InsertRT event (to
create the relationship facet). Likewise, to delete an entity from a reified entity type we
combine the DeleteET and DeleteRT events.

To deal with taxonomy hierarchies, we assume InsertET events over a subtype s are
preceded by InsertET events over all supertypes of s. DeleteET events over a type t are
accompanied by DeleteET events over all supertypes and subtypes of t. Similarly, to
specialize (generalize) an entity e of type t to a type tfinal which is not a direct subtype
(supertype) we also need to generate the corresponding specialize (generalize) event for all
types t’ appearing in the path between t and tfinal (at least for one of the paths, if several
different paths exist).

We would like to remark that our set of events does not exactly correspond to the kind of
events defined in the UML language (as defined in the Action packages [68]). The event
types we use are more basic than those of the UML. Moreover, our independence of a
particular modeling language allows us to incorporate our results to different predefined
sets of structural event types providing that we define the correspondence between our
event types and those different sets.

Besides, the result of our method in terms of our set of internal event types can be easily
expressed in terms of the UML event types. For the sake of completeness we provide in the
next subsection the correspondence between both sets.

4.1.1 Correspondence with the event types defined in the UML language

The set of event types allowed in UML behavior specifications [68], is the following:

- AddSructuralFeatureValueAction(StructuralFeature s): It adds a new value for the
structural feature s to the object indicated at run-time. In UML 2.0, a structural
feature is either an attribute or an association end (i.e. a role in a relationship type).

- CreateLinkAction(Association a): It creates a new link (i.e. relationship) for the
association (i.e. relationship type) a.

-32-

- CreateLinkObjectAction(Association a): It creates a new link object for the
association class (i.e. reified entity type) a.

- CreateObjectAction(Classifier c): It creates a new instance of the classifier (i.e.
entity type) c.

- DestroyLinkAction(Association a): It removes a link from a.

- DestroyObjectAction(Classifier c): It removes an object from c.

- ReclassifyObjectAction(Classifier[] newClassifiers, Classifier[] oldClassifiers): It
adds to the object indicated at run-time the list of classifiers specified in
newClassifiers and removes those in oldClassifiers.

- RemoveStructuralFeatureValueAction(StructuralFeature s): It removes the value of
s in the object indicated at run-time.

Given this set of event types table 4.1 shows the correspondence between our internal set
of events (first column) and those of the UML (second column).

Table 4.1. Correspondence between our events and the UML event types

Internal event types UML event types
InsertET(ET) - CreateObjectAction over ET

- CreateLinkObject over ET (if ET is an association class)
- Any of the previous events over a subtype of ET (which

induces an insertion over ET)
UpdateAttribute(Attr,ET) - AddStrucuturalFeature over Attr (possibly preceded by

a RemovalStructuralFeatureAction to remove the
previous attribute value)

DeleteET(ET) - DestroyObjectAction over ET
- DestroyLinkAction over ET (if ET is an association

class)
- Any of the previous events over a supertype or subtype

of ET (both induce the deletion of the instance over ET)
SpecializeET(ET) - ReclassifyObjectAction with ET in the set of new

classifiers.
GeneralizeET(ET) - A ReclassifyObjectAction with a direct subtype of ET in

the set of old classifiers.
InsertRT(RT) - CreateLinkAction over RT

- CreateLinkObject over RT (if RT is an association class)
DeleteRT(RT) - DestroyLinkAction over RT

-33-

4.2 The OCL metamodel

The representation of the constraints as instances of the OCL metamodel facilitates their
treatment during the different steps of the method. At the moment of writing this thesis, the
last adopted specification of the OCL metamodel is [67].

The basic structure of the OCL metamodel (see Figure 4.1) consists of the metaclasses
OCLExpression (abstract superclass of all possible OCL expressions), VariableExp (a
reference to a variable, as, for example, the variable self), IfExp (an if-then-else
expression), LiteralExp (constant literals like the integer ‘1’) and PropertyCallExp which
is a supertype for the metaclasses ModelPropertyCallExp (expressions referring to model
elements) and LoopExp (iterator expressions).

ModelPropertyCallExp (Figure 4.2) can be split into AttributeCallExp (a reference to an
attribute), NavigationCallExp (a navigation through an association end or an association
class) and OperationCallExp. This later class is of particular importance, because its
instances are calls to operations defined in any class of the CS. This includes all the
predefined operations of the types defined in the OCL Standard Library [67 ch. 11], such
as the add operator (‘+’) or the ‘and’ operator. These OperationCallExp expressions may
include a list of arguments if the referred operation has parameters. Note that, as can be
seen from Figure 4.2, the current version of the OCL standard is not yet completely aligned
with the last version of the UML 2.0 standard since some of the OCL metaclasses (as
AssociationEndCallExp) still reference obsolete UML metaclasses as the AssociationEnd
metaclass, replaced by the metaclass Property in the UML 2.0.

Figure 4.1. Basic structure of the OCL metamodel

-34-

Figure 4.2. OCL Metamodel fragment for ModelPropertyCallExp

When expressing a constraint as an instance of the OCL metamodel, the body of the
constraint can be regarded as a binary tree where each node represents an atomic subset of
the OCL expression defining the constraint body (an instance of any metaclass of the OCL
metamodel: an operation, an access to an attribute or an association …).

The root of the tree is the most external operation of the OCL expression. The left child of
a node is the source of the node (the part of the OCL expression previous to the node). The
right child of a node is the body of an iterator expression if the node represents one of the
predefined iterators defined in the OCL standard (a forAll, select…) or the argument of the
operation if the node represents a binary operation (such as ‘>’, union, ‘+’,…). In this latter
case, the source can be regarded as the first operand of the operation.

We show in Figure 4.3 the constraint ValidShipDate (self.shipment->forAll(sh|
sh.plannedShipDate<=self.paymentDate+30)) as an instance of the OCL metamodel. The
forAll iterator (represented as an instance of the metaclass IteratorExp) is the root of the
tree. The left child of the root is the source of the iterator (self.shipment). In its turn, this
left child is represented as an instance of the AssocationEndCallExp metaclass
corresponding to the navigation through the association end shipment. Its source is the
access to the self variable. The right child of the root is the body of the iterator expression
(sh.plannedShipDate <= self.paymentDate+30). The root of this right subtree is the
operation ‘<=’ represented as an instance of the OperationCallExp metaclass having as

-35-

referred operation the operation called ‘<=’. This node has two children. The first one is its
source, an access to the attribute plannedShipDate (with a last child representing the access
to the sh variable). The second one is the operation ‘+’ between the paymentDate attribute
(left child) and the integer 30 (right child).

 :OclConstraint

name = ValidShipDate
kind ="inv"

:Class
name = Sale

 :IteratorExp

:Operation
name = "<="

:AssociationEndCallExp
:AssociationEnd

name = "shipment"

:VariableExp
:VariableDeclaration
varname = "self"

:OperationCallExp

:AttributeCallExp

:IntegerLiteralExp
integerSymbol = 30

:Attribute
name="plannedShipDate" :VariableExp

:VariableDeclaration

name="sh"

 constrainedElement

body

referredOperation
referredAssociationEnd

referredVariable
source

source body

referredOperation
source

argument referredAttribute source

referredVariable

name = "forAll"

:Operation
name = "`+" :OperationCallExp

argument

:AttributeCallExp

:VariableExp

:VariableDeclaration

name="self"

source

referredVariable

source

:Attribute
name="paymentDate"

referredAttribute

 Figure 4.3. Constraint ValidShipDate as an instance of the OCL metamodel

As can be seen from the previous figure, a complete representation of the constraint as an
instance of the OCL metamodel is quite cumbersome. Therefore, from now on we will
express the constraints using a simplified version of the previous representation. Figure 4.4
shows ValidShipDate represented in this simplified form, where we combine in the same
tree node the kind of OCL subexpression and the name of the model element referenced by
the node.

Figures 4.5 – 4.8 show the other constraints of the running example (Figure 1.2) expressed
as instances of the OCL metamodel.

-36-

:IteratorExp
 (forAll)

:OperationCallExp
 (<=)

:AssociationEndCallExp
 (shipment)

:VariableExp
 (self)

:AttributeCallExp
(plannedShipDate)

:VariableExp
 (sh)

:AttributeCallExp
 (paymentDate)

:VariableExp
 (self)

:OperationCallExp
 (+)

:IntegerLiteralExp
(30)

Figure 4.4. Simplified representation of ValidShipDate

 :OperationCallExp
(and)

:OperationCallExp
(<=)

:AttributeCallExp
(maxDiscount)

:VariableExp
 (self)

:IntegerLiteralExp
(60)

:OperationCallExp
(>)

:AttributeCallExp
(price)

:VariableExp
 (self)

:IntegerLiteralExp
(0)

Figure 4.5. Constraint CorrectProduct as an instance of the OCL metamodel

-37-

:IteratorExp
 (forAll)

:OperationCallExp
 (<=)

:AssociationEndCallExp
 (customer)

:VariableExp
 (self)

:AttributeCallExp
(maxPendingAmount)

:VariableExp
 (self)

:IteratorExp
(collect)

:OperationCallExp
(sum)

:IteratorExp
 (select)

:AssociationEndCallExp
(sale)

:VariableExp
(c)

:OperationCallExp
 (>)

:AttributeCallExp
(paymentDate)

:OperationCallExp
(Time::now)

:AttributeCallExp
(amount)

:VariableExp
(s)

:VariableExp
(sa)

Figure 4.6. Constraint NotTooPendingSales as an instance of the OCL metamodel

:OperationCallExp
(size)

:AssociationEndCallExp
(customer)

:VariableExp
 (self)

:OperationCallExp
(>=)

:IntegerLiteralExp
(3)

Figure 4.7. Constraint AtLeastThreeCustomers as an instance of the OCL metamodel

-38-

:OperationCallExp
(size)

:OperationCallExp
(<=)

:IntegerLiteralExp
(20)

:OperationCallExp
(RestrictedProduct::allInstances)

Figure 4.8. Constraint NumberOfRestrictedProducts as an instance of the OCL metamodel

4.3 Marking the constraint tree

To compute the PSEs it is not enough with examining each part of the OCL expression
separately. For instance, to determine whether the constraint AtLeastThreeCustomers may
be violated by a customer assignment to a category or by a customer removal from a
category we can not merely take into account the subexpression self.customer->size(). In
fact, both events change the value resulting from the evaluation of this subexpression.
However, since the size operation is involved in a ‘>=’ comparison operator, only
removing a customer from a category may induce a violation of this constraint. On the
contrary, if we had used ‘<=’ instead, the expression could be violated only when
assigning a new customer to the category.

Therefore, and prior the computation of the PSEs, we need to analyze the relationship
between the different nodes of the OCL constraint tree. For each node we must determine
which kind of modifications over the elements referenced by the node may induce a
constraint violation. The kind of changes depends on the node type and on the information
propagated by the parent node. Then, we propagate this information to the children node to
repeat the process, following a preorder traversal of the tree. In a preorder traversal, we
process all nodes of the tree by first processing the root and then, recursively, processing in
preorder the children subtrees. To start the process the method assumes that the root node
is marked with the und symbol (see below).

There are three different symbols to propagate:

 ‘+’: it indicates that the constraint can be violated by an increase in the value or in
the number of items of the subexpression

 ‘-‘: it indicates that the constraint can be violated by a decrease in the value or in
the number of items of the subexpression

 ‘und’: it indicates the node does not propagate any kind of information

-39-

As an example of the first two symbols consider the operation ‘>’. A node representing a
call to this operation propagates the symbol ‘−‘ to the left child (i.e. the first argument) and
the symbol ‘+’ to the right child (the second argument). The semantics of this operation
justifies this propagation. To violate an expression like ‘A > B’ there are two options:
decrease the value of A (this is why we propagate the symbol ‘− ‘ to the left) or increase
the value of B (this explains the ‘+’).

The symbol ‘und’ is used by operations like ‘and’ or ‘or’. It denotes that the node does not
influence its children expressions at all. The events that can violate ‘A and B’ are the same
that violate A plus those of B stand-alone. A forAll also propagates an und to its body since
the events that can violate the body expression of the iterator are the same events that can
violate the expression stand-alone.

Tables 4.2-4.5 show the symbol propagation for all combinations of each kind of node
(columns) and symbol (rows) that may be received from a parent node. Then, cells indicate
which symbols must be propagated to the children nodes when that type of node receives
that symbol from its parent.

Sometimes a node may propagate more than one symbol to its children. When a node
receives several symbols from its parent node, the final value that the node propagates is
obtained by applying the table information to each received symbol. When a node has two
children the cell states the symbol (or symbols) for each child. For the sake of clarity,
propagation of und symbols is represented by blank cells. Blank cells can also indicate that
there is no constraint including such combination.

First, Table 4.2 shows the propagation of some basic OCL expressions like navigations
through roles (i.e. association ends) or reified entity types (i.e. association classes) and
access to attribute values, variables and constants. For variables and constants, the node
always is a leaf of the tree, and thus, no symbol can be propagated. For navigations we
propagate the same symbol received. For instance, if the constraint may be violated when a
navigation through an association end returns more objects (symbol ‘+’), an option to
increase the number of objects returned by the navigation is to increase the size of the
collection of objects where the navigation is applied over (that justifies the propagation of
the ‘+’ symbol). Likewise with the ‘−’ symbol. For attributes we always propagate a ‘+’
symbol, since a condition over an attribute may be violated if we create a new instance in
the IB initialized with a wrong attribute value (it does not matter if the constraint may be
violated by a decrease or an increase in the attribute value).

-40-

Table 4.2. Basic OCL expressions

 1. Navigation
AssocitationEnd

2. Navigation
AssociationClass

3. Access
attribute

5. Access to
variable

6. Constant
expression

1. und +

2. + + + +

3. − − − +

Then, Table 4.3 deals with the generic operations of all OCL types, which in the OCL
standard are defined as operations of the OclAny predefined type (all other types are
subtypes of the OclAny supertype). Among those operations, the ‘=’ operator is an example
of a node with two children. In this case we propagate both symbols to each child (an equal
comparison may be violated either by an increase or decrease in the values of any of the
operands). This default behavior can only be optimized when one of the operands evaluates
to a natural type and the other is the integer zero. Then, it is enough to propagate a ‘+’
symbol to the natural operand (since it evaluates to a natural value, the operand cannot
possibly take a value < 0, which means that the constraint cannot be violated by a decrease
in the value of that operand). For oclIsUndefined, oclIsTypeOf and oclIsKindOf operations
the constraint can be propagated if these operations are applied over a new object (that may
not satisfy the type condition), thus, we propagate a ‘+’ symbol. The allInstances operation
is a leaf of the tree so no symbol is propagated.

Table 4.3. OclAny operations

 1. = 2.
oclIsUndefined

3.
oclAsType

4.
oclIsTypeOf

5.
oclIsKindOf

6.allInstances

1. und + − + − + + +

2. + +

3. − −

Table 4.4 presents the treatment of operations defined for primitive types. Here, it is worth
to remark the different behavior of arithmetic operators (as ‘*’ or ‘/’) depending on the
type of the operands. For natural operands, it is clear that if a constraint can be violated
when, for instance, the result of a multiplication increases, we can only get this increase by
growing the value of one (or both) operands (this justifies the propagation of the symbol
‘+’). This is not true for real or integer operands because they may take negative values. In
such a case, even a decrease in the value of an operand may result in a higher result after
their multiplication (for instance, -2*-1<-5*-1). Then, when dealing with real or integer
values we must propagate always both symbols (‘+’ and ‘−’). As commented before, for
and and or operations we propagate an und value to both children. For not operators we
also propagate an und value (a special treatment for not operators is presented in the next
section).

-41-

Table 4.4. Primitive types operations

 1. +,−,*,/,
div, mod
(real,int)

2. +,*
(nat)

3. −,/
(nat)

4. <,
<=

5. >,
>=

6. max
min

7. floor
round

8. abs 9. − 10.
and
Or

11.
not

11.size,
toInt
toReal
(string)

12.
concat

1. und + − − +

2. + + − + − + + + − + + + + − + − + + +

3. − + − + − − − − + − − − + − + − − − −

Finally, Table 4.5 describes the propagation for iterator and collection expressions. A
forAll can be violated if the number of elements that must verify the forAll body increases
(that is why we propagate a ‘+’ symbol to the left child) or if some of the elements affected
by the forAll changes its value in a way that does not satisfy the forAll body. The events
that may cause this change are the same events that we would obtain when dealing with the
forAll body stand-alone, and thus, we propagate the und symbol. We follow a similar
reasoning with the select iterator (see also the special treatment for select expressions when
obtaining the PSEs in the next section). For the generic iterate operator, we propagate all
symbols since this generic iterator too expressive to be able to determine a more specific
treatment. For collection operators (as union, intersection,…) the propagation depends on
the semantics of each operator. For instance, the result of a union may increase if we
increase the size of its operands. The asX operation represents the different conversion
operations between the different collection types (operations asSet, asBag,…).

As in the previous table, the behavior of the sum operator differs depending of the type of
the objects where the sum is applied over. When they are of type integer or real, the sum
(column 4) operator propagates also the symbols in brackets. The sum of an attribute at of
a set of objects s may increase either when adding to s an object with a positive value in at
or when removing from s an object with a negative value in at.

Table 4.5. Iterator and collection expressions

 1.
forAll

2. select 3. iterate 4.
sum

5. count
collect

6. U,∩,
product

7. − 8. sym
Differ

11. size
asX,
Flatten

12.at,
indexOf,
subseq

1. und + + − + − + − + −

2. + + + − + − + (−) + + + + + − + − + − + + − + −

3. − − + − + − − (+) − − − − − + + − + − − + − + −

The application of these tables over the constraint ValidShipDate is shown in Figure 4.9.
We start with processing the forAll iterator. Since it is the root of the tree it does not
receive any initial information. To mark its children we use cell 4.5:1.1 (Table 4.5 row 1,

-42-

column 1) which states that the left child must be marked with the ‘+‘ symbol while the
right must be ‘und’ (shown as a blank symbol in the tree). The left child (the navigation
through the association end shipment) propagates a ‘+’ to its single child (cell 4.2:2.1). The
root of the subtree corresponding to the body of the forAll is the node representing the
operation ‘<=’. This node propagates a ‘+’ to the left child and a ‘−’ to the right one (cell
4.4:1.4). In its turn, the left child (the access to the attribute plannedShipDate) propagates a
‘+’ to its child (cell 4.2:2.3). The right child (the plus operator) propagates a ‘−’ to both
children (cell 4.4:3.2).

Figures 4.10-4.13 show the results of marking the trees corresponding to the rest of
constraints.

:IteratorExp
 (forAll)

:OperationCallExp
 (<=)

:AssociationEndCallExp
 (shipment)

:VariableExp
 (self)

:AttributeCallExp
(plannedShipDate)

:VariableExp
 (sh)

:AttributeCallExp
 (paymentDate)

:VariableExp
 (self)

:OperationCallExp
 (+)

:IntegerLiteralExp
(30)

+ −

+

+

+ − −

+

Figure 4.9. Marking the tree corresponding to ValidShipDate

 :OperationCallExp
(and)

:OperationCallExp
(<=)

:AttributeCallExp
(maxDiscount)

:VariableExp
 (self)

:IntegerLiteralExp
(60)

:OperationCallExp
(>)

:AttributeCallExp
(price)

:VariableExp
 (self)

:IntegerLiteralExp
(0)

+ − − +

+ +

Figure 4.10. Result of marking CorrectProduct

-43-

 :IteratorExp
 (forAll)

:OperationCallExp
 (<=)

:AssociationEndCallExp
 (customer)

:VariableExp
 (self)

:AttributeCallExp
(maxPendingAmount)

:VariableExp
 (self)

:IteratorExp
(collect)

:OperationCallExp
(sum)

:IteratorExp
 (select)

:AssociationEndCallExp
(sale)

:VariableExp
(c)

:OperationCallExp
 (>)

:AttributeCallExp
(paymentDate)

:OperationCallExp
(Time::now)

:AttributeCallExp
(amount)

:VariableExp
(s)

:VariableExp
(sa)

−

+

+ +

+

+

+

+ −

+

+

+

+

+

Figure 4.11. Result of marking NotTooPendingSales

:OperationCallExp
(size)

:AssociationEndCallExp
(customer)

:VariableExp
 (self)

:OperationCallExp
(>=)

:IntegerLiteralExp
(3)

− +

−

−

Figure 4.12. Result of marking AtLeastThreeCustomers

-44-

:OperationCallExp
(size)

:OperationCallExp
(<=)

:IntegerLiteralExp
(20)

:OperationCallExp
(RestrictedProduct::allInstances)

− +

+

Figure 4.13. Result of marking NumberOfRestrictedProducts

4.4 Drawing the potentially-violating structural events

Once the tree is marked as explained in the previous section, our method is able to
determine the PSEs that may violate the integrity constraint. Now, the tree is traversed in
postorder (we process all nodes of the tree by first recursively processing in postorder the
children subtrees and then the root). During the traversal we attach to each node of the tree
the information about the PSEs generated because of that particular node.

Table 4.6 describes the set of PSEs we determine for each node in terms of the node type
(columns) and its marks (rows). Among all columns used in the tables of the previous
section we only include in Table 4.6 those columns with a direct effect on the generation of
the PSEs.

When a PSE appears between brackets implies that more sophisticated conditions and
patterns must be evaluated before considering that event type as a PSE for a constraint
including a node of that type with that mark. These conditions as well as the meaning of
the Opp keyword in the last two columns will be explained later on. In what follows we
discuss in detail each column.

Table 4.6. Computation of the PSEs

 1. Navig
AssEnd

2. Navig
AssClass

3.Access
Attribute

4. Access
to var

5.
IsTypeOf

6.
IsKindOf

7.
allInst

8.
not

9.
select

1.
und

 UpdAttr

 GenET
SpeET

GenET Opp1

2. + InsertRT
(DeleteRT)

InsertRT
(DeleteRT)

UpdAttr

(InsertET)
(SpeET)

 InsertET
(SpeET)

 Opp2

3. − DeleteRT DeleteRT UpdAttr

(InsertET)
(SpeET)

 DeleteET
(GenET)

First we discuss the possible options for nodes representing a navigation through an
association end (column 1). When the association end is labeled with a ‘+’ symbol, the

-45-

constraint may be violated by an insertion over the association (event type InsertRT) where
the association end belongs. Remember that ‘+’ pointed out that the constraint could be
violated due to an increase of the number of elements resulting from the navigation
through that association end, and thus, the events that can cause the violation are those
events that increase such number. That is precisely what events of type InsertRT do. In a
similar way, if it is labeled with a ‘−‘, the critical event is the deletion of a link of the
association (event type DeleteRT) since we are interested in reducing the number of links
of the association.

The DeleteRT event type that appears in brackets is only relevant for navigations included
in the body expression of a select iterator. A select returns only those objects that evaluate
the select condition to true. On the contrary, those evaluating the condition to false or
undefined will not be selected. Since events of type DeleteRT(RT) (where RT is referenced
in the select condition) may cause the subexpression including the navigation through RT
to return an undefined value, this event type must also be considered as a PSE for
constraints that may be violated when the amount of elements returned by a select
decrease. Note that this PSE is not generated when at the end of the sequence of
navigations where RT is included in, we find an iterator or a collection operation since
then, according to the OCL standard, the result is never undefined (even if the iterator or
the collection operation are applied over an empty collection).

The same reasoning serves to explain the processing of navigations towards an association
class. The only difference is that, in this case, the relationship type appearing as a
parameter of the InsertRT or DeleteRT event type is a reified relationship type instead of a
simple relationship type.

For attributes, we have that all kinds of conditions over the attributes may be violated if we
change the value of the attribute (UpdateAttribute event type).

When accessing a variable, we need to consider the event types InsertET(ET) and
SpecializeET(ET) as PSEs for the constraint (where ET represents the type of the variable)
when the following additional conditions apply:

- The referenced variable must be the self variable

- The parent node must be either an AttributeCallExp or a NavigationCallExp

- The node must not be included inside the body of an iterator expression

- When the parent node is an AttributeCallExp the condition regarding the attribute
must compare the attribute value with a constant (as in self.attr>5) or with another
attribute of the same self instance (as in self.attr1>self.attr2). Conditions comparing
the value of the attribute with the values of different instances (as in self.role1-
>forAll(i| i.attr>self.attr)) does not generate any PSEs. In such a case, the constraint

-46-

can only be violated if the navigation self.role1 is not empty which is already
controlled when processing the part of the subtree dealing with this navigation
expression.

- When the parent node is a NavigationCallExp the variable node must be marked
with a ‘−’ symbol. This case indicates that all new entities of the entity type must
have a minimum set of relationships with other entities, and thus, if the new created
entity does not participates in this minimum set, the constraint will be violated. For
instance, all categories must have at least three customers, and thus, when creating a
category we must also assign to the category an initial set of customers to avoid
violating the constraint.

- The SpecializeET(ET) event is only generated when ET has at least a direct
supertype, which implies that new instances of ET can be created either by inserting
a completely new entity or by specializing to ET an existing instance of a supertype
of ET. Moreover, the constraint body must reference at least an attribute or
relationship type defined in the supertype. Otherwise the specialized entity would not
present values in any of the elements referenced in the constraint and thus, it will be
surely consistent with it. As an example, consider a constraint context
RestrictedProduct inv: self.maxUnits >0. When specializing an existing product p
into the restricted product category, p cannot violate the constraint until we issue an
UpdateAttribute(maxUnits, RestrictedProduct) event type to initialize its maxUnits
value. Therefore, the specialization of p itself does not violate this constraint.
Instead, if we restrict RestrictedProduct entities to have a price over 10000,
specializing a product into a restricted product may induce a constraint violation
since the product may already present a price over 10000.

For oclIsTypeOf(Type) and oclIsKindOf(Type) operations the constraint may be violated
when changing the type of the affected entities. In the first case, when the entity is either
generalized to a supertype or specialized to a subtype of Type (object.oclIsTypeOf(Type)
returns true iff the type of object is exactly Type). In the latter, only when it is generalized
(object.oclIsKindOf(Type) returns true if object is either of type Type or of one of the
subtypes of Type). Note that, we must generate a PSE for each direct supertype (and
subtype, for oclIsTypeOf operations) of Type.

The Type::allInstances operation generates an InsertET(Type) event type as a PSE (and a
SpecializeET(Type) when Type has at least a supertype) when the corresponding node is
marked with a ‘+’. When issuing these events the number of instances returned by the
allInstances operation is increased, and thus, their application over the IB may violate
constraint containing an allInstances node marked with the ‘+’ symbol. Similarly, when
the symbol is a ‘−’, it generates a DeleteET(Type) and a GeneralizeET(supertype) for each
direct supertype of Type.

-47-

The processing of expressions affected by select and not operators is more complex. The
effect of the not operator is defined by means of the operation Opp1(). This operation
replaces the PSEs attached to the child node of the not operator with their opposites (i.e.
the events violating a not X expression are the opposite events to those PSEs that violate
X). The exception is when the not operator appears in front of an oclIsUndefined operation,
where we must change the PSEs of the whole child subtree with their opposites, since even
changes in one of earlier nodes of the subtree may turn the whole expression to (not)
undefined. Note that when the not operator appears in front of an equal comparison the
Opp1() does not have any effect (since the particular node corresponding to the equal
comparison never holds a PSE). This is perfectly correct since the events that may violate
the equal comparison are the same as the ones that may violated a not-equal comparison. In
both cases, any change on one of the operands may cause the comparison to return a false
value.

The basic idea for the Opp1 operation is that the opposite of an insertion (specialization) is
a deletion (generalization) and the opposite of a deletion (generalization) is an insertion
(specialization). The opposite of an update event is the event itself. The opposite of the
opposite of an event must return the original event. Therefore, the opposites for each event
are:

- Opposite(InsertET(ET))=DeleteET(ET)

- Opposite(DeleteET(ET))=InsertET(ET)

- Opposite(UpdateAttribute(Attr,ET))=UpdateAttribute(Attr,ET)

- Opposite(InsertRT(RT))=DeleteRT(RT)

- Opposite(DeleteRT(RT))=InsertRT(RT)

- Opposite(SpecializeET(ET))=GeneralizeET(ETsup) where ETsup is a supertype of ET.
In particular, ETsup must be the supertype appearing as a parameter of the operation
oclIsTypeOf operation that has produced the SpecializeET PSE. Note that, even
though other cells generate also SpecializeET events, among them only the
oclIsTypeOf operation may appear next to the not operator.

- Opposite(GeneralizeET(ET))=SpecializeET(ETsub) where ETsub is a subtype of ET.
In particular, ETsub must be the subtype appearing as a parameter of the operation
oclIsKindOf or oclIsTypeOf operations that have produced the GeneralizeET PSE.
As before, other cells generating GeneralizeET events cannot appear next to the not
operator.

A similar thing happens with a select expression. When the constraint may be violated by
an increase in the number of elements returned by a select expression we are interested in
the events that favor an object to satisfy the select expression. These events are the
opposite of the events that favor the violation of the select condition. Therefore, we must
apply the operation Opp2 over the select body to transform all the events initially computed

-48-

(i.e. those that violate the select condition). This operation simply applies the previous
opposite function Opp1 to all the PSEs attached to nodes included in the select body (and
not only to the PSEs of the immediate child as in the not operator).

Figure 4.14 applies Table 4.6 to the ValidShipDate constraint. Since the traversal is in
postorder we start by processing the leaves of the tree. First, we process the access to the
variable self marked with the symbol ‘+‘. The variable does not generate any PSE (it does
not verify the conditions stated above). After this step, we consider the navigation through
the shipment association end. According to the table, an association end marked with the
‘+’ symbol generates an InsertRT event type, in this case, an InsertRT(DeliveredIn). Then,
we proceed with the right child of the forAll iterator. The access to the sh variable does not
affect the computation of the PSEs but the access to the plannedShipDate attribute
produces the UpdateAttribute(plannedShipDate) event type. Finally, the access to the
attribute paymentDate increases the set of PSEs for the constraint with the
UpdateAttribute(paymentDate) event type. Note that its child (the access to the self
variable) neither generates an InsertET event type since the condition over the
paymentDate attribute involves comparing its value with the value of an attribute of a
different object.

Figures 4.15 – 4.18 apply Table 4.6 to the rest of the constraints. For the sake of clarity, in
the figures we indicate events of type UpdateAttribute(Attr,ET) as just
UpdateAttribute(Attr) when ET is clear from the context (i.e. the name of the attribute is
not ambiguous).

:IteratorExp
 (forAll)

:OperationCallExp
 (<=)

:AssociationEndCallExp
 (shipment)

:VariableExp
 (self)

:AttributeCallExp
(plannedShipDate)

:VariableExp
 (sh)

:AttributeCallExp
 (paymentDate)

:VariableExp
 (self)

:OperationCallExp
 (+)

:IntegerLiteralExp
(30)

+ −

+

+

+ − −

+

InsertRT(DeliveredIn)

UpdateAttribute(plannedShipDate)

UpdateAttribute(paymentDate)

Figure 4.14. PSEs for ValidShipDate

-49-

:OperationCallExp
(and)

:OperationCallExp
(<=)

:AttributeCallExp
(maxDiscount)

:VariableExp
 (self)

:IntegerLiteralExp
(60)

:OperationCallExp
(>)

:AttributeCallExp
(price)

:VariableExp
 (self)

:IntegerLiteralExp
(0)

+ − − +

+ + UpdateAttribute(price) UpdateAttribute(maxDiscount)

InsertET(Product) InsertET(Product)

Figure 4.15. PSEs for constraint CorrectProduct

:IteratorExp
 (forAll)

:OperationCallExp
 (<=)

:AssociationEndCallExp
 (customer)

:VariableExp
 (self)

:AttributeCallExp
(maxPendingAmount)

:VariableExp
 (self)

:IteratorExp
(collect)

:OperationCallExp
(sum)

:IteratorExp
 (select)

:AssociationEndCallExp
(sale)

:VariableExp
(c)

:OperationCallExp
 (>)

:AttributeCallExp
(paymentDate)

:OperationCallExp
(Time::now)

:AttributeCallExp
(amount)

:VariableExp
(s)

:VariableExp
(sa)

−

+

+ +

+

+

+

+ −

+

+

+

+

InsertRT(BelongsTo)

UpdateAttribute(amount)

UpdateAttribute(maxPendingAmount)

InsertRT(Purchases)

UpdateAttribute(paymentDate) +

Figure 4.16. PSEs for constraint NotTooPendingSales

-50-

:OperationCallExp
(size)

:AssociationEndCallExp
(customer)

:VariableExp
 (self)

:OperationCallExp
(>=)

:IntegerLiteralExp
(3)

− +

−

−

DeleteRT(BelongsTo)

InsertET(Category)

Figure 4.17. PSEs for constraint AtLeastThreeCustomers

:OperationCallExp
(size)

:OperationCallExp
(<=)

:IntegerLiteralExp
(20)

:OperationCallExp
(RestrictedProduct::allInstances)

− +

+ InsertET(RestrictedProduct)
SpecializeET(RestrictedProduct)

Figure 4.18. PSEs for constraint NumberOfRestrictedProducts

4.5 Summary

Table 4.7 summarizes the results of processing all example constraints to obtain their set of
PSEs.

We would like to remark that the main benefit of determining the PSEs of a constraint is
that it avoids a lot of unnecessary verifications when checking the state of the IB. With our
results we may reduce the number of constraints to be considered during the integrity
checking process since the events that can really violate the constraints are a small subset
of all events affecting the elements referenced in the constraint body (which is a common
strategy to compute the PSEs in other methods, see Chapter 9).

As an example, neither insertions nor deletions of sales and shipments may violate
ValidShipDate. New sales (shipments) can only induce a constraint violation when we
assign them to an existing shipment (sale), which implies the issue of an
InsertRT(DeliveredIn) event type, already a PSE for the constraint. Similarly, the
DeleteET(Customer) event type is not a PSE for the constraint AtLeastThreeCustomers.
Deletion of customers not related with a category (though this is a situation not permitted
in our particular running example) does not decrease the number of costumers per
category, and thus, it may not induce the violation of the constraint). It is the deletion of
the link (DeleteRT(BelongsTo) event type) between the customer and the category

-51-

(deletion that can be a preliminary before deleting the customer itself) what can violate the
constraint.

Another relevant example is the constraint NotTooPendingSales. Even though this
constraint involves three different entity types of the CS, only five event types are PSEs for
the constraint.

Table 4.7. Summary of the PSEs for each constraint of the running example

Constraint PSE
UpdateAttribute(paymentDate, Sale)

UpdateAttribute(plannedShipDate, Shipment)

ValidShipDate

InsertRT(DeliveredIn)

InsertET(Product)

UpdateAttribute(price,Product)

CorrectProduct

UpdateAttribute(maxDiscount,Product)

UpdateAttribute(maxPendingAmount,Category)

InsertRT(BelongsTo)

InsertRT(Purchases)

UpdateAttribute(amount, Sale)

NotTooPendingSales

UpdateAttribute(paymentDate,Sale)

DeleteRT(BelongsTo) AtleastThreeCustomers

InsertET(Category)

InsertET(RestrictedProduct) NumberOfRestrictedProducts

SpecializeET(RestrictedProduct)

-52-

-53-

5. Obtaining an appropriate representation for a
constraint regarding a structural event

Due to the high expressiveness of the OCL language, the designer has different syntactic
possibilities to express each integrity constraint, all of them semantically-equivalent. Two
constraints c1 and c2 are semantically-equivalent when the IB satisfies c1 iff also satisfies
c2.

Among all possible alternatives, the designer chooses one at definition time to represent
the constraint (we do not assume the designer uses any particular criterion). However, it
may happen that the selected representation is not the most adequate to efficiently check
the constraint after an IB update (see the example in Section 1.1.5).

The aim of this chapter is to generate, for each PSE ev of a constraint c, an appropriate
alternative representation of c regarding ev. We say that an alternative representation ar of
a constraint c is an appropriate one with respect to a PSE ev when checking c expressed as
ar after events of type ev requires taking into account less entities of the IB than the
entities required to check c using any other alternative representation we may generate.
The computation of the number of instances involved in the verification of a constraint
after a given event is addressed in the next chapter. Obviously, for event types that are not
PSEs for c, we do not need to generate an alternative representation of c since c does need
to be checked after such events. Moreover, for some event types we could have several
alternative representations all of them equally appropriate.

There exist two different ways to generate an alternative representation for a given
integrity constraint: 1 - we can either replace the body of the constraint with an equivalent
one (as it happens with the simplification rules of Chapter 3) or 2 – we may rewrite the
constraint by using a different entity type as a context type for the constraint (for instance,
using Shipment instead of Sale as a context type for the ValidShipDate constraint). We
have already addressed the first possibility when simplifying the constraint according to
the rules of Chapter 3. Therefore, when looking for alternative representations we just need
to care about the possible alternatives due to context changes.

To obtain an appropriate alternative for a given PSE, we first select from the set of possible
context types for the constraint the one that it is most suited with respect to that event type
(i.e. the one that will result in an efficient incremental checking when verifying the
constraint after the issue of events of that kind). Then, we generate a new version of the

-54-

constraint using as a context type, the selected type. The same type may be the best context
type for several PSEs of the constraint.

At the end of the process, an integrity constraint ic with a set of PSEs setPSE is split up into
a set of alternative constraints ic1…icn (where n>=1), each one with its corresponding set of
PSEs setPSEi (where setPSEi ⊂ setPSE and ∪ setPSEi = setPSE). As an example, Figure 5.1
shows the generation of alternative constraints for the integrity constraint ic. The original
constraint is already an appropriate alternative for the PSEs PSE1…PSEf, the alternative
version ic1 is the best representation for PSEf+1…PSEi and so forth.

Figure 5.1 Generation of several alternatives for the constraint ic.

5.1 Deciding the best context type for a constraint with respect to a
specific structural event

The best context to check an integrity constraint ic after applying an event of type ev over
the IB is automatically drawn from the node where ev is assigned in the tree representing
ic. We denote this node by nodeev.

For some constraints we may have several nodeev nodes (i.e. two different nodes of the tree
include the same event type ev, as an example see the event type InsertET(Product) in the
CorrectProduct constraint; Figure 4.15). In such a case, we repeat the process explained in
this chapter for each nodeev. This implies that we may end up (depending on the constraint
tree structure) with two different alternatives of the constraint for the same event type, one
for each different occurrence of the event type in the constraint tree. Then, as it will be
explained in the next chapter, an issue of an event of that type will require verifying both
alternatives since each event may induce the violation of a different set of entities in the
IB, just as if they were different events. For instance, given a constraint stating that the
salary of an employee must be lower than the salary of his/her boss, after updating the
salary attribute of an employee e, if e is a boss we must check that the new salary is still

-55-

greater than the salary of the employees. If e is just an employee we must check that the
new salary is still lower than the salary of his/her boss.

To determine the context type, we must consider whether nodeev participates (i.e. is
included) in an individual condition or in a collection condition. Intuitively, individual
conditions must be verified for each individual entity (for instance, each individual product
must satisfy the CorrectProduct constraint). In contrast, collection conditions must be
verified by the set of entities affected by the condition as a whole (for instance, in
NotTooPendingSales, the sum of all sales of a customer must satisfy the
maxPendingAmount condition).

We define that a node n participates in a collection condition when n is used to compute an
aggregate operator or a select iterator. Formally, when n verifies that:

{∃n’| n’∈ PathRoot(n) and ((n’.oclIsTypeOf(OperationCallExp) and n’.referredOperation
∈ {size, sum, count}) or (n’.oclIsTypeOf(IteratorExp) and n’.name=’select’))}

where PathRoot(n) is defined as the ordered sequence of nodes encountered between n (the
first node in the sequence) and the root of the tree (the last one). ReferredOperation is a
navigation defined in the OCL metamodel (see Figure 4.2) that relates nodes of type
OperationCallExp with the corresponding operation.

A node participates in an individual condition if it does not participate in a collection
condition.

From Figure 4.14 we may see that all PSEs of ValidShipDate participate in individual
conditions. The same with the PSEs of CorrectProduct (Figure 4.15). On the contrary, all
PSEs of AtLeastThreeCustomers (Figure 4.17) and NumberOfRestrictedProducts (Figure
4.18) are included in collection conditions. In all cases, in their PathRoot we find a size
operation. Finally, constraint NotTooPendingSales (Figure 4.16) has some events
participating in individual conditions (InsertRT(BelongsTo) and
UpdateAttribute(maxPendingAmount)) while the others participate in collection conditions.
In particular, in the PathRoot of the nodeev corresponding to the PSE
UpdateAttribute(amount) we find a node representing the sum operation. In the PathRoot
for the PSEs InsertRT(Purchases) and UpdateAttribute(paymentDate) we find a select
iterator as well.

5.1.1. Best context type for events in individual conditions

Since individual conditions must hold for each individual entity restricted by the
constraint, the best context type for a PSE included in an individual condition is the type of
the entity (or relationship) modified (inserted/deleted/updated) by the PSE. Then, when an
event of that type is issued, we may check the constraint just by applying the constraint
body over the instance modified by the event.

-56-

Let ev be a PSE attached to the node nodeev. If nodeev belongs to an individual condition
then the best context is determined as follows:

- If ev is an InsertET(ET) event type, ET is the best context type.

- If ev is an UpdateAttribute(attr,ET) event type, the best context type is the type of
the elements at the child node of nodeev. The type of the elements in a node n is
retrieved with the expression n.type where type is a role defined in the OCL
metamodel (see the association between the OCLExpression and Classifier
metaclasses in Figure 4.1). For instance, the type of the elements of a node when
the node is a VariableExp coincides with the type of the variable referred in the
node. Similarly, the type of the elements in a NavigationCallExp node is the type of
the participant entity type corresponding to the role traversed in the navigation. In
general, this best context type coincides with ET, but when ET is part of an entity
type taxonomy, the best context might be a subtype of ET.

As an example assume the constraint “context RestrictedProduct inv:
self.price>10000”. Even though the price attribute is defined in the Product
supertype, for UpdateAttribute(price,product) events the best context is the
RestrictedProduct type (which is the type of the self variable, child node of the
node where the update event is attached to) since only the restricted products must
satisfy this constraint.

- If ev is an SpecializeET(ET) or GeneralizeET(ET) event type, the best context type
depends on the kind of OCL expression represented by nodeev. When nodeev is a
VariableExp, the best context is the type of the referred variable (obtained as
explained above). When nodeev is an oclIsKindOf or oclIsTypeOf expression the
best context depends on the type of the element/s of the child node, computed as
commented before. For instance, given the constraint context A inv: self.r1-
>forAll(v:X| v.oclIsTypeOf(Y)), the best context for the specialization and
generalization events is X, since every individual X instance (related with an A
instance) must verify the oclIsTypeOf condition.

- If ev is an InsertRT(RT) event type, the best context type depends on the
multiplicities of RT. When RT is binary relationship type and, at least, one of its
roles has a maximum multiplicity of 1, we define as the best context the type of the
participant playing the opposite role. Otherwise, RT is defined as the best context.
In fact, both alternatives present the same efficiency (when using as a context the
participant type, we may still obtain the single RT instance updated by the event
since that participant type participates at most in one relationship). However,
avoiding, when possible, to select RT as the best context permits to skip its
reification (which later on will be necessary for all relationship types selected as
best context types), and thus, to reduce the complexity of the processed CS.

It is not difficult to see why the best context type for a PSE included in an individual
condition is the type of the modified instance. Given a constraint c defined over a type t

-57-

and with a node n (included in an individual condition) marked with an event ev affecting
instances of type t’, the cost of evaluating the individual condition after applying an event
of type ev when c is defined using t’ as context type requires checking a single instance of
t’ (the modified one). Instead, evaluating the individual condition when c is defined over t
requires first to navigate from t to the related t’ instances. As a result of this navigation we
may obtain several t’ instances which results in a poorer efficiency in the integrity
checking since then we are not considering just the modified one.

Note that, when determining the best context types for individual conditions, we have not
mentioned the event types DeleteRT and DeleteET. Due to the transformation rules
presented in Chapter 3, these events always appear in collection conditions. Since
individual conditions must be verified for each existing entity individually, entities
removed from the IB are not affected by these events. For instance, CorrectProduct
constraint only restricts existing products, and thus, the removal of a product can never
violate the constraint.

In our running example, the constraint ValidShipDate may be violated by three different
structural events (Figure 4.14), all of them included in individual conditions:
InsertRT(DeliveredIn), UpdateAttribute(plannedShipDate,Shipment) and
UpdateAttribute(paymentDate,Sale). Their best context types are therefore DeliveredIn
(the relationship type modified by the event), Shipment (the type of the sh variable
appearing as a child node of the AttributeCallExp node labeled with the
UpdateAttribute(plannedShipDate) event type) and Sale (the type of the self variable
appearing as a child node of the AttributeCallExp for the paymentDate attribute)
respectively. By a similar reasoning we obtain the best context types for the rest of PSEs
participating in individual conditions (see also Table 5.1):

- CorrectProduct: the best context for all the PSEs is the Product entity type. Note
that, for this constraint, both occurrences of the PSE InsertET(Product) generate
the same best context type since both participate in an individual condition.

- NotTooPendingSales: the best context for the PSE
UpdateAttribute(maxPendingAmount) is Category. The best context for the PSE
InsertRT(BelongsTo) is the Customer entity type because of the multiplicities of the
BelongsTo relationship type (the other end of the BelongsTo relationship type
presents a maximum multiplicity of 1).

5.1.2. Best context type for events in individual conditions

The same idea cannot be applied to event types included in collection conditions since
those conditions must be satisfied by the collection as a whole and not by each single entity
affected by the event. Thus, expressing the constraint using as a context type the type of
the modified entity or relationship is not useful because, after every modification, the
whole collection must be recomputed again and the other entities in the collection must

-58-

also be taken into account. For instance, in a constraint like self.X->collect(attr)-
>sum()>val (where X represents a set of navigations, attr an attribute and val a constant
value) we do not force each entity∈ X to have a value in attr greater than val, we only
require the sum of attr for the whole set of entities in X to be greater than val.

Therefore, to facilitate the verification of the constraint we should use as context type the
type of the entity used as a starting point to obtain the collection of entities that must verify
the collection condition. For instance, an InsertRT(Purchases) event (i.e. the assignment of
a sale s to a customer c) may violate the constraint NotTooPendingSales (Figure 4.16). In
this case, the maxPendingAmount condition must be satisfied by the set of sales of each
customer; thus, after assigning s to the customer c, it is enough to check the set of sales of
c to ensure that the IB still satisfies the constraint. Therefore, we may say that c is the
entity used as a starting point to obtain the collection of entities (i.e. the set of sales) that
must verify the maxPendingAmount collection condition. The type of the entity c,
Customer, is the best context type for all PSEs included in this collection condition.

To automatically determine the best context type for collection conditions (i.e. the type
acting as a starting point of the condition) we need, first, to define the auxiliary operation
PathVar(node). Given a node n, PathVar(n) is defined as the ordered sequence of nodes
encountered between n (the first node) and the node representing the self variable or the
allInstances operation (the last node) of the subtree to which n belongs. More precisely,
PathVar(n) is computed as follows:

- The first node in the path is n.

- For each node n included in the path we also include its child node. When the node
has two children and the node represents an iterator expression (as a forAll, a
collect or a select) we include the left child in the path (the structure of the iterator
body is irrelevant to compute the best context type). Otherwise, see the special
treatment for collection operations at the end of this section.

- When a node n included in PathVar represents a variable other than self (i.e.
variables used in select, collect or forAll iterators), we add as a left child the node
pointed to in n.referredVariable.loopExpr (i.e. the node representing the iterator
expression; referredVariable and loopExpr are navigations defined in the OCL
metamodel, see Figure 4.1).

Given an integrity constraint ic, a PSE ev and the path returned by PathVar(nodeev), then,
the node origin of a collection condition nodeor is defined as:

- The left child of the first node n∈ PathVar(nodeev) representing a forAll iterator,
when a select iterator is not encountered between n and the last node in
PathVar(nodeev).

-59-

- Otherwise, the last node in PathVar(nodeev) (i.e. the node representing the self
variable or an allInstaces operation). Note that this is always the case when the last
node is the allInstances operation (constraints with a forAll iterator after an
allInstances operation have been simplified in Chapter 3 by means of reexpressing
the constraint in terms of the self variable).

Let ev be an event included in a collection condition. If nodeor does not represent the
allInstances operation the type of the entities at nodeor is then returned as the best context
type. When nodeor is an OperationCallExp referencing the allInstances operation, the
current context type of the constraint is returned as the best context (in fact, other types
could serve as well as a best context in this case, since the result of the allInstances
operation is independent from the context type of the constraint, it only depends on the
entity type where the operation is applied over).

Note that choosing as best context type a type different from the type t of the entities at
nodeor does not improve the efficiency of the integrity checking. Given a PSE ev that
modifies instances of type t’ and included in a collection condition col, to check col after
an event of type ev, we are forced to navigate from the modified t’ instance to the related
instance/s of type t to start evaluating col (since t is the starting point to obtain the
collection of entities that must satisfy col). Moreover, when processing the schema as
shown in the next chapter, using t as the best context type avoids some redundant
verifications when the modification of the IB consists of several events affecting a set of t’
instances (or any other instances of a type t’’ also involved in the collection condition)
related with the same t instance.

As an example, Figure 5.2 shows the PathVar and the nodeor values when nodeev is the
node corresponding to the PSE UpdateAttribute(paymentDate,Sale) in the constraint tree
of NotTooPendingSales. The numbers indicate the order in which the nodes are included in
the PathVar sequence of nodes. In this example, the node representing a navigation
through the customer role is the origin of the collection condition where this PSE
participates (the maxPendingAmount condition must be satisfied fore each customer).
Therefore, Customer (which is the type of the entities at that node) is the best context type
for this event. Customer is also the best context for the other PSEs included in the same
collection condition (updates of amount attributes and inserts of Purchases relationships;
the other PSEs of the constraint are included in individual conditions, see the previous
section).

The PathVar for the PSEs of constraints AtLeastThreeCustomers (Figure 4.17) and
NumberOfRestrictedProducts (Figure 4.18) are much shorter and they just involve one or
two nodes. In AtLeastThreeCustomers the best context for both PSEs
(DeleteRT(BelongsTo) and InsertET(Category)) is Category, which is the type of the self
variable (nodeor of the collection condition). For the second constraint the best context is

-60-

RestrictedProduct, already the original context type of the constraint since nodeor is the
node corresponding to the allInstances operation.

 :IteratorExp
 (forAll)

:OperationCallExp
 (<=)

:AssociationEndCallExp
 (customer)

:VariableExp
 (self)

:AttributeCallExp
(maxPendingAmount)

:VariableExp
 (self)

:IteratorExp
(collect)

:OperationCallExp
(sum)

:IteratorExp
 (select)

:AssociationEndCallExp
(sale)

:VariableExp
(c)

:OperationCallExp
 (<=)

:AttributeCallExp
(paymentDate)

:OperationCallExp
(Time::now)

:AttributeCallExp
(amount)

:VariableExp
(s)

:VariableExp
(sa)

+

1
+

+

Nodeor

UpdateAttribute(paymentDate)

2

3

4

5

6

7

8

Figure 5.2. Nodeor for constraint NotTooPendingSales

For some constraints we do not have a single origin for the collection condition. This
happens when the collection of entities col affected by the collection condition is obtained
by means of the union (or intersection, difference,…) of several other collections col1..coln.
Then, we have different possible PathVars, one for each collection coli. These different
PathVar sequences are obtained taking a different path every time we find a node
representing one of the collection operations union, intersection, difference, symmetric
difference or product.

In this case, to determine the best context for a PSE ev, we apply the previous process to
each PathVar(nodeev). Note that different PathVar sequences may result in different best
contexts for the same PSE. However, each one of these best contexts is only relevant for
the subset of PathVar sequences resulting in that best context. This information is stored
together with the PSE in the constraint tree. We will take this information into account
when computing the instances to check the constraint after the issue of the PSE in the next
chapter.

-61-

As an example, consider the example CS of Figure 5.3. Over this example schema we
could define the following constraint:

context Department inv WorkOverload: self.employee->forAll(e| e.project-
>union(self.project)->collect(p|p.budget) ->sum()<10000)

stating that all employees of a department must verify that the sum of the budgets of
his/her projects plus the budget of the projects assigned to the department as a whole must
be lower than 10000 euros.

 EmployeeDepartment

Project
budget: Money

*

*

*

0..1 0..1

1

Figure 5.3. Example for collection conditions

One of the PSEs for this constraint is the event type UpdateAttribute(budget,Project).
When computing the PathVar for this event we have two possible solutions (Figure 5.4).
The first one is the path corresponding to the self.project subexpression (nodes
{1,2,3,4,5B,6B}) while the other corresponds to the self.employee->forAll(e.project…)
subexpression (nodes {1,2,3,4,5A,6A,7A,8A,9A}).

 :IteratorExp
 (forAll)

:OperationCallExp
 (>)

:AssociationEndCallExp
 (employee)

:VariableExp
 (self)

:IntegerLiteralExp
(10000)

:IteratorExp
(collect)

:OperationCallExp
(sum)

:OperationCallExp
 (union)

:AssociationEndCallExp
(project)

:VariableExp
(e)

:AttributeCallExp
(budget)

:VariableExp
(p)

+

NodeorA

UpdateAttribute(budget)
4

5A

6A

7A

8A

9A

:AttributeCallExp
(project)

:VariableExp
 (self)

1

2 5B

6B NodeorB

3

Figure 5.4. PathVars for the UpdateAttribute(budget) event type

-62-

In the first case, Department is returned as the best context type while in the second one
Employee is the best context. This means than when issuing the update event over a project
p, we will have to check:

1- The constraint as defined over Department for the department d related with p (if any).
In this scenario we end up verifying that each employee working in d verifies the
budget condition (due to the budget change of p some employee in d may violate the
constraint).

2- The constraint as redefined over Employee for the employee e related with p (if any).
In this case, we just need to check that e does not violate the budget condition. Other
employees working in the same department are not affected.

5.2 Redefining a constraint in terms of a new context type

Once we have determined the best context type for each PSE ev (see Table 5.1) we must
redefine the original constraint in terms of these new best contexts. Each new constraint
representation must be semantically-equivalent to the original one, at least with respect to
the particular event type ev. Two constraints c1 and c2 are semantically-equivalent with
respect to a PSE when the application of an event of that type over a consistent state of the
IB results in a new state of the IB that satisfies c1 iff it also satisfies c2.

Table 5.1. Summary of the best contexts for all PSEs of the constraints of the running example

Constraint PSE Individual/
Collection

Best
Context

UpdateAttribute(paymentDate, Sale) Individual Sale

UpdateAttribute(plannedShipDate, Shipment) Individual Shipment

ValidShipDate

InsertRT(DeliveredIn) Individual DeliveredIn

InsertET(Product) Individual Product

UpdateAttribute(price,Product) Individual Product

CorrectProduct

UpdateAttribute(maxDiscount,Product) Individual Product

UpdateAttribute(maxPendingAmount,Category) Individual Category

InsertRT(BelongsTo) Individual Customer

InsertRT(Purchases) Collection Customer

UpdateAttribute(amount, Sale) Collection Customer

NotTooPendingSales

UpdateAttribute(paymentDate,Sale) Collection Customer

DeleteRT(BelongsTo) Collection Category AtleastThreeCustomers

InsertET(Category) Collection Category

InsertET(RestrictedProduct) Collection RestrictProd NumberOfRestricted
Products SpecializeET(RestrictedProduct) Collection RestrictProd

-63-

The first step is to decide which parts of the initial constraint have to be redefined. Since
both constraints only need to be equivalent with regards to the particular PSE ev, when
transforming the constraint to the new context type we need not worry about those literals
of the original constraint that cannot be violated by events of type ev.

Given that the body of the initial integrity constraint ic follows the pattern L1 and L2 and …
and Ln (as CorrectProduct in Figure 4.15) and that ev can only induce a change in the truth
value of L1, the redefined constraint c’ does not need to include the verification of the
literals L2…Ln. Since ev does not affect them, if those literals were true before ev was
executed (we always assume, as usual, that the IB is in a consistent state prior to its
modification) they will still hold after its execution. When they do not hold it is because
some other event, ev’, has been applied. The constraint in charge of verifying the IB after
events of type ev’ will take care of this possible violation.

To prune the parts of the constraint tree that are irrelevant to an event ev (and thus, those
parts that can be discarded during the redefinition of the constraint) we apply the following
process. Let ev be an event attached to a node nodeev. A node nand representing an AND
condition may be pruned if:

{nand ∈ PathRoot(nodeev) and ¬∃n’| n’∈PathRoot(nand) and n’.oclIsTypeOf(IteratorExp)
and n’.name=”select”}.

Nand nodes are replaced with the child node nchild ∈ PathRoot(nodeev). Consequently, the
other child of nand (i.e. the other condition) is removed from the tree.

As an example, consider the tree corresponding to the constraint CorrectProduct (Figure
4.15). Figure 5.5 shows the simplified trees for each PSE. For events of type
UpdateAttribute(price,Product) we just need to verify the literal self.price>0. For the PSE
UpdateAttribute(maxDiscount,Product) it is enough to consider the literal
self.maxDiscount<=60. Note that the PSE InsertET(Product) appears in both literals, and
thus, the complete original constraint needs to be verified after events of that type.

:OperationCallExp

(<=)

:AttributeCallExp
(maxDiscount)

:VariableExp
 (self)

:IntegerLiteralExp
(60)

:OperationCallExp
(>)

:AttributeCallExp
(price)

:VariableExp
 (self)

:IntegerLiteralExp
(0)

+ − − +

+ + UpdateAttribute(price) UpdateAttribute(maxDiscount)

InsertET(Product) InsertET(Product)

Figure 5.5. Simplified trees for the PSEs of constraint CorrectProduct

-64-

Afterwards, when the best context type ct’ determined for the event ev is different from the
initial context type ct of the constraint c (context ct inv c: X), the second step is to redefine
the relevant literals of c (i.e. the ones not pruned in the previous step) in terms of ct’ to
improve the efficiency of the integrity checking. The new constraint representation c’ may
be obtained applying the following transformation:

context ct’ inv c’: self.r1.r2. … rn->notEmpty() implies self.r1.r2. … rn ->forAll(v|X’)

where X’ results from replacing all occurrences of self in X with v during the
transformation to c’ and r1…rn are a sequence of roles that permit to navigate from ct’ to ct.
Obviously, in the CS there may exist several different sequences of navigations that reach
ct from ct’. Each different sequence would generate a different transformation. However,
for our purposes, we need to navigate traversing the roles opposite to the ones used in c to
reach ct’ (we know for sure that ct’ is reached in c, otherwise ct’, ct’<>ct, would never be
selected as the best context type for the PSE ev). More precisely, we need to navigate using
the opposite roles of the roles appearing in PathVar(nodeev), being nodeev the node where
ev is attached to.

Therefore, given that in c, we navigate from ct to ct’ using the sequence of roles
r1’.r2’…..rn’, our transformation does the reverse navigation, and thus, in the
transformation r1 is the opposite role of rn’, r2 is the opposite role of rn-1’ and so forth.

Note also that when a role ri’ is a navigation from a subtype sub to another entity type
using a relationship type defined in a supertype of sub, we must add the subexpression
“select(oclIsKindOf(sub))” (or “any(oclIsKindof(sub))” when the result must be a single
object) to the corresponding opposite role rj to ensure that only the instances of the subtype
sub are retrieved by the navigation. Similarly, we will need to add an explicit cast (using
the oclAsType operator) to the particular subtype in order to access its attributes and roles.

We would like to remark that c and c’ are semantically-equivalent since both apply the
same condition (the condition X) to the restricted entities and apply it over all relevant
entities of ct. Every time we evaluate c’ over an instance of ct’ we reach (and verify) some
of the instances of ct restricted by c in the original constraint. It may happen that some
instances of ct are never reached (if they are not related to any instance of ct’) and remain
unchecked after the verification of the new state of the IB because of the application of an
event of type ev. However, those instances are not possibly affected by events of type ev
and thus they are irrelevant to the integrity checking due to events of type ev.

As an example, the constraint ValidShipDate (self.shipment->forAll(sh|
sh.plannedShipDate<=self.paymentDate+30) must be redefined over Shipment to verify
the IB after events of type UpdateAttribute(plannedShipDate,Shipment). According to the
previous transformation the redefined constraint ValidShipDate2 is:

-65-

context Shipment inv ValidShipDate2: self.sale->notEmpty() implies
self.sale->forAll(s| s.shipment->forAll(sh| sh.plannedShipDate<=s.paymentDate+30))

where sale is the role that permits to navigate from a shipment to its related sales. The
body of the first forAll coincides with the body of the original constraint once all
references to the self variable have been replaced with references to the variable s of the
forAll iterator expression.

We provide some rules to simplify the body of the new constraint c’. After simplifying the
new constraint with this set of rules we can also apply the simplification rules of Chapter 3
to obtain a better result.

1. self.r1.r2.…rn->notEmpty() → true, if the multiplicity of self.r1.r2. … rn is at least
one, i.e. if all the minimum multiplicities of r1.r2. … rn are at least one. In such a
case, we know for sure that the navigation will return a non-empty set, and thus,
that the evaluation of the notEmpty operation will return a true value.

2. self.r1.r2. … rn->forAll(v|X) → X (where all the occurrences of v in X are replaced
with self.r1.r2. … rn), if the multiplicity of self.r1.r2. … rn is at most one, i.e. if all
the maximum multiplicities of r1.r2. … rn are at most one. Then, the forAll iterator
is no longer necessary.

3. self.r1.r2.….ri.rj… rn->forAll(v|X) → self.r1.r2. ….ri-1.rj+1… rn->forAll(v|X), when
ri and rj are the two roles of the same binary association (see Figure 5.6). When the
maximum multiplicity of rj is one, the set of objects at rj are the same than those at
ri-1, and thus, the navigations ri and rj are redundant (in this case the rule is
applicable even if there is not a forAll iterator after rn). Otherwise, we may have
more objects at rj, and, in general, this entails that these additional objects are not
verified in the right hand expression of the rule. However, we can still apply the
rule if the minimum multiplicity of all opposite roles from r1 to ri-1 is at least one,
since then, those objects must be related with a (different) instance of the context
type, and thus, they will be checked when evaluating that instance. When ri may
have a zero minimum multiplicity, after the simplification we could be enforcing
some objects not affected in the original constraint. Note that in such a case, the
notEmpty clause of the general transformation rule will not be simplified by rule 1,
and thus, we ensure that those objects will never be evaluated.

4. self.r1.r2… rn->forAll(v1,v2|X) → self.r1.r2… rn->forAll(v2|X) (where all
occurrences of v1 in X are replaced with self), if the type of the objects at rn
coincides with the type of the self variable and all the navigations from r1 to rn are
redundant. This rule is similar to the rule to simplify the allInstances operation
presented in Chapter 3. We cannot completely simplify the forAll iterator since the

-66-

constraint requires a comparison between an object of type t and a set of other
objects of the same type t.

5. self.r1.r2...ri->forAll(v| v.rj…rn->forAll(v2|X)) → self.r1.r2….ri.rj…rn-
>forAll(v2|X)), when X does not contain any reference to v. The two expressions are
equivalent since in both we apply the condition X over the objects obtained at rn.
When X contains references to v they must be replaced with the expression
v2.rn’…rj’ where rn’..rj’ represent the opposite roles of rn…rj (for instance, rn’ is the
opposite of rn). Note that when, the multiplicity of some rk (where j>=k<=n) is
greater than 1 then the left hand side must be replaced by the expression
self.r1.r2…….ri.rj …rn ->forAll(v2| v2.rn’…rj’->forAll(v3| X)) where references to v
in the original constraint are replaced with v3. This later case only makes sense
when ri and rj are the two roles of the same relationship type, which implies that the
new expression can be simplified with rule 3 afterwards.

6. Given a reified entity type RET (see Figure 5.7): X.ret.b.Y → X.b.Y. According to
the OCL standard we can navigate to B either by accessing first the reified type or
directly using the role b of B. In both cases we obtain the same set of entities.

7. Given a reified entity type RET: context RET inv: self.a.b.r1..rn->forAll(X) →
context RET inv: self.b.r1..rn->forAll(X). Even though, given an entity e of the RET
type, the right hand side expression may verify less entities than the left hand
expression (since e.b may return less entities than e.a.b) those objects will be
verified when evaluating other entities of RET .

 B C R2 ri rj
1..* 1

A R1 ri-1

D
rj+1R3

Figure 5.6. Abstract example schema for rule 3

 A Bb

RET

a

Figure 5.7. Example of a reified entity type

All rules can be applied regardless the other subexpressions forming the constraint body
except for rule 3 when the constraint body is a disjunction of literals following the pattern:
self.r1..rn->forAll(X) or … or self.r1…rn->forAll(Y) (where r1..rn represent exactly the same
sequence of navigations in the disjunctions). In this case, only the literal/s affected by the
event for which the generated constraint is the appropriate alternative may be simplified.
Assuming that the event is included in the X condition, the simplified constraint would be:

-67-

X or self.r1…rn->forAll(Y). Note that the body “X or Y” would not be a correct solution
since the original constraint does not state that all entities at rn must satisfy X or Y, it states
that either all entities at rn satisfy X or all entities satisfy Y. Then, if an event over an entity
e makes that e evaluates X to false, we need to verify that at least all entities (and not just
e) verify Y.

Figures 5.8-5.10 show the new alternative constraint representations required as a result of
the computation of the best context types for the PSEs of all constraints of the running
example (see Table 5.1). The new generated constraints representations are:
ValidShipDate2 (ValidShipDate defined over Shipment), ValidShipDate3 (ValidShipDate
defined over DeliveredIn) and NotTooPendingSales2 (NotTooPendingSales defined over
Customer). For each constraint redefinition we show the initial result of its transformation
plus the sequence of rules our method applies in order to obtain the final body of the
constraint. For the sake of simplicity when applying rule 1 we have applied at the same
time the sequence of rules: true implies X not true or X false or X X, as defined in
Chapter 3.

 context Shipment inv ValidShipDate2: self.sale->notEmpty() implies
self.sale->forAll(s| s.shipment->forAll(sh| sh.plannedShipDate<=s.paymentDate+30))

self.sale->forAll(s| s.shipment->forAll(sh| sh.plannedShipDate<=s.paymentDate+30))

self.sale.shipment->forAll(sh| sh.sale->forAll(s| sh.plannedShipDate<=s.paymentDate+30))

self ->forAll(sh| sh.sale->forAll(s| sh.plannedShipDate<=s.paymentDate+30))

self.sale-> forAll(s| self.plannedShipDate<=s.paymentDate+30)

Rule 1

Rule 5

Rule 3

Rule 2

Figure 5.8 Simplification of ValidShipDate when defined over Shipment

-68-

 context DeliveredIn inv ValidShipDate3: self.sale->notEmpty() implies
self.sale->forAll(s| s.shipment->forAll(sh| sh.plannedShipDate<=s.paymentDate+30))

self.sale->forAll(s| s.shipment->forAll(sh| sh.plannedShipDate<=s.paymentDate+30))

self.sale.shipment->forAll(sh| sh.plannedShipDate<=self.sale.paymentDate+30)

self.shipment->forAll(sh| sh.plannedShipDate<=self.sale.paymentDate+30)

self.shipment.plannedShipDate<=self.sale.paymentDate+30

Rule 1

Rule 2

Rule 7

Rule 2

Figure 5.9 Simplification of ValidShipDate when defined over DeliveredIn

context Customer inv NotTooPendingSales2: self.category->notEmpty() implies
self.category->forAll(cat| cat.customer->forAll(c| c.sale->select(s|s.paymentDate>Time.now())->

collect(sa|sa.amount)->sum()<=cat.maxPendingAmount))

self.category->forAll(cat| cat.customer->forAll(c| c.sale->select(paymentDate>Time.now())->
collect(sa|sa.amount)->sum()<=cat.maxPendingAmount))

self.category.customer->forAll(c| c.sale->select(s|paymentDate>Time.now())->
collect(sa|sa.amount)-> sum()<=self.category.maxPendingAmount)

self->forAll(c| c.sale->select(s|paymentDate>Time.now())->
collect(sa|sa.amount)->sum()<=self.category.maxPendingAmount))

self.sale->select(s|paymentDate>Time.now())->collect(sa|amount)->
sum()<=self.category.maxPendingAmount

Rule 1

Rule 2

Rule 3

Rule 2

Figure 5.10 Simplification of NotTooPendingSales when defined over Customer

-69-

5.3 Summary

Table 5.2 summarizes the final results obtained after applying the whole process explained
in this chapter over all constraints of our running example.

Although the number of different constraints has increased, we have improved the
efficiency of the integrity checking since each constraint is specialized to be efficiently
verified after the issue of some particular types of structural events.

Table 5.2. Summary of the best constraint representations for each PSE

Constraint PSE Best alternative

UpdateAttribute(

paymentDate, Sale)

context Sale inv ValidShipDate: self.shipment->forAll(sh|
sh.plannedShipDate<=self.paymentDate+30)

UpdateAttribute(plannedShi

pDate,Shipment)

context Shipment inv ValidShipDate2: self.sale->forAll(s|
self.plannedShipDate<=s.paymentDate+30)

ValidShip

Date

InsertRT(DeliveredIn) Context DeliveredIn inv ValidShipDate3:
self.shipment.plannedShipDate<=self.sale.paymentDate+30

InsertET(Product) context Product inv CorrectProduct: self.price>0 and
self.maxDiscount<=60

UpdateAttribute(price,

Product)
context Product inv CorrectProduct2: self.price>0

Correct

Product

UpdateAttribute(

maxDiscount,Product)
context Product inv CorrectProduct3: self.maxDiscount<=60

UpdateAttribute(

maxPendingAmount,

Category)

context Category inv NotTooPendingSales: self.customer-
>forAll(c| c.sale->select(s| s.paymentDate>Time.now())->
collect(sa|sa.amount)->sum()<=self.maxPendingAmount)

InsertRT(BelongsTo)

InsertRT(Purchases)

UpdateAttribute(

Amount, Sale)

NotTooPen

dingSales

UpdateAttribute(

paymentDate,Sale)

context Customer inv NotTooPendingSales2: self.sale->select(s|
s.paymentDate>Time.now())->collect(sa|sa.amount)-
>sum()<=self.category.maxPendingAmount

DeleteRT(BelongsTo) Atleast

Three

Customers
InsertET(Category)

context Category inv AtLeastThreeCustomers: self.customer->
size()>=3

InsertET(

RestrictedProduct)

NumberOf

Restricted

Products SpecializeET(RestrictedPro

duct)

context RestrictedProduct inv NumberOfRestrictedProducts:
RestrictedProduct.allInstances()->size()<=20

-70-

-71-

6. Evaluating the constraints over the relevant instances

A constraint c defined over a context type t must be satisfied by all instances of t.
Nevertheless, it is not necessary to check that all instances of t satisfy c every time an event
of type ev (where ev is one of the PSE for c) is applied over the IB. Only those instances
relevant to (i.e. affected by) the issue of the event need to be considered. This incremental
checking (incremental since we reason from the applied events in order to reduce the
number of instances of t to consider) improves the efficiency of the integrity checking
process.

Intuitively, the relevant instances are those instances of t that are related (directly or
indirectly) to the instance modified by the event. The state of the other instances of t has
not changed, and thus, they still satisfy c (we assume that the IB was in a consistent state
prior the issue of the event).

As an example, consider again the NotTooPendingSales2 constraint (one of the constraints
generated in the previous chapter, see its tree representation in Figure 6.1). After the
update of the amount of sale s3 and the insertion of a new purchase for customer c1, the
relevant instances are just c1 and s3.customer (i.e. the customer that purchased sale s3).

:OperationCallExp
 (<=)

:AttributeCallExp
(maxPendingAmount)

:VariableExp
 (self)

:IteratorExp
(collect)

:OperationCallExp
(sum)

:IteratorExp
 (select)

:AssociationEndCallExp
(sale)

:VariableExp
(self)

:OperationCallExp
 (>)

:AttributeCallExp
(paymentDate)

:OperationCallExp
(Time::now)

:AttributeCallExp
(amount)

:VariableExp
(s)

:VariableExp
(sa)

UpdateAttribute(amount)

InsertRT(Purchases)

UpdateAttribute(paymentDate)

:AssociationEndCallExp
(category)

InsertRT(BelongsTo)

Figure 6.1. Constraint NotTooPendingSales2

-72-

Given a conceptual schema CS with a set of integrity constraints, the aim of this chapter is
to generate a CS’ where the definition of all integrity constraints has been modified in
order to automatically check them only in terms of the relevant instances. CS’ adds to CS
some auxiliary entity types necessaries to compute the relevant instances.

In particular, given a constraint c, we create a structural event type for each PSE of c. This
type is in charge of recording the events of that type issued during the IB update. Then, the
relevant instances are computed based on the population of these structural event types.
Finally, our method redefines c so that only the relevant instances are considered during
the integrity checking of c. The way we compute the relevant instances ensures that a
constraint will not be verified if no PSE for the constraint has been issued during the IB
update. Note that, when applying this part of the process over the constraints obtained at
the end of the previous step (see Chapter 5), their PSEs may be a subset of the whole set of
PSEs determined in Chapter 4 (for instance, the UpdateAttribute(maxPendingAmount)
does not appear as a PSE of NotTooPendingSales2 since this is not an appropriate
alternative representation to check the IB after events of that type).

The rest of the chapter is structured as follows. Next section describes the number and
structure of the structural event types. Then, Section 6.2 presents the modifications
required over the CS to compute the relevant instances and to get an incremental
evaluation of the constraints. These modifications depend on the structure of the constraint
tree and on the placement of the PSEs inside the tree. Finally, section 6.3 applies the whole
process over our running example.

6.1 Definition of structural event types

Structural event types are a specific set of entity types required to explicitly record the
structural events issued during the update of the IB. More concretely, these types are
devoted to record the information about the entities and relationships modified during the
application of those events.

We must define a structural event type for each different structural event included in the
set of PSEs for some constraint of the CS. Therefore, we create an iET structural event type
for each InsertET(ET) event type, a dET type for each Delete(ET) event type, a gET type
for each GeneralizetET(ET) event type, an sET type for each SpecializeET(ET) event type,
an uETAttribute for each UpdateAttribute(Attr,ET) event type, an iRT type for each
InsertRT(RT) event type and a dRT type for each DeleteRT(RT) events type. Note that we
create at most one structural event type for each possible event type regardless the number
of constraints having that event type as a PSE.

As an example, the list of structural event types we will define for the constraint
NotTooPendingSales2, according to its set of PSEs (see Figure 6.1), is the following:
uSalePaymentDate (update of the payment date of a sale), uSaleAmount (update of the

-73-

amount of a sale), iBelongsTo (insertion in the relationship type BelongsTo) and
iPurchases (insertion in the relationship type Purchases).

6.1.1 Structure of structural event types

In the definition of these types we assume that the IB corresponding to the CS is updated at
run-time with the modifications produced by the structural events. Thus, we can avoid
redundancies by not including in the structural event type the information about the
changes produced by the event over the modified entity. We just need to know the
modified entity. Moreover, all structural event types are stereotyped with the stereotype
<<structural event>> to differentiate them from the other entity types of the CS.

Therefore, the structural event types recording insert (InsertET) or update
(UpdateAttribute) events are defined as types without attributes and with just one
relationship type relating the structural event type with the corresponding entity type.
Through this reference we can access the entity modified by the structural event.

The multiplicity of the relationship type between the structural event type and the entity
type is ‘1’ in the role next to the entity type and ‘0..1’ in the role next to the structural
event type. The reason is that an instance of the structural event type must necessarily refer
to an instance of its entity type while an instance of the entity type may appear, at most
once, in the structural event type. For the sake of simplicity, the role next to the entity type
in all these relationship types is always named as ref.

Figure 6.2 shows, as an example, the structural event type uSalePaymentDate
corresponding to the UpdateAttribute(paymentDate,Sale) event type. Note that the only
information recorded for each instance of uSalePaymentDate is a reference to the
corresponding modified instance in the Sale type to access its information when required.
Assuming that the population of the Sale entity type is the set of sales {s1,s2,…,sn} and that
the modification of the IB consist of two modification events over the paymentDate of
sales s1 and s5, the population of the type uSalePaymentDate would be: <u1,s1>, <u2,s5>
where ui represents the object identifier of the uSalePaymentDate instances and s1 and s5
the references to the updated sales. Note that the type uSalePaymentDate does not include
the information about the new value of the updated sale; we may use the reference towards
the Sale type to obtain this information.

 0..11
ref

Sale <<structural event>>
uSalePaymentDate

Figure 6.2 Structural event type for the event uSalePaymentDate over Sale

For structural event types in charge of recording deletion events we cannot follow the
previous structure since we cannot relate the instance of the structural event type with the
corresponding deleted entity of the entity type (since it does not exist). However, this does

-74-

not suppose a problem because to handle constraints including this kind of events as PSE
(see section 6.2.4) it is enough with knowing whether such an event of that type has been
issued or not. Therefore, to record DeleteET events we just create a new entity type with no
attributes nor relationship types. Every time a deletion event is issued we create an empty
instance in the appropriate dET type.

Structural event types corresponding to InsertRT(RT) or DeleteRT(RT) events do not
contain attributes either. They contain as many relationship types as the number of
participants in RT. Each one of these relationship types relates the structural event type
with one of the participants of RT. The name of the roles next to the participant entity types
is always ref concatenated to the name of the role of that participant type in RT (as usual, if
the name of the role is not defined it is assumed to be the name of participant). Note that
the types dRT (recording deletion events over RT) are perfectly possible since their
instances do not point to the deleted relationship (which no longer exists in the IB) but to
their participants.

As an example, Figure 6.3 shows the structural event type for the event
InsertRT(Purchases). The type iPurchases presents two relationship types, with Customer
and Sale, since these entity types are the participants of Purchases.

refCustomer 1

Customer

*

<<structural event>>
0..1

1

SalePurchases

*0..1
refSale

iPurchases

Figure 6.3 Structural event type for the event insertRT over Purchases

When defining the multiplicity of the relationship types between the structural event type
and the set of participants we distinguish between types for deletion events (dRT) and types
for insertion (iRT) events.

For iRT types, the multiplicity on the participant type role is always ‘1’ since every new
relationship must be related with an instance of the participant entity type. The multiplicity
of the role of the structural event type is ‘0..*’ since, in general, an entity of a participant
entity type can participate in many relationships of the relationship type (for instance, if we
assign a set of sales to the same customer, several instances of iPurchases will refer to the
same customer entity). We restrict this multiplicity to ‘0..x’ when the instances of the
participant entity type cannot participate in more than x relationships (as sale instances,
which are related to at most a single customer).

For dRT types, the multiplicity on the participant type role becomes ‘0..1’, because, after
deleting the relationship, and thus, creating a new instance in the dRT type, it may happen

-75-

that later events delete also some of the participants of the relationship. This is not possible
for iRT types since we cannot delete the participant without deleting before the relationship
itself.

Note that we cannot remove the instance in dRT when deleting one of the relationship
participants since we may still need the information about the deleted relationship to
compute the relevant instances for constraints including this deletion event as PSE. We can
only delete it when all participant entities are deleted. Constraints including as a PSE the
event type DeleteRT(RT), either navigate RT from E1 to E2 or from E2 to E1, where E1 and
E2 are the participant entity types of RT. When, after deleting a relationship from RT, the
participant E1 is also deleted, the information about the deleted link is irrelevant for
constraints that navigate RT from E1 to E2. In such a case, it is the deletion of E1 what must
be taken into account. However, for constraints navigating RT from E2 to E1, the
information about the deleted relationship is required when computing the affected E2
entities as part of the process of determining the relevant instances for the integrity
checking process.

For instance, consider the constraint AtLeastThreeCustomers. The constraint can be
violated by a deletion over BelongsTo. If we delete the relationship between a category cat
and a customer cus, a new instance of dBelongsTo (Figure 6.4) is created. Even if,
afterwards, we also delete the customer cus, the instance in dBelongsTo allows us to know
that the category cat needs to be considered when checking the constraint.

refCategory 0..1

Category

*

<<structural event>>
0..1

0..1

CustomerBelongsTo

*0..1
refCustomer

dBelongsTo

Figure 6.4 Structural event type for the event type DeleteRT(BelongsTo)

When an InsertRT(RT) or DeleteRT(RT) event type appears in a node having as a child
node the self variable in the OCL tree for a constraint defined using RT as a context type,
these events must also be treated as InsertET and DeleteET event types (and the
corresponding structural event type must be generated) since RT is not only a relationship
type but also a reified type, and thus, it has also an entity type facet. In fact, if that it is the
only place where they appear, they do not need to be handled as InsertRT or DeleteRT
events. When both structural event types must be created (i.e. the types for the InsertRT
and the InsertET events or the types for the DeleteRT and the DeleteET events) we change
the name of the structural event type for the InsertET (DeleteET) event into iET’ (dET’) to
avoid name conflicts with the structural event type for the InsertRT (DeleteRT) event
(since ET is a reified type, ET=RT).

-76-

6.1.2 Instantiating the structural event types

In general, each structural event type will contain as many instances as events of that type
have been executed over the corresponding entity or relationship type. For instance, the
structural event type uSalePaymentDate will contain an instance for each sale that has
changed its payment date during the update of the IB, iPurchases an instance for each new
relationship between a customer and a sale, dBelongsTo an instance for each deleted
relationship, etc.

To improve the efficiency of these types (i.e. to minimize their population, which results in
fewer entities to consider during the integrity checking) we adapt the concept of net effect
[21] and define two additional rules for insertions and deletions over structural event types:

- Before inserting an instance in an uETAttribute type we must check that the same
instance does not appear previously in the types iET or uETAttribute, as well. For
instance, if we update three times the payment date of the same sale during a single
IB update, we only need to record this fact once.

- When deleting an entity or a relation, the corresponding instance is also deleted
from the types iET (iRT), gET, sET and uETAttribute if existing. In addition, if the
entity (relation) appears in iET (iRT) we do not need to record that it has been
deleted. For instance, if we update the payment date of a sale s and later on, during
the same modification of the IB, we delete s we do not need to worry about its
payment date update. Moreover, if s was inserted during the same IB update we
neither record its deletion.

6.2 Schema modification

After the application of a set of events over the IB, we must verify all constraints having as
PSEs some of the issued events. The aim of this section is to modify the initial CS in order
to obtain a CS’ where the constraints are automatically verified only over the relevant
instances (thanks to the event information recorded in the previous structural event types).
This constraint redefinition process depends on the structure of the tree representing the
constraint body and on the placement of its PSEs in that tree. In the following we classify
the different types of constraints and explain the schema modifications for each type.

6.2.1 Constraint classification

We may distinguish three different types of integrity constraints: instance, partial instance
and class constraints. Roughly, we classify a constraint as instance if we can always
compute the exact subset of the population of its context type we need to take into account
when checking it. A constraint is a class constraint if we have to consider the whole
population of the context type to check the constraint. Finally, in some cases we may need
to consider the whole context type population or just a subset of it depending on the

-77-

particular structural events issued during the IB update. In this case we say the constraint is
a partial instance constraint.

NotTooPendingSales2 is an example of instance constraint. On the contrary,
NumberOfRestrictedProducts is a class constraint. The reason is that after inserting a new
restricted product we need to count all instances of the entity type RestrictedProduct to
verify the number of restricted products is still less than 20; it is not enough to consider
only the new product to verify the constraint. As an example of a partial instance constraint
consider the following constraint MaximumCustomers, stating that no category may hold
more than half the total amount of customers: context Category inv: self.customer-
>size()<= Customer.allInstances()->size()/2. Note that if we assign a new customer to a
category, we only need to check the constraint over that particular category. However, if
we remove a customer from the IB, we need to verify all categories, including those where
the removed customer did not work since now the total number of customers has
decreased.

A constraint can be classified into exactly one of those types by examining the structure of
the tree representing the constraint body and the placement of its PSEs in it. Intuitively, a
constraint will be classified as instance if all its PSEs are included in a subtree depending
on a contextual instance (i.e. a self variable). A constraint will be a class constraint when
all subtrees are defined using the allInstances operation. A partial instance constraint is a
constraint where some PSEs are included in subtrees related to a self variable and some in
subtrees started by an allInstances operation.

More formally, given a constraint c with a set of PSEs setPSE we define that c is an instance
constraint when for each event type ev∈ setPSE, the last node n of PathVar(nodeev) is a
node of type VariableExp having as a referred variable the self variable. As usual, nodeev
refers to the node where ev is attached.

On the other hand, we define that c is a class constraint when for each event type ev∈
setPSE, the last node n of PathVar(nodeev) is a node of type OperationCallExp having as a
referred operation the allInstances predefined operation. The constraint is still a class
constraint when it contains events included in a subtree starting with the self variable as
long as the same events also appear in a node included in a subtree starting with the
allInstances operation (if after the event we need to verify all instances of the context type,
it is irrelevant to additionally check particular instances of the type as well).

A constraint is a partial instance constraint when it is neither an instance nor a class
constraint (i.e. when some of its PSEs satisfy the first condition while others satisfy the
second one).

Applying the previous definitions over the example integrity constraints generated at the
end of the previous chapter (Table 5.2) we obtain that ValidShipDate, ValidShipDate2 ,

-78-

ValidShipDate3, CorrectProduct, CorrectProduct2, CorrectProduct3, NotTooPendingSales,
NotTooPendingSales2 and AtLeastThreeCustomers are instance constraints while
NumberOfRestrictedProducts is a class constraint.

6.2.2 Schema modification for instance constraints

To ensure that an instance constraint is only evaluated over the relevant instances we create
a new derived entity type meant to contain the exact set of instances of the context type
that need to be verified.

This new entity type, called ETConstraint (i.e. the name of the entity type concatenated to
the name of the constraint) is defined as a derived subtype of the original constraint context
type. Then, we replace the original constraint with a new constraint with the same body but
having as a context type the new ETConstraint type. This is possible because, as a subtype,
ETConstraint contains all attributes and relationship types of its supertype. As an example,
Figure 6.5 includes the redefinition of the constraint NotTooPendingSales2 over the new
CustomerNotTooPendingSales2 entity type.

When the context type is a relationship type we are forced to reify it in order to be able to
define this new subtype.

 Customer

/CustomerNotTooPendingSales2

context CustomerNotTooPendingSales2 inv NotTooPendingSales2:
self.sale->select(s| s.paymentDate>Time.now())-
>collect(sa|sa.amount)->sum()<=self.category.maxPendingAmount

Figure 6.5. Redefinition of the NotTooPendingSales2 constraint

Next, we need to address the computation of the population of the ETConstraint entity
type, i.e. how to automatically define its derivation rule (section 6.2.2.2) using the set of
events recorded in the structural event types. In short, the population of ETConstraint is the
union of instances of the context type affected by each structural event appearing in the
structural event types corresponding to the set of PSEs for the constraint (section 6.2.2.1).

6.2.2.1 Computing the instances of the context type affected by a structural event

Roughly, the relevant instances for a constraint c defined over a context type t after the
issue of an event ev (where the type of ev is one of the PSEs for c) are the ones related with
the instance i modified by ev.

Therefore, the basic idea is that the OCL expression required to compute such related
instances will consist of the sequence of navigations nav required to navigate back from i
to the instances of t. The application of nav over i returns the set of instances we need to
verify because of ev.

-79-

Let c be a constraint defined over a context type t and ev a PSE (appearing in the nodeev)
for c. Then, the sequence of navigations nav required to compute the relevant instances for
an event of type ev are obtained with Inverse(PathVar(nodeev)) where Inverse:

- Discards all nodes of the PathVar not representing navigations through relationship
types (i.e. nodes not instance of the NavigationCallExp metaclass)

- Reverses all nodes of type NavigationCallExp by means of replacing the role
associated to the node with the opposite role of the relationship type. If the node
represents a navigation from a participant type to a reified type (i.e. a node of type
AssociationClassCallExp) the opposite role is the one navigating back from the
reified type to that participant. Reversely, the opposite role of a navigation from the
reified type to one of the relationship participants is the navigation from the
participant to the reified type.

- If necessary, adds the subexpression “select(o| o.oclIsKindOf(t))” at the end of the
navigation path. When t belongs to a taxonomy, the previous computed navigation
path may return a set of objects of type t’, where t’ is a supertype of t. Since the
context of the constraint is t only those objects that are instance of t (or instance of
one of the subtypes of t) are relevant to the constraint. In such cases the select
expression ensures that only objects of type t are considered.

As an example, consider the event UpdateAttribute(paymentDate, Sale) over the constraint
NotTooPendingSales2. Figure 6.6 shows the ordered sequence of nodes resulting from the
application of PathVar over the node including the update paymentDate event type. The
sequence contains a single node representing a navigation through an association end (the
association end sale of the relationship type Purchases). Therefore, Inverse just returns the
node AssociationEndCallExp(customer), i.e. the opposite role of sale in Purchases. Then,
to obtain the affected customers after a paymentDate update, we just navigate from the
modified sale s to the related customer applying over s the navigation through the customer
role.

When Inverse returns an empty sequence of navigations it means that the instance
modified by the event is exactly the instance of the context type we need to take into
account when verifying the constraint.

If the same PSE appears in different nodes of the tree, to compute the affected instances we
repeat the process for each node and combine the result afterwards by means of the union
operator. Similarly, when a node may have different PathVar expressions we combine the
sets of affected instances computed for the indicated paths (see section 5.1.2).

-80-

:OperationCallExp
 (<=)

:AttributeCallExp
(maxPendingAmount)

:VariableExp
 (self)

:IteratorExp
(collect)

:OperationCallExp
(sum)

:IteratorExp
 (select)

:AssociationEndCallExp
(sale)

:VariableExp
(self)

:OperationCallExp
 (>)

:AttributeCallExp
(paymentDate)

:OperationCallExp
(Time::now)

:AttributeCallExp
(amount)

:VariableExp
(s)

:VariableExp
(sa)

UpdateAttribute(paymentDate)

:AssociationEndCallExp
(category)

1

3

4

5

2

Figure 6.6. PathVar for the UpdateAttribute(paymentDate,Sale) event type

6.2.2.2 Derivation rule definition

The derivation rule for the ETConstraint entity type must ensure that the set of instances of
the type are exactly the set of instances we need to check. It must include, for each instance
of the structural event types corresponding to the PSEs of the constraint, the computation
of the affected instances of the context type, as explained above.

Using the work of [64] we define the population of a derived entity type by means of
redefining its predefined allInstances operation (i.e. the population of the derived type will
be the set of instances returned by the allInstances operation).

We first obtain all instances of an structural event type evt (where evt records events
included in the set of PSEs for the constraint) by means of the expression
evt.allInstances(). Then, for each instance, we use the relationship types between the
structural event types and its corresponding entity types to access the modified entities (see
Section 6.1). Then, over the obtained set of modified entities we apply the sequence of
navigations computed in section 6.2.2.1 to retrieve the relevant instances of the context
type. We combine this set of instances with the results of repeating the process with the
other structural event types corresponding to the PSEs of the constraint.

Note that when the structural event type corresponds to an InsertRT or a DeleteRT event
type, we have different possibilities when accessing the modified instance since we may
access any of the participants of the relationship type. The right participant to navigate to is

-81-

determined by the first navigation in the sequence of navigations required to compute the
affected instances of the context type due to that event. If such navigation requires
navigating to the participant p, from the instances of the structural event type we will
access that participant.

As an example, consider the previous NotTooPendingSales2 constraint. In this case, the
derivation rule for the derived subtype CustomerNotTooPendingSales2 must select,
according to the PSEs for the constraint (see Figure 6.1), all customers that have purchased
a sale (i.e. all customers participating in a new relationship of the Purchases relationship
type, recorded in the iPurchases structural event type). These customers are obtained by
means of the subexpression iPurchases.allInstances().refCustomer, where we first retrieve
all new Purchases relationships and from them we obtain the related customers (the
Inverse(PathVar) expression for the node including the InsertRT(Purchases) event type
results in the customer role, which must be applied over the new purchases relationship).
Similarly, we select the customers being assigned to a category (customers participating in
a new relationship of the BelongsTo relationship type, recorded in the iBelongsTo type).

The derivation rule must also select those customers related to sales that have been
modified the value of its payment date (uSalePaymentDate type) or amount (uSaleAmount
type) attribute values. This last set of customers is obtained by applying the role customer
over each updated sale (reached from the uSalePaymentDate and uSaleAmount types by
means of the ref role).

Therefore, the derivation rule for CustomerNotTooPendingSales2 is the following:

context CustomerNotTooPendingSales2::allInstances() : Set(Customer)
body: iPurchases. allInstances().refCustomer->union(

iBelongsTo. allInstances().refCustomer->union(
 uSalePaymentDate.allInstances().ref.customer->union(
 uSaleAmount.allInstances().ref.customer)))->asSet()

We would like to remark that the derivation rule returns a set (and not a bag) of instances.
This permits to avoid a redundant checking of the relevant instances even if they are
affected by several of the events issued during the IB update (for instance, a customer that
purchases a new sale and that it is related to an existing sale that has changed its amount
attribute). Moreover, if none of the issued events is a PSE for the constraint the population
of ETConstraint will be empty, and thus, the constraint will not be verified.

6.2.3 Schema modification for class constraints

For class constraints it is unnecessary to compute the affected instances after the issue of
one of their PSEs since we always need to consider the whole population of the context
type. However, it is still relevant to modify the schema in order to verify the constraint

-82-

only after modifications of the IB where at least an event ev (where the type of ev appears
in the list of PSEs for the constraint) is applied over the IB.

Given a class constraint c defined over a context type t, with body X and with a set of PSEs
setPSE recorded in the structural event types setSET = {evt1, evt2,…evtn}, the redefined
constraint c’ follows the pattern:

context t inv: if evt1.allInstances()->notEmpty() or evt2.allInstances()->notEmpty()
or ... evtn.allInstances()->notEmpty() then X endif

Note that we do not retrieve the exact instances modified during the IB update; we just
check if at least an event instance of one of the PSEs has been issued.

As an example, after processing the class constraint NumberOfRestrictedProducts we
obtain the following result:

context RestrictedProduct inv NumberOfRestrictedProducts: if
iRestrictedProduct.allInstances()->notEmpty() or
sRestrictedProduct.allInstances()->notEmpty() then
RestrictedProduct.allInstances()->size()<=20 endif

6.2.4 Schema modification for partial instance constraints

A partial instance constraint c can be checked incrementally only when none of the PSE
events applied over the IB appears related to subexpressions started by an allInstances
operation in the constraint tree. Otherwise, we must check the constraint over all instances
of the context type.

To process this kind of constraints we split their set of PSEs into two different groups: the
set of instance PSEs and the set of class PSEs, depending on the kind of subexpression
where they are included (i.e. depending on the type of last node of their PathVar
expression as explained in section 6.2.1). If a PSE is included in both kinds of
subexpressions is considered a class PSE.

For the set of instance PSEs we apply the same treatment explained in section 6.2.2, and
thus, we create the new derived subtype ETConstraint and change the context of the
constraint to ETContraint. There is only a slight difference regarding the generation of the
derivation rule for the subtype, as we will explain below.

Afterwards, we create an additional derived subtype, called ETConstraint’, under the
context type, and define also over ETConstraint’ a copy of the original constraint. Its
population will be the same population of the context type if some class PSE has been
applied over the IB. Otherwise, its population will be empty. Therefore, the derivation rule
for ETConstraint’ is (evt1…evtn represent the structural event types for the class PSEs):

-83-

context ETConstraint’::allInstances(): Set(ET)
body
 if (evt1.allInstances()->notEmpty() or evt2.allInstances->notEmpty() or …
 evtn.allInstances()->notEmpty()) then ETConstraint.allInstances() endif
where evt1..evtn represent the structural event types corresponding to the class PSEs.

Finally, once we have created this new ETConstraint’ subtype, we define the derivation
rule for the ETConstraint type created for the instance PSEs. Its derivation rule will be:

if (ETConstraint’.allInstances()->isEmpty()) then dr endif

where dr is the derivation rule defined according to section 6.2.2.2 but considering only the
instance PSEs.

This way we ensure that when the transaction includes a class PSE we check all instances
of the original context entity type (ETConstraint’ will contain the same instances as the
context type) and avoid redundant checkings (ETConstraint will be empty). Otherwise, we
may check the constraint incrementally (ETConstraint will contain the affected instances
of the context type whereas ETConstraint’ will be empty).

Figure 6.7 shows the constraint MaximumCustomers (context Category inv: self.customer-
>size()<= Customer.allInstances()->size()/2) after being processed as explained in this
section. Notice that, when a DeleteET(Customer) event is issued, dCustomer becomes not
empty. As a consequence, the population of CategoryMaximumCustomers’ is equivalent to
the population of the category type and we check all categories to verify that all of them
satisfy the constraint. At the same time, CategoryMaximumCustomers becomes empty
(even if some InsertRT(BelonsTo) event has been issued as well). On the contrary, when
only events of type InsertRT(BelonsTo) are applied over the IB,
CategoryMaximumCustomers’ is empty and the integrity checking just considers the
relevant categories included in CategoryMaximumCustomers.

 Category

 /CategoryMaximumCustomers

-- The redefined constraints
context CategoryMaximumCustomers inv MaximumCustomers:
 self.customer->size()<= Customers.allInstances()->size() / 2

context CategoryMaximumCustomers’ inv MaximumCustomers’:
 self.customer->size()<= Customers.allInstances()->size() / 2

-- The derivation rules
context CategoryMaximumCustomers::allInstances():Set(Category)
body: if CategoryMaximumCustomers’.allInstances->isEmpty() then
 iBelongsTo.allInstances().refCategory endif

context CategoryMaximumCustomers’::allInstances():Set(Category)
body: if dCustomer.allInstances->notEmpty() then
 Category.allInstances() endif

 /CategoryMaximumCustomers’

Figure 6.7. Schema modification for MaximumCustomers partial instance constraint

-84-

6.3 Application to the running example

In what follows we show the new conceptual schema generated as a result of processing all
constraints obtained at the end of Chapter 5 (see Table 5.2) in order to ensure their
incremental verification after all kinds of events.

To facilitate the presentation of the results we split the new schema into several subsets,
one for each group of related constraints (each group refers to the different constraint
alternatives produced for each one of the original constraints of the running example). The
entity or relationship types not appearing in these figures remain unmodified from the
original schema (Figure 1.1).

From Figure 6.8 it is worth to note the reification of the DeliveredIn relationship type,
necessary to process the constraint ValidShipDate3. For the same reason, the
InsertRT(DeliveredIn) event type is treated as an InsertET event type when creating the
corresponding structural event type iDeliveredIn.

Sale

id : Natural
date: Date
amount: Money
paymentDate: Date

Shipment
id: Natural
plannedShipDate: Date
address: Address

1..* 1..*

DeliveredIn

/SaleValidShipDate

/DeliveredInValidShipDate3

/ShipmentValidShipDate2

-- The derivation rules
context SaleValidShipDate::allInstances() : Set(Sale) body: uSalePaymentDate.allInstances().ref
context ShipmentValidShipDate2::allInstances() : Set(Shipment) body: uShipmentPlannedShipDate.allInstances().ref
context DeliveredInValidShipDate3::allInstances() : Set(DeliveredIn) body: iDeliveredIn.allInstances().ref

-- The redefined constraints
context SaleValidShipDate inv ValidShipDate: self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)
context ShipmentValidShipDate2 inv ValidShipDate2: self.sale->forAll(s| self.plannedShipDate<=s.paymentDate+30)
context DeliveredInValidShipDate3 inv ValidShipDate3: self.shipment.plannedShipDate<=self.sale.paymentDate+30

<<structural event>>
uShipmentPlannedShipDate

<<structural event>>
iDeliveredIn

<<structural event>>
uSalePaymentDate

ref ref

ref

1
0..1

1 0..1

1
0..1

Figure 6.8. Schema modification for ValidShipDate, ValidShipDate2 and ValidShipDate3 integrity
constraints

-85-

/ProductCorrectProduct

-- The derivation rules
context ProductCorrectProduct::allInstances() : Set(Product) body: iProduct.allInstances().ref
context ProductCorrectProduct2::allInstances() : Set(Product) body: uProductPrice.allInstances().ref
context ProductCorrectProduct3::allInstances() : Set(Product) body: uProductMaxDiscount.allInstances().ref

-- The redefined constraints
context ProductCorrectProduct inv CorrectProduct: self.price>0 and self.maxDiscount<=60
context ProductCorrectProduct2 inv CorrectProduct2: self.price>0
context ProductCorrectProduct3 inv CorrectProduct3: self.maxDiscount<=60

<<structural event>>
uProductPrice

ref

Product

id : Natural
name: String
price: Money
maxDiscount:Percentage
description: String

<<structural event>>
uProductMaxDiscount ref

<<structural event>>
iProduct ref

/ProductCorrectProduct2 /ProductCorrectProduct3

1

1

1
0..1

0..1

0..1

Figure 6.9. Schema modification for CorrectProduct, CorrectProduct2 and CorrectProduct3

integrity constraints

 Sale
Purchases 1..*

id : Natural
date: Date
amount: Money
paymentDate: Date

0..1
Customer

id: Natural
name : String
nationality: String
creditCard: String

Category
name : String
maxPendingAmount:Money
discount: Percentage

BelongsTo

3..*1

/CategoryNotTooPendingSales

refCategory

*

0..1
0..1

0..1refCustomer

<<structural event>>
iBelongsTo

refSale

*

0..1

0..1
0..1 refCustomer

<<structural event>>
iPurchases

/CustomerNotTooPendingSales2

<<structural event>>
uCategoryMaxPending

Amount

ref
1

0..1

<<structural event>>
uSaleAmount

ref
1
0..1

-- The derivation rules
context CategoryNotTooPendingSales::allInstances() : Set(Category)
body: uCategoryMaxPendingAmount.allInstances().ref

context CustomerNotTooPendingSales2::allInstances() : Set(Customer)
body: iBelongsTo.allInstances().refCustomer->union(iPurchases. allInstances().refCustomer->union(
 uSalePaymentDate.allInstances().ref.customer->union(uSaleAmount.allInstances().ref.customer)))->asSet()

-- The redefined constraints
context CategoryNotTooPendingSales inv NotTooPendingSales: self.customer->forAll(c| c.sale-
>select(s|paymentDate>Time.now())->collect(sa|sa.amount)->sum()<=self.maxPendingAmount)
context CustomerNotTooPendingSales2 inv NotTooPendingSales2: self.sale->select(s| s.paymentDate>Time.now())-
>collect(sa|sa.amount)->sum()<=self.category.maxPendingAmount

Figure 6.10. Schema modification for NotTooPendingSales and NotTooPendingSales2 integrity
constraints. The type uSalePaymentDate appears in Figure 6.8 and it is not repeated here

-86-

Category

name : String
maxPendingAmount:Money
discount: Percentage

Customer
Id: Natural
name : String
nationality: String
creditCard: String

BelongsTo

3..*1

/CategoryAtLeastThreeCustomers

refCategory

*
<<structural event>>

dBelongsTo

0..1

0..1
0..1 refCustomer

-- The derivation rule
context CategoryAtLeastThreeCustomers::allInstances() : Set(Category)
body: iCategory.allInstances().ref->union(dBelongsTo.allInstances().refCategory)->asSet()

-- The redefined constraint
context CategoryAtLeastThreeCustomers inv AtLeastThreeCustomers: self.customer->size()>=3

<<structural event>>
iCategory

ref

0..1 1

Figure 6.11. Schema modification for AtLeastThreeCustomers integrity constraint

context RestrictedProduct inv NumberOfRestrictedProducts:
 if iRestrictedProduct.allInstances()->notEmpty() or sRestrictedProduct.allInstances()->notEmpty() then
RestrictedProduct.allInstances()->size()<=20 endif

<<structural event>>
iRestrictedProduct

ref <<structural event>>
sRestrictedProduct

ref
1 0..1 0..1

RestrictedProduct

maxUnits: Natural 1

Figure 6.12. Schema modification for NumberOfRestrictedProducts integrity constraint

6.4 Summary and discussion of the results

With this step we complete the processing of the original constraints. As a result, our
method has returned a new conceptual schema where all constraints have been redefined in
order to get their incremental evaluation after arbitrary modifications of the IB. The cost of
verifying the new constraints is much lower than the cost of verifying the original ones. As
a trade-off, the size of the CS has been increased with the addition of new types,
constraints and derivation rules. In the following we comment both aspects of the
processed schema.

Defining the cost of checking a constraint as the number of entities that must be taken into
account during its evaluation, Tables 6.1-6.5 illustrate, for each one of the original
constraints, the differences between a direct checking of the constraint and the cost of
checking the new version. Obviously, at design time we cannot determine the exact
complexity of the constraints since the cost depends on the exact population of the entity
and relationship types. We must represent these values by means of abstract variables.
However, the abstract formulas we use are rich enough to stand out the cost differences.
Although not explicited in the tables, an additional efficiency gain of the processed schema
is that when the modification of the IB does not include any of the PSEs for a constraint c,
c is not verified (i.e. the cost is zero). This is not restricted in the original schema.

-87-

In all tables, the column PSE shows the PSEs of the original constraint. Column Incr
Constraint refers to the name of the specialized constraint generated for that PSE in the
processed CS (note that even if the name of the new constraint coincides with that of the
original one, in the processed schema the new constraint has been redefined to be
evaluated over the relevant instances, and thus, their cost may be different). Column cost
old and cost new refer to the cost of evaluating the original and the processed constraints
after the issue of an event of the event type appearing in the first column.

In Table 6.1 (cost comparison for ValidShipDate constraint), Ps stands for the number of
instances of Sale, Nsh for the average number of shipments per sale and Ns for the average
number of sales per shipment. A direct verification of the original ValidShipDate
constraint always involves considering all sales and for each sale all the related shipments.
Therefore, the number of instances accessed during its evaluation is Ps plus Ps multiplied
by the average number of shipments for each sale (Nsh). Instead, after a sale update, in the
new schema we just access to that sale and its related shipments (because of the
redefinition of ValidShipDate over the relevant instances). After a shipment update, we
simply retrieve the updated shipment and then compare it with the assigned sales (thanks to
the use of the new specialized constraint ValidShipDate2). Finally, after the insertion of a
new relationship between a sale s and a shipment sh, comparing s and sh suffices to verify
ValidShipDate3.

Table 6.1. Cost comparison for ValidShipDate

PSE Incr Constraint Cost old Cost new
UpdateAttr(paymentDate, Sale) ValidShipDate Ps + Ps x Nsh 1+1xNsh

UpdateAttr(plannedShipDate, Shipment) ValidShipDate2 “ 1+1xNs

InsertRT(DeliveredIn) ValidShipDate3 “ 2

Table 6.2 shows the costs for CorrectProduct. Pp stands for the number of instances of
Product. The difference is that in the processed constraint we restrict the verification
process to the inserted/updated product.

Table 6.2. Cost comparison for CorrectProduct

PSE Incr Constraint Cost old Cost new
InsertET(Product) CorrectProduct Pp 1

UpdateAttribute(price,Product) CorrectProduct2 “ 1

UpdateAttribute(maxDiscount,Product) CorrectProduct3 “ 1

Table 6.3 shows the cost comparison for NotTooPendingSales constraint. In the table, Pca
stands for the number of instances of Category, Ncu for the average number of customers
per category and Nsa for the average number of sales per customer. The cost of evaluating
the original constraint always implies accessing all categories (Pca), for each category all

-88-

its customers (resulting in a cost of Pca x Ncu) and for each customer all its sales (this adds
to the previous cost the number of accessed sales, determined by the expression Pca x Ncu x
Nsa). On the contrary, with the processed constraints the verification of the IB after a
category update involves just that category instead of the whole population of the Category
type. After the other events the cost is even lower since we merely access the affected
customer and his/her sales. For instance, after the update of sale s, the number of involved
instances is s, the customer that has purchased s, all sales of that customer and the category
where the customer belongs to.

Table 6.3. Cost comparison for NotTooPendingSales

PSE Incr Constraint Cost old Cost new
UpdateAttr(maxPendingAmount,
Category)

NotTooPendingSales Pca + Pca x Ncu +
Pcax NcuxNsa

1+1xNcu +
1xNcuxNsa

InsertRT(BelongsTo) NotTooPendingSales2 “ 1+1xNsa+1

InsertRT(Purchases) NotTooPendingSales2 “ 1+1xNsa+1

UpdateAttribute(paymentDate,Sale) NotTooPendingSales2 “ 1+1+1xNsa+1

UpdateAttribute(amount, Sale) NotTooPendingSales2 “ 1+1+1xNsa+1

In Table 6.4 we provide the cost comparison for AtLeastThreeCustomers. Pca stands for the
number of instances of Category and Ncu for the average number of customers per
category. The cost of evaluating the original constraint always implies accessing all
categories (Pca) and for each category all its customers (resulting in a cost of Pca x Nca).
After the redefinition, the verification involves just computing the number of customers of
the modified category.

Table 6.4. Cost comparison for AtLeastThreeCustomers

PSE Incr Constraint Cost old Cost new
InsertET(Category) AtLeastThreeCustomers Pca +Pca x Ncu 1+1xNcu

DeleteRT(BelongsTo) AtLeastThreeCustomers “ 1+1xNcu

Finally, Table 6.5 shows the costs for RestrictedProduct. Prp stand for the number of
instances of restricted product. Since this is a class constraint, after the PSEs of the
constraint, the cost of evaluating the processed constraint coincides with the cost of
evaluating the original constraint. The difference is that in the processed schema, the
constraint is only evaluated after IB updates containing at least a PSE for the constraint
while in the original one this was not controlled.

-89-

Table 6.5. Cost comparison for RestrictedProduct

PSE Incr Constraint Cost old Cost new
InsertET(RestrictedProduct) RestrictedProduct Prp Prp

SpecializeET(RestrictedProduct) RestrictedProduct “ “

In order to get these efficiency improvements, we incur in additional costs with respect to
the size of the CS and with respect to the small overhead required, at execution time, to
record the issued events in the structural event types during the modification of the IB.

The size of the CS increases because of the addition of the structural event types, the
derived subtypes (for instance and partial instance constraints), their derivation rules and
the generated alternative constraint representations. However, the designer does not need
to be aware of this additional complexity since the processed CS will be automatically
processed by code-generation tools. Moreover, the number of new model elements in the
CS is linear with respect to the number of integrity constraints in the CS. The number of
structural event types depends on the number of different PSEs of the constraints (if two
constraints share the same PSE, only a structural event type is created). The number of
derived subtypes is equal to the number of instance constraints plus twice the number of
partial instance constraints. The number of alternative constraints generated depends on the
number of PSEs (counting as different PSEs those appearing more than once in the
constraint body) for each constraint. At most, a different constraint for each PSE will be
generated.

Nevertheless, we believe the efficiency gain we get with our method sufficiently justifies
such additional complexity in a vast majority of situations. The exception would be those
types with a low population expected at run-time. For them, the difference between a direct
verification and an incremental one after some events may be small, and thus, the
additional complexity required to do an incremental verification could not be justified.

-90-

-91-

7. Tool implementation

The method presented in this thesis has been implemented in a prototype tool. The tool can
be downloaded from [16]. Some of the tool features have been developed by Carol
Cervelló [25] and Raúl Solana [81].

Figure 7.1 shows the general picture of the tool architecture. Given an XMI file [70]
representing the initial conceptual schema CS, and a set of constraints expressed in their
concrete (textual) syntax, the tool loads the schema and the constraints information into
main memory (with the help of the MDR tool [60] for the import/export of the XMI file
and the Dresden OCL tool [31] for parsing and loading the constraints), process them and
returns the XMI file corresponding to the processed schema CS’ and a textual file with the
set of redefined constraints and with the derivation rules for the new derived subtypes.

Figure 7.1. Tool architecture

In its implementation, our tool relies on different existing technologies and standards. In
the following we briefly introduce each of them (Section 7.1) and explain how they fit in
our overall architecture (Section 7.2). Note that, due to lack of support for the latest
versions of the UML and OCL standards, our tool works with version [71] of the UML
metamodel and version [67] of the OCL metamodel.

7.1 Underlying technologies

7.1.1. XMI

XMI (XML Metadata Interchange, [70]) is an OMG standard for sharing objects instances
of a MOF-compliant metamodel (Meta-Object Facility, [72]) using XML documents. In
our case, these objects are instances of the UML Metamodel. Therefore, through XMI we
can interchange UML models by means of XML documents.

-92-

In particular, XMI defines which XML tags are used to represent serialized models in
XML. Each MOF-compliant metamodel met is translated into a XML Schema or a DTD
(XML Document Type Definitions). Then, models instance of met are translated into XML
documents that are consistent with their corresponding DTD or XML Schema.

As an example, Figure 7.2 shows an excerpt of the XMI representation for our e-commerce
schema used as a running example. The tags <UML:Package>, <UML:Class>,
<UML:Attribute>, etc, are the ones defined by XMI to store UML models. The elements
inside the tags represent the information about the actual conceptual schema. In this
example, we may see that the schema contains a class called Category (<UML:Class> tag)
member of the Company package (<UML:Package> tag) and with an attribute name
(<UML:Attribute> tag) with multiplicity 1 (<UML:MultiplicityRange> tag).

 <UML:Package xmi.id = '.:0000000000000888' name = 'company' visibility = 'public'
 isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false'>
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id = '.:0000000000000834' name = 'Category' visibility = 'public'
 isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false'
 isActive = 'false'>
 <UML:Classifier.feature>
 <UML:Attribute xmi.id = '.:000000000000082D' name = 'name' visibility = 'private'
 isSpecification = 'false' ownerScope = 'instance' changeability = 'changeable'>
 <UML:StructuralFeature.multiplicity>
 <UML:Multiplicity xmi.id = '.:000000000000082C'>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange xmi.id = '.:000000000000082B' lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:StructuralFeature.multiplicity>
 <UML:StructuralFeature.type>
 <UML:Class xmi.idref = '.:0000000000000823'/>
 </UML:StructuralFeature.type>
 </UML:Attribute>

Figure 7.2. Partial XMI representation for the e-commerce example

7.1.1. JMI

The JMI (Java Metadata Interface, [46]) specification enables the implementation of a
dynamic, platform-independent infrastructure to manage the creation, storage, access,
discovery, and exchange of metadata based on a MOF-compliant metamodel, again, the
UML and OCL metamodels in our case.

In particular, JMI defines the standard Java interfaces for all elements of the UML
metamodel; an interface for each metaclass defined in the UML metamodel. For non-
abstract metaclasses it specifies an additional interface to be used as a factory for creating

-93-

new instances of that metaclass. Through these interfaces, an application can discover,
access and manipulate UML models. As an example, Figure 7.3 shows the interface
corresponding to the Generalization metaclass, with the appropriate methods to get/set the
parent type, the discriminator and the subtype.

JMI also provides metamodel and metadata interchange via XMI. This implies that JMI
permits to import a UML model from an XMI file and export it back to its XMI
representation after its modification by means of the methods defined in the set of Java
interfaces defined by JMI.

 public interface Generalization extends jmi.uml15.core.Relationship {
 public java.lang.String getDiscriminator();
 public void setDiscriminator(java.lang.String newValue);
 public tudresden.ocl20.core.jmi.uml15.core.GeneralizableElement getChild();
 public void setChild(tudresden.ocl20.core.jmi.uml15.core.GeneralizableElement newValue);
 public tudresden.ocl20.core.jmi.uml15.core.GeneralizableElement getParent();
 public void setParent(tudresden.ocl20.core.jmi.uml15.core.GeneralizableElement newValue);
 public tudresden.ocl20.core.jmi.uml15.core.Classifier getPowertype();
 public void setPowertype(tudresden.ocl20.core.jmi.uml15.core.Classifier newValue);
}

Figure 7.3. JMI interface for the Generalization metaclass

7.1.2. MDR

MDR (Metadata Repository, [60]) is an extended implementation of JMI. Since JMI is just
a specification, it cannot be used on its own. Instead, we must rely on a JMI-compliant
tool. The main function of this kind of tools (being MDR the most relevant representative)
is to provide a class implementation for all interfaces specified by JMI.

MDR also offers an API with an extended functionality to query, create and manage UML
models and its elements. For instance, with the API offered by MDR the user could create
a completely new model from scratch.

Moreover, to implement the required XMI import/export functionality (as defined by JMI),
MDR defines an internal repository (in main memory) where it stores all the information
about the models and model elements loaded by the user.

7.1.4. Dresden OCL Toolkit

Dresden OCL Toolkit [31] complements MDR with appropriate support for OCL
expressions. It uses JMI and MDR to specify and implement all the Java classes
corresponding to the OCL metamodel. Then, it offers the possibility of transforming OCL
expressions expressed in a concrete (textual) syntax form into their abstract form (i.e. as
instances of the OCL metamodel).

The transformation process is split up in two different steps:

-94-

- Parsing: Creation of a concrete syntax tree from the textual constraint. The parser
is based on a tailored, hand-optimized L-attributed grammar of OCL2.0. It
enhances the popular LALR(1) parser generator SableCC to create a lexer, and a
syntax analyzer. The parsing step permits to detect ill-formed OCL expressions
(i.e. expressions inconsistent with the OCL grammar)

- Analysis: the attribute evaluator module performs the transformation from the
concrete syntax tree to the abstract syntax tree (i.e. the representation of the
constraints as an instance of the OCL metamodel). During this step the references
to UML model elements appearing in the constraint are linked to appropriate
objects created during the previous loading of the UML model from the XMI file.
For instance, for nodes of type AssociationEndCallExp (Figure 4.2) the association
referredAssociationEnd is linked to the corresponding AssociationEnd object. The
toolkit is able to detect semantic errors in this phase. For instance, expressions
referencing model elements not existing in the conceptual schema or with an
incorrect type or an incorrect multiplicity (as, for instance, association ends with a
maximum multiplicity > 1 that are treated in the OCL expression as if they
returned a single object).

The toolkit handles all kind of OCL expressions, including integrity constraints, derived
elements and pre/postconditions of operations. In principle, it supports the complete OCL
syntax although the current version of the tool still presents some bugs that limit a little bit
the expressions that are recognized as valid OCL expression for the tool. For an updated
list of these limitations refer to the bug list in the project web page.

7.2 Tool architecture

Our tool is implemented as a set of Java classes extended with the libraries of the Dresden
OCL toolkit (for the parsing and loading of OCL constraints) and MDR (for the
import/export of UML models from XMI files).

As a first step, the tool permits to import both the UML model and the OCL constraints
from an XMI file and a textual file, respectively (Figure 7.4). Then, the user can choose to
generate the processed schema. The generation process starts by loading the UML/OCL
model into main memory (with the previous auxiliary tools). The tool internally stores the
CS and the constraints as instances of the UML and OCL metamodels. Then, it applies the
steps described in chapters 3-6 over this metamodel representation.

Finally, it exports the generated schema to an XMI representation by means of executing
the methods provided by the MDR library. Figure 7.5 shows part of the schema of Figure
1.1 once processed to get an incremental checking of the ValidShipDate constraint.
ArgoUML [2] is used to display the exported XMI file. Note that ArgoUML does not
graphically show multiplicities of associations ends when the multiplicity value is exactly

-95-

one. Moreover, due to limitations of the MDR implementation of the UML metamodel we
cannot mark an entity type as derived; only derived attributes and relationship types are
allowed. Therefore, we stereotype all created derived subtypes with the «derived»
stereotype.

To save back the modified constraints and the derivation rules to a textual representation
we have developed our own transformation algorithm since this functionality was not yet
provided by the Dresden OCL tool (in fact, this part of our tool is now offered as part of
the latest version of the Dresden OCL toolkit).

Apart from this basic functionality (generating the processed schema to get an incremental
integrity checking of all constraints), the tool also provides some auxiliary operations that
are useful for potential users willing to partially apply our method. For instance, the user
may be interested in just knowing which event types are the PSEs for a single constraint
(Figure 7.6) or in knowing the list of constraints that can be violated by certain type of
event (Figure 7.7).

Figure 7.4. Main form of our tool

-96-

Figure 7.5. Processed schema

Figure 7.6. Retrieving information about the PSEs for CorrectProduct

-97-

Figure 7.7. Information about the constraints that may be violated by the selected event type

Figure 7.8. Incremental expression to verify ValidShipDate after
UpdateAttribute(plannedShipDate,Shipment) events

-98-

Moreover, instead of generating the processed schema, the tool can also report the user
about which OCL expression exp could be used instead of a constraint c in order to check c
after the application of a single event over the IB [18]. Iff exp is satisfied by the entity
affected by the event, the IB is still consistent with c. Otherwise the issue of the event has
induced a constraint violation. As an example, the expression exp required to verify
ValidShipDate after a plannedShipDate update over a shipment sh would be sh.sale-
>forAll(sa: Sale | sh.plannedShipDate <= (sa.paymentDate + 30)) (see Figure 7.8; the self
variable would correspond to the updated shipment sh in this example). We would like to
remark that, with this functionality, the designer is the one in charge of generating an
implementation of the schema that benefits from exp to incrementally check the constraint
in the final technology platform (i.e., the designer is responsible for including the
verification of exp whenever and wherever it is necessary).

-99-

8. Implementing the processed CS in a relational
database

The main advantage of our method is that it is technologically-independent. This implies
that any implementation of the processed CS results automatically in an incremental
checking of all integrity constraints no matter the target technology platform. To show the
feasibility of our approach, we show how a direct implementation of the processed CS in a
relational database results in a database schema where constraints are checked
incrementally.

The required steps to obtain the relational schema from our processed CS are the
following:

1. Transformation of entity and relationship types

2. Transformation of structural event types

3. Automatic data maintenance for structural event types

4. Generation of derived subtypes

5. Generation of the integrity constraints

At the end of the last step, each constraint has been transformed into a relational view that
returns those rows of the IB not verifying the constraint (an empty result indicates that the
IB state is consistent with the constraint). Therefore, at the end of each IB update, we may
detect if the new IB state satisfies all constraints and, when it does not, which are the
constraints that do not hold and, for those constraints, which entities are the ones violating
the constraint.

To be incremental, and according to the changes done to the original CS, the views
corresponding to the processed constraints are defined over the population of the derived
subtypes (also represented as views in the database). In its turn, the population of the
derived subtypes is defined in terms of the population of the tables corresponding to the
structural event types created to record the events issued during the IB update. Therefore,
the process of querying the views to check the constraints is highly efficient since we only
access a small portion of the whole IB (i.e. the part affected by the applied structural
events).

-100-

The next subsections address each step. Each subsection is illustrated with partial
examples. The full generation of the running example can be found at the end of the
chapter.

We would like to remark that most of these transformation steps are not specific to our
processed CS. Instead, any method generating a relational schema from a standard CS
needs to deal with the same transformation steps, except for step 3.

8.1 Transformation of entity and relationship types

This first step is the most well-known. As usual (see [24],[10]), entity types are
transformed into a corresponding set of tables (called domain tables) and relationship types
are transformed into tables or foreign keys (depending on the multiplicities of the
relationship type). For instance, the Sale table (Figure 8.1) represents the Sale entity type
and the Purchases relationship type (represented by means of the customer column and the
corresponding foreign key).

In a similar way, generalization/specialization relationships are also transformed as a
foreign key between the subtype and the supertype (vertical mapping strategy [24]). As an
example, see the creation of the tables Product and RestrictedProduct in Section 8.6.

 crea te table Sale (
id In teger Pr im ary K ey, sa leda te D a te, am ount D ecim al(8 ,2),
paym en tD ate D a te,
C ustom er In teger R E FE R E N C E S C ustom er(id));

Figure 8.1. Sale domain table

8.2 Transformation of structural event types

Since structural event types are a special kind of entity types their basic transformation (as
done for entity types) is to create a table for each structural event type. We call these tables
event tables. The main specificity of event tables is that they must be empty at the
beginning of each transaction. We can obtain this behavior automatically when defining
the event tables as temporary tables (temporary tables are part of the SQL:1999 standard
[58]).

Temporary tables are tables whose data is truncated at the end of each transaction (when
specifying on commit delete rows in the table definition). Therefore, we create a temporary
table for each structural event type. As for domain tables, the DBMS guarantees that
concurrent users modifying the table do not interfere and that data is only visible to its own
user.

-101-

Since structural event types merely contained references to the related entity type/s, the
columns of event tables are just the set of columns required to store the primary key of the
referenced type/s. The referenced type/s is not modified.

We neither define primary key nor foreign keys for event tables. It is not necessary since,
as shown in the next section, their data is updated automatically, and thus, we can ensure
their correctness.

As an example, Figure 8.2 shows the SQL sentence to create the temporary table
corresponding to the structural event type uSaleAmount. The id column stores the id of the
updated sale.

 crea te globa l tem porary table uSa leA m oun t (id In teger)
on com m it delete row s;

Figure 8.2. Temporary table for the UpdateAttribute(amount,Sale) event type

8.3 Automatic updating of event tables

Data in these tables reflects the changes done by the user over the domain tables.
Therefore, insertion and removal of tuples in event tables should be done automatically and
transparently to the user.

If the relational database supports the definition of active rules (i.e. triggers) this automatic
update can be addressed by means of monitoring the changes over the domain tables in
order to record in the event tables the modifications issued by the user.

For each event table we create a trigger in the corresponding domain table. For iET (or iRT
or sET) event tables we create an after insert trigger in the ET (RT) domain table. For
uETAttribute event tables we create an after update of attribute on ET trigger over the ET
table. For dET (or dRT or gET) event tables we create an after delete trigger over the ET
(RT) table.

Triggers are defined as after triggers to avoid irrelevant insertions on the event tables. If
the event issued by the user cannot be accomplished because of some exception raised by
the database management system (for instance, due to a violation of a primary key) we do
not need to register it.

As an example, to record in the event table uSaleAmount the references to sales updated
during the transaction we define the trigger shown in Figure 8.3. For each row in the table
Sale that has changed its value in the column amount, the trigger creates a new tuple in the
uSaleAmount event table.

-102-

create trigger tuSaleAmount
after update of Amount on Sale
FOR each row
BEGIN
 Insert into uSaleAmount values (:new.id); END IF;
End;

Figure 8.3. Trigger for UpdateAttribute(amount,Sale) events

When working at the database level we must tackle the problem of distinguishing between
insertion and specialization events over tables corresponding to subtypes in the conceptual
schema. In both cases, these events end up inserting a new row in the domain table
corresponding to the subtype entity type.

To detect if the new tuple in the subtype domain table appears because of an insertion
event (event that must be recorded in the iSubType event table for integrity checking
purposes) or because of an specialization event (that must be recorded in the sSubType
event table) we must check if the related tuple in the supertype domain table has been
inserted during the same transaction or it existed prior to starting the current transaction. In
the former, the subtype insertion is due to an insertion event while in the latter is produced
by a specialization event.

We know that the supertype entity existed already in the database when there is not a tuple
in the iSuperType event table recording the insertion of that entity. As an example,
consider the triggers for the event tables iRestrictedProduct and sRestrictedProduct in
Section 8.6. Note that, this approach requires generating the event table for insertions over
the supertype even if that event is not a PSE for any of the constraints.

In a similar way we may deal with the distinction between delete and generalization
events. A deletion of a tuple in the subtype corresponds to a deletion event when the
related tuple is also deleted from the supertype table and a generalization event otherwise.
Note that, due to the foreign key between the subtype and the supertype, the user must
delete first the tuple in the subtype and then, if necessary, the related tuple in the supertype.
Then, to distinct both situations, we may initially consider all deletion events as
generalization events and transform some of them to deletion events if the supertype tuple
is also deleted afterwards.

Processing of events over relationship types that do not appear as a separate table in the
database (for instance, the BelongsTo relationship type, represented by a foreign key in the
Customer table) is slightly different. In such a case, triggers cannot be defined over the
domain table (since it does not exist) and must be defined over the table containing the
foreign key. We consider as insertions over the relationship type insertions on the table or
updates of the foreign key column (the new value represents the new participant in the
relationship). Deletions over the relationship type are induced by deletions over the table or

-103-

updates of the foreign key column (the old value refers to the participant of the deleted
relationship).

As an example, Figure 8.4 shows the trigger in charge of monitoring the event
DeleteRT(BelongsTo) (that must be recorded in the dBelongsTo event table) over the
Customer entity type.

 create or replace trigger tdBelongsTo
after delete or update of category on Customer
FOR each row
BEGIN
 Insert into dBelongsTo values (:old.category, :old.id);
End;

Figure 8.4. Trigger for DeleteRT(BelongsTo) events

When creating the triggers to populate the event tables we also need to take into account
the rules proposed in Chapter 6 (Section 6.1.2) to minimize the population of the event
tables. Their influence in the definition of the trigger effect is the following (see the
examples in Section 8.6, including a new version for the trigger of Figure 8.4, extended
according to these rules):

- Before inserting a tuple in an event table uETAttrib (recording updates over an
attribute attr of an entity e of type ET) the trigger must check that e does not exist
already in the same table or in the event table for the event iET (if existing).

- When deleting an entity or a relation, the trigger must delete the corresponding tuple in
the event tables iET (or iRT), sET, gET and from all event tables uETAttribute, if
existing. In addition, if the entity (relation) appeared in iET (iRT) the trigger do not
need to record that it has been deleted in the dET (or dRT) table. This last scenario
models a situation in which the same entity is first inserted and then deleted from the
database during the same transaction.

We would also like to point out that these triggers only modify the state of the event tables
and not the state of domain tables. Moreover, since no triggers are defined over the event
tables, no termination problems occur. Confluence is also guaranteed (when an event fires
more than one trigger each trigger modifies a different event table).

We have found useful to create triggers for all deletion events (even if the event is not a
PSE for any constraint, and thus, we do not need to record it) in order to apply the second
of the previous rules for avoiding verifications over inexistent objects. For instance, a
trigger for deletions of sales could be useful to check if the removed sale has been
previously inserted or updated during the same IB update. Since, afterwards, it has been
deleted, the trigger may remove the corresponding tuples from the iSale and uSaleAttrib
tables.

-104-

8.4 Generation of derived subtypes

Once the event tables have been created, we can define the derived subtypes as views over
the data of the event tables referenced in the derivation rule of the subtype.

The view query expression may be obtained automatically from the OCL derivation rule of
the derived subtype using existing translation patterns ([30], [24]).

Figure 8.5 shows the view corresponding to the CustomerNotTooPendingSales2 subtype
(see Figure 6.10). The solution may not be unique; depending on the translation patterns
we may obtain different (equivalent) view definitions. The customers returned by the view
are those appearing in the iBelongsTo and iPurchases event tables plus the ones related
with sales included in the uSaleAmount and uSalePaymentDate event tables.

 create view CustomerNotTooPendingSales2 as
select * from Customer where id IN
 ((select customer from iBelongsTo) union
 (select customer from iPurchases) union
 (select s.customer from uSaleAmount u, Sale s where u.id=s.id) union
 (select s.customer from uSalePaymentDate u, Sale s where u.id=s.id));

Figure 8.5. View for the CustomerNotTooPendingSales2 derived subtype

8.5 Generation of integrity constraints

A simple strategy when generating integrity constraints in a database is to generate them in
the form of inconsistency predicates. For each constraint we generate a view that returns a
non-empty result if and only if the constraint has been violated during the transaction.
When defining constraints as inconsistency predicates we can report the user about the data
that violates the constraint (the tuples retrieved querying the view are the ones violating the
integrity constraint).

The SELECT clause of the view is generated from the constraint definition (in denial form)
in a similar way as done for derived subtypes. To ensure an incremental verification of the
constraint, the FROM clause of the view query is expressed in terms of the derived subtype
used as a context type of the constraint.

As an example, Figure 8.6 shows the view corresponding to the NotTooPendingSales2
constraint. Note that, since the constraint is defined over the view
CustomerNotTooPendingSales2, it is only evaluated over the relevant customers (i.e. the
ones affected by the events issued during the transaction). Sysdate is a predefined operation
that returns the current date (equivalent to the Time::now operation used in the OCL
definition of the constraint).

-105-

 create view NotTooPendingSales2 as
select cu.* from CustomerNotTooPendingSales2 cu, Category c
where cu.category=c.name and c.maxPendingAmount <

(select nvl(sum(s.amount),0) from sale s where s.customer=cu.id and
s.paymentDate>sysdate);

Figure 8.6. View for the NotTooPendingSales2 constraint

Class constraints (once modified as explained in Chapter 6, Section 6.2.3) are also
transformed into views. However, for class constraints the views are defined over the
domain table corresponding to the context type of the constraint. As an example, see the
constraint NumberOfRestrictedProducts in Section 8.6.

Before committing the transaction, the user (or the application which is being executed)
must query all generated views to check if all integrity constraints still hold. If any view is
not empty, a violation occurred and the transaction must be rolled back (or an appropriate
repair action must be triggered).

8.6. Transformation of the running example

In what follows we provide the complete implementation of the processed schema for our
running example, as finally shown in Figures 6.8-6.12.

8.6.1 Creation of the domain tables

The following SQL scripts create the domain tables for the running example of Figure 1.1.
These scripts (and all other scripts in this section) have been tested over an Oracle 9i
database.

We use the vertical mapping strategy [24] for the Product-RestrictedProduct hierarchy.

-- Table representing the Category entity type
create table Category (name varchar2(10) primary key, maxPendingAmount
Decimal(6,2), discount Decimal(6,2));

-- Table for the Customer entity type and the BelongsTo relationship type
(represented as a foreign key)
create table Customer (id Integer Primary Key, name varchar2(30),
nationality char(3), creditCard char(10), category varchar2(10)
REFERENCES Category(name) not null);

-- Sale entity type and Purchases relationship type. The original date
attribute has been renamed to avoid conflicts with the Date reserved
word.
create table Sale (id Integer Primary Key, saledate Date, amount
Decimal(8,2), paymentDate Date,Customer Integer REFERENCES Customer(id));

-- Shipment entity type
create table Shipment (id Integer Primary Key, plannedShipDate Date,
address varchar2(50));

-106-

-- Table representing the DeliveredIn relationship type
create table DeliveredIn(sale Integer REFERENCES Sale(id),
shipment Integer REFERENCES Shipment(id), primary key (sale, shipment));

-- Product entity type
create table Product(
id Integer Primary Key REFERENCES Product (id), name varchar2(20), price
decimal(6,2), maxDiscount number(2), description varchar2(50));

-- RestrictedProduct entity type
create table RestrictedProduct(
id Integer Primary Key REFERENCES Product (id), maxUnits number(3));

-- SaleLine reified relationship type
create table SaleLine(
sale Integer REFERENCES Sale (id), product Integer REFERENCES Product
(id), quantity number(2), primary key (sale, product));

8.6.2 Creation of the event tables

For each event type appearing in Figures 6.8-6.12 we define its event table.

-- Table for InsertET(Category)
create global temporary table iCategory (id Varchar2(10)) on commit
delete rows;

-- Table for InsertET(Product)
create global temporary table iProduct (id Integer)on commit delete rows;

-- Table for InsertET(RestrictedProduct)
create global temporary table iRestrictedProduct (id Integer) on commit
delete rows;

-- Table for InsertRT(DeliveredIn)
create global temporary table iDeliveredIn
(Sale Integer, Shipment Integer) on commit delete rows;

-- Table for InsertRT(BelongsTo)
create global temporary table iBelongsTo
(Category Varchar2(10), Customer Integer) on commit delete rows;

-- Table for InsertRT(Purchases)
create global temporary table iPurchases
(Customer Integer, Sale Integer) on commit delete rows;

-- Table for SpecializeET(RestrictedProduct)
create global temporary table sRestrictedProduct (id Integer) on commit
delete rows;

-- Table for UpdateAttribute(amount, Sale)
create global temporary table uSaleAmount (id Integer)
on commit delete rows;

-- Table for UpdateAttribute(paymentDate, Sale)
create global temporary table uSalePaymentDate (id Integer) on commit
delete rows;

-107-

-- Table for UpdateAttribute(plannedShipDate,Shipment)
create global temporary table uShipmentPlannedShipDate (id Integer)
on commit delete rows;

-- Table for UpdateAttribute(price, Product)
create global temporary table uProductPrice (id Integer)
on commit delete rows;

-- Table for UpdateAttribute(maxDiscount, Product)
create global temporary table uProductMaxDiscount (id Integer)
on commit delete rows;

-- Table for UpdateAttribute(maxPendingAmount, Category)
create global temporary table uCategoryMaxPendingAmount (id Varchar2(10))
on commit delete rows;

-- Table for DeleteRT(BelongsTo)
create global temporary table dBelongsTo
(Category varchar2(10), Customer Integer) on commit delete rows;

8.6.3 Triggers for the automatic update of event tables

- Triggers for InsertET, InsertRT and SpecializeET events

-- Trigger for insertions over the iProduct table
create trigger tiProduct after insert on Product
FOR each row
BEGIN Insert into iProduct values (:new.id); End;

-- Trigger for insertions over the iRestrictedProduct table. We check
whether the insertion on RestrictedProduct is due to an specialization
event or an insertion event
create trigger tiRestrictedProduct after insert on RestrictedProduct
FOR each row
DECLARE v_ExistsU number;
BEGIN
 Select count(*) into v_ExistsU From iProduct where id=:new.id;
 IF (v_ExistsU>0) THEN Insert into iRestrictedProduct values (:new.id);
END IF;
End;

-- Trigger for insertions over the sRestrictedProduct table
create trigger tsRestrictedProduct after insert on RestrictedProduct
FOR each row
DECLARE v_ExistsU number;
BEGIN
 Select count(*) into v_ExistsU From iProduct where id=:new.id;
 IF (v_ExistsU=0) THEN Insert into sRestrictedProduct values (:new.id);
END IF;
End;

-- Trigger for insertions over the iCategory table
create trigger tiCategory after insert on Category
FOR each row BEGIN Insert into iCategory values (:new.name); End;

-- Trigger for insertions over iDeliveredIn
create trigger tiDeliveredIn after insert on DeliveredIn

-108-

FOR each row
BEGIN Insert into iDeliveredIn values (:new.sale, :new.shipment); End;

-- Trigger for insertions over iBelongsTo
create trigger tiBelongsTo after insert or update of category on Customer
FOR each row
BEGIN Insert into iBelongsTo values (:new.category,:new.id); End;

-- Trigger for insertions over iPurchases
create trigger tiPurchases after insert or update of customer on Sale
FOR each row
BEGIN Insert into iPurchases values (:new.customer,:new.id); End;

- Triggers for update attribute events

-- Trigger for insertions over the uSaleAmount table
create trigger tuSaleAmount
after update of Amount on Sale FOR each row
DECLARE v_ExistsU number;
BEGIN
 Select count(*) into v_ExistsU From uSaleAmount where id=:new.id;
 IF (v_ExistsU=0) THEN Insert into uSaleAmount values (:new.id);END IF;
End;

-- Trigger for insertions over the uSalePaymentDate table
create trigger tuSalePaymentDate
after update of PaymentDate on Sale FOR each row
DECLARE v_ExistsU number;
BEGIN
 Select count(*) into v_ExistsU From uSalePaymentDate where id=:new.id;
 IF (v_ExistsU=0) THEN Insert into uSalePaymentDate values (:new.id);
END IF;
End;

-- Trigger for insertions over the uShipmentPlannedShipDate table
create trigger tuShipmentPlannedShipDate
after update of PlannedShipDate on Shipment FOR each row
DECLARE v_ExistsU number;
BEGIN
 Select count(*) into v_ExistsU From uShipmentPlannedShipDate where
id=:new.id;
 IF (v_ExistsU=0) THEN Insert into uShipmentPlannedshipDate values
(:new.id);
 END IF;
End;

-- Trigger for insertions over uProductPrice
create trigger tuProductPrice
after update of Price on Product FOR each row
DECLARE v_ExistsI NUMBER; v_ExistsU number;
BEGIN
 Select count(*) into v_ExistsI From iProduct where id=:new.id;
 Select count(*) into v_ExistsU From uProductPrice where id=:new.id;
 IF (v_ExistsU=0) and (v_ExistsI=0) THEN
 Insert into uProductPrice values (:new.id);
 END IF;
End;

-109-

-- Trigger for insertions over uProductMaxDiscount
create trigger tuProductMaxDiscount
after update of MaxDiscount on Product FOR each row
DECLARE v_ExistsI NUMBER; v_ExistsU number;
BEGIN
 Select count(*) into v_ExistsI From iProduct where id=:new.id;
 Select count(*) into v_ExistsU From uProductMaxDiscount where
id=:new.id;
 IF (v_ExistsU=0) and (v_ExistsI=0) THEN
 Insert into uProductMaxDiscount values (:new.id);
 END IF;
End;

-- Trigger for insertions over the uCategoryMaxPendingAmount table
create trigger tuCategoryMaxPendingAmount
after update of MaxPendingAmount on Category FOR each row
DECLARE v_ExistsI NUMBER; v_ExistsU number;
BEGIN
 Select count(*) into v_ExistsI From iCategory where id=:new.name;
 Select count(*) into v_ExistsU From uCategoryMaxPendingAmount where
id=:new.name;
 IF (v_ExistsU=0) and (v_ExistsI=0) THEN
 Insert into uCategoryMaxPendingAmount values (:new.name);
 END IF;
End;

- Triggers for DeleteET, DeleteRT and GeneralizeET events

-- Trigger for deletions over the BelongsTo relationship type. BelongsTo
is represented as a foreign key in the Customer table
create or replace trigger tdBelongsTo
after delete or update of category on Customer FOR each row
DECLARE v_ExistsI NUMBER;
begin
 Select count(*) into v_ExistsI From iBelongsTo where customer=:old.id
and category=:old.category;
 if (v_ExistsI=0) then
 Insert into dBelongsTo values (:old.category, :old.id);
 else delete from iBelongsTo where category=:old.category and
customer=:old.id;
 end if;
End;

-- Triggers to delete unnecessary rows of the structural event types
after delete SQL sentences. These triggers do not correspond to any PSE
but improve the efficiency of the final schema by means of removing
irrelevant tuples from the event tables.
create or replace trigger tdProduct
after delete on Product FOR each row
begin
 Delete from iProduct where id=:old.id;
 Delete from uProductPrice where id=:old.id;
 Delete from uProductMaxDiscount where id=:old.id;
End;

create or replace trigger tdRestrictedProduct
after delete on RestrictedProduct FOR each row
BEGIN

-110-

 Delete from iRestrictedProduct where id=:old.id;
 Delete from sRestrictedProduct where id=:old.id;
End;

create or replace trigger tdCategory
after delete on Category FOR each row
BEGIN
 Delete from iCategory where id=:old.name;
 Delete from uCategoryMaxPendingAmount where id=:old.name;
End;

create or replace trigger tdSale
after delete on Sale FOR each row
BEGIN
 Delete from uSaleAmount where id=:old.id;
 Delete from uSalePaymentDate where id=:old.id;
 Delete from iPurchases where sale=:old.id;
End;

create or replace trigger tdShipment
after delete on Shipment FOR each row
BEGIN
 Delete from uSaleAmount where id=:old.id;
 Delete from uSalePaymentDate where id=:old.id;
End;

create or replace trigger tdDeliveredIn
after delete on DeliveredIn FOR each row
BEGIN Delete from iDeliveredIn where sale=:old.sale and
shipment=:old.shipment; End;

8.6.4 Definition of derived subtypes
-- View representing the SaleValidShipDate derived subtype
create view SaleValidShipDate as
select * from Sale where id IN (select * from uSalePaymentDate);

-- View representing the ShipmentValidShipDate2 derived subtype
create view ShipmentValidShipDate2 as
select * from Shipment where id IN (select * from
uShipmentPlannedShipDate);

-- View representing the DeliveredInValidShipDate3 derived subtype
create view DeliveredInValidShipDate3 as
select * from DeliveredIn where (sale,shipment) IN (select sale,shipment
from iDeliveredIn);

-- View representing the ProductCorrectProduct derived subtype
create view ProductCorrectProduct as
select * from Product where id IN (select * from iProduct);

-- View representing the ProductCorrectProduct2 derived subtype
create view ProductCorrectProduct2 as
select * from Product where id IN (select * from uProductPrice);

-- View representing the ProductCorrectProduct3 derived subtype
create view ProductCorrectProduct3 as
select * from Product where id IN (select * from uProductMaxDiscount) ;

-111-

-- View representing the CategoryNotTooPendingSales derived subtype
create view CategoryNotTooPendingSales as
select * from Category where name IN (select * from
uCategoryMaxPendingAmount) ;

-- View representing the CustomerNotTooPendingSales2 derived subtype
create view CustomerNotTooPendingSales2 as
select * from Customer where id IN
 ((select customer from iBelongsTo) union
 (select customer from iPurchases) union
 (select s.customer from uSaleAmount u, Sale s where u.id=s.id) union
 (select s.customer from uSalePaymentDate u, Sale s where u.id=s.id));

-- View representing the CategoryAtLeastThreeCustomers derived subtype
create view CategoryAtLeastThreeCustomers as
select * from Category where name IN
((select * from iCategory) union (select category from dBelongsTo));

8.6.5 Definition of the integrity constraints
-- View representing the ValidShipDate constraint
create view ValidShipDate as
select * from SaleValidshipDate s where exists
 (select * from DeliveredIn d, Shipment sh where s.id=d.sale and
d.shipment=sh.id and
 not sh.plannedshipDate<=s.paymentDate+30);

-- View representing the ValidShipDate2 constraint
create view ValidShipDate2 as
select * from ShipmentValidshipDate2 sh where exists
 (select * from DeliveredIn d, Sale s where s.id=d.sale and
d.shipment=sh.id and
 not sh.plannedshipDate<=s.paymentDate+30);

-- View representing the ValidShipDate3 constraint
create view ValidShipDate3 as
select d.* from DeliveredInValidShipDate3 d, Shipment sh, Sale s where
d.sale=s.id and d.shipment=sh.id and not
sh.plannedshipDate<=s.paymentDate+30;

-- View representing CorrectProduct
create view CorrectProduct as
select * from ProductCorrectProduct p where not (p.price>0 and
p.maxDiscount<=60);

-- View representing CorrectProduct2
create view CorrectProduct2 as
select * from ProductCorrectProduct2 p where not (p.price>0);

-- View representing CorrectProduct3
create view CorrectProduct3 as
select * from ProductCorrectProduct3 p where not (p.maxDiscount<=60);

-- View representing NotTooPendingSales
create view NotTooPendingSales as
select * from CategoryNotTooPendingSales c where exists (

-112-

 select * from customer cu where cu.category=c.name and (select
sum(s.amount) from sale s where s.customer=cu.id and
s.paymentDate>sysdate) > c.maxPendingAmount);

-- View representing NotTooPendingSales2
create view NotTooPendingSales2 as
select cu.* from CustomerNotTooPendingSales2 cu, Category c where
cu.category=c.name and (select nvl(sum(s.amount),0) from sale s where
s.customer=cu.id and s.paymentDate>sysdate) > c.maxPendingAmount;

-- View representing AtLeastThreeCustomers
create view AtLeastThreeCustomers as
select * from CategoryAtLeastThreeCustomers c where not ((select count(*)
from customer cu where cu.category=c.name)>=3);

-- View representing NumberOfRestrictedProducts
-- If there is a tuple in iRestrictedProduct or sRestrictedProduct we
verify the constraint. The dual table is an auxiliary table defined by
Oracle containing a single tuple with empty values. We use this table to
show the error message.
create view NumberOfRestrictedProducts as
select ‘ErrorInNumberOfRestrictedProductsConstraint’ as error from dual
where exists(select * from iRestrictedProduct union select * from
sRestrictedProduct) and (select count(*) from RestrictedProduct)>20;

-113-

9. Related work

Two kinds of related work are relevant to this thesis. On the one hand, there is a long
tradition of methods devoted to the problem of integrity checking in the database field (see
Section 9.1). We will show that the efficiency of the incremental checking we get with our
processed schema is comparable to the efficiency obtained with those methods.

On the other hand there are an increasing number of methods and tools that provide code-
generation capabilities from CSs and that may include facilities for providing an efficient
integrity checking mechanism when generating the implementation of the CS in the final
technology platform (see Section 9.2). We will show that the efficiency provided by these
methods is worse than the efficiency that could be obtained if directly implementing our
processed schema. This is true even when comparing the efficiency of the generated
implementations only for those technology platforms that these existing methods and tools
are focused on. Besides, all of them always depart from the integrity constraints exactly as
defined by the designer, and thus, the quality of their results depends on the particular
syntactic definition of the constraint chosen by the designer when specifying the CS.

In what follows we compare our method with the most representative proposals of both
groups. The comparison is based on the expressiveness of the constraint definition
language (remember the classification between intra, inter, and type constraints in Section
1.3) and on the efficiency of the provided techniques for integrity checking.

9.1 Approaches in the database field

A lot of research has been devoted to the problem of guaranteeing the consistency of the
database data with respect to the integrity constraints defined in the database schema.

There are different perspectives to deal with this problem. We can classify the methods
according to the checking time (run-time or compile-time) and to the kind of response to
constraint violations (checking or maintenance). Thus, we have four different families of
methods [53]:

- Integrity checking at run-time: With this approach, whenever a transaction is to be
committed, all integrity constraints are verified. If a constraint is violated in the
new database state, the transaction is aborted.

-114-

- Integrity checking at compile-time: Theorem provers or proof assistants are applied
over the set of predefined transactions that may be applied over the database in
order to ensure that their application will never induce a constraint violation. This
implies that at run-time it is not necessary to verify the constraints but, on the other
hand, we must foresee all possible transactions that may be applied over the IB.
Moreover, current methods usually restrict the kind of predefined transactions that
the user may define.

- Integrity maintenance at run-time: When, before committing a transaction, the
method detects that a constraint is not satisfied, additional modification events (also
called repair actions) are generated in order to ensure that the database is left in a
consistent state. ECA-rules and derivation rules are the most common mechanisms
used to detect violations and generate repair actions. The method must ensure that
the rule application terminates and that the generated updates preserve the semantic
effect of the original transaction.

- Integrity maintenance at compile-time: The set of predefined transactions are
analyzed at compile-time and extended with a set of appropriate repair actions.
Again, the method must guarantee that the process terminates. Confluence is also
desirable.

The approach closest to our own method is integrity checking at run-time (our processed
constraints are checked at run-time and we do not provide any mechanism to generate the
corresponding repair actions). Therefore, all methods included in the following comparison
follow (or can be adapted to) this approach. For relevant references regarding the other
families of approaches, we refer to [55], [86] (maintenance at run-time) and to [77] and
[53] (maintenance at compile-time).

In general, all methods present two main limitations as compared to the one proposed in
this thesis: 1 – limitations with respect to the expressivity of the constraint definition
language or 2 – limitations with respect to the kind of structural event types considered.

Regarding the first problem, some of the proposals do not allow the definition of aggregate
operators, select expressions or bag semantics, which frequently appear in the definition of
OCL constraints.

Regarding the second one, most of them only consider insertion and deletion events over
relations (which may correspond either to an entity type or a relationship type of the CS).
Our richer set of event types allows us to provide more fine-grained results. For instance,
assume that we distinguish between two kinds of event types X and Y while one of these
previous methods m mixes them in a single event type Z. When applying m over a
constraint c we may obtain that c must be verified after applying an event of type Z.
Therefore, we will have to verify c after all database updates including X or Y, even if

-115-

possibly, only the operations including X (or Y) may really violate c, as it could be detected
by our method.

For the sake of clarity, when presenting the different methods we distinguish among
methods developed for relational databases, methods for deductive databases and methods
for object(-relational) databases. We are aware that this classification is not necessarily
strict.

9.1.1. Approaches for relational databases

Probably, the most relevant proposal in this field is [21]. In this proposal, constraints are
defined as SQL predicates over the database state. They generate a production rule (similar
to the trigger concept in current database systems) for each constraint. The rule is executed
whenever a PSE for the constraint is applied over the database. When the rule is fired, the
constraint condition is evaluated. If the condition does not hold a given action is taken.
These actions are not automatically generated, they must be manually defined by the
designer and may be as simple as rolling back the constraint.

As far as expressivity is concerned, this method is powerful enough to deal with all kind of
constraints we can define in OCL (it supports all SQL constructs that would be required to
map the different OCL operators into SQL ones).

However, this method lacks of precision when computing the PSEs for the constraints
since it may consider as a PSEs for a given constraint certain structural events that may
never violate it. For instance, the method would determine that the insertion of a new
shipment may violate the constraint ValidShipDate of our example (Figure 1.2), when it is
not the insertion of a shipment but the insertion of a new relationship between a shipment
and a sale what can really violate it.

Another drawback of this method is that not all constraints are checked incrementally.
Depending on the constraint, a complete recomputation of the constraint is required to
check that the IB satisfies it. A constraint c defined over a type t can be incrementally
checked only when all operators appearing in c are operators over attributes or
relationships of t and no recursive navigations exist over t.

Lately, in [23], this method is improved to incrementally check all constraints but, as a
trade-off, they need to restrict the constraint definition language (for instance, no aggregate
operators can be used).

9.1.2 Approaches for deductive databases

There is a long tradition of methods devoted to the problem of integrity constraint checking
in the deductive database field.

-116-

Some of the approaches do not focus on the problem of integrity checking itself but on the
related problem of materialized view maintenance. A materialized view is a view whose
tuples are stored in the database instead of being recomputed every time the view is
queried. Then, the view materialization problem aims at incrementally updating the view
data in response to changes in the tables underlying the view definition. Since integrity
constraints can be represented as inconsistency predicates, i.e. as views that must be empty
(a non-empty view indicates that the corresponding constraint has been violated), the
problem of integrity checking can be regarded as a subset of the view maintenance
problem.

These approaches share a similar core mechanism. They all represent integrity constraints
as inconsistency predicates. As an example, the representation of ValidShipDate as an
inconsistency predicate would be the following (where S stands for Sale, Sh for Shipment,
D for DeliveredIn, pd for paymentDate and psh for plannedShipDate):

IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ psd>pd+30

where IcValidShipDate becomes non-empty (i.e. it is violated) whenever two related sale and
shipment instances verify that the plannedShipDate goes beyond 30 days after the
paymentDate of the sale.

Then, these methods propose a set of rules to control the insertions over the predicate
representing the constraint (the predicate IcValidShipDate in our example). Each rule identifies
a situation that could possibly induce a constraint violation. Whenever one of the rules is
found to be true, the constraint is considered violated. The methods differ in terms of the
precision and efficiency of the rules they propose.

A common drawback of most of these proposals is that they are not powerful enough to
deal with the whole expressiveness of the OCL (i.e. they do not support the constructs that
would be required to map the OCL constraints to the logic language they use as a
constraint definition language), as done by our method. In particular, OCL allows negation,
bag semantics and aggregation operations while these methods hardly cover all these
constructs (see [41] for a survey and a general discussion of their limitations).

In the following we present the most representative approaches in this field. Most recent
approaches do not improve the efficiency of the results but adapt the methods to different
contexts as: 1- distributed databases where we may not have access to the original
materialized view when computing the changes required to maintain the view [82] or 2 -
environments with autonomous data sources, where the result of the incremental
computation is affected by interfering updates [83]. We would also like to remark the
proposal of [29], where some of the ideas presented in the next subsection are adapted to
be integrated within the technology possibilities provided by current database systems.

-117-

9.1.2.1 Urpí and Olivé’s Method

This proposal [88],[89] is based on the computation of the insertion, deletion and
modification internal events over a derived predicate. This derived predicate may represent
the inconsistency predicate corresponding to an integrity constraint. In such a case, only
insertion events over the derived predicate are relevant (the predicate is always empty
when beginning the transaction).

Roughly, an insertion event over a derived predicate (i.e. indicating a violation of the
constraint in our case) may be generated when the transaction includes a structural event
that makes true a predicate pi appearing in the rule body for the derived predicate. The
possible structural events are an insertion event, a modification event or a deletion event
(when in the rule body, pi appears negated).

After pi becomes true we have to evaluate the derived predicate to check whether now the
whole rule body holds, and thus, a new fact must be inserted in the derived predicate. Since
[89] the method takes into account inclusion dependencies, exclusion dependencies,
alternative keys and referential integrity constraints among the different predicates pi when
proposing the rules that may generate an insertion event over the derived predicate.

Applied to the previous ValidShipDate constraint, the method would generate the
following set of rules to incrementally check the constraint:

1. IcValidShipDate ← uS(s,pd’) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ psd>pd’+30
2. IcValidShipDate ← S(s,pd) ∧ iD(s,sh) ∧ Sh(sh, psd) ∧ psd>pd+30
3. IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ uSh(sh, psd’) ∧ psd’>pd+30

where iX(y) means that the entity y of type X has been inserted and uX means that it has
been updated.

After applying our method to the same constraint, we obtain the following three
incremental constraints (see Figure 6.8):

a. context SaleValidShipDate inv:
self.shipment->forAll(sh| sh.plannedShipDate<=self.paymentDate+30)

b. context ShipmentValidShipDate2 inv:
self.sale->forAll(s| self.plannedShipDate<=s.paymentDate+30)

c. context DeliveredInValidShipDate3 inv:
self.shipment.plannedShipDate<=self.paymentDate+30

where SaleValidShipDate was created to hold the set of sales that have been updated,
ShipmentValidSihpDate contains the modified shipments and DeliveredInValidShipDate
the inserted DeliveredIn relationships.

-118-

When comparing both results, we may realize that the constraints we get are equivalent to
rules 1, 3 and 2, respectively. Constraint a checks only the updated sales, as rule number 1,
and for each updated sale both methods compare its paymentDate with the
plannedShipDate of all its shipments. Similarly, constraint b and rule 3 are only evaluated
over updated shipments, and for each one, they verify that their plannedShipDate is correct
with respect to the paymentDate of the related sales. Finally, both, constraint c and rule 2,
consider just the sale and the shipment participating in the inserted DeliveredIn
relationship.

The main limitation of this method is that all constraints must be specified as closed first-
order formulae, not expressive enough to represent all constraints that can be specified
with OCL. As an example, among the five integrity constraints of our running example,
only ValidShipDate and CorrectProduct can be handled by this method.

Our method can also be more efficient in the treatment of constraints with existential
quantifiers after insertion or updating events. As an example, consider a constraint stating
that at least a sale per shipment must be of an amount greater than 10000. After every
single sale update resulting in a new amount under 10000, this method would check that at
least another sale of the same shipment is still over 10000. Hence, a certain shipment sh
may be reconsidered several times, one for each updated sale assigned to sh. On the
contrary, we first compute the set of affected shipments after all sale updates and then
check the constraint condition on each of them. In this way, we avoid rechecking the same
shipment several times.

On the contrary, we must recognize that our method behaves worse than this method after
deletion events in constraints whose definition includes a negated atomic literal
representing a relationship type RT. For instance, this happens for constraints defining that
every instance of an entity type A must be related with all instances of an entity type B. An
OCL representation of such constraint could be: context A inv: self.b-
>size()=B.allInstances(). Its representation as an inconsistency predicate would be: Ic ←
∀a,b A(a) ∧ ¬RT(a,b) ∧ B(b)

In this situation, this method directly detects that the constraint is violated after the deletion
of a relationship of RT not followed by the deletion of the corresponding instance in B
while our method requires to check that the A participant of the deleted relationship is still
related with all entities of the B entity type.

9.1.2.2 The Counting algorithm

The counting algorithm (included in [42]) can be used to maintain views that use negation,
aggregation, bag semantics (i.e. views with duplicates) and the union operator. It neither
supports recursive views nor the difference set operator.

-119-

Similarly to the previous method, it associates n delta rules to each derived predicate p
(where n is the number of predicates pi appearing in the body of the derivation rule for p).
Each delta rule computes the changes over p due to the changes (insertions and deletions)
over pi during the transaction.

The application of the method over ValidShipDate produces the following set of delta
rules. For the sake of simplicity we use the same notation as in the previous method.

1. IcValidShipDate ← iS(s,pd) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ psd>pd+30
2. IcValidShipDate ← S(s,pd) ∧ iD(s,sh) ∧ Sh(sh, psd) ∧ psd>pd+30
3. IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ iSh(sh, psd) ∧ psd>pd+30

There are some noteworthy differences with respect to our method. First of all, this method
only distinguishes between insertion and deletion events, modification events are modeled
as a deletion event followed by an insertion event. This hinders the precision of the
computation of constraint violations. For instance, an update of the amount attribute of a
sale s is transformed as a deletion of s plus an insertion of s with the new value in the
amount attribute. Since we have generated an insertion event over Sale, according to rule
1, ValidShipDate will be verified by comparing the payment date of s with the planned
ship date of all shipments related with s. Clearly, this is an unnecessary verification since
the update of a sale amount (which was the original event intended by the user) cannot
violate ValidShipDate.

Another difference is the behavior with respect to the aggregate operators. The counting
algorithm is able to keep track of additional derived information stored in the entity types
of the CS. For instance, we could record in the Category type the number of customers
assigned to that category. Then, when verifying AtLeastThreeCustomers, this algorithm
could detect whether the constraint is violated after the removal of a customer from a
category c, without recalculating the number of customers still belonging to c (as required
in our method). Thus, they improve efficiency of integrity checking but need to incur in the
extra cost of having to materialize and keep up to date such derived information (i.e. after
the customer removal, the value of the number of customers for the category c must be
decreased).

9.1.2.3 The DRed algorithm and the Ceri and Widom’s method

The DRed algorithm (included in [42]) incrementally maintains recursive views that use
negation and aggregation but does not support bag semantics.

This algorithm is a three phase algorithm. In the first place, it deletes from the derived
predicate all tuples related with deleted predicates during the transaction (even if there
exist some other derivation that makes the derived predicate still true in the new state).
Then, it puts back all the tuples that have alternative derivations. Finally, it inserts in the
derived predicate tuples due to insertion events over the base predicates appearing in the
rule body. To handle views defined by a recursive rule, the method applies these three

-120-

steps successively. The Ceri and Widom’s method [22] (do not confuse with their method
for relational databases reviewed in section 9.1.1) follows a similar approach but it does
not support aggregate operations

Note that, in our case, only the third step is relevant (and similar to the previous methods)
since the view corresponding to an integrity constraint is always empty before starting the
database update.

The main limitations of this method are its lack of support for update events (see the
comment in the previous section) and the redundant computation of aggregate operators.
An aggregate (or exists) operator, as the size operator in the AtLeastThreeCustomers
constraint, is computed after each customer removal to verify the category where the
customer belonged still verifies the constraint. Instead, we first compute which is the set of
affected categories and compute the operator over them. This way, when several customers
belonged to the same category we avoid computing several times the size operator.

9.1.2.4 Christiansen and Martinenghi’s method

This approach [26] is quite different from the ones reviewed up to now. Unlike previous
approaches, which only consider single updates, this method is applied to predefined sets
of events provided by the designer at compile-time. These sets of events are called
parametric transaction patterns.

Once a specific transaction is proposed, and before it is executed, the corresponding
pattern is instantiated and checked for consistency so that only consistency-preserving
transactions are eventually passed on to the database.

The basic idea of the method is that when considering a transaction pattern instead of a
single event, the rules generated to verify a given constraint may be more efficient than
rules generated considering isolated events. Obviously, this forces the designer to provide
in advance all relevant transaction patterns. An ad-hoc update of the database cannot
benefit from this patterns, and thus, it would suffer from all problems commented for
previous methods.

Another problem of the method is that it must face undecidability results since this
approach has a direct correspondence with the query containment problem (which is also
known to be undecidable in general). This makes impossible to achieve a general and
optimal solution for all cases [26].

9.1.3 Approaches for object(-relational) databases

Few approaches are specific for object-oriented or object-relational databases [57]. Due to
the use of an object model, they must face new problems, mainly dereferencing the
references between objects, unnesting nested relations and handling inheritance
relationships between the different relations.

-121-

[54] introduces an algorithm for incrementally maintaining views for object-relational
databases. The object-relational view definition language may contain aggregates but it
presents some limitations regarding the presence of nested select statements. The only
events supported are insertion and deletion events. It neither distinguishes between
specialization and insertion events either (nor between generalization and deletion events).

As a first step, the method replaces all object references with explicit joins. Then it creates
two triggers for each table t appearing in the view query, one for insertions over t and the
other for deletions. In this step, tables inheriting from t and inherited tables of t are also
included. Then, whenever an insert (deletion) in t is detected the insert (deletion) trigger
evaluates the atomic conditions in the view query affecting t and when the inserted
(deleted) tuple satisfies them, the trigger activates the view maintenance algorithm. Finally,
the view maintenance algorithm consists of joining the inserted (deleted) tuples of t with
the rest of the tables in the view query. The result set is added (removed) from the view.

Note that the method always creates both triggers, without considering at this phase of the
process if the kind of event may really violate the constraint.

To deal with views with aggregate operators, they first remove the operators from the view
and apply the previous procedure. Next, the aggregate operators are applied over the result
set and merged with the existing tuples in the view. Therefore, the semantics of the
aggregate operators are not used to provide a better incremental maintenance.

[6] proposes a solution to the problem of incrementally maintaining (a subset of)
materialized OQL views defined over an ODMG-compliant schema. In particular, the
views may not contain aggregate operators, set operators (union, intersection, difference)
nor duplicates (i.e. bag semantics). The view is transformed to an algebraic form.

When computing the events to be monitored (the ones that may change the view
population) they lack of precision since they assume that all kinds of events over the
elements referenced in the view (tables, object references, attributes) affect the view.

Then, for each event type they generate an incremental maintenance plan. The article
provides a thorough discussion on the efficiency of the generated plans when applied over
a real database and how its efficiency is influenced by the size of the tables, the selectivity
of the view, the ratio of update events against query events and so forth.

9.2 Comparison with current CASE, MDA and MDD tools

We have recently witnessed an explosion of tools and methods promising a full and
automatic generation of the application code from its specification. Even more, nowadays,
code-generation capabilities of CASE tools are a key issue in their development and
marketing strategy.

-122-

At the present moment, almost all methods and tools are able to generate the skeleton of
Java classes or relational schemas from the CS. A few also generate the code of the
application operations when its behavior is specified with state diagrams or action
semantics [68].

Nevertheless, most methods and tools tend to skip the integrity constraints specified in the
schema when generating the system implementation. All of them present important
limitations regarding the expressivity of the constraints they can handle and/or the
efficiency of the generated code [19].

Since they do not work purely at a conceptual level (as a result they do not provide a
processed conceptual schema but the translation of the schema in terms of the target
technology) to study their constraint code-generation capabilities we must examine the
efficiency of the generated implementation in the final technology platform. We will focus
on these two technologies: 1 – Relational databases and 2 – Object-oriented languages, in
particular Java. Even though some tools also deal with other technologies (like .NET or
C++), this decision does not restrict the set of tools to study since these two technologies
are the most widely covered ones.

We have chosen the most representative examples from all different kinds of tools (from
CASE tools extended with code-generation capabilities to full model-driven development
methods). For each group we have selected the tools we believe are the most representative
or the ones offering a better constraint support. Obviously, this classification is somewhat
arbitrary and some of the tools could be classified in more than category. Moreover, we
have included in the study all tools supporting a textual language to define integrity
constraints, commonly OCL or similar. Support for such a language is required in order to
be able to specify all possible kinds of constraints in a conceptual schema [33].

At the end, we provide a summary table for all methods and tools mentioned in this
chapter.

9.2.1 CASE Tools

Even though the initial goal of CASE tools was to facilitate the modeling of software
systems, almost all of them have extended their functionality to offer, at least to some
extent, code-generation capabilities. From all CASE tools (see [63] for an exhaustive list)
we have selected the following ones: Poseidon, Rational Rose, MagicDraw,
Objecteering/UML and Together. In what follows we comment them in detail:

a) Poseidon [37] is a commercial extension of ArgoUML [2]. Its Java generation
capabilities are quite simple. It does not allow the definition of OCL constraints and it does
not take the multiplicity constraints into account either. Only distinguishes two different
multiplicity values: ‘one’ and ‘greater than one’. In fact, when the multiplicity is greater
than one the values of the multivalued attributed created in the corresponding Java class

-123-

are not restricted to be of the correct type (see in Figure 9.1 the customer attribute of the
Category class corresponding to the Category entity type defined in our running example;
the customer attribute could hold any kind of objects and not just customer instances).

The generation of the relational schema is not much more powerful either. Just the primary
keys constraints are supported. The designer must explicitly indicate which attributes act as
a primary key for the entity type by means of modifying the corresponding property in the
attribute definition.

 public class Category {

 private String name;
 private int maxPendingAmount;
 private int discount;
 public java.util.Collection customer = new java.util.TreeSet();
}

public class Customer {

 private int id;
 private String name;
 private String nationality;
 private String creditCard;
 public Category category;
 public java.util.Collection sale = new java.util.TreeSet();
}

Figure 9.1. Category and Customer classes as generated by Poseidon

b) Rational Rose [75]. The Java generation process is similar to that of Poseidon. The
database generation is better because the class diagram can be complemented with the
definition of additional properties. For instance, the CorrectProduct constraint can be
specified as a property of the price (Figure 9.2) and maxDiscount attributes. Given this
information, the tool adds to the Product table the constraint check(price>0) to control the
correct product price (and likewise with maxDiscount). Unfortunately, the allowed
expressivity of these additional properties is limited to simple restrictions over the values
of individual attributes.

Recently, a Rational Rose plug-in [34] is available to permit the definition of OCL
constraints on rose models. However, these constraints are not considered when generating
the application code.

-124-

Figure 9.2. Properties of the Price attribute in Rational Rose

c) MagicDraw [61] offers a specific UML profile to define relational schemas which
allows improving the code generation for that kind of databases. In this way, the user may
annotate the class diagram with all the necessary information (primary and foreign keys,
unique constraints and checks over attributes).

Figure 9.3 shows the (simplified) relational schema definition for the Category and
Customer entity types, once annotated with the profile. The tool partially generates this
relational schema from the initial CS. The schema includes the primary keys of each table
and the foreign key from Customer to Category (relating the cat attribute of customer with
the category’s name). In the same way we may stereotype the attributes to include simple
checks as the ones required in CorrectProduct. The other constraints cannot be specified
since relational databases do not provide any predefined mechanism to check them (and
MagicDraw neither generates itself any code fragment to do it).

Though MagicDraw allows the definition of OCL constraints, they are completely omitted
in subsequent steps of the code generation process. For instance, when generating the
relational schema corresponding to the initial conceptual schema, MagicDraw is unable to
transform CorrectProduct in the corresponding checks in the relational schema. Even if we
have first defined CorrectProduct in OCL, we are forced to manually define the constraint
again in the relational schema.

-125-

Figure 9.3. PSM for the relational schema in MagicDraw

d) Objecteering/UML [80] presents as a special feature with respect to the previous tools
that supports (and generates the appropriate checking code) any multiplicity value in the
relationship types. When generating the Java code it uses a predefined library to enforce
the cardinality constraints. Moreover, it creates a set of triggers during the generation of
the relational schema in the database. For instance, the trigger in Figure 9.4 checks that a
category still contains more than three customers after the deletion of a customer.
Otherwise, it stops the customer deletion process by raising an exception that rollbacks the
transaction. The starting point for the database generation is, as in the previous tool, a
schema annotated with a specific profile that can be semi-automatically obtained from the
initial CS. It does not allow the definition of integrity constraints in OCL.

 CREATE TRIGGER TI_cat_cust_DELET
 ON customer
 FOR DELETE AS
 IF NOT((SELECT COUNT(*)
 FROM customer, deleted
 WHERE employee.department = deleted.department) >=3)
 BEGIN
 ROLLBACK TRANSACTION
 RAISERROR 20501, "cust_cat : Deletion forbidden,

 cat_cust_FK minimum cardinality constraint violation"
 END

Figure 9.4. Trigger to control the minim number of customers per category

e) Together [12] offers similar capabilities to Rational Rose regarding the database
generation. Moreover, it includes full OCL support to define constraints and
pre/postconditions in the CS.

Nevertheless, when generating the Java code, only intra-entity constraints (see Section 1.3)
are correctly generated. Moreover the generation is not efficient since constraints are
verified after every single method of the class and not only after those methods possibly
violating the constraints. As an example, see the Java class corresponding to the Product
entity type in Figure 9.5. Even if we define the contract of the method setName (stating
that the method just updates the name attribute) the generated class verifies that the value
of the price attribute is correct after the method execution. The constraint is converted to a
method (named inv$0 in the Figure) returning a true boolean value if the constraint holds
and false otherwise.

<<table>>
Customer

<<PK>>-name : varchar2
-cat : varchar2

<<table>>
Category

<<PK>>-name : varchar2

BelongsTo
<<FK>>

{columns=cat}

{columns=name}

-126-

For the sake of clarity we have simplified a little bit the original code generated by
Together as well as removed the code fragment in charge of verifying the pre and
postcondition of the setName method.

 public class Product {
 public int id;
 public String name;
 public int price;
 public int maxDiscount;
 public String description;

 void setName(String newName) {
 PrePost oclPreState = preSetName(this, newName);
 assert (PrePost.checkPost(oclPreState, null) && allInvariants(this));
 }

 static boolean inv$0(Product self) {
 java.lang.Boolean bool18 = java.lang.Boolean.valueOf(self.price > 0);
 return (bool18 != null ? (bool18).booleanValue() : false);
 }

 static boolean allInvariants(Product self) {return inv$0(self);}
}

Figure 9.5. Product class as generated by Together

Regarding inter-entity constraints, Together generates an uncompleted integrity checking
code which does not suffices to detect constraint violations. For instance, when generating
ValidShipDate constraint, the checking code will verify the constraint after all kinds of
modifications over the attributes of Sale but, surprisingly, changes over shipment objects
does not induce the verification of the constraint as well. This means that after updating the
paymentDate of a Sale, the checking code would detect a constraint violation whereas after
updates of the paymentShipDate of a Shipment no violation will ever be detected.

9.2.2 MDA Tools

Although, in fact, most of the tools evaluated in this whole section 9.2 are usually
considered as MDA-tools we reserve this specific category to the tools closest to the MDA
standard [69]. Therefore, we classify in this category tools having as their main goal to
support the definition and execution of model transformations from PIMs to PSMs and
from the PSMs to the final code. We evaluate in this section some of the most well-known
MDA tools: ArcStyler, OptimalJ and AndroMDA.

ArcStyler [44] concentrates in the generation of Java, J2EE and .NET applications (with its
cartridge architecture the designer can define additional transformations). When
generating Java programs, the generated code is like the one in Poseidon, with the only
difference that automatically creates a set of methods to modify the attributes representing

-127-

the associations of the original class diagram. ArcStyler also includes the Dresden OCL
tool (see section 9.2.4) to define and generate the constraints.

OptimalJ [27] is devoted to generate J2EE applications where all the business logic
concentrates in the Java classes (Enterprise Java Beans in this case). It only supports
constraints over attributes using constant values or regular expressions. For more complex
constraints, the designer must write the corresponding Java code directly.

AndroMDA [1] is an open source code generation framework that follows the MDA
paradigm. According to the tool information, it takes model(s) from CASE-tool(s) and
generates fully deployable applications. AndroMDA supports the definition of OCL query
expressions and transforms them to the Hibernate-QL or EJB-QL query languages.
However, no explicit support for OCL constraints is provided.

9.2.3 MDD Methods

In this section we group several well-known MDD methods although some of them may
not follow the MDA approach nor use OMG standard languages.

OO-Method [35] is based on the formal language OASIS, although it admits the definition
of UML class diagrams with constraints defined in an OCL-like language. Integrity
constraints may include aggregate operators but type-level constraints are not allowed.
Constraints are checked over the objects instance of the Java classes implementing the CS.
Each time a method of a Java class is executed, all constraints defined on that class are
verified (and not only the constraints that may be affected by that method execution). To
check the constraints, they add a special method in each Java class (Figure 9.6). The
method contains a set of conditions (one for each constraint defined on the class). When a
condition is not satisfied, the method throws an exception.

 Protected void checkIntegrityConstraints() throws Error
{
 if (! ((price<0) || (maxDiscount>60)))
 throw new error (“Constraint Violation. Invalid product”);
}

Figure 9.6. Java method on the Product class verifying the CorrectProduct constraint

WebML [24] is specialized in the generation of web applications. It presents little support
for defining integrity constraints. It only admits the definition of validity predicates on the
web page forms. A validity predicate is a boolean expression that checks the correctness of
the value entered by the user in a form included in a web page. The boolean expression
may consist of boolean operators, arithmetic operators, comparisons (=,>,<,…) and
constant values.

Executable UML [56] proposes to specify the behavior of an application in sufficient detail
so that it can be directly executed. Specifications in executable UML consist merely of

-128-

class diagrams, state diagrams and action semantics to describe the operation behavior.
Using a model compiler, then, the specification is internally transformed into Java or C++.
It supports a predefined set of constraints like cardinality constraints, unique constraints or
checks over the attribute’s values. These constraints are afterwards expressed using the
Action Language they provide. For more general ones, the designer must define them
using this Action Language directly. That is, the designer is forced to define them in an
imperative way and not declaratively (although action languages may contain query
expressions they are basically an imperative language). Figure 9.7 shows the
NumberOfRestrictedProducts constraint expressed in the action language. Tools following
this approach (like BridgePoint [3] or iUML [20]) are mainly used in the real time and
embedded domains.

 select many restrictedproducts
from instances of RestrictedProduct
Return (cardinality restrictedproducts)<=20)

Figure 9.7. NumberOfRestrictedProducts defined with an Action Language

9.2.4 OCL Tools

This section evaluates all tools generating code from OCL constraints. Tools supporting
OCL with other purposes (as model validation [40] or verification [4]) are not considered.

Dresden OCL [31] generates the Java classes corresponding to the entity types in the CS,
including all constraints except for the type-level constraints, which are not supported.
Integrity constraints are checked only after modifications over the attributes and
associations (represented also as attributes in the Java classes) referenced in the constraint
definition. This represents an efficiency improvement regarding previous methods, but, as
shown in Chapter 4, this strategy is still inefficient since not all kinds of changes over the
associations may violate a given constraint. For instance, they would determine that
AtLeastThreeCustomers may also be violated when assigning a customer to a category.
This is exactly the same limitation of [90].

OCLtoSQL is another tool comprised in the previous toolkit, based on the method
proposed in [30]. It generates a relational schema implementing the CS. Additionally, for
each constraint, it creates an SQL view. Similarly to the methods seen in section 9.1, the
view selects those tuples of the database not satisfying the constraint, and thus, a non-
empty view indicates that the constraint has been violated. As an example, Figure 9.8
shows the view corresponding to the CorrectProduct constraint. Note that the view selects
those products not verifying the price or the maxDiscount condition. The views are not
efficient since they examine the whole table population instead of considering only those
tuples modified during the transaction (in the example, the view accesses all products and
not just the inserted or updated ones).

-129-

 CREATE OR REPLACE VIEW CorrectProduct as
(select * from Product SELF where not (SELF.price>0) or not
(SELF.maxDiscount<=60);

Figure 9.8. View for the CorectProduct constraint

The code-generation capabilities of Octopus [48] are more limited. For each integrity
constraint, it creates a new method in the Java class corresponding to the context type of
the constraint. To know whether the constraint holds we must execute this method. If the
constraint does not hold the method throws an exception. However, the decision about
when the constraint needs to be verified (i.e. when we should call this method) is left to the
designer, no hints are provided. OCLE [8] and KMF [47] provide a similar functionality.

OCL2J [32] generates a Java implementation of the CS including all intra-entity and inter-
entity integrity constraints. As in Together, the constraint verification is inefficient since
constraints are checked before and after executing any method of the class.

OCL4Java [93] forces the designer to explicitly link the integrity constraints with the
methods that may violate them. Then, when generating the Java code for the methods, the
constraints are added as preconditions and postconditions for the method (i.e. the constraint
is verified at the beginning and at the end of the method execution).

BoldSoft [11] permits to execute an OCL expression over a set of objects stored in main
memory or in the database (in this latter case, the expressivity is restricted, for instance,
operators as count, collect, difference, asSet, asBag and so forth are not allowed).
However, the tool is focused in the definition of derived elements and not in the integrity
checking of constraints.

Finally, we would like to mention a couple of methods that, instead of generating the Java
code required to verify the constraints, transform the body of each OCL constraint in terms
of one of the constraint languages used in design by contract tools for Java, as iContract
[49] (see [9] for the OCL-iContract translation) or JML [51] (see [43] for the OCL-JML
translation). These tools allow annotating the Java classes with information about the
invariants, pre and postconditions of the class. Then, a tool precompiler transforms these
annotations in pure Java code. Nevertheless, the final code is inefficient as well since the
precompiler transforms the class invariants by means of adding their verification to all
(public) methods of the class, as done by the previous reviewed methods providing a direct
implementation of the OCL constraints.

9.2.5 Summary information

The following table summarizes the comparison of the different tools. For each tool we
indicate its expressivity and efficiency regarding the Java and relational database
generation of the integrity constraints (ICs).

-130-

In the expressivity columns, the symbol X means that the tool does not support any kind of
constraint definition while the symbol √ means a full constraint support and n/a indicates
that the tool does not generate code for checking the defined constraints in that technology.
Otherwise, we explicitly indicate the type of constraints admitted. Likewise for efficiency
columns. In the DB efficiency column, cells are defined as DBMS when the tool relies on
the constraint constructs offered by the database-management system (primary keys,
checks…) to check the constraints.

Table 9.1. Tool comparison

Java DB Tools

Expressivity Efficiency Expressivity Efficiency

Poseidon X n/a PK DBMS

Rational Rose X n/a PK, intra DBMS

Magic Draw X n/a PK, intra DBMS

Objecteering cardinality √ PK,cardinality √

Together √
ICs are verified after every

method
PK, intra DBMS

ArcStyler
Uses

DresdenOCL
n/a PK, intra DBMS

OptimalJ intra √ PK, intra DBMS

AndroMDA X n/a PK, intra DBMS

OO-Method Intra, inter
ICs are verified after every

method
PK DBMS

WebML intra √ PK DBMS

ExecutableUML
intra,predefined

IC types
√ n/a n/a

DresdenOCL Intra, inter
ICs are verified after

methods modifying the
constrained elements

n/a n/a

OCLtoSQL n/a n/a √
Views evaluate

all table
population

Octopus Intra, inter n/a n/a n/a

OCLE Intra, inter n/a n/a n/a

KMF Intra, inter n/a n/a n/a

OCL2J Intra, inter
ICs are verified before and

after every method
n/a n/a

OCL4Java intra, inter
ICs must be manually
linked to problematic

methods
n/a n/a

-131-

10. Conclusions and further research

10.1 Conclusions

The specification of a complete CS must include the definition of all relevant integrity
constraints. Consequently, most CSs require the definition of a large number of constraints.
These constraints must be taken into account when generating the implementation of the
information system. This generation should be done automatically and yield an information
system that efficiently (i.e. incrementally) checks all integrity constraints.

Current methods and tools offer little support for defining and generating constraints in
CSs. Most tools only admit certain predefined constraint types. The few ones that allow
full expressivity in the constraint definition language produce an inefficient
implementation regarding the constraint integrity checking.

These limitations difficult the use of constraints in CSs. Designers are forced to either
manually generate the (efficient) implementation of the constraints or search for an
alternative way to represent the constraints in the CS, usually as postconditions in the
contracts of system operations. A postcondition states a set of conditions that must be
satisfied by the IB when an operation is completed. When constraints are not supported,
designers must include in the postcondition of an operation op the verifications of all
integrity constraints that could possibly be violated after executing op. This is a tedious
and error-prone task.

This thesis has presented a fully automatic method for generating an efficient
implementation for all kinds of integrity constraints in a CS. The generated implementation
checks all constraints incrementally. By incremental we mean that the integrity checking
process exploits available information about the applied structural events to consider as
few entities of the IB as possible during the verification of the integrity constraints. We
believe that our method is a new step towards the fulfillment of the goal of automating
information systems, which is still a grand challenge for information systems research [65].
An implementation of our method is available at [16].

The main characteristic of our method is that it works at a conceptual level. As a result, it
produces a standard CS, and thus, the method is technology-independent. Therefore, unlike
earlier approaches, our results can be used regardless of the final technology platform
chosen to implement the CS. In fact, any code-generation method or tool able to generate

-132-

code from a CS could be enhanced with our method to automatically generate incremental
constraints with only minor adaptations.

We have divided our method into different steps to facilitate its integration and adoption.
Some tools may prefer to incorporate just part of the developed techniques to get a partial
efficiency improvement. This is especially important because processing a CS with our
method implies creating new entity and relationship types and new constraints that must
also be considered when implementing the system in the final technology platform.
Although the number of new model elements is linearly proportional to the number of
constraints in the original CS, this does increase the size and the complexity of the final
implementation. Therefore, when a low population is expected at run-time for some entity
and relationship types (meaning that there is not much difference between an incremental
and a direct checking of the related constraints), it may be preferable to only partially
process the constraints defined over those types (or not process them at all). [13] offers
some more considerations on this topic.

Another important aspect of our method is that it handles integrity constraints at an event-
grained level. For each PSE of a constraint c, the method provides a specialized version of
c to get the maximum efficiency when verifying c after the application of that particular
event. This implies that, even when a constraint cannot be verified incrementally after
some of its PSEs, the method ensures an incremental verification for the rest of its PSEs.

The efficiency of the generated constraints is comparable to that of existing methods for
relational and deductive databases. In this sense, we may regard our method as a leverage
of those previous methods. Our method combines their efficiency with the technology-
independence benefits of working at a higher-abstraction level.

The different techniques developed as part of the method presented in this thesis can be
applied to solve similar problems in related areas. For instance, [7] partially adapts our
method to incrementally verify the consistency of CSs and presents some experimental
results to show the efficiency gain obtained when applying incremental techniques.

10.2 Further research

We would like to comment four possible lines of further research. The first two would
extend our method to adapt other techniques from the database field as [76] and [52]. The
adoption of these techniques at a conceptual level could improve the integrity checking of
some constraints. The third line of research pretends to reuse the method developed in this
thesis as a basis for solving the related problem of materialization of derived types. The
fourth line would study in detail the applicability of our method to the problem of model
consistency checking. A model (i.e. conceptual schema) is correct when verifies the well-
formedness rules of the conceptual modeling language used to specify the schema. These

-133-

rules are usually expressed as constraints over the metamodel formalizing the modeling
language. Each research line is sketched below in more detail.

10.2.1 Extending the CS with summary information.

[76] proposes a method to improve integrity checking of constraints containing aggregate
operators in relational databases. This method adds several new attributes to the entity
types of the CS to store certain information that can speed up the integrity checking.

As an example, given the constraint AtLeastThreeCustomers (context Category inv:
self.customer->size()>=3; Figure 1.2), when we remove a customer from a category cat
we need to count again all the customers belonging to cat to see if the constraint still holds.
To avoid this recomputation, this method proposes adding a new attribute in the Category
entity type to record the number of customers belonging to that category. Then, after
removing a customer from a category cat we could verify the constraint simply by
checking that cat.numberOfCustomers − 1 >= 3 where numberOfCustomers is the name of
the new attribute that records the number of customers in the category. Not all aggregation
operators can benefit from this technique [73].

This technique improves integrity checking. However, in a way, it only moves the
efficiency problem, since now the attribute numberOfCustomers must be efficiently kept
up to date, which is not a trivial task (see Section 10.2.3). [76] also proposes a method to
determine when this is worthwhile, but the decision is based on technologically dependent
parameters (such as the number of page I/O operations). Nevertheless, the applicability of
their ideas to the problem of integrity checking in CSs deserves further investigation.

10.2.2 Evaluating a pre-test before verifying a constraint

Our computation to determine when a constraint must be verified takes into account the
type of the events applied during the modification of the IB. The method proposed in [52]
refines the process by considering not only the type of the events but also the parameters of
the applied events when deciding whether a given constraint must in fact be evaluated.

For each event this method proposes to evaluate a pre-test on the parameters of the event.
If the pre-test is successful, then we need not check the constraint. If it fails nothing can be
said about it and the usual integrity checking must be performed. Obviously, the pre-test is
useful only as long as the cost of evaluating the pre-test is cheaper than the cost of
evaluating the whole constraint. Pre-tests are obtained from the syntactic definition of the
integrity constraint.

This method is unable to generate pre-tests for constraints including aggregate operators.
However, pre-tests could be especially useful in such cases. For instance, given a
constraint context Sale inv: self.saleLine->select(quantity>10)-> size()<5 (stating that
sales must not have five or more sale lines with more than 10 products each) a pre-test
could serve to detect if an event ev of type UpdateAttribute(quantity, SaleLine) over a sale

-134-

line sl forces to check the constraint. In this case, the pre-test would consist in evaluating if
the quantity attribute of sl satisfies the select condition. Only when the pre-test fails (i.e.
when the new value of the quantity attribute of sl is greater than 10) the constraint must be
checked. Otherwise, if the pre-test succeeds (i.e. the new value of the quantity attribute of
sl is lower or equal to 10), the event does not increase the number of sales lines selected for
the sale s in which sl is included (since sl does not satisfy the select condition), and thus,
the constraint may not be violated.

10.2.3 Materialization of derived types

In general, CSs contain many derived entity and relationship types together with their
corresponding derivation rules [64]. For efficiency reasons, some of these types may be
materialized. When a derived type is materialized, its population is explicitly stored in the
CS instead of being recomputed each time the type is queried. Then, changes in the
population of base types referenced in its derivation rule may imply changes in the stored
population of the materialized type. The propagation of these changes should be
completely automatic. According to [65], this is still an open issue.

The problem of an incremental maintenance of materialized derived types is closely related
to the problem of incremental integrity checking addressed in this thesis. Our problem can
be regarded as a subset of this problem (in fact, incremental integrity checking is addressed
in this manner in some of the proposals in the database field, see Chapter 9).

We believe that the techniques developed in this PhD Thesis can feasibly be extended to
cover this more general problem as well.

10.2.4 Model consistency checking

Models (i.e. CSs) must be consistent with the well-formedness rules of the conceptual
modeling language used to specify them. These rules restrict the possible combinations of
the different model elements in the CS. For instance, all schemas specified in UML must
be consistent with all well-formedness rules defined in the UML language. These rules
include: “When an association specializes another association both must have the same
number of participants”, “an association class cannot be defined between itself and
something else”, “ a multiplicity must define at least one valid cardinality greater than
zero” and so forth [68].

This problem has become more relevant due to the growing interest in tools for defining
new modeling languages for particular domains [59], [5], [50] (known as Domain-Specific
Languages) and the increasing number of large CSs.

Since well-formedness rules are usually defined as integrity constraints over the
metamodel that formalizes the modeling language, our approach could be integrated with
these tools to improve the efficiency of model consistency checking.

-135-

A first attempt in this direction has already been done [7], where the authors adopt steps 1
(determination of PSEs) and 3 (computation of relevant instances) of our method in the
development of the SAP (meta)modeling infrastructure. We believe it is worth to study
also the impact of step 2 and other parameters and techniques that may be specific of this
particular problem (as the appropriate checking time or the minimum size of the models
and/or the metamodels so that the application of incremental techniques is worthwhile).

-136-

-137-

References

1. AndroMDA 3.1. www.andromda.org/
2. ArgoUML v. 0.20. http://argouml.tigris.org/
3. Accelerated Technology. Nucleus BridgePoint Development Suite.

http://www.acceleratedtechnology.com/embedded/nuc_bridgepoint.html
4. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,

Mostowski, W., Roth, A., Schlager, S., Schmitt, P. H.: The KeY tool, Integrating
object oriented design and formal verification. Software and Systems Modeling 4
(2005) 32-54

5. Alanen, M., Porres, I.: Coral: A Metamodel Kernel for Transformation Engines. In:
Proc. 2nd European Workshop on Model Driven Architecture, (2004) 165-170

6. Ali, M. A., Fernandes, A., Paton, N. W.: MOVIE: An incremental maintenance
system for materialized object views. Data & Knowledge Engineering 47 (2003)
131-166

7. Altenhofen, M., Hettel, T., Kusterer, S.: OCL support in an industrial environment.
In: Proc. OCL for (Meta-)Models in Multiple Application Domains. Workshop of
the MODELS'06 Int. Conf., (2006)

8. Babes-Bolyai. Object Constraint Language Environment 2.0.
http://lci.cs.ubbcluj.ro/ocle/

9. Baresi, L., Young, M.: Toward Translating Design Constraints to Run-Time
Assertions. Electronic Notes Theoretical Computer Science 116 (2005) 73-84

10. Blaha, M. R., Premerlani, W.: Object-Oriented Modeling and Design for Database
Applications. Prentice Hall (1997)

11. Borland. Bold for Delphi. http://info.borland.com/techpubs/delphi/boldfordelphi/
12. Borland. Borland® Together® Architect 2006.

http://www.borland.com/us/products/together/
13. Brambilla, M., Cabot, J.: Constraint tuning and management for Web applications.

In: Proc. 6th. Int. Conf. on Web Engineering (ICWE'06), (2006) 345-353
14. Cabot, J., Teniente, E.: Determining the Structural Events that May Violate an

Integrity Constraint. In: Proc. 7th Int. Conf. on the Unified Modeling Language
(UML'04), LNCS, 3273 (2004) 173-187

15. Cabot, J., Teniente, E.: Computing the Relevant Instances that May Violate an
OCL constraint. In: Proc. 17th Int. Conf. on Advanced Information Systems
Engineering (CAiSE'05), LNCS, 3520 (2005) 48-62

16. Cabot, J., Teniente, E. A Tool for the Incremental Evaluation of OCL Constraints.
Available: www.lsi.upc.edu/~jcabot/research/IncrementalOCL

17. Cabot, J., Teniente, E.: Transforming OCL Constraints: a context change approach.
In: Proc. 2006 ACM symposium on Applied computing, (2006) 1196-1201

-138-

18. Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In: Proc. 18th
Int. Conf. on Advanced Information Systems Engineering (CAiSE'06), LNCS,
4001 (2006) 81-95

19. Cabot, J., Teniente, E.: Constraint Support in MDA tools: a Survey. In: Proc. 2nd
European Conference on Model Driven Architecture, LNCS, 4066 (2006) 256-267

20. Carter, K. iUML 2.2. http://www.kc.com/products/iuml/index.html
21. Ceri, S., Widom, J.: Deriving Production Rules for Constraint Maintenance. In:

Proc. 16th Int. Conf. on Very Large Databases (VLDB'90), (1990) 566-577
22. Ceri, S., Widom, J.: Deriving incremental production rules for deductive data.

Information Systems 19 (1994) 467-490
23. Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L.: Automatic generation of

production rules for integrity maintenance. ACM Transactions on Database
Systems 19 (1994) 367-422

24. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.:
Designing Data-Intensive Web Applications. Morgan Kaufmann (2002)

25. Cervelló, C.: Ajuda a la comprovació eficient de restriccions d'integritat (in
catalan). UPC-FIB Degree Thesis, (2006)

26. Christiansen, H., Martinenghi, D.: Simplification of database integrity constraints
revisited: a transformational approach. In: Proc. 13th Int. Symposium on Logic
Based Program Synthesis and Transformation, LNCS, 3018 (2003) 178-197

27. Compuware. OptimalJ. http://www.compuware.com/products/optimalj/
28. Correa, A., Werner, C.: Refactoring object constraint language specifications.

Software and Systems Modeling 6 (2006)
29. Decker, H.: Translating Advanced Integrity Checking technology to SQL. In: J.

Doorn and L. Rivero, (eds.): Idea Group (2002) 203-249
30. Demuth, B., Hussmann, H., Loecher, S.: OCL as a Specification Language for

Business Rules in Database Applications. In: Proc. 4th Int. Conf. on the Unified
Modeling Language (UML'01), LNCS, 2185 (2001) 104-117

31. Dresden. Dresden OCL Toolkit. http://dresden-ocl.sourceforge.net/index.html
32. Dzidek, W. J., Briand, L. C., Labiche, Y.: Lessons Learned from Developing a

Dynamic OCL Constraint Enforcement Tool for Java. In: Proc. MODELS 2005
Workshops, LNCS, 3844 (2005) 10-19

33. Embley, D. W., Barry, D. K., Woodfield, S.: Object-Oriented Systems Analysis. A
Model-Driven Approach. Yourdon Press Computing Series. Yourdon (1992)

34. EmPowerTec. OCL-AddIn for Rational Rose.
http://www.empowertec.de/products/rational-rose-ocl.htm

35. Fons, J., Pelechano, V., Albert, M., Pastor, Ó. Development of Web Applications
from Web Enhanced Conceptual Schemas. In: Proc. 22nd Int. Conf. on Conceptual
Modeling (ER'03), LNCS, 2813 (2003) 232-245

36. Frias, L., Queralt, A., Olivé, A.: EU-Rent Car Rentals Specification. LSI Research
Report, LSI-03-59-R (2003)

37. Gentleware. Poseidon for UML v. 4. http://www.gentleware.com
38. Giese, M., Larsson, D.: Simplifying Transformations of OCL Constraints. In: Proc.

8th Int. Conf. on Model Driven Engineering Languages and Sysmtes
(MODELS'05), LNCS, 3713 (2005) 309-323

39. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL.
In: A. Clark and J. Warmer, (eds.): Object Modeling with the OCL. Springer-
Verlag (2002) 85-114

-139-

40. Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL Models by
Automatic Snapshot Generation. In: Proc. 6th Int. Conf. on the Unified Modeling
Language (UML'03). LNCS, 2863 (2003) 265-279

41. Gupta, A., Mumick, I. S.: Maintenance of materialized views: problems,
techniques, and applications. In: Materialized Views Techniques, Implementations,
and Applications. The MIT Press (1999) 145-157

42. Gupta, A., Mumick, I. S., Subrahmanian, V. S.: Maintaining views incrementally.
In: Proc. 1993 ACM SIGMOD Int. Conf. on Management of Data, (1993) 157-166

43. Hamie, A.: Translating the Object Constraint Language into the Java Modelling
Language. In: Proc. 2004 ACM symposium on Applied computing, (2004) 1531-
1535

44. Interactive Objects. ArcStyler v.5. http://www.interactive-objects.com/
45. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and

Information Base. ISO, (1982)
46. Java Community Process: The JavaTM Metadata Interface (JMI) Specification

v.1.0. JSR-000040 (2002)
47. Kent Modelling Framework. Kent OCL Library.

http://www.cs.kent.ac.uk/projects/kmf/
48. Klasse Objecten. Octopus: OCL Tool for Precise Uml Specifications.

http://www.klasse.nl/octopus/index.html
49. Kramer, R.: iContract-the JavaTM design by Contract tool. In: Proc. Technology of

Object-Oriented Languages, TOOLS 26, (1998) 295-307
50. Lara, J. d., Vangheluwe, H.: AToM3: A Tool for Multi-Formalism Modelling and

Meta-Modelling. In: Proc. 5th Int. Conf. on Fundamental Approaches to Software
Engineering (FASE'02), LNCS, 2306 (2002) 174-188

51. Leavens, G. T., Baker, A. L., Ruby, C.: JML: A Notation for Detailed Design. In:
H. Kilov, B. Rumpe, and I. Simmonds, (eds.): Behavioral Specifications of
Businesses and Systems. Kluwer (1999.) 175-188

52. Lee, S. Y., Ling, T. W.: Further Improvements on Integrity Constraint Checking for
Stratifiable Deductive Databases. In: Proc. 22th Int. Conf. on Very Large Data
Bases (VLDB'96), (1996) 495-505

53. Link, S.: Consistency Enforcement in Databases. In: Proc. 2nd Int. Workshop on
Semantics in Databases, Dagstuhl Seminar, LNCS, 2582 (2001) 139-159

54. Liu, J., Vincent, M., Mohania, M.: Maintaining views in object-relational
databases. In: Proc. 9th Int. Conf. on Information and knowledge management
(CIKM'00), (2000) 102-109

55. Mayol, E., Teniente, E.: A Survey of Current Methods for Integrity Constraint
Maintenance and View Updating. In: Proc. Advances in Conceptual Modeling: ER
'99 Workshops, LNCS, 1727 (1999) 62-73

56. Mellor, S. J., Balcer, M. J.: Executable UML. Object Technology Series. Addison-
Wesley (2002)

57. Melton, J.: Advanced SQL: 1999 - Understanding Object-Relational and Other
Advanced Features. Morgan Kaufmann (2002)

58. Melton, J., Simon, A. R.: SQL:1999, Understanding Relational Language
Components. Morgan Kaufmann (2002)

59. MetaCase. MetaEdit+. http://www.metacase.com/mep/
60. NetBeans. Metadata Repository Project. http://mdr.netbeans.org/
61. NoMagic Inc. MagicDraw UML v. 10.5. http://www.magicdraw.com/

-140-

62. Nunamaker, J. F. j., Konsynski, B. j. R., Ho, T., Singer, C.: Computer-aided
analysis and design of information systems. Communications of the ACM 19
(1976) 674-687

63. ObjectsbyDesign. List of UML tools. Available: http://www.objectsbydesign.com/
64. Olivé, A.: Derivation Rules in Object-Oriented Conceptual Modeling Languages.

In: Proc. 15th Int. Conf. on Advanced Information Systems Engineering
(CAiSE'03), LNCS, 2681 (2003) 404-420

65. Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for
Information Systems Research. In: Proc. 17th Int. Conf. on Advanced Information
Systems Engineering (CAiSE'05), LNCS, 3520 (2005) 1-15

66. Olivé, A.: A method for the definition of integrity constraints in object-oriented
conceptual modeling languages. Data & Knowledge Engineering, in press,
available online November 2005 (2005)

67. OMG: UML 2.0 OCL Specification. OMG Adopted Specification (ptc/03-10-14)
(2003)

68. OMG: UML 2.0 Superstructure Specification. OMG Adopted Specification
(ptc/03-08-02) (2003)

69. OMG: MDA Guide Version 1.0.1. (2003)
70. OMG: XML Metadata Interchange (XMI) Specification v.2.0. OMG Adopted

Specification (formal/03-05-02) (2003)
71. OMG: Unified Modeling Language Specification v.1.5. OMG Available

Specification (formal/03-03-01) (2003)
72. OMG: MOF Core Specification. OMG Available Specification (formal/06-01-01)

(2006)
73. Palpanas, T., Sidle, R., Cochrane, R., Pirahesh, H.: Incremental Maintenance for

Non-Distributive Aggregate Functions. In: Proc. 28th Int. Conf. on Very Large
Data Bases (VLDB'02), (2002) 802-813

74. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method approach for
information systems modeling: from object-oriented conceptual modeling to
automated programming. Information Systems 26 (2001) 507-534

75. Rational. Rational Rose. http://www-306.ibm.com/software/rational/
76. Ross, K. A., Srivastava, D., Sudarshan, S.: Materialized view maintenance and

integrity constraint checking: trading space for time. In: Proc. 1996 ACM
SIGMOD Int. Conf. on Management of Data, (1996) 447-458

77. Schewe, K.-D., Thalheim, B.: Towards a theory of consistency enforcement. Acta
Informatica 36 (1999) 97-141

78. Selic, B.: The pragmatics of model-driven development. IEEE Software 20 (2003)
19-25

79. Shlaer, S., Mellor, S.: Recursive design of an application-independent architecture.
IEEE Software 14 (1997) 61-72

80. Softeam. Objecteering/UML v. 5.3. http://www.objecteering.com/products.php
81. Solana, R.: Generación de restricciones OCL alternativas (in spanish). UPC-FIB

Degree Thesis, (2006)
82. Staudt, M., Jarke, M.: Incremental Maintenance of Externally Materialized Views.

In: Proc. 22th Int. Conf. on Very Large Data Bases (VLDB'96), (1996) 75-86
83. Sze, E. K., Ling, T. W.: Efficient View Maintenance Using Version Numbers. In:

Proc. 12th Int. Conf. on Database and Expert Systems Applications (DEXA'01),
LNCS, 2113 (2001) 527-536

-141-

84. Teichroew, D.: Methodology for the Design of Information Processing Systems. In:
Proc. 4th Australian Computer Conference, (1969) 629-634

85. Teichroew, D., Sayani, H.: Automation of System Building. Datamation 17 (1971)
25-30

86. Teniente, E., Urpí, T.: On the abductive or deductive nature of database schema
validation and update processing problems. Theory and Practice of Logic
Programming 3 (2003) 287-327

87. Türker, C., Gertz, M.: Semantic integrity support in SQL:1999 and commercial
(object-)relational database management systems. The VLDB Journal 10 (2001)
241-269

88. Urpí, T., Olivé, A.: A Method for Change Computation in Deductive Databases. In:
Proc. 18th Int. Conf. on Very Large Data Bases (VLDB'92), (1992) 225-237

89. Urpí, T., Olivé, A.: Semantic Change Computation Optimization in Active
Databases. In: Proc. 4th Int. Workshop on Research Issues on Data Engineering-
Active Database Systems (RIDE-ADS'94), (1994) 19-27

90. Verheecke, B., Straeten, R. V. D.: Specifying and implementing the operational use
of constraints in object-oriented applications. In: Proc. Tools Pacific 2002, (2002)
23-32

91. Wiebicke, R.: Utility Support for Checking OCL Business Rules in Java Programs.
Dresden University, Master Thesis, Department of Computer Science, (2000)

92. Wieringa, R.: A survey of structured and object-oriented software specification
methods and techniques. ACM Computing Surveys 30 (1998) 459-527

93. Wolschon, M., Johner, C. OCL4Java. http://www.ocl4java.org
94. Zave, P.: The operational versus the conventional approach to software

development. Communications of the ACM 27 (1984) 104-118

-142-

-143-

Appendix. Case study

As an additional example, in this appendix we show the complete application of our
method over the CS of Figure A.1. This CS is an excerpt of the EU-Rent Car Rentals
Specification [36], an in-depth specification of the EU-Rent case study, which is a widely
known case study being promoted as a basis for demonstration of product capabilities. EU-
Rent presents a car rental company with branches in several countries that provides typical
rental services. EU-Rent was originally developed by Model Systems, Ltd.

The excerpt of Figure A.1 contains information about the rentals (RentalAgreement entity
type), the company branches (Branch entity type), the rented cars (Car) and the people
related with the company either as a renter (Customer), as a driver (EU_RentPerson) or
even as a blacklisted person (BlackListed). For each rental, the CS includes information
about the customer, the rental date, the initial and ending date of the rental, the car being
rented and the branches where the car will be pick up and drop off. Rentals may be
canceled (CanceledReservation) or closed (ClosedRental) when the rental has been
successfully finished.

Additionally, [36] defines the constraints shown in Figure A.2 for this part of the EU-Rent
system (yet in [36] they are specified as proposed in [66], we reexpress them as standard
OCL invariants).

In sections A.1-A.4 we apply the different steps of our method to this case study. Then, in
section A.5 we discuss the efficiency improvements of the integrity checking in the
processed CS with respect to the efficiency of the integrity checking in the original CS of
figure A.1.

-144-

Figure A.1. EU-Rent CS

-145-

 -- The dates for the rental are correct
context Closedrental inv CorrectInterval:

self.beginning.value< self.initEnding.value and self.actualReturn.value>self.beginning.value

-- The pick up and drop off countries appear in the list of visited countries for the rental
context RentalAgreement inv VisitsBranchCountries:

self.country->includes(self.pickupBranch.country) and self.country->includes(
self.dropOffBranch.country)

-- An EU_RentPerson must be over 25
context EU_RentPerson inv Is25OrOlder: (DateTime::now()-self.birthDate) >=25*365

-- The id is an identifier for the EU_RentPerson type
context EU_RentPerson inv IdIsKey:

EU_RentPerson::allInstances()->select(p|p.id=self.id)->size()<2

-- No two rentals may exist for the same customer in an overlapping date interval
context Customer inv RentalsDoNotOverlap:

not self.rentalAgreement-> reject(rA| rA.oclIsKindOf(CanceledReservation))->exists(rA |
self.rentalAgreement->select(rAOther | rAOther.beginning.value> rA.beginning.value)-
>exists(rAOther| rAOther.beginning.value <= rA.agreedEnding.value))

-- Loyalty members must have no faults and, at least, a rental done during the last year
context LoyaltyMember inv MeetsLoyalPerformance:

self.rentalAgreement.beginning->exists(dT| dT.value>(DateTime::now()-365)) and
self.faults->isEmpty()

-- A car can only be assigned to a single active rental
context Car inv OnlyOneAssignment:

self.rentalAgreement->select(rA |not(rA.oclIsTypeOf(CanceledReservation)) and
not(rA.oclIsTypeOf(Closedrental)))->size()<=1

-- Cargroups must have a quota value defined for each branch
context CarGroup inv QuotaForAllBranches:

self.CarGroupQuota->size()=Branch::allInstances()->size()

-- BlackListed people cannot rent
context BlackListed inv NoRentals:

self.rentalsAsDriver->select(rA| rA.beginning.value > self.blackListedDate)->
forAll(rA2|rA2.oclIsTypeOf(CanceledReservation))

-- Drivers need one-year of experience and a license with an expiration date beyond the rental date
context DrivingLicense inv ValidLicense:

(DateTime::now()-self.issue)> 365 and self.eu_RentPerson.rentalsAsDriver.agreedEnding->
forAll(d|d.value<self.expirationDate)

Figure A.2. OCL constraints for the EU-Rent CS

A.1 Step 0: Simplification of the original constraints

Before applying our method we use the rules of Chapter 3 in order to simplify the body of
the original constraints.

-146-

As a result, four of the previous ten constraints (VisitsBranchCountries,
RentalsDoNotOverlap, MeetsLoyalPerformance and NoRentals), have been simplified.
Figure A.3. shows the new body for these constraints.

VisitsBranchCountries has been simplified by means of the rule X->includes(o) → X-
>count(o)>0 applied on both includes operators. For RentalsDoNotOverlap, we have
applied the following list of rules (some of them several times): not X->exists(Y) X-
>forAll(not Y), X->reject(Y) X->select(not Y), X->select(Y)->forAll(Z) X->forAll(Y
implies Z), X implies Y not X or Y, not (not X) X, not X>Y X<=Y and not X<=Y

 X>Y. After these rules we obtain the following (intermediate) body:
self.rentalAgreement->forAll(rA:RentalAgreement | rA.oclIsKindOf(CanceledReservation)
or self.rentalAgreement->forAll(rAOther: RentalAgreement | (rAOther.beginning.value
<= rA.beginning.value) or (rAOther.beginning.value > rA.agreedEnding.value))). Over
this body, we finally apply rule X->forAll(v| Y [and|or] X->forAll(v2| Z)) X-
>forAll(v,v2| Y [and|or] Z) to obtain the final body shown in Figure A.3.

To simplify MeetsLoyalPerformance we just use X->exists(Y) X->select(Y)->size()>0
(to remove the exists iterator) and X->isEmpty() X->size()=0 (to remove the isEmpty
operator). Finally, NoRentals is simplified by means of rule X->select(Y)->forAll(Z) X-
>forAll(Y implies Z) (to remove the select iterator) and rules X implies Y not X or Y and
not X>Y X<=Y (to remove the implies operator introduced by the first simplification
rule).

 context RentalAgreement inv VisitsBranchCountries:
(self.country->count(self.pickupBranch.country)) > 0) and ((self.country->
count(self.dropOffBranch.country)) > 0

context Customer inv RentalsDoNotOverlap:
self.rentalAgreement-> forAll(rA, rAOther| rA.oclIsKindOf(CanceledReservation) or
 (rAOther.beginning.value>rA.beginning.value or rAOther.beginning.value <=
rA.agreedEnding.value))

context LoyaltyMember inv MeetsLoyalPerformance:
 (self.rentalAgreement.beginning->select(dT: DateTime | dT.value > ((DateTime::now()) -
365))->size()) > 0) and ((self.faults->size()) = 0

context BlackListed inv NoRentals:
self.rentalsAsDriver->forAll(rA2: RentalAgreement | (rA2.beginning.value <=
self.blackListedDate) or rA2.oclIsTypeOf(CanceledReservation))

Figure A.3. Simplified constraints

A.2 Step 1: Determining the potentially-violating structural events

According to the part of the method defined in Chapter 4, the PSEs for the constraints of
Figure A.2 (or Figure A.3 for the simplified ones) are the following:

-147-

- CorrectInterval. This constraint may be violated when “closing”, i.e. specializing,
an existing RentalAgreement instance since the new ClosedRental instance may not
verify the constraint. Changes in the different dates involved in the comparison
may also violate the constraint. Therefore, the list of PSEs is the following:

o InsertRT(RentedAt)
o InsertRT(InitialEnding)
o UpdateAttribute(value, DateTime)
o InsertRT(ReturnedAt)
o SpecializeET(ClosedRental)

- VisitsBranchCountries. Removals of links from a rental to related Branch
instances, probably as a previous step to change the pick up or drop off branch, may
violate the constraint. A reduction on the number of countries visited during the
rental may also violate it since the discarded country could be the one where the
pick up or drop off the car was planned. List of PSEs:

o DeleteRT(Visits)
o DeleteRT(PickUpBranch)
o InsertET(RentalAgreement)
o DeleteRT(DropOffBranch)
o DeleteRT(IsLocatedIn)

- Is25OrOlder. Only the insertion of a new person or changes on the birthDate
attribute of an existing person may violate this constraint. List of PSEs:

o InsertET(EU_RentPerson)
o UpdateAttribute(birthDate, EU_RentPerson)

- IdisKey. Changes on the id attribute or insertions of a new person may violate this
constraint. List of PSEs:

o InsertET(EU_RentPerson)
o UpdateAttribute(id, EU_RentPerson)

- RentalsDoNotOverlap. Apart from changes over the dates of existing rentals, a
reactivation, i.e. generalization, of a closed or cancelled reservation may induce a
constraint violation. List of PSEs:

o InsertRT(RentedAt)
o GeneralizeET(RentalAgreement)
o UpdateAttribute(value,DateTime)
o InsertRT(AgreedEnding)
o InsertRT(Rents)

- MeetsLoyalPerformance. The relevant changes for this constraint are the removal
of a rental from a LoyaltyMember, the transformation of a customer into a loyal
member or the insertion of a new fault for a loyal member. List of PSEs:

-148-

o DeleteRT(Rents)
o DeleteRT(RentedAt)
o UpdateAttribute(value,DateTime)
o InsertRT(HasFaults)
o InsertET(LoyaltyMember)
o SpecializeET(LoyaltyMember)

- OnlyOneAssignment. The assignment of a new rental to a car or the reactivation of
a closed or canceled rental may induce its violation. List of PSEs:

o InsertRT(AssignedCar)
o GeneralizeET(RentalAgreement)

- QuotaForAllBranches. Any change on the number of quotes for the group or on the
number of existing branches may induce its violation. List of PSEs:

o InsertRT(CarGroupQuota)
o DeleteRT(CarGroupQuota)
o InsertET(Branch)
o DeleteET(Branch)
o InsertET(CarGroup)

- NoRentals. Adding rentals to a blacklisted customer, transforming a customer into a
blacklisted one or changing the dates of related rentals may violate the constraint;
reactivating an existing rental may violate it as well. List of PSEs:

o InsertRT(Drives)
o InsertRT(RentedAt)
o UpdateAttribute(blackListedDate, BlackListed)
o GeneralizeET(RentalAgreement)
o UpdateAttribute(value, DateTime)
o SpecializeET(BlackListed)

- ValidLicense. A license may become invalid when changing its issue or expiration
date or when relating the license with a new rental that may not satisfy the date
condition stated in the constraint.

o UpdateAttribute(issue, DrivingLicense)
o InsertRT(HasDrivLic)
o InsertRT(Drives)
o InsertRT(AgreedEnding)
o UpdateAttribute(value, DateTime)
o UpdateAttribute(expirationDate, DrivingLicense)
o InsertET(DrivingLicense)

-149-

A.3 Step 2: Determining an appropriate syntactic representation for each
constraint

Once we know the PSEs for each constraint c, we can determine for each PSE ev of c, an
appropriate representation of c regarding ev, as presented in Chapter 5.

Tables A.1-A.10 show the results of this step. In all tables, the first column contains the
PSEs for the constraint, the second column the best context type to express the constraint
with respect to that particular PSE and the third column the final constraint representation,
which may be either the original one or a new generated alternative.

Table A.1. Alternative constraint representations for CorrectInterval. Thanks to the multiplicities
of the relationships type between RentalAgreement and DateTime, we can use ClosedRental as best
context for all PSEs except for the update of the value of a DateTime instance. Note that this PSE
appears four times in the OCL tree representing the constraint (once for every access to the value
attribute). All of them share DateTime as the best context. However, not all of them generate the
same alternative representation since their PathVar expression differs.

PSE Context Best alternative

InsertRT(RentedAt) ClosedRental

SpecializeET(ClosedRe
ntal)

ClosedRental

context Closedrental inv CorrectInterval:

self.beginning.value< self.initEnding.value and
self.actualReturn.value>self.beginning.value

InsertRT(InitialEnding)

ClosedRental

context Closedrental inv CorrectInterval2:

self.beginning.value< self.initEnding.value

InsertRT(ReturnedAt)
ClosedRental

context Closedrental inv CorrectInterval3:

self.actualReturn.value>self.beginning.value

context DateTime inv CorrectInterval4: self.rentalBeg-
>select(r| r.oclIsKindOf(ClosedRental)) -> forAll(r|
r.beginning.value< r.initEnding.value and
r.oclAsType(ClosedRental).actualReturn.value>r.beginning.va
lue)

context DateTime inv CorrectInterval5: self.rentalIni-
>select(r| r.oclIsKindOf(ClosedRental)) -> forAll(r|
r.beginning.value< r.initEnding.value)

UpdateAttribute(value,
DateTime)

DateTime

context DateTime inv CorrectInterval6: self.closedRental->
forAll(r| r.actualReturn.value>r.beginning.value)

-150-

Table A.2. Alternative constraint representations for VisitsBranchCountries. All PSEs share the
same context type. However, depending on the PSE, we avoid checking the whole constraint.

PSE Context Best alternative
DeleteRT(Visits) RentalAgreement

DeleteRT(IsLocatedIn) RentalAgreement

InsertET

(RentalAgreement)

RentalAgreement

context RentalAgreement inv VisitsBranchCountries:

(self.country->count(self.pickupBranch.country)>0) and
(self.country-> count(self.dropOffBranch.country)) > 0

DeleteRT

(DropOffBranch)

RentalAgreement context RentalAgreement inv VisitsBranchCountries2:

(self.country-> count(self.dropOffBranch.country)) > 0

DeleteRT

(PickUpBranch)

RentalAgreement context RentalAgreement inv VisitsBranchCountries3:

(self.country->count(self.pickupBranch.country)>0)

Table A.3. Alternative constraint representations for Is25OrOlder.

PSE Context Best alternative
InsertET(EU_RentPerson) EU_RentPerson

UpdateAttribute(birthDate,
EU_RentPErson)

EU_RentPerson

context EU_RentPerson inv Is25OrOlder:
(DateTime::now()-self.birthDate) >=25*365

Table A.4. Alternative constraint representations for IdISKey

PSE Context Best alternative
InsertET(EU_RentPerson) EU_RentPerson

UpdateAttribute(id,
EU_RentPerson)

EU_RentPerson

context EU_RentPerson inv IdIsKey:

EU_RentPerson::allInstances()->select(p|p.id=self.id) -
>size()<2

-151-

Table A.5. Alternative constraint representations for RentalsDoNotOverlap. Since this constraint
states a condition that must be satisfied for every pair of rentals done by a customer, for most of its
PSEs the best context is RentalAgreement.

PSE Context Best alternative
InsertRT(Rents) RentalAgreement

GeneralizeET

(RentalAgreement)
RentalAgreement

InsertRT
(AgreedEnding)

RentalAgreement

InsertRT(RentedAt) RentalAgreement

context RentalAgreement inv RentalsDoNotOverlap:

self.customer.rentalAgreement->forAll(rAOther|
self.oclIsKindOf(CanceledReservation) or
((rAOther.beginning.value <= self.beginning.value) or
(rAOther.beginning.value > self.agreedEnding.value)))

context DateTime inv RentalsDoNotOverlap2:

self.rentalBeg->forAll(r: RentalAgreement |
r.customer.rentalAgreement->forAll(rAOther|
rA.oclIsKindOf(CanceledReservation) or
((rAOther.beginning.value <= r.beginning.value) or
(rAOther.beginning.value > r.agreedEnding.value))))

UpdateAttribute(value,
DateTime)

DateTime
context DateTime inv RentalsDoNotOverlap3:

self.rentalAgr->forAll(r: RentalAgreement |
r.customer.rentalAgreement->forAll(rAOther|
rA.oclIsKindOf(CanceledReservation) or
((rAOther.beginning.value <= r.beginning.value) or
(rAOther.beginning.value > r.agreedEnding.value))))

Table A.6. Alternative constraint representations for MeetsLoyalPerformance. Both literals of the
constraint are collection conditions, which makes LoyaltyMember the best context for all the PSEs.
We distinguish between PSEs affecting one or both literals.

PSE Context Best alternative
InsertET

(LoyaltyMember) LoyaltyMember

SpecializeET(Loyalty
Member)

LoyaltyMember

context LoyaltyMember inv MeetsLoyalPerformance:

 (self.rentalAgreement.beginning->select(dT: DateTime |
dT.value > ((DateTime::now()) - 365))->size()) > 0) and
((self.faults->size()) = 0

DeleteRT(Rents) LoyaltyMember

DeleteRT(RentedAt) LoyaltyMember

UpdateAttribute(
value,DateTime)

LoyaltyMember

context LoyaltyMember inv MeetsLoyalPerformance2

self.rentalAgreement.beginning->select(dT: DateTime | dT.value
> ((DateTime::now()) - 365))->size()) > 0

InsertRT(HasFaults) LoyaltyMember context LoyaltyMember inv meetsLoyalPerformance3

self.faults->size() = 0

-152-

Table A.7 Alternative constraint representations for OnlyOneAssignment.

PSE Context Best alternative
InsertRT(AssignedCar) Car

GeneralizeET

(RentalAgreeement)

Car

context Car inv OnlyOneAssignment: self.rentalAgreement-
>select(rA |not(rA.oclIsTypeOf(CanceledReservation)) and
not(rA.oclIsTypeOf(Closedrental)))->size()<=1

Table A.8. Alternative constraint representations for QuotaForAllBranches.

PSE Context Best alternative
InsertRT(CarGroupQuota) CarGroup

DeleteRT(CarGroupQuota) CarGroup

InsertET(CarGroup) CarGroup

InsertET(Branch) CarGroup

DeleteET(Branch) CarGroup

context CarGroup inv quotaForAllBranches:

self.CarGroupQuota->size()=Branch::allInstances()->size()

Table A.9. Alternative constraint representations for NoRentals. For PSEs modifying a blacklisted
instance, we have to verify all his/her rentals. However, for PSEs inserting or modifying a rental it
is more efficient to verify just that rental.

PSE Context Best alternative
SpecializeET

(BlackListed)
BlackListed

UpdateAttribute(black
ListedDate)

BlackListed

 context BlackListed inv NoRentals:

self.rentalsAsDriver->forAll(rA2: RentalAgreement |
(rA2.beginning.value <= self.blackListedDate) or
rA2.oclIsTypeOf(CanceledReservation))

InsertRT(RentedAt) RentalAgreement

GeneralizeET

(RentalAgreement)

RentalAgreement

context RentalAgreement inv NoRentals2:

self.driver->select(d| d.oclIsKindOf(BlackListed))->
forAll(d| self.beginning.value <=
d.oclAsType(BlackListed).blackListedDate or
self.oclIsTypeOf(CanceledReservation))

UpdateAttribute(value,
DateTime)

DateTime

 context DateTime inv NoRentals3:

self.rentalBeg->forAll(r| r.driver->select(d|
d.oclIsKindOf(BlackListed))-> forAll(d|
r.beginning.value<=d.oclAsType(BlackListed).blackListed
Date or r.oclIsTypeOf(CanceledReservation)))

InsertRT(Drives) Drives

context Drives inv NoRentals4:

(self.rentalsAsDriver.beginning.value <= self.driver-
>any(d| d.oclIsKindOf(BlackListed)).

oclAsType(BlackListed).blackListedDate or
(self.rentalsAsDriver.oclIsTypeOf(CanceledReservation))

-153-

Table A.10. Alternative constraint representations for ValidLicense. When changing the driver
license we must check all related rentals. Instead, when adding a new rental we just need to verify
that rental. When updating an existing rental we must compare the rental with all its drivers.

PSE Context Best alternative

InsertET(DrivingLicense) DrivingLicense

context DrivingLicense inv ValidLicense:

(DateTime::now()-self.issue)> 365 and
self.eu_RentPerson.rentalsAsDriver.agreedEnding->
forAll(d|d.value<self.expirationDate)

UpdateAttribute(issue,Driv
ingLicense)

DrivingLicense
context DrivingLicense inv ValidLicense2:

(DateTime::now()-self.issue)> 365

UpdateAttribute(expiration
Date, DrivingLicense)

DrivingLicense

InsertRT(HasDrivLic)

DrivingLicense

context DrivingLicense inv ValidLicense3:

self.eu_RentPerson.rentalsAsDriver.agreedEnding->
forAll(d|d.value<self.expirationDate)

InsertRT(Drives) Drives

context Drives inv ValidLicense4:

self.rentalsAsDriver.agreedEnding.value<self.driver.dri
vingLicense.expirationDate

InsertRT(AgreedEnding) RentalAgreement

context RentalAgreement inv ValidLicense5:

self.driver.drivingLicense->forAll(d|
self.agreedEnding.value < d.expirationDate)

UpdateAttribute(value,Dat
eTime)

DateTime

context DateTime inv validLicense6:

self.rentalAgr->forAll(r| r.driver.drivingLicense-
>forAll(d| r.agreedEnding.value<d.expirationDate))

A.4 Step 3: Redefining the constraints to evaluate the relevant instances

As a last step, our method modifies the CS to ensure that each alternative resulting from
step 2 is only evaluated over the instances of its context type affected by events of one of
the event types included in its particular subset of PSEs. As explained in Chapter 6, this
implies extending the CS with a set of structural event types and derived subtypes,
generating the appropriate derivation rules for the derived subtypes and redefining the
constraints by means of using them as context types.

Figures A.4-A.13 show the processed schema for each group of constraints (i.e. for each
set of alternatives generated from the same original constraint). In each figure, only the
relevant part of the schema is shown.

-154-

/DateTimeCorrectInterval4

/ClosedRentalCorrectInterval2/ClosedRentalCorrectInterval3

/ClosedRentalCorrectInterval
<< structural event >>

sClosedRental

<< structural event >>
iReturnedAt

<< structural event >>
i InitialEnding

<< structural event >>
iRentedAt

<< structural event >>
uDateTimeValue

ClosedRental RentalAgreement

DateTime

 rentalIni+ *

initEnding+
1

InitialEnding

rentalAgr+
*

agreedEnding+
1

AgreedEnding

rentalBeg+
*

beginning+

1

RentedAt

*

actualReturn+ 1

ReturnedAt

0..1

ref+

1

0..1

ref RentalAgreement+

1

*

ref DateTime+ 1

ref RentalAgreement+1

0..1

ref DateTime+
1

*

iReturnedAt+
0..1

ref ClosedRental+ 1

 '

0..1 ref+

1

*

ref DateTime+
1

/DateTimeCorrectInterval5

/DateTimeCorrectInterval6

-- The derivation rules
context ClosedRentalCorrectInterval::allInstances() : Set(ClosedRental) body: sClosedRental.allInstaces().ref-
>union(iRentedAt.allInstances().refRentalAgreement->select(r| r.oclIsKindOf(ClosedRental)))->asSet()
context ClosedRentalCorrectInterval 2::allInstances() : Set(ClosedRental) body:
iInitialEnding.allInstances().refRentalAgreement->select(r|r.oclIsKindOf(ClosedRental))
context ClosedRentalCorrectInterval 3::allInstances() : Set(ClosedRental) body: iReturnedAt.allInstances().refClosedRental
context DateTimeCorrectInterval 4::allInstances() : Set(DateTime) body: uDateTimeValue.allInstances().ref
context DateTimeCorrectInterval 5::allInstances() : Set(DateTime) body: uDateTimeValue.allInstances().ref

context DateTimeCorrectInterval 6::allInstances() : Set(DateTime) body: uDateTimeValue.allInstances().ref

-- The redefined constraints
context ClosedRentalCorrectInterval inv CorrectInterval:
self.beginning.value< self.initEnding.value and self.actualReturn.value>self.beginning.value
context ClosedRentalCorrectInterval2 inv CorrectInterval2: self.beginning.value< self.initEnding.value
context ClosedRentalCorrectInterval3 inv CorrectInterval3: self.actualReturn.value>self.beginning.value
context DateTimeCorrectInterval4 inv CorrectInterval4: self.rentalBeg->select(r| r.oclIsKindOf(ClosedRental)) -> forAll(r|
r.beginning.value< r.initEnding.value and r.oclAsType(ClosedRental).actualReturn.value>r.beginning.value)
context DateTime inv CorrectInterval5: self.rentalIni->select(r| r.oclIsKindOf(ClosedRental)) -> forAll(r|
r.beginning.value< r.initEnding.value)
context DateTime inv CorrectInterval6: self.closedRental-> forAll(r| r.actualReturn.value>r.beginning.value)

Figure A.4. Schema modification for CorrectInterval, CorrectInterval2 , CorrectInterval3,
CorrectInterval4, CorrectInterval5 and CorrectInterval6 integrity constraints. Note that the

subexpression select(r| r.oclIsKindOf(ClosedRental) is added to the computation of the relevant
instances for some of the events to ensure that only ClosedRental instances are taken into account.

-155-

<< structural event>>
dDropOffBranch

<< structural event >>
dPickUpBranch

<< structural event >>
dIsLocatedIn<< structural event >>

dVisits

/RentalAgreementVisitsBranchCountries3

/RentalAgreementVisitsBranchCountries2

/RentalAgreement VisitsBranchCountries

<< structural event >>
iRentalAgreement

Country

BranchRentalAgreement

pickUpRental+

*

pickupBranch+
1PickUpBranch

dropOff Rental+* dropOff Branch+
1

DropOf fBranch

*

1..*
Visits

*

1

IsLocatedIn

0..1

ref
+

1

0..1

ref Branch+0..1

*

ref Country+

0..1

*

ref RentalAgreement+0..1

*

ref Country+

0..1

0..1

ref RentalAgreement+

0..1

*

ref Branch+

0..1

*

ref Branch+

0..1

0..1

ref RentalAgreement+

0..1

-- The derivation rules
context RentalAgreementVisitsBranchCountries::allInstances() : Set(RentalAgreement) body:
dVisits.allInstances().refRentalAgreement->union(dIsLocatedIn.allInstances().refBranch.pickUpRental-
>union(dIsLocatedIn.allInstances().refBranch.dropOffRental->union(iRentalAgreement.allInstances().ref)))-> asSet()
context RentalAgreementVisitsBranchCountries 2::allInstances() : Set(RentalAgreement) body:
dDropOffBranch.allInstances().refRentalAgreement
context RentalAgreementVisitsBranchCountries 3::allInstances() : Set(RentalAgreement) body:
dPickUpBranch.allInstances().refRentalAgreement

-- The redefined constraints
context RentalAgreementVisitsBranchCountries inv VisitsBranchCountries:
(self.country->count(self.pickupBranch.country)>0) and (self.country-> count(self.dropOffBranch.country)) > 0
context RentalAgreementVisitsBranchCountries2 inv VisitsBranchCountries2:
 (self.country-> count(self.dropOffBranch.country)) > 0
context RentalAgreementVisitsBranchCountries3 inv VisitsBranchCountries3:
(self.country->count(self.pickupBranch.country)>0)

Figure A.5. Schema modification for VisitsBranchCountries,VisitsBranchCountries2, and

VisitsBranchCountries3 integrity constraints. Note that, after DeleteRT(IsLocatedIn) events, we
must consider both the rentals related with the affected branch as pickUpRentals and as a

dropOffRentals, since this PSE appears in both subexpressions of the constraint

<< structural ev ent>>
uEU_RentPersonBirthDate

<< structural ev ent >>
iEU_RentPerson

/EU_RentPersonIs25OrOlder

EU_RentPerson 0..1ref+1

0..1
ref+1

-- The derivation rules
context EU_RentPersonIs25OrOlder::allInstances() : Set(EU_RentPerson) body: iEU_RentPerson.allInstaces().ref-
>union(uEU_RentPersonBirthDate.allInstances().ref)->asSet()

-- The redefined constraints
context EU RentPersonIs25OrOlder inv Is25OrOlder: (DateTime::now()-self.birthDate) >=25*365

Figure A.6. Schema modification for Is25OrOlder integrity constraint

-156-

<< structural ev ent>>
uEU_RentPersonId

<< structural ev ent >>
iEU_RentPersonEU_RentPerson

0..1ref+1

0..1ref+1

-- The redefined constraints
context EU_RentPerson inv IdIsKey:
if iEU_RentPerson.allInstances->notEmpty() or uEU_RentPersonId.allInstances->notEmpty()
then EU_RentPerson::allInstances()->select(p|p.id=self.id) ->size()<2 endif

Figure A.7. Schema modification for IdIsKey integrity constraint. This constraint is not handled as

partial instance constraint because all the PSEs attached to the subexpression beginning with the
self variable also appear in the subexpression that starts with the allInstances operation

<< structural ev ent >>
iRents/RentalAgreementRentalsDoNotOverlap

Customer

<< structural ev ent>>
gRentalAgreement

<< structural ev ent >>
iAgreedEnding

RentalAgreement

<< structural ev ent >>
iRentedAt

DateTime << structural ev ent>>
uDateTimeValue

rentalAgr+ *

agreedEnding+

1

AgreedEnding

*

ref DateTime+

1

0..1

ref RentalAgreement+ 1

0..1

ref+

1

rentalBeg+ *

beginning+
1

RentedAt

ref RentalAgreement+
1

0..1

*

ref DateTime+
1

1..* renter+ 1Rents

0..1

ref+1

/DateTimeRentalsDoNotOverlap2

0..1

ref RentalAgreement+
1 *

ref Customer+1

/DateTimeRentalsDoNotOverlap3

-- The derivation rules
context RentalAgreementRentalsDoNotOverlap::allInstances() : Set(RentalAgreement) body:
iRents.allInstances().refRentalAgreement->union(gRentalAgreement.allInstaces().ref-
>union(iAgreedEnding.allInstances().refRentalAgreement->union(iRentedAt.allInstances().refRentalAgreement)))->asSet()
context DateTimeRentalsDoNotOverlap 2::allInstances() : Set(RentalAgreement) body: uDateTimeValue.allInstances().ref
context DateTimeRentalsDoNotOverlap 3::allInstances() : Set(RentalAgreement) body: uDateTimeValue.allInstances().ref

-- The redefined constraints
context RentalAgreementRentalsDoNotOverlap inv RentalsDoNotOverlap:
self.customer.rentalAgreement->forAll(rAOther| self.oclIsKindOf(CanceledReservation) or ((rAOther.beginning.value <=
self.beginning.value) or (rAOther.beginning.value > self.agreedEnding.value)))
context DateTimeRentalsDoNotOverlap2 inv RentalsDoNotOverlap2:
self.rentalBeg->forAll(r: RentalAgreement | r.customer.rentalAgreement->forAll(rAOther| r.oclIsKindOf(CanceledReservation) or
((rAOther.beginning.value <= r.beginning.value) or (rAOther.beginning.value > r.agreedEnding.value))))
context DateTime inv RentalsDoNotOverlap3:
self.rentalAgr->forAll(r: RentalAgreement | r.customer.rentalAgreement->forAll(rAOther| rA.oclIsKindOf(CanceledReservation)
or ((rAOther.beginning.value <= r.beginning.value) or (rAOther.beginning.value > r.agreedEnding.value))))

Figure A.8. Schema modification for RentalsDoNotOverlap, RentalsDoNotOverlap2, and
RentalsDoNotOverlap3 integrity constraints

-157-

FaultSeriousness

<< structural ev ent >>
sLoyaltyMember

/LoyaltyMemberMeetsLoyalPerformance

<< structural ev ent >>
iHasFaults

EU_RentPerson

LoyaltyMember

Customer

DateTime

RentalAgreement

<< structural ev ent >>
uDateTimeValue

0..1

ref+ 1

rentalBeg+ *

beginning+

1

RentedAt

1..*

renter+

1

Rents
<< structural ev ent >>

dRentedAt

*

ref DateTime+

0..1

0..1

ref RentalAgreement+

0..1

<< structural ev ent>>
dRents

0..1

ref RentalAgreement+0..1

*

ref Customer+0..1

0..1

ref EU_RentPerson+

1

/LoyaltyMemberMeetsLoyalPerformance2

/LoyaltyMemberMeetsLoyalPerformance3

ref+

1
0..1

<< structural ev ent >>
iLoyaltyMemberref+

1 0..1

1

f aults+

*HasFaults

0..1

1 ref Faults

-- The derivation rules
context LoyaltyMemberMeetsLoyalPerformance::allInstances() : Set(LoyaltyMember) body: iLoyaltyMember.allInstances().ref ->
union (sLoyaltyMember.allInstaces().ref) ->asSet()
context LoyaltyMemberMeetsLoyalPerformance 2::allInstances() : Set(LoyaltyMember) body: dRents.allInstances().refCustomer-
>select(c| c.oclIsKindOf(LoyaltyMember))-> union (dRentedAt.allInstances().refRentalAgreement.renter->select(c|
c.oclIsKindOf(LoyaltyMember))->union(uDateTimeValue.allInstances().ref.rentalBeg.renter->select(c|
c.oclIsKindOf(LoyaltyMember))))->asSet()
context LoyaltyMemberMeetsLoyalPerformance 3::allInstances() : Set(LoyaltyMember) body:
iHasFaults.allInstances().refEU_RentPerson->select(c|c.oclIsKindOf(LoyaltyMember))

-- The redefined constraints
context LoyaltyMemberMeetsLoyalPerformance inv meetsLoyalPerformance:
 (self.rentalAgreement.beginning->select(dT: DateTime | dT.value > ((DateTime::now()) - 365))->size()) > 0) and ((self.faults->size())
= 0
context LoyaltyMemberMeetsLoyalPerformance2 inv meetsLoyalPerformance2:
self.rentalAgreement.beginning->select(dT: DateTime | dT.value > ((DateTime::now()) - 365))->size()) > 0
context LoyaltyMemberMeetsLoyalPerformance3 inv meetsLoyalPerformance3: self.faults->size() = 0

Figure A.9. Schema modification for MeetsLoyalPerformance, , MeetsLoyalPerformance2 and
MeetsLoyalPerformance3 integrity constraints

<< structural ev ent >>
iAssignedCar

/CarOnlyOneAssignment

<< structural ev ent >>
gRentalAgreementRentalAgreement

Car

car+ 0..1

rentalAgreement+ *
AssignedCar

0..1

ref+

1

0..1

ref RentalAgreement+

1

*

ref Car+

1

-- The derivation rule
context CarOnlyOneAssignment::allInstances() : Set(Car) body:
iAssignedCar.allInstaces().refCar->union(gRentalAgreement.allInstances().ref.car)->asSet()

-- The redefined constraint
context CarOnlyOneAssignment inv onlyOneAssignment: self.rentalAgreement->select(rA |not(
rA.oclIsTypeOf(CanceledReservation)) and not(rA.oclIsTypeOf(Closedrental)))->size()<=1

Figure A.10. Schema modification for OnlyOneAssignment integrity constraint

-158-

/CarGroupQuotaForAllBranches

<< structural ev ent >>
dBranch

<< structural ev ent >>
iBranch

<< structural ev ent >>
iCarGroup

<< structural ev ent >>
iCarGroupQuota

Branch
CarGroup

1..* 1..*

CarGroupQuota

*

ref CarGroup+

1

*

ref Branch+
0..1

*

ref Branch+
1

<< structural ev ent >>
dCarGroupQuota

0..1

ref Banch+1

*

ref CarGroup+
0..1

0..1

ref CarGroup+ 1

/CarGroupQuotaForAllBranches'

 -- The derivation rules

context CarGroupQuotaForAllBranches::allInstances() : Set(CarGroup) body:
if CarGroupQuotaForAllBranches’.allInstances()->isEmpty() then iCarGroupQuota.allInstances().refCarGroup->
union(dCarGroupQuota.allInstances().refCarGroup->union(iCarGroup.allInstances().ref))) ->asSet() endif
context CarGroupQuotaForAllBranches’::allInstances() : Set(CarGroup) body:
if (dBranch.allInstances()->union(iBranch.allInstances())->notEmpty() then CarGroup.allInstances() endif

-- The redefined constraints
context CarGroupQuotaForAllBranches inv quotaForAllBranches:
self.CarGroupQuota->size()=Branch::allInstances()->size()
context CarGroupQuotaForAllBranches’ inv quotaForAllBranches’:
self.CarGroupQuota->size()=Branch::allInstances()->size()

Figure A.11. Schema modification for QuotaForAllBranches integrity constraint. Even though we
have a single alternative for this constraint we split it in two derived subtypes and two redefined

constraints because it is a partial instance constraint (the PSEs DeleteRT(Branch) and
InsertET(Branch) are class PSEs, and thus, after their issue we must check all existing CarGroup

instances)

-159-

 d

<< structural event >>
iBlackListed /BlackListedNoRentals

<< structural event >>
gRentalAgreement

<< structural event >>
uDateTimeValue

BlackListed

<< structural event >>
iDrives

EU_RentPerson

<< structural ev ent >>
iRentedAt

DateTime

RentalAgreement

0..1

ref RentalAgreement+

1 rentalBeg+ *

beginning+
1

RentedAt

*

ref DateTime
+

1

0..1 ref+

1

0..1

ref+1

/RentalAgreementNoRentals2 /DrivesRentals4

/DateTimeNoRentals3

0..1

ref+
1

<< structural event>>
uBlackListedBlackListedDate 0..1

ref+

1

rentalsAsDriver+

1..*

driver+

1..*

Drives
ref+

1
0..1

-- The derivation rules
context BlackListedNoRentals::allInstances() : Set(BlackListed) body: sBlackListed.allInstaces().ref-
>union(uBlackListedBlackListedDate.allInstances().ref)->asSet()
context RentalAgreementNoRentals 2::allInstances() : Set(RentalAgreement) body:
iRentedAt.allInstances().refRentalAgreement->union(gRentalAgreement.allInstances().ref)->asSet()
context DateTimeNoRentals 3::allInstances() : Set(DateTime) body: uDateTimeValue.allInstances().ref
context DrivesNoRentals 4::allInstances() : Set(Drives) body: iDrives.allInstances().ref

-- The redefined constraints
context BlackListed NoRentals inv NoRentals:
self.rentalsAsDriver->forAll(rA2: RentalAgreement | (rA2.beginning.value <= self.blackListedDate) or
rA2.oclIsTypeOf(CanceledReservation))
context RentalAgreementNoRentals2 inv NoRentals2:
self.driver->select(d| d.oclIsKindOf(BlackListed))-> forAll(d| self.beginning.value <=
d.oclAsType(BlackListed).blackListedDate or self.oclIsTypeOf(CanceledReservation))
context DateTimeNoRentals3 inv NoRentals3:
self.rentalBeg->forAll(r| r.driver->select(d| d.oclIsKindOf(BlackListed))-> forAll(d|
r.beginning.value<=d.oclAsType(BlackListed).blackListedDate or r.oclIsTypeOf(CanceledReservation)))
context DrivesNoRentals4 inv NoRentals4:
(self.rentalsAsDriver.beginning.value <= self.driver->any(d| d.oclIsKindOf(BlackListed)).
oclAsType(BlackListed).blackListedDate or (self.rentalsAsDriver.oclIsTypeOf(CanceledReservation))

Figure A.12. Schema modification for NoRentals, NoRentals 2, NoRentals 3 and NoRentals 4
integrity constraints. Note that the relationship type Drives has been reified since it is the context

type of one of the alternative constraints. This implies that the InsertRT(Drives) event type is
treated as an InsertET(Drives) event.

-160-

<< structural event >>
iDrives

/RentalAgreementValidLicense5

a

/DrivesValidLicense4

/DrivingLicenseValidLicense

/DateTimeValidLicense6

<< structural event >>
iDrivingLicense

<< structural event >>
iAgreedEnding

<< structural ev ent >>
uDateTimeValue

DateTime

<< structural event>>
iHasDrivLic

EU_RentPerson
RentalAgreement DrivingLicense

1
1

HasDrivLic

0..1

ref EU_RentPerson+

1 0..1

ref Driv ingLicense
+1

rentalAgr+*

agreedEnding+
1

AgreedEnding

0..1

ref+

1

ref RentalAgreement+1

0..1

0..1

ref+
1

*

ref DateTime
+

1

<< structural ev ent>>
uDrivingLicenseIssue

0..1

ref+1

<< structural ev ent>>
uDrivingLicenseExpirationDate

0..1

ref+ 1

/DrivingLicenseValidLicense2

/DrivingLicenseValidLicense3

rentalsAsDriv er+

1..* driver+

1..*

Drives
ref+

1
0..1

-- The derivation rules
context DrivingLicenseValidLicense::allInstances() : Set(DrivingLicense) body: iDrivingLicense.allInstaces().ref
context DrivingLicenseValidLicense2::allInstances() : Set(DrivingLicense) body: uDrivingLicenseIssue.allInstances().ref
context DrivingLicenseValidLicense3::allInstances() : Set(DrivingLicense) body:
uDrivingLicenseExpirationDate.allInstances().ref->union(iHasDrivLic.allInstances().refDrivingLicense)->asSet()
context DrivesValidLicense 4::allInstances() : Set(Drives) body: iDrives.allInstances().ref
context RentalAgreementValidLicense 5::allInstances() : Set(RentalAgreement) body:
iAgreedEnding.allInstances().refRentalAgreement
context DateTimeValidLicense 6::allInstances() : Set(DateTime) body: uDateTimeValue.allInstances().ref

-- The redefined constraints
context DrivingLicenseValidLicense inv ValidLicense: (DateTime::now()-self.issue)> 365 and
self.eu_RentPerson.rentalsAsDriver.agreedEnding-> forAll(d|d.value<self.expirationDate)
context DrivingLicenseValidLicense2 inv ValidLicense2: (DateTime::now()-self.issue)> 365
context DrivingLicenseValidLicense3 inv ValidLicense3:
self.eu_RentPerson.rentalsAsDriver.agreedEnding-> forAll(d|d.value<self.expirationDate)
context DrivesValidLicense4 inv ValidLicense4:
self.rentalsAsDriver.agreedEnding.value<self.driver.drivingLicense.expirationDate
context RentalAgreementValidLicense5 inv ValidLicense5:
self.driver.drivingLicense->forAll(d| self.agreedEnding.value<d.expirationDate)
context DateTimeValidLicense6 inv ValidLicense6:
self.rentalAgr->forAll(r| r.driver.drivingLicense->forAll(d| r.agreedEnding.value<d.expirationDate))

Figure A.13. Schema modification for ValidLicense, ValidLicense2, ValidLicense3, ValidLicense4,
ValidLicense5 and ValidLicense6 integrity constraints.

-161-

A.5 Efficiency of the processed CS

Once we have completed the processing of the original CS we have obtained a new
conceptual schema where all constraints have been redefined in order to get their
incremental evaluation after arbitrary modifications of the IB.

Defining the cost of checking a constraint as the number of entities that must be taken into
account during its evaluation, Tables A.11-A.20 compare, for each one of the original
constraints, the cost of a direct checking of the constraint with the cost obtained when
checking the new version. Although not explicited in the tables, an additional efficiency
gain of the processed schema is that when the modification of the IB does not include any
of the PSEs for a constraint c, c is not verified (i.e. the cost is zero). This is not restricted in
the original schema.

In all tables, the column PSE shows the PSEs of the original constraint. Column Incr
Constraint refers to the name of the specialized constraint generated for that PSE in the
processed CS (note that even if the name of the new constraint coincides with that of the
original one, in the processed schema the new constraint has been redefined to be
evaluated over the relevant instances, and thus, their cost may be different). Column cost
refers to the cost of evaluating the processed constraints after the issue of an event of the
event type appearing in the first column. The cost of evaluating the original constraint is
always the same regardless the PSE applied over the IB.

In the cells, Px stands for the population of the type X (for instance, Pcountry represents the
number of instances of Country). Nx-y stands for the (average) number of entities of X
related with an entity of Y (for instance, Nrental-country represents the average number of
country visited by a rental agreement). Y may be either the name of a role or the name of
the destination type (when no ambiguity exists). We usually abbreviate the names of the
types in the formulas by using the first two letters of the type name.

Table A.11. Constraint CorrectInterval. CostCorrectInterval = PCl + PCl x 3 (i.e. we access the whole
population of ClosedRental plus the related dates of each rental instance). Note that when updating
a date, we need to add the cost of the three generated alternatives affected by this event.

PSE Incr Constraint Cost

InsertRT(RentedAt) CorrectInterval 4

SpecializeET(ClosedRental) CorrectInterval 4

InsertRT(InitialEnding) CorrectInterval2 3

InsertRT(ReturnedAt) CorrectInterval3 3

UpdateAttribute(value,
DateTime)

CorrectInterval4,
CorrectInterval5,
CorrectInterval6

(1+Nda-rentalBeg + Nda-rentalBeg x 3) + (1+Nda-

rentalIni +Nda-rentalIni x 2) + (1+Nda-Cl + Nda-Cl x 2)

-162-

Table A.12. Constraint VisitsBranchCountires. CostVisitsBranchCountries = PRe + PRe x (Nra-co + 4) (i.e.
we access the whole population of RentalAgreement plus, for each rental instance, the visited
countries, the related pickup and dropoff branches and the countries where the branches are located
in).

PSE Incr Constraint Cost

DeleteRT(Visits) VisitsBranchCountries 1+ (Nra-co + 4)

DeleteRT(IsLocatedIn) VisitsBranchCountries
1+ (NBr-pi+ NBr-dr) + (NBr-pi+ NBr-dr) x (Nra-co
+4)

InsertET(RentalAgreement) VisitsBranchCountries 1+ (Nra-co + 4)

DeleteRT(DropOffBranch) VisitsBranchCountries2 1+ (Nra-co +2)

DeleteRT(PickUpBranch) VisitsBranchCountries3 1+ (Nra-co + 2)

Table A.13. Constraint Is25OrOlder. CostIs25OrOlder = PEU.

PSE Incr Constraint Cost
InsertET(EU_RentPerson)

UpdateAttribute(birthDate)
Is25OrOlder 1

Table A.14. Constraint IdIsKey. CostIdIsKey = PEUxPEU (we compare each person with all other
existing people).

PSE Incr Constraint Cost
InsertET(EU_RentPerson)

UpdateAttribute(id)
IsIsKey

PEUxPEU

Table A.15. Constraint RentalsDoNotOverlap. CostRentalsDoNotOverlap = PCu +PCu x (Ncu-ra^2 + Ncu-

ra^2 x 3) (i.e. we access the whole population of Customer plus, for each rental combination, the
related dates).

PSE Incr Constraint Cost
InsertRT(Rents)

GeneralizeET(RentalAgreement)

InsertRT(AgreedEnding)

InsertRT(RentedAt)

RentalsDoNotOverlap 4+ 2xNcu-ra

UpdateAttribute(value,DateTime)

RentalsDoNotOverlap2,
RentalsDoNotOverlap3

1+ Nda-rentalBeg+ Nda-rentalBeg x
(3+2xNcu-ra) + Nda-rentalAgr+ Nda-rentalAgr
x (3+2xNcu-ra)

-163-

Table A.16. Constraint MeetsLoyalPerformance. CostMeetsLoyalPerformance = PLo + PLo x (Nlo-ra + Nlo-

rax1 + Nlo-fa) (i.e. we access the whole population of LoyaltyMember plus, for each loyal member,
his/her rental agreements and their dates, and the related faults).

PSE Incr Constraint Cost
InsertET(LoyaltyMember)

SpecializeET(LoyaltyMember)
MeetsLoyalPerformance 1 + 2xNlo-ra + Nlo-fa

DeleteRT(Rents) MeetsLoyalPerformance2 1 + 2x Nlo-ra

DeleteRT(RentedAt) MeetsLoyalPerformance2 1+ Nra-cu + Nra-cu x (2xNlo-ra)

UpdateAttribute(value,DateTime) MeetsLoyalPerformance2
1 + Nda-rentalBeg + Nda-rentalBeg x Nra-cu +
Nda-rentalBeg x Nra-cu x (2xNlo-ra)

InsertRT(HasFaults) MeetsLoyalPerformance3 1+ Nlo-fa

Table A.17. Constraint OnlyOneAssignment. CostOnlyOneAssignment = PCa + PCa x Nca-ra (i.e. we
access the whole population of Car plus, for each car, its rental agreements).

PSE Incr Constraint Cost
InsertRT(AssignedCar)

GeneralizeET(RentalAgreeement)
OnlyOneAssignment 1 + Nca-ra

Table A.18. Constraint QuotaForAllBranches. CostQuotaForAllBranches = PCa+ PCa x (Nca-carGroupQuota +

PBr) (i.e. we access the whole population of CarGroup plus, for each car group, its quotes and all
existing branches, as required by the allInstances operation).

PSE Incr Constraint Cost
InsertRT(CarGroupQuota)

DeleteRT(CarGroupQuota)

InsertET(CarGroup)

QuotaForAllBranches 1+ Nca-carGroupQuota + PBr

InsertET(Branch)

DeleteET(Branch)

QuotaForAllBranches
PCa+ PCa x (Nca-carGroupQuota + PBr)

-164-

Table A.19. Constraint NoRentals. CostNoRentals = PBl + PBl x (NBl-ra + NBl-rax1) (i.e. we access the
whole population of BlackListed plus, for each black listed person, his/her rental agreements and
their dates).

PSE Incr Constraint Cost

SpecializeET(BlackListed)

UpdateAttribute(BlackListedDate)
NoRentals 1 + 2xNBl-ra

InsertRT(RentedAt)

GeneralizeET(RentalAgreement)

NoRentals2

2 + Nra-Neu

UpdateAttribute(value,DateTime) NoRentals3 1 + 2xNda-ra+ Nda-ra x Nra-Neu

InsertRT(Drives) NoRentals4 4

Table A.20. Constraint ValidLicense. CostValidLicense = PDr + PDr x (1 + Neu—ra + Neu—rax1) (i.e. we
access the whole population of DrivingLicense plus, for each license, the corresponding
eu_rentPerson as well as his/her rental agreements and their dates).

PSE Incr Constraint Cost

InsertET(DrivingLicense) ValidLicense 2 + 2xNeu-ra

UpdateAttribute(issue) ValidLicense 2 1

UpdateAttribute(expirationDate)

InsertRT(HasDrivLic)
ValidLicense 3 2 + 2x Neu--ra

InsertRT(Drives) ValidLicense4 5

InsertRT(AgreedEnding) ValidLicense5 2 + 2xNra-eu

UpdateAttribute(value,DateTime) ValidLicense6 1 + 2xNda-rentalAgr + 2xNda-rentalAgr x Nra-eu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

