
Towards Domain Refinement For
UML/OCL Bounded Verification

Robert Clarisó1, Carlos A. González2, and Jordi Cabot1,3

1 Universitat Oberta de Catalunya, Spain
rclariso@uoc.edu

2 AtlanMod team (Inria, Mines Nantes, LINA), France
carlos.gonzalez@mines-nantes.fr

3 ICREA, Spain
jordi.cabot@icrea.cat

Abstract. Correctness of UML class diagrams annotated with OCL
constraints can be checked using bounded verification, e.g. SAT solvers.
Bounded verification detects faults efficiently but, on the other hand,
the absence of faults does not guarantee a correct behavior outside the
bounded domain. Hence, choosing suitable bounds is a non-trivial process
as there is a trade-off between the verification time (faster for smaller
domains) and the confidence in the result (better for larger domains).
Unfortunately, existing tools provide little support in this choice.
This paper presents a technique that can be used to (i) automatically
infer verification bounds whenever possible, (ii) tighten a set of bounds
proposed by the user and (iii) guide the user in the bound selection
process. This approach may increase the usability of UML/OCL bounded
verification tools and improve the efficiency of the verification process.

1 Introduction

Software systems can be described at a high level of abstraction using graphical
diagrams such as UML class diagrams. In order to increase their precision and
expressiveness, these models can be annotated with textual constraints written
in the Object Constraint Language (OCL).

UML/OCL models may contain defects [12], e.g. inconsistent or redundant in-
tegrity constraints. Checking the correctness of a UML/OCL model is a complex
problem, and in general, undecidable [4]. A popular strategy among verification
tools for UML/OCL [10] is bounded verification: limiting the search space to a fi-
nite domain, e.g. by defining a maximum population for each class and restricting
the potential values of attributes. This allows an efficient and automatic analysis
without compromising the expressiveness of the modeling language. However, in
return the results of the analysis are only meaningful within the defined bounds.

Unfortunately, current tools provide little support in the choice of bounds.
Inadequate bounds will cause the analysis to miss defects (if they are too narrow)
or to become to slow to be practical (if they are too wide). In this paper, we
present a technique that can assist users of UML/OCL bounded verification tools



Verification Problem

OCL
invariants

UML Class
Diagram

Correctness
property

context A

inv: . . .
context B

inv: ... ?

Finite bounds

[2,29] [0,5] . . . [14,16] [-20,50]

Bound
tightening

tool

Interval
Constraint
Propagation

Bounded
verification

tool

Relational solver

. . .

CP solver

SAT solver

Yes + Witness

No?
(No witness
within the
bounds, retry
with larger
bounds?)

Tighter bounds [3,7] [1,5] . . . [15,15] [2, 14]

A

B C

Fig. 1. Typical flow with a bounded verification tool and the role of bound tightening

AbstractMachine

ready: Boolean

Uses

Cutter Grinder

Part

serial: Integer

0..1

device

pieces

4

context Part inv UniqueSerials :
Part.allInstances()→isUnique(serial)

context AbstractMachine inv Availability :
Cutter.allInstances()→exists(c|c.ready) and

Grinder.allInstances()→exists(g|g.ready)

Fig. 2. UML/OCL class diagram used as example

to effectively set the boundaries of the search space. This approach starts from a
set of initial bounds and takes advantage of all implicit and explicit constraints in
the model to tighten those bounds as much as possible. To this end, an efficient
technique called interval constraint propagation, which does not require solving
the verification problem, is used to discard unproductive values from domain
bounds (see Figure 1). We report the performance gains using the USE model
validator plug-in [11] as the bounded verification tool.

Example 1. Let us consider the class diagram from Figure 2 describing the
relationship between machines and parts. Graphical constraints such as associa-
tion end multiplicities define constraints on the valid populations for classes and
associations, e.g. there are 4 parts per machine. OCL invariants define additional
restrictions on these populations and the domains of attributes. For instance, the
invariants in the example require serial numbers to be unique (UniqueSerial)
and at least one machine of each type to be non-idle (Availability).

These constraints can be used to automatically infer bounds without any user
intervention, e.g. invariant Availability imposes a lower bound of 1 for classes
Cutter and Grinder, of 8 for class Part and 8 for association Uses. However, this
inference is most effective when used to refine partial bound information provided
by a designer. For instance, just by assuming a limit of 10 serial numbers, we
can infer that there is exactly 1 Cutter and 1 Grinder, between 8 and 10 parts
and at most 8 links among machines and parts.

Paper organization: Section 2 describes the bound tightening method and Sec-
tion 3 presents experimental results. Section 4 covers the related work. Finally,
conclusions and future work are presented in Section 5.



Table 1. Definition of the CSP used to tighten verification bounds

Vars (V ) Domains (D) Constraints (C)

A variable cl
for each class

Potential number of objects
in class cl, either [0,∞) or a
user-provided domain

– UML: generalizations, association end
multiplicities, class multiplicities
– OCL: all invariants
– Correctness property under analysis, e.g.
no redundant invariants

A variable as
for each asso-
ciation

Potential number of links in
association as ([0,∞) or a
user-provided domain

– UML: association end multiplicities
– OCL: invariants containing navigations
through association as

A variable at
for each at-
tribute

Potential values of attribute
at, e.g. [0, 1] for boolean,
(−∞,∞) for integers or a
user-provided domain

– OCL: invariants accessing the value of
attribute at

A variable
auxe for each
subexpression
e in each OCL
constraint

Potential values of the ex-
pression e. Non-basic types
are abstracted, e.g. collec-
tions are abstracted as inte-
gers encoding their size

– A constraint establishing the value of e
in terms of the values of its subexpressions
– Correctness property under analysis, e.g.
the root expression of each invariant must
evaluate to 1 (all invariants must be true)

2 Bound tightening procedure

The inputs of our procedure will be a UML/OCL model, a correctness property
to be checked and a set of bounds for bounded verification. These initial bounds
may be unconstrained (i.e. infinite) or finite bounds proposed by the designer.
From this input, the output will be a set of refined bounds. These improved
bounds can then be relayed to a bounded verification solver, which can take
advantage of the reduced search space to perform verification more efficiently.

The computation of tightened bounds is performed in two steps:

– Abstraction: We consider all implicit and explicit constraints from the
UML/OCL model and abstract those that involve search space boundaries.
This abstraction is formalized as a Constraint Satisfaction Problem (CSP),
i.e. a finite set of variables V , the set of domains D of potential values for
each variable and the set of constraints C over the variables in V .

– Propagation: the constraints in the CSP are used to remove unfeasible
values from the domains of variables, a process known as integer bound
propagation [5]. In this paper, we will use the hybrid integer-real Interval
arithmetic Constraint solver (IC) from the ECLiPSe Constraint Program-
ming System [2]. The IC solver can handle both integral and real variables
and it provides powerful interval constraint propagation capabilities.

Given that propagation is a feature provided by most off-the-shelf CSP
solvers, we will focus our presentation on the abstraction phase. This step builds
upon two previous works from the literature: the definition of a CSP encoding for
UML/OCL models [6] and the work on size abstraction for OCL properties [17].

In particular, we modify the CSP encoding from [6] such that (a) OCL con-
straints are not directly encoded in the CSP but rather abstracted as size con-



Table 2. Analysis of OCL invariants from Example 1

OCL Expression (e) Size Constraint (e.c)

e1.attr domain(e.v) ⊆ domain(attr)

e1 → exists(e2) (0 ≤ e.v ≤ 1) ∧ ((e1.v = 0 ∨ e2.v = 0)→ (e.v = 0)) ∧
((e2.v = 1)→ (e.v = (e1.v ≥ 1))) ∧ e1.c ∧ e2.c

e1 → isUnique(e2) (0 ≤ e.v ≤ 1) ∧ ((e.v = 0)→ (e1.v ≥ 2)) ∧
(domain size(e2.v) ≥ e1.v) ∧ e1.c ∧ e2.c

Type :: allInstances() e.v = num obj(Type)

e1 and e2 (e.v = min(e1.v, e2.v)) ∧ e1.c ∧ e2.c

straints and (b) instead of finding a particular solution to the CSP we tighten
the initial bounds. Table 1 describes the overall structure of the CSP computed
in this phase, defined in terms of its variables, domains and constraints.

The abstraction of OCL constraints is similar to [17] but it has been ex-
tended to cover further OCL constructs and consider the domain of attributes.
Furthermore, the goal of the abstraction is not checking properties that only
need size-related information as in [17], but to accelerate the verification of arbi-
trary properties. Table 2 details this abstraction, i.e. the last row of Table 1, for
the OCL invariants in Example 1. The first column represents the OCL subex-
pression e being abstracted and the second column shows the size constraint e.c
derived from the analysis of e. This size constraint is expressed with the help of
an auxiliary variable e.v abstracting the “size” of expression e, e.g. the number
of elements in a collection or the length of a string.

Example 2. Let us revisit the model from Example 1. The following constraints
on the population of classes and associations can be derived from UML constructs
(top 4, using [6]) and OCL invariants (bottom 3, using Table 2):

AbstractMachine = Cutter + Grinder Inheritance

Uses ≤ Part ∗ AbstractMachine Association

Uses = 4 ∗ AbstractMachine Association end

Uses ≤ Part Association end

Part ≤ domain size(Serial) Invariant UniqueSerials

Cutter ≥ 1 Invariant Availability

Grinder ≥ 1 Invariant Availability

3 Experimental Results

In this section, we evaluate the speedup achieved by bound tightening in the
bounded verification process. To this end, we consider strong satisfiability, i.e.
checking if there is a valid instance that populates each non-abstract class. Re-
sults are measured on the SAT-based USE model validator plug-in [11].

For our experiments, we have used two UML/OCL models: “Teams” (5
classes, 3 associations, 6 attributes and 6 invariants) and “Company” (6 classes,
8 associations, 21 attributes, 16 invariants). For the sake of representativity,
we have defined two versions of each model, one which is strongly satisfiable

http://st.inf.tu-dresden.de/files/general/OCLByExampleLecture.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh302/oclnotes.pdf


(sat) and one which is not (unsat). For each one, different sets of initial bounds
(number of objects and links and ranges for attributes) have been considered.

Table 3 summarizes the results obtained in an Intel Core i7 3Ghz with 8
Gb RAM. Each entry describes the experiment (model, verification bounds and
sat/unsat), and the execution time in seconds for USE with the original bounds
(USE) and for USE with bound tightening (Tight). Finally, we measure the
speedup in the execution time (Spd, 1 if no change, higher is better).

In all models, the overhead of tightening is less than 1 second. Regarding
verification time, the effect of bound tightening is most noticeable in models
where verification is most complex. There, significant reductions can be achieved
with some examples running 50 times faster.

4 Related Work

Bounded verification is a popular strategy for analyzing UML/OCL models [1,6,
11,16]. Several techniques can be used to accelerate it: parallelization (use several
solvers running in parallel over different parts of the formula or the domains),
slicing (partition the problem into independent components that can be analyzed
separately) and bound reduction (reduce the size of the verification bounds).

In the context of UML/OCL verification, [14, 15] describe slicing techniques
to partition class diagrams and ParAlloy [13] studies the parallel verification of
Alloy models. Considering UML class diagrams without OCL, [3, 8] study the
potential interactions among association multiplicities to detect situations where
multiplicities can be strengthened or are unsatisfiable. However, this paper is the
first work addressing bound reduction for the verification of UML/OCL models.

In other fields, there are related approaches to bound reduction. In static
program analysis, the most related one is TACO [9], a tool for the verification
of JML-annotated Java programs. Meanwhile, in the model checking of hybrid
systems, Domain reduction abstraction [7] partitions the input domains into
equivalence classes with the same behavior.

5 Conclusions

The bounded verification of UML/OCL models can be accelerated by assisting
designers in the selection of verification bounds, a task which currently lacks

Table 3. Experimental results (timeout set at 10.000 seconds)

CPU time

Experiment USE Tight Spd

Team-small-sat 1,8s 2,5s x0,76

Team-mid-sat 3,7s 7,3s x0,50

Team-large-sat 5,8s 7,3s x0,79

Team-small-unsat 0,8s 1,4s x0,50

Team-mid-unsat 2,0s 2,9s x0,69

Team-large-unsat 7,6s 5,0s x1,53

CPU time

Experiment USE Tight Spd

Company-small-sat 258,4s 20,5s x11,54

Company-mid-sat 100,4s 61,3s x1,64

Company-large-sat 1.479,5s 258,5s x5,94

Company-small-unsat 904,7s 17,9s x50,42

Company-mid-unsat 4.452,5s 2087,2s x2,13

Company-large-unsat timeout 4426,1s –

Bounds: [1,N] objects, [1,2*N] links. Small (N=5), Mid (N=10) and Large (N=15).



adequate support. The proposed method abstracts the UML/OCL model as a
constraint satisfaction problem. Then, interval constraint propagation is used to
tighten the analysis bounds. Smaller bounds can reduce the verification time.

This approach can be used in different ways: as a preprocessing stage before
verification or as part of an interactive process to guide the choice of bounds.
As future work, we plan to investigate heuristics regarding the best order for
selecting bounds, i.e. one that reduces the number of choices and maximizes the
amount of information that can be inferred automatically by bound propagation.

References

1. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On challenges of model trans-
formation from UML to Alloy. Software and Systems Modeling, 9(1):69–86, 2010.

2. K. R. Apt and M. Wallace. Constraint Logic Programming using ECLiPSe. Cam-
bridge University Press, 2007.

3. M. Balaban and A. Maraee. Simplification and correctness of UML class di-
agrams - focusing on multiplicity and aggregation/composition constraints. In
MODELS’2013, volume 8107 of LNCS, pages 454–470. Springer, 2013.

4. D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70–118, 2005.

5. L. Bordeaux, G. Katsirelos, N. Narodytska, and M. Y. Vardi. The complexity of
integer bound propagation. J. Artif. Intell. Res. (JAIR), 40:657–676, 2011.

6. J. Cabot, R. Clarisó, and D. Riera. On the verification of UML/OCL class diagrams
using Constraint Programming. Journal of Systems and Software, 93:1–23, 2014.

7. Y. Choi and M. Heimdahl. Model checking software requirement specifications
using domain reduction abstraction. In ASE’2003, pages 314–317. IEEE, 2003.

8. I. Feinerer, G. Salzer, and T. Sisel. Reducing multiplicities in class diagrams. In
MODELS 2011,, volume 6981 of LNCS, pages 379–393. Springer, 2011.

9. J. P. Galeotti, N. Rosner, C. G. L. Pombo, and M. F. Frias. Taco: Efficient SAT-
based bounded verification using symmetry breaking and tight bounds. IEEE
Transactions on Software Engineering, 39(9):1283–1307, 2013.

10. C. A. González and J. Cabot. Formal verification of static software models in
MDE: A systematic review. Information and Software Tech., 56(8):821–838, 2014.

11. M. Kuhlmann and M. Gogolla. From UML and OCL to relational logic and back.
In MODELS’2012, volume 7590 of LNCS, pages 415–431. Springer, 2012.

12. A. Queralt and E. Teniente. Verification and validation of UML conceptual schemas
with OCL constraints. ACM TOSEM, 21(2):13:1–13:41, 2012.

13. N. Rosner, J. P. Galeotti, C. L. Pombo, and M. F. Frias. ParAlloy: Towards a
framework for efficient parallel analysis of Alloy models. In ABZ’2010, volume
5977 of LNCS, pages 396–397. Springer, 2010.

14. J. Seiter, R. Wille, M. Soeken, and R. Drechsler. Determining relevant model
elements for the verification of UML/OCL specifications. In DATE’2013, pages
1189–1192. EDA Consortium, 2013.

15. A. Shaikh, R. Clarisó, U. K. Wiil, and N. Memon. Verification-driven slicing of
UML/OCL models. In ASE’2010, pages 185–194. ACM, 2010.

16. M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. Verifying
UML/OCL models using boolean satisfiability. In DATE’2010, pages 1341–1344.
IEEE, 2010.

17. F. Yu, T. Bultan, and E. Peterson. Automated size analysis for OCL. In FSE’2007,
pages 331–340. ACM, 2007.


	Towards Domain Refinement For UML/OCL Bounded Verification

