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Abstract

Assessment of the correctness of software models is a key issue to ensure the
quality of the final application. To this end, this paper presents an automatic
method for the verification of UML class diagrams extended with OCL con-
straints. Our method checks compliance of the diagram with respect to several
correctness properties including weak and strong satisfiability or absence of
constraint redundancies among others. The method works by translating the
UML/OCL model into a Constraint Satisfaction Problem (CSP) that is eval-
uated using state-of-the-art constraint solvers to determine the correctness of
the initial model. Our approach is particularly relevant to current MDA and
MDD methods where software models are the primary artifacts of the develop-
ment process and the basis for the (semi-)automatic code-generation of the final
application.

Keywords: UML, OCL, MDD, Model Verification, Constraint Programming,
Constraint Satisfaction Problem

1. Introduction

One of the initial stages in the development of a software system is the
definition of its conceptual schema [Oli07]. A conceptual schema is a descrip-
tion of the knowledge that will be used by the software system, which may
include a collection of relevant concepts, attributes, relationships among con-
cepts, integrity constraints or inference rules. There are many candidate nota-
tions for expressing a conceptual schema, either with a visual or textual syntax
and with or without a formal semantics. To name a few, some of the most
well-known notations are entity-relationship (ER) diagrams in database design
[Cha76], UML class diagrams in software engineering [Obj11] and logic-based
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representations, frames, semantic networks and conceptual graphs in knowledge
engineering [Sow00].

1.1. Consistency checking of UML/OCL models

From the point of view of software quality, some desirable properties of
a conceptual schema are completeness (no relevant information is missing) and
consistency (the schema does not contain contradictory information)1. Ensuring
completeness requires some degree of expert validation. In contrast, consistency
checking can be automated if the schema is described in a notation providing a
formal semantics.

In the context of software engineering, conceptual schemas are typically de-
scribed using ER diagrams or UML class diagrams. These notations provide
several mechanisms to define relationships among concepts, such as associations
or inheritance, and to describe integrity constraints, for instance, cardinality
constraints. Even though these are simple constructs, the interactions among
them may cause consistency problems which are hard to detect for human de-
signers. Furthermore, UML diagrams can be annotated with more complex
constraints written in the Object Constraint Language (OCL) [Obj10]. The ad-
dition of OCL invariants makes consistency problems even less intuitive, making
the case for providing tool support to assist designers.

In addition to the likelihood of inconsistencies due to the expressivity of
UML/OCL, there are two pragmatic reasons that motivate the study of the
UML/OCL consistency problem, both related to development costs and software
quality:

• First, it is an opportunity to detect errors early in the development pro-
cess. Boehm’s first law [ER03] states that “errors are most frequent dur-
ing the requirements and design activities and are the more expensive the
later they are removed”. Thus, correcting consistency errors at this stage
can help reduce development costs and even if the UML/OCL design is
only being used for documentation purposes, checking consistency may be
worthwhile.

• Second, in paradigms such as Model-Driven Development (MDD), incon-
sistencies may propagate directly into implementation errors. MDD ad-
vocates for considering models as the primary artifact of the development
process. That is, after creating a model, it is used to (semi-)automatically
generate the implementation of the final software system. In the case of
UML/OCL class diagrams, code generation could translate the diagram
into an object-oriented class hierarchy or database schema and transform
the invariants into assertions, integrity constraints or declaratives queries

1In the literature, the terms consistency, correctness and satisfiability are sometimes used
with different meanings. In this paper, we will use the terms consistency and correctness
interchangeably, and we will assign a formal meaning to the term satisfiability.

2



context Researcher inv NoSelfReviews:
self.submission−>excludes(self.manuscript)

context Paper inv PaperLength:
self.wordCount < 10000

context Paper inv AuthorsOfStudentPaper:
self.studentPaper = self.author−>exists(x | x.isStudent )

context Paper inv NoStudentReviewers:
self.referee−>forAll(r | not r.isStudent)

context Paper inv LimitsOnStudentPapers:
Paper::allInstances()−>exists(p | p.studentPaper) and
Paper::allInstances()−>select(p | p.studentPaper)
−>size() < 5

Figure 1: Running example: a UML class diagram with OCL constraints.

[CT06, HWD08]. Clearly, diagnosing the error at the implementation level
is much more expensive than detecting and fixing the error in the design.

There are many contributions in the literature addressing the verification of
UML/OCL diagrams. Nevertheless, the expressivity of UML/OCL is a challenge
as it makes consistency checking a computationally complex problem: check-
ing UML class diagrams for consistency is EXPTIME-complete assuming that
there are no OCL constraints [BCG05], and it becomes undecidable when OCL
invariants are considered (as they are as expressive as full first order formu-
las) [BCG05]. For this reason, some methods focus on the verification of UML
class diagrams without OCL constraints [BCG05, SMSJ03, BM08, CCGM04,
MM06, MB07]. Other approaches support OCL but are based on interactive
theorem proving and therefore require user assistance to complete the proofs
[BW09, KFdB+05]. Finally other tools avoid undecidability by using semi-
decidable methods or limit the UML/OCL constructs that may appear in the
diagrams [QRT+10, QT12, Jac06, SWK+10, WBBK10, GBR05, AIAB11]. In
particular, arithmetic expression support in OCL constraints is a feature which
is missing or has shortcomings in most proposals. As a whole, we believe that
these limitations impair a wide adoption of formal methods within the MDD
community.

1.2. Motivating example

Consistency errors can be inadvertently introduced even in very small UML/OCL
models. As an example, consider the simple class diagram of Fig. 1 that will
be used as a running example throughout the paper. The diagram models the
relationship between researchers and the papers they write (association Writes)
or review (association Reviews).

This class diagram is complemented with a set of OCL expressions that
specify additional constraints for the model. For instance, NoStudentReviewers
states that the referees of a paper cannot be students. In this constraint, the self
variable represents an arbitrary instance of the context type chosen to define the
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constraint, in this case Paper. Being an invariant means that the constraint must
be true for all possible values of self. The expression self.referee retrieves the
Set of all the researcher objects linked to the paper self through the association
Reviews. Finally, the forAll quantification evaluates the not isStudent condition
on the collection of researchers retrieved by that expression and returns true if
all of them satisfy it.

Notice that several expressions in these OCL invariants, such as self.referee,
are computing collections of objects and operating with them. Some examples
of these operations are checking if an object is not included in a Set (operation
excludes in invariant NoSelfReviews), computing the number of elements in the
Set (operation size in invariant LimitsOnStudentPapers), computing the subset
of elements satisfying a property (select in invariant LimitsOnStudentPapers)
or checking existential or universal properties on elements of the Set (forAll and
exists quantifiers). As it is shown in this example, OCL collections allow the
concise definition of complex properties and they are an important notion in
the OCL notation.

Even if perhaps it is not easy to see at first sight, this model is wrong because
it does not satisfy a basic correctness property: strong satisfiability. A model
is strongly satisfiable if it is possible to create at least a valid and non-empty
instantiation of the model, i.e. if a user can possibly create a finite set of new
objects and links over the classes and associations of the model so that no
constraint is violated. Therefore, non-satisfiable models are completely useless
since users will never be able to populate them at run-time in a way that all
constraints evaluate to true. In particular, this example is unsatisfiable due to
two different reasons:

1. The multiplicities of association Reviews require exactly three distinct re-
searchers per paper acting as referees, as indicated by the number three
next to the referee role that the Researcher class plays in the associa-
tion Reviews. If we denote by |X| the number of objects of a given class
X, this multiplicity means that |Researcher| = 3 · |Paper|. Meanwhile,
the multiplicities of Writes requires one or two researchers per paper act-
ing as authors (multiplicity “1..2” next to the author role), and therefore
|Paper| ≤ |Researcher| ≤ 2 · |Paper|. Only an infinite or empty instanti-
ation may satisfy both constraints simultaneously.

2. Students cannot be referees according to constraint NoStudentReviewers.
However, all researchers must be authors (due to the multiplicity 1 next to
the manuscript role in Writes), all authors must review papers (multiplic-
ity 1 next to the submission role in Reviews) and there must be at least one
student paper (constraint LimitsOnStudentPapers) with a student author
(constraint AuthorsOfStudentPaper).

We have shown that this simple example does not satisfy a property which
is assumed by default by any model designer: that it is possible to build a
finite and non-empty instantiation of the model without violating the visual and
textual constraints it contains. In addition to this notion of strong satisfiability,
another reasonable assumption is that the model does not contain subsumed
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constraints, i.e. a constraint which can be removed without changing the set of
legal instances. A subsumed constraint may be a symptom of an unexpected
interaction among constraints or the incorrect definition of some constraints.
A more extensive catalog of quality criteria is provided in Section 5. If we do
not fix this type of errors in the modeling phase at design-time, developers will
waste their time implementing this model in the final technology platform before
realizing, when testing the system at run-time, that it contains fundamental
errors.

1.3. Contributions of this paper

The main goal of this paper is to present a method for the fully automatic,
decidable and expressive verification of UML/OCL class diagrams. Decidability
is achieved by defining a finite solution space, i.e. establishing finite bounds for
the number of instances and finite domains for attribute values to be consid-
ered during the verification process. This way, the constraint solver is able to
perform an exhaustive search within the finite solution space. As a drawback,
this approach is incomplete as potential instances outside of the bounded scope
are not considered during the analysis. That means that if no instance is found,
the tool will inform the user of the lack of solutions, explaining that in this
case the answer is inconclusive. We will argue that considering a finite solution
space is a reasonable trade-off regarding the features offered by other existing
verification methods.

Our method uses the Constraint Programming paradigm [MS98] as an under-
lying formalism. We have developed a systematic procedure for the transforma-
tion of a UML class diagram annotated with OCL constraints into a Constraint
Satisfaction Problem (CSP). A predefined set of correctness properties about
the original UML/OCL diagram, such as satisfiability of the model, liveliness of
a class, redundancy of a constraint and so forth, can then be checked on the re-
sulting CSP. Our choice of using UML/OCL models as input is based on the wide
adoption of the UML within the software community and its high-level model-
ing constructs, not tied to any particular implementation technology. However,
we believe that many of the concepts introduced in the paper can be useful for
verifying correctness of models specified with other modeling languages as well,
such as Domain-Specific Modeling Languages.

Moreover, in order to improve the usability of our verification method, we
have developed a graphical front-end tool called UMLtoCSP [U2C] which hides
the underlying analysis process. The input of the tool is a UML class diagram
encoded in an XMI or Ecore file format plus (optionally) a text file with the
OCL constraints. Meanwhile, the output of the tool is a UML object diagram
that proves the property (if it holds). Users of the tool do not need to be
familiar with Prolog or CSPs to use the tool: the input and output notations
are amenable to UML designers and the entire verification process is completely
automated and hidden from the user. In this sense, we follow the paradigm
of hidden formal methods [Ber02] to improve the usability of the tool and its
results.
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Preliminary results on this approach were presented in the Model Driven
Verification and Validation Workshop [CCR08]. In this paper, we considerably
extend those preliminary results with a more comprehensive description of the
method and the underlying tool, an improved UML/OCL to CSP mapping
strategy, an evaluation of the problem complexity and efficiency results and a
more detailed comparison with related approaches.

1.4. Applicability of this approach

The approach presented in this paper has been applied successfully to two
different research problems in a related field, model transformation.

[CCGdL10a] considers the analysis of in-place model transformations de-
scribed using graph transformation rules. Through this analysis, it is possible
to validate several properties of the transformation, e.g. identifying rules which
are not applicable or conflicts among pairs of rules.

[CCGdL10b] considers the verification and validation of declarative model-
to-model transformations, i.e. transformations from one metamodel to another
that are described in a non-operational way. Two types of declarative M2M
transformation notations are considered: Triple Graph Grammars (TGGs) and
QVT-Relations. This process translates the rules of a M2M transformation into
a set of OCL invariants that encode the behavior of the transformation. These
invariants can be analysed to execute the transformation in both directions
(i.e. from source to target or from target to source) or to check properties of
the transformation, e.g. “is there a source model with more than one legal
corresponding target?”.

In both problems, the tool UMLtoCSP is used as the underlying solver to
perform verification and validation. The supported UML/OCL subset is suffi-
cient to formalize the problem (encoding transformation rules described in three
different notations) and the properties of interest for the model transformation.
These contributions provide evidence that this approach can be used to describe
interesting models and check relevant properties.

1.5. Paper organization

The rest of the paper is structured as follows. The next section introduces
the main steps of our method. Section 3 introduces Constraint Programming
concepts and notation. Later, section 4 describes how to transform a UML/OCL
model into a CSP. Section 5 presents some correctness properties for verification
and validation and their representation as additional constraints in the CSP. The
resolution of the generated CSP is shown in section 6. The verification tool that
implements our approach is introduced in section 7. Section 8 discusses some
efficiency aspects. Previous work and theoretical aspects are analysed in section
9. Finally, section 10 draws some conclusions and highlights future work.

2. Overview of the approach

To determine the correctness of a model, our method follows the proce-
dure depicted in Figure 2. First, the designer provides an input UML/OCL
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model, created using an existing UML CASE tool. Then the designer selects
the correctness property to evaluate on the model. These correctness proper-
ties express the feasibility of creating legal instances of classes and associations
in the model (satisfiability properties) and the interactions among different in-
tegrity constraints (subsumption and redundancy properties). Next, the model
plus the correctness property is translated into a CSP such that the CSP has a
solution if and only if the model satisfies the property2. The translation process
uses our own specialized CSP library encoding the semantics of the UML and
OCL constructs in order to simplify the transformation.

The actual evaluation of the CSP is made with a state-of-the-art constraint
solver. The results reported by the solver are interpreted and passed back to
the user as an object diagram that proves the property (if there is a solution to
the CSP) or as a text message informing that the property is not satisfied.

Intuitively, the generated CSP describes the possible set of valid instantia-
tions of the model by using (list) variables that encode the objects and links in
the instantiation, the values of the attributes of those objects, etc. The domain
of the variables maps the structure and types of the elements in the model.
Integrity constraints in the model such as multiplicity constraints or OCL in-
variants are translated into constraints in the CSP that restrict the legal values
for these variables. The correctness properties are represented as additional
constraints in the CSP. For instance, satisfiability (non-emptiness of the instan-
tiation) can be imposed as a new constraint: a lower bound on the number of
objects and links, i.e. a constraint on the minimum size of the corresponding
lists. To find a solution, the constraint solver tries to assign a value to all vari-
ables without violating any constraint. If no legal assignment is possible, the
model fails to satisfy the property. The next section provides more information
about the search in a CSP.

As an example, the CSP for the running example about Papers and Re-
searchers would roughly consist of four list variables that represent the pop-
ulation of the Paper and Researcher classes and of the Writes and Reviews
associations. The structure of the elements of each list mirrors the structure
of the corresponding model elements. Several constraints restrict the possible
number and values of elements in the lists. For instance, constraints will ensure
that each paper in the Papers list appears at least once in the Writes list (all
papers must be written by at least a Researcher according to the constraints
in the model) and that its wordCount value is lower than 10000 (as forced by
the PaperLength constraint). On top of this initial CSP, we need to add the
constraints to ensure that the model satisfies the correctness property we are in-
terested in. As an example, when checking for strong satisfiability our method
would add a new constraint into the CSP stating that none of the four list
variables can be empty.

The analysis of this CSP by the solver would conclude that it is not possible
to find a solution since the solver will be unable to create and assign elements

2A formal proof of the soundness of this translation is out of the scope of this paper.
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Figure 2: Schema of our method.

to the lists in such a way that (1) all previous constraints are fulfilled and (2) at
the same time, the lists are not left empty (forbidden by the constraint imposed
by the satisfiability property we are trying to determine). Therefore, we may
conclude that this model is not strongly satisfiable.

3. Basic concepts of Constraint Programming

Constraint Programming [MS98, AW07] is a problem solving paradigm where
the programming process is limited to the definition of the set of requirements
(constraints). A constraint solver is in charge of finding a solution that satisfies
the requirements.

CP can be used to solve different kinds of problems. In this work it will
be used to solve those called Constraint Satisfaction Problems (CSPs). A CSP
is represented by the tuple CSP = 〈V,D,C〉 where V denotes the finite set
of variables of the CSP, D the set of domains, one for each variable, and C
the set of constraints over the variables. Typically, most constraints can be
defined as equalities (=), disequalities ( 6=) or inequalities (<,>,≤,≥) of arith-
metic expressions over variables, or a boolean combination of such constraints,
e.g. (x = y) ∨ (2x2 ≥ 0). A solution to a CSP is an assignment of values
to variables that satisfies all constraints, with each value within the domain
of the corresponding variable. A CSP that does not have solutions is called
unsatisfiable.

The most traditional technique for finding solutions to a CSP is backtrack-
ing. A possible backtracking implementation called labeling orders variables
according to some heuristic and attempts to assign values to variables in that
order. If any constraint is violated by a partial solution, the solver reconsid-
ers the last assignment, trying a new value in the domain and backtracking to
previous variables if there are no more values available. This systematic search
continues until a solution is found or all possible assignments have been consid-
ered. To ensure termination, the search space must be finite, thus, all variable
domains must be finite.

The efficiency of the search process is largely improved by constraint propa-
gation techniques: using information about the structure of constraints and the
decisions taken so far in the search process, the unfeasible values in the domains
of unassigned variables can be identified and avoided, pruning the search tree
in this way. These techniques are an effective mechanism to reduce the search
space and are implemented by default in most constraint solvers.
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V = { X, Y }
D = { domain(X) = [−100,+100],

domain(Y ) = [−100,+100] }
C = { X > 20, Y ≤ 15, X = Y }

↓ Propagating constraint (X > 20)

D′ = { domain(X) = [21,+100],

domain(Y ) = [−100,+100] }
↓ Propagating constraint (Y ≤ 15)

D′′ = { domain(X) = [21,+100],

domain(Y ) = [−100, 15] }
↓ Propagating constraint (X = Y)

D′′′ = { domain(X) = ∅,
domain(Y ) = ∅ }

Figure 3: Constraint propagation example

As an example, consider the simple CSP of Fig. 3. The CSP consists of
two variables X and Y whose domain ranges from −100 to +100. There are
three constraints: X > 20, Y ≤ 15 and X = Y . For this example, constraint
propagation techniques suffice to directly prove the unfeasibility of the CSP
with neither instantiations nor backtracks required. First, the lower and upper
bounds for the domains can be tightened by leaving only feasible values inside
the domain. Furthermore, in the last step, the fact that the domains for X and
Y are disjoint can be used to deduce that (X = Y ) is impossible: the set of
feasible values in the domain becomes empty (∅), so we conclude that the CSP
is unfeasible. Typically, constraint propagation is not that successful, but it is
an effective mechanism to reduce the search space. Some types of arithmetic
constraints, e.g. linear inequalities, have specialised numerical solvers to perform
complex propagations among variables.

Without loss of generality, in this paper we will describe CSPs using the syn-
tax provided by the ECLiPSe Constraint Programming System [The07, AW07].
In ECLiPSe, constraints are expressed as predicates in a logic Prolog-based lan-
guage while variables may be either simple, structured (tuples) or lists. The en-
vironment provides several solvers and it is capable of reasoning about boolean,
interval, linear and arithmetic constraints among others.

The proposed approach can easily be codified in any other Constraint Pro-
gramming language, as all of them provide support for suspensions, lists and
finite domain solvers (see section 4.3 for more information on these topics).
Some examples of alternative solvers would be GNU-Prolog [GNU], Oz[Oz],
SICStus Prolog[SIC], CHIP V5[CHI], ILOG CP[ILO], JaCoP[JaC], Comet[Com]
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or Cream[Cre]. The translation of UML/OCL diagrams into other families of
restricted constraint problems, such as SAT or SAT Modulo Theories (SMT),
requires completely different encoding strategies which are out of the scope of
this paper. These strategies depend on the specific formalism being used, e.g.
see [SWK+10] for a translation of UML/OCL into SAT. Every approach has
its proper advantages and drawbacks. In our case, we have chosen CP mainly
because it is highly expressive and a natural way to code constraints and arith-
metic operations.

4. Translation of UML/OCL Class Diagrams

This section describes the transformation of a UML/OCL class diagram
into a Constraint Satisfaction Problem. A class diagram CD is defined as CD
= 〈Cl,As,AC,G, IC〉, where Cl is the set of classes, As is the set of associations,
AC the set of association classes, G the set of generalisation sets and IC the
set of constraints (either graphical or textual) included in CD.

Each element is translated into a set of variables, domains and constraints in
the CSP system. As stated before, domains must be finite. These finite domains
can be ensured in several ways: first of all, arbitrary bounds for the domains
can be chosen or provided by the designer during the translation process. On
the other hand, the analysis of the constraints in IC may reveal a finite set
of relevant values in the domain. From the point of view of efficiency, we are
interested in the smallest domains that suffice to identify inconsistencies in the
model. However, the automatic computation of these (smallest) domains from
the constraints in IC is undecidable, even though it can be approached from the
static analysis of OCL invariants [YBP07]. This problem will not be addressed in
this paper, assuming instead that domains are provided as inputs (parameters)
of our translation procedure.

In the following we present the transformation of the elements of a class
diagram into the CSP. Note that some of the constraints generated by our
method in the CSP are implicit in the semantics of UML but must be made
explicit in the CSP. For example, we need to state explicitly that all instances
of a class are also instances of its superclasses. In [GR02] a translation of all
these graphical constraints into an OCL representation is proposed.

Section 4.1 describes the translation of the UML elements in the model while
section 4.2 focuses on the translation of the OCL integrity constraints. Both
parts rely on our UML/OCL CSP library, introduced in section 4.3. The library
extends predicates available in the Prolog dialect used by ECLiPSe with a new
set of predicates that map the semantics of the predefined OCL operations.
Rather than hard-coding these OCL operations in the translation procedure,
we have decided to group them in a separate library to simplify the translation.

4.1. Transformation of UML constructs

To illustrate the translation of UML constructs, we will refer to the example
in Figure 4 throughout this section. Figure 4(a) shows a class diagram and
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Figures 4(b) and (c) show the translation of this diagram into variables and
constraints of a CSP, plus a potentially legal instantiation.

4.1.1. Transformation of classes

The set of variables and domains to be defined for each class c ∈ Cl is:

• A variable Instancesc of type list3. Each element in the list represents
an instance of c. Therefore, the domain of these elements is represented
by the structure struct(c) = (oid, f1, . . . , fn), where: oid represents the
explicit object identifier for each object, and each fi corresponds to an
attribute at ∈ c.ownedAttribute4.

The domain of the oid field is the set of positive integers. The domain of
an f i field is defined as a finite subset of the domain of the corresponding
at attribute in c. Boolean and enumerated types are already finite. Finite
domains for integer types require at least a lower and upper bound for the
attribute. For string types, the possible “alphabet” and the maximum
string length should be defined.

To increase the efficiency of the generated CSP, during the translation we
discard all attributes that do not participate in any of the constraints in
IC. A correct instantiation may contain any value in those attributes.

• A variable Sizec of type integer, encoding the number of instances of class
c. Its domain is domain(Sizec) = [0, PMaxSizec], where PMaxSizec is
a parameter that indicates the maximum number of instances of class c
that must be considered when looking for a solution to the CSP.

Additionally, the following constraints are added to the CSP:

• Number of instances: Sizec = length(Instancesc)

• Distinct oids: ∀x, y ∈ Instancesc : x 6= y → x.oid 6= y.oid

For example, figure 4(b) illustrates the structure of the Instances variable
for classes A to G, where the constraints on the number of instances and the
uniqueness of oids within a class are omitted for brevity. Notice how even
in classes without attributes, it is still necessary to keep track of the oid, for
example, to keep track of inheritance relations or the participation of each object
in associations.

4.1.2. Transformation of associations

For each association as ∈ As between classes C1 . . . Cn, the following vari-
ables and domains must be created in the CSP:

3Sets of instances are defined as Prolog lists with additional constraints to avoid duplicates.
4ownedAttribute is the UML metamodel navigation expression that returns the set of at-

tributes of a class.
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(a)

A B C D E F G H Z
(oidA, n) (oidB) (oidC) (oidD) (oidE) (oidF ) (oidG) (oidH , t, d, g) (f, g)

(1, 10), (2, 14), (1) (2), (4), (2) (2) (1), (1, true, 4, 1), (2, 1),
(3, 14), (4, 20), (3) (5) (2) (2, false, 5, 2) (2, 2)
(5, 90), (6, 20),

(7, 10)

(b)

Constraints on association Z
Existence of referenced objects {Z.f} ⊆ {oidF }, {Z.g} ⊆ {oidG}
Bounds on cardinalities (SizeZ ≤ SizeF · SizeG),

(2 · SizeF ≤ SizeZ ≤ 7 · SizeF )
Multiplicities of role “g” ∀x ∈ {oidF } : 2 ≤ #{l ∈ Z : l.f = x} ≤ 7

Constraints on association class H
Existence of referenced objects {H.d} ⊆ {oidD}, {H.g} ⊆ {oidG}
Bounds on cardinalities (SizeH ≤ SizeD · SizeG), (SizeG ≤ SizeH),

(SizeD ≤ SizeH ≤ SizeD)
Multiplicities of role “g” ∀x ∈ {oidD} : 1 ≤ #{l ∈ H : l.d = x} ≤ 1
Multiplicities of role “d” ∀y ∈ {oidG} : 1 ≤ #{l ∈ H : l.g = x}

Constraints on generalisation set A-B-C-D
Number of instances (SizeA ≥ SizeB), (SizeA ≥ SizeC), (SizeA ≥ SizeD)
Existence of oids in supertype {oidB} ⊆ {oidA}, {oidC} ⊆ {oidA}, {oidD} ⊆ {oidA}
Disjointness (cardinalities) SizeA ≥ SizeB + SizeC + SizeD
Disjointness (oids) {oidB} ∩ {oidC} = {oidB} ∩ {oidD} =

= {oidC} ∩ {oidD} = ∅
Completeness (cardinalities) SizeA ≤ SizeB + SizeC + SizeD
Completeness (oids) {oidA} = {oidB} ∪ {oidC} ∪ {oidD}

Constraints on generalisation set C-E-F
Number of instances (SizeC ≥ SizeE), (SizeC ≥ SizeF ),
Existence of oids in supertype {oidE} ⊆ {oidC}, {oidF } ⊆ {oidC}

(c)

Figure 4: Example of the translation of UML class diagram constructs: (a) class diagram, (b)
corresponding variables in the CSP with a possible legal instantiation and (c) a selection of
corresponding constraints in the CSP.
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• A variable Instancesas of type list. Every member of the list represents
an instance of the association (i.e. a link), each being of type struct(as) =
(p1, . . . , pn), where p1 . . . pn are the role names of the participant classes.
The domain of each pi is that of positive integers, that is, each link records
the collection of oids of the participant objects, not the objects themselves.

• A variable Sizeas encoding the number of instances of the association. Its
domain is domain(Sizeas) = [0, PMaxSizeas]. As before, PMaxSizeas
is the parameter indicating the maximum number of links of as to be
considered when looking for valid solutions of the CSP.

Let n be the number of roles in the association as, and given a role i, let
T (i) be its type and [mi,Mi] be its multiplicity. Then, the following constraints
must also be added to the CSP:

• Number of links: Sizeas = length(Instancesas)

• Existence of referenced objects: ∀l ∈ Instancesas : ∀i ∈ [1, n] : ∃x ∈
InstancesT (i) : x.oid = l.pi

• Uniqueness of links: ∀x, y ∈ Instancesas : x 6= y → (∃i ∈ [1, n] : x.pi 6=
y.pi) unless the property isUnique [Obj11] of the association is set to false.

• Bounds on cardinalities: The multiplicities of an association impose con-
straints on the number of instances of the participant classes and the
association. The explicit representation of these constraints in the CSP is
presented in Fig. 5 for binary associations.

• Multiplicities of the association: Multiplicity constraints must also be sat-
isfied by each individual object of the participant classes. For n-ary as-
sociations, several multiplicity constraints among participant objects may
be defined [Obj11]. In particular, for binary constraints the following
constraint must hold:

(∀x ∈ InstancesT (1) : m2 ≤ #{l : l ∈ Instancesas : l.p1 = x} ≤M2) ∧
(∀y ∈ InstancesT (2) : m1 ≤ #{l : l ∈ Instancesas : l.p2 = y} ≤M1).

Figure 4(b) illustrates the Instances variables for a binary association Z: it
keeps track of the oids of the participating objects from classes F and G. Then,
Figure 4(c) shows relevant constraints added to the CSP for this association,
assuming that isUnique is set to true. The notation {Z.f} ⊆ {oidF } is a
shorthand denoting that all oids referenced from role f in InstancesZ should
correspond to one of the oids in InstancesF . Regarding the rest of constraints,
it should be noted that there is a role with multiplicity “0..*”, i.e. any number
of participating objects. This multiplicity does not generate any constraint for
this role in the CSP.

Associations that are not referenced (i.e. navigated) in any constraint and
that do not state any multiplicity constraint (all participants have a “0..*”
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Class X ma..Ma Assoc as mb..Mb Class Y
rolea roleb

Sizeas ≤ SizeX · SizeY
ma · SizeY ≤ Sizeas ≤Ma · SizeY
mb · SizeX ≤ Sizeas ≤Mb · SizeX

Figure 5: Implicit cardinality constraints due to the association multiplicities [CCGM04]

multiplicity) can be discarded during the translation process. The population
of those associations does not affect the existence of solutions to the CSP.

Compositions and aggregations are just two special kinds of associations
and thus are translated following the procedure explained in this section com-
plemented with the translation of the OCL constraints needed to enforce their
specific containment or whole-part semantics. These constraints are taken from
[GR02] and added to the pool of OCL constraints of the model translated as
explained in the next section.

4.1.3. Transformation of association classes

An association class ac ∈ Ac is, at the same time, a class and an association.
Therefore, transformation of association classes can be regarded as the union of
the translation process for classes plus the translation process for associations.
More specifically, variables for association classes are Instancesac and Sizeac
where the structure of elements in Instancesac includes all fields corresponding
to the transformation of the class facet of ac plus the fields corresponding to
the transformation of the association facet of ac. Likewise, constraints for ac
are the combination of constraints for classes and for associations. Therefore,
this transformation considers the special semantics of association classes [Obj11,
GR02] stating that each instance of the association class should correspond to
a link in the underlying association.

For example, Figures 4(b) and (c) illustrate the variables and constraints
for the associative class H from our example. Notice that the structure of the
Instances variable includes oids and attributes like objects, and also role names
like associations.

4.1.4. Transformation of generalisation sets

Generalisation sets do not imply the definition of new variables but the
addition of new constraints among the classes involved in the generalisation.

Let class sub ∈ Cl be a subclass of a class super ∈ Cl. The following
constraints should be added:

• Existence of oids in supertype: ∀x ∈ Instancessub : ∃y ∈ Instancessuper :
x.oid = y.oid

• Number of instances: Sizesub ≤ Sizesup
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% Unconstrained attributes are not in the CSP

:-local struct researcher(oid,isStudent).

:-local struct paper(oid,wordCount,studentPaper).

:-local struct reviews(submission,referee).

:-local struct writes(manuscript,author).

Figure 6: Structs for the translation of classes and associations of the running example.

• Disjointness: For a disjoint generalization set among a supertype S and
subtypes S1..Sn:

– SizeS ≥
∑

i SizeSi

– ∀i, j ∈ [1, n] : ∀o1 ∈ InstancesSi,∀o2 ∈ InstancesSj : o1.oid =
o2.oid→ i = j

• Completeness: For a complete generalization set among a supertype S
and subtypes S1..Sn:

– SizeS ≤
∑

i SizeSi

– ∀o1 ∈ InstancesS : ∃i ∈ [1, n] : ∃o2 ∈ InstancesSi : o1.oid = o2.oid

For example, Figure 4(c) describes the set of constraints involved in two
different generalization sets: the subclasses of A and the subclasses of C. Also,
Figure 4(b) shows an instantiation of these classes which helps to illustrate the
role of oids through inheritance: an object preserves the same oid in the sub-
class and the superclass. Even though this approach does not support multiple
inheritance, it is able to describe complex inheritance scenarios. For example,
it supports overlapping inheritance, i.e. the same oid is used in two or more
subclasses of the same superclass, and also complete inheritance, i.e. all oids
from the superclass must be used in at least one of the subclasses.

4.1.5. Transformation of the running example

Before describing the translation of OCL constraints, we retake our running
example from Figure 1 and illustrate the translation process described so far.
This time we introduce the syntax of the ECLiPSe code for the CSP, which will
be used extensively in the following section.

Figure 6 illustrates the Instances variables for the classes and associations
in the running example. Notice that some attributes such as name from class
Researcher or title from class Paper do not appear in the Instances vari-
ables to improve the efficiency of the solver. Regarding the constraints for
the UML constructs in this diagram, they primarily involve the multiplici-
ties of associations Writes and Reviews. Some example predicates would be
differentOids, which checks that all oids of a single class are different, or
linksConstraintMultiplicities, which ensures that the oids of participants
in a binary association preserve the multiplicities of each role.
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context Paper inv PaperLength:
Paper::allInstances−>

forAll(x|x.wordCount < 10000)

(a)

% Position of class Paper

% within the list of instances

index("Paper", 1).

% Position of attribute wordCount

% within the list of attributes

attIndex("Paper", "wordCount", 2).

nodeConstant( , , Result):-

Result = 10000.

(b)

nodeVariable( , Vars, Result ):- % x = var of the innermost iterator

nth1(1, Vars, Result). % Result = Vars[1] = value of x

nodeAttrib(Instances, Vars, Result):-

nodeVariable(Instances, Vars, Object), % An object of class Paper

attIndex("Paper", "wordCount", N), % N = Index of field wordCount

arg(N, Object, Result). % Result = Object[N] = wordCount

value

nodeAllInstances(Instances, Vars, Result) :-

index("Paper", N), % N = Position of class Paper

nth1(N, Instances, Result). % Result = Instances[N] = Inst of

Paper

nodeLessThan(Instances, Vars, Result) :-

nodeAttrib(Instances, Vars, Value1), % 1st subexpression

nodeConstant(Instances, Vars, Value2), % 2nd subexpression

#<(Value1, Value2, Result). % Result = (Value1 < Value2)?

nodeForAll(Instances, Vars, Result) :-

nodeAllInstances(Instances, Vars, L), % L = Result of allInstances

( foreach(Elem, L), foreach(Eval, Out), param(Instances,Vars) do

% Eval = Result of evaluating nodeLessThan on an element of L

nodeLessThan(Instances, [Elem|Vars], Eval) ),

% Out = List of truth values. Out[i]= Result of nodeLessThan(L[i])

length(L, N), % N = length(L)

#=(N, sum(Out), Result). % Result = (N = ΣOut[i])?

% Translation of the constraint PaperLength

paperLength(Instances) :-

nodeForAll(Instances,[],Result), % Evaluate the root node

Result #= 1. % Result should be true

(c)

Figure 7: Translation of OCL constraints: (a) Class invariant after preprocessing, (b) OCL
metamodel tree, (c) Constraint represented by means of Prolog rules in the CSP.
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4.2. Translation of OCL constraints

Integrity constraints in OCL [Obj10] are represented as invariants defined
in the context of a specific type, named the context type of the constraint. Its
body, the boolean condition to be checked, must be satisfied by all instances of
the context type. In our approach, each OCL constraint is translated into an
equivalent constraint in the CSP. Fig. 7 shows an example of the translation
process presented in this section. This example has been simplified to improve
the legibility and understandability of the constraints.

An OCL constraint can be viewed as an instance of the OCL metamodel
with a tree shape, with a close resemblance to the abstract syntax tree of the
textual constraint that would be constructed by an OCL parser. For instance,
the simplified tree representation for PaperLength constraint is illustrated in
Fig. 7. Leaf nodes of the tree correspond to the constants (e.g. 2, true, “John”)
and variables (e.g. self, x) of the constraint. Each internal node corresponds
to one atomic operation of the constraint, e.g. logical or arithmetic operation,
access to an attribute, operation calls, iterator, etc. The root of the tree is the
outermost operation of the constraint. Packages like the Dresden OCL toolkit
[Dem04] can parse textual OCL constraints and build the corresponding trees.

As a preliminary step and to homogenize the translation procedure, we ex-
press all constraints in terms of the allInstances5 operation using the following
expansion rule:

context T inv: B ⇒ context T inv: T::allInstances()−>forAll(v|B’)

where B’ is obtained by replacing all occurrences of self in B with v. This step
serves two purposes. First, it encodes the semantics of an OCL invariant, a
property that should evaluate to true for all objects of a context type, using the
constraint language of the CSP. And second, it eliminates the variable self as
a special case to be treated separately during the translation, as it becomes a
quantifier variable like any other.

Then, the translation procedure is defined as a post-order traversal of the
corresponding OCL metamodel tree that translates all the children (subexpres-
sions) of a node before translating the node (expression) itself. Each node of the
tree is translated into an ECLiPSe Prolog compound term with a unique functor
name that identifies the subexpression and three arguments, e.g. nodeX(Instances,
Vars, Result), with the following meaning:

1. Instances is a list with the set of all instances for each class and association.
The i-th position of this list holds all the instances of class/association i,
i.e. it holds the contents of the corresponding Instancesi variable defined
in section 4.1. The order within this list is defined in auxiliary Prolog
rules generated during the translation. This argument is required, for
instance, to implement the OCL operation allInstances and navigation in
associations.

5allInstances is a predefined OCL operation that returns the set of instances of the type.
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2. Vars contains the list of the quantified variables available in the subex-
pression. The first position of this list holds the value of the quantified
variable defined in the innermost iterator (e.g. forAll or exists). The
second position holds the following variable in the next innermost iter-
ator and so on. This argument will be used when evaluating attribute,
operation or navigation expressions over variables defined in an iterator.

3. Result holds the result of the subexpression. The type of the result de-
pends on the kind of operation applied in the node.

The behaviour of each node is formalised by means of a Prolog rule. This rule
evaluates the subexpressions of the node and computes the result of the node
(according to the semantics of the OCL operation represented by the node) in
terms of the results of its subexpressions. Basic types (e.g. boolean or integer)
and basic OCL operations (e.g. logical and arithmetic) have a direct counterpart
implementation in the ECLiPSe constraint libraries. For more complex opera-
tions, such as iterators or operations on Collections, we have developed a new
ECLiPSe library (see the next section) that implements the operations defined
in the OCL Standard Library [Obj10]. Nevertheless, for the sake of simplicity,
in Fig. 7 we have directly added to each node the required computation without
relying on our external library.

As a final step, once the translation for the body expression has been com-
pleted, we add to the CSP a new constraint representing the original OCL
invariant. This constraint is defined as:

nameConstraint(Instances):- rootNode(Instances,[],Result), Result#=1.

In other words, the constraint is true when the rootNode evaluates to true. For
example, see the paperLength constraint in Fig. 7(c).

4.3. UML/OCL Prolog Library

OCL provides a rich set of predefined types (e.g. collections: sequences,
sets, bags,...), operations (arithmetic, logic, set,...) and iterator expressions (for
all, exists, iterate,...) for the definition of complex constraints as part of the
OCL Standard Library. In order to analyze OCL constraints, it is necessary
to provide a translation for those operations in terms of the Prolog-based lan-
guage used by the ECLiPSe solver. Rather than hard-coding these operations
in the tool translation procedure, we have decided to group them in a separate
library. When translating the OCL constraints, we will call the appropriate
library predicate to implement the specific semantics of each constraint node.
For example, the library predicate ocl int equals will be reused every time a
constraint includes an integer equality comparison between two subexpressions.
This separation provides additional flexibility as changes in the implementa-
tion of the OCL operators can be performed without modifying the translation
method and thus, without changing the source code of UMLtoCSP6.

6In fact, it is not even necessary to recompile the tool, as Prolog is an interpreted language.
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The Prolog dialect used by ECLiPSe is an extension of pure Prolog. A full
description of this notation is available in [AW07]. We will simply mention
those extensions required for the comprehension of the implementation of our
UML/OCL library:

• Support for higher-order predicates, i.e. the ability to pass predicate
names as arguments.

• Syntactic flavor to facilitate the definition of constraints, e.g. iterator
constructs like for or foreach. These constructs are specially useful to
operate with Prolog lists, so they are used in collection operations, OCL
iterators and navigations.

• Support for the definition of suspended constraints, i.e. delaying the exe-
cution of a predicate whose arguments have not been assigned yet.

The first extension, higher-order predicates, is provided by a library called
apply. With this library, it is possible to pass predicate names as arguments of
other predicates, and invoke those predicates later with a list of arguments
that is constructed at run-time. Intuitively, it is possible to build generic
predicates like “evaluate this predicate in each element of a collection”, i.e.
the “collect” function of collections. This function is computed by a predi-
cate with the following signature: ocl set collect(Instances, Vars, Set,

Predicate, Result), where Set is the collection where the operation must be
applied, Predicate is the name of the predicate to be applied and Result is
the result of the operation. It is possible to implement iterators like “exists” or
“forAll” in a similar way.

In the following sections, we will describe some design decision and imple-
mentation details of the UML/OCL Prolog library (available at [U2C] as a part
of the download of the tool UMLtoCSP). We will discuss separately the imple-
mentation of basic types (subsection 4.3.1), issues with suspensions (subsection
4.3.2), the implementation of OCL collections (subsection 4.3.3) and the OCL
iterator expressions (subsection 4.3.4).

4.3.1. OCL Basic Types

ECLiPSe provides several solver libraries, each one targeting a different type
of constraints, e.g. linear constraints, graph constraints, . . . In UMLtoCSP, we
use the finite domain interval constraint solver library (ic), which analyses
constraints by considering the domain of each variable as one or more finite
intervals of values. This library provides support for integers and boolean7 vari-
ables, and defines all the usual arithmetic (+, ∗, /,%), relational (=, 6=, <,>,≤
,≥,min,max) and boolean (∧,∨,→) operators. Furthermore, those operators
which are not provided by the library itself, e.g. xor, can be simply defined
using the Prolog language. Thanks to these predefined operators we can easily
implement the support for OCL basic types in our library.

7Boolean values are represented as integers whose value is either zero (false) or one (true).
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For example, let us consider the implementation of the relational operator
“greater-than” for comparing two integers. This operator takes as parameters
two predicate names and stores the result of the comparison in a variable called
Result. The ECLiPSe code for this operation is the following:

ocl_int_greater_than(Instances, Vars, Pred1, Pred2, Result) :-

apply(Pred1, [Instances, Vars, X]), % X is the result of evaluating Pred1

apply(Pred2, [Instances, Vars, Y]), % Y is the result of evaluating Pred2

Result::0..1, % Result is a boolean value

#>(X, Y, Result). % Result is true iff X > Y

This predicate uses the predefined operator #> which is provided by the
predefined ic library to define the integral “greater-than” constraint. All integer
operators in the library have the “#” prefix. Whenever there is a potential
ambiguity, e.g. between the default Prolog language operator and the operator
redefined by the library, the name of the library is prepended to the operator.
For example, the logical “and” operator from the ic library is invoked as ic:and
to distinguish it from the default Prolog “and”.

Note that in this predicate we are not forcing X to be greater than Y, we are
just evaluating whether this is true and storing the result in the Result variable.
This way of using boolean constraints is known as reified constraints.

A disadvantage of using the ic library is the lack of support for constraints
on strings. In fact, there is no ECLiPSe library which provides efficient support
for the type of string constraints that can be written in OCL, e.g. substrings or
concatenations. In models with attributes of type string that are only compared
among them with no substrings and concatenations, strings can be encoded as
an integer or enumerated attribute. However, our current implementation does
not provide support for other string operations in OCL constraints.

4.3.2. Suspensions

The result of an operation cannot be evaluated until the values of its ar-
guments are known. In the constraint programming paradigm, the constraints
of the CSP are defined in the beginning, and then we try to assign values to
variables in such a way that all constraints are satisfied. It should be noted that
constraints are defined before the values of variables are available, so we need
the concept of suspended constraint, a constraint which has been defined (e.g.
a = b) but cannot be evaluated until the values of variables are available (e.g.
until we have tried to assign a or b).

A possible solution is delaying the evaluation of a constraint until the com-
plete assignment is available. However, this conservative approach is very in-
efficient. Instead, it might be possible to detect that an assignment violates a
constraint without assigning values to all variables. For example, if we have
variables a to z and a constraint a = b, the constraint can be evaluated as soon
as a and b are assigned. Waiting for the other variables to become assigned
means evaluating the constraint for all possible combinations of variables c to
z, a number which grows exponentially with the number of variables involved.
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To avoid inefficiencies due to the late evaluation of constraints, ECLiPSe pro-
vides a mechanism to suspend constraints when they are defined and wake them
whenever there is a possibility to propagate information between variables. For
instance, constraints are awakened when one argument is assigned (and not nec-
essarily all). The constraint propagation built in ECLiPSe can sometimes infer
information about the result without knowing all the arguments of an operation.
For example, if one argument of a product is 0, the result is automatically zero
regardless of the other argument. The same type of early evaluation can be
applied to boolean operations. Sometimes it is also possible to use the domain
of an argument to infer information about the domain of other arguments. For
example, in a = b if we assign a the value 7, two situations can happen: if the
value 7 is within the domain of b, then we know that the equality holds and
b = 7; otherwise, we know that the equality does not hold.

In our library, we use two types of suspensions, that of the predefined pred-
icates and that of the new rules that we define:

• In the predefined constraints of ECLiPSe libraries, like #>, or ic:and,
suspension is already built in. This means that we can write Value1 #>

Value2 and ECLiPSe handles the suspension transparently.

• In the new rules that we define, it is necessary to specify conditions that
restrict when it cannot be evaluated and must become suspended. This
is achieved using the declarative suspension clause delay-if before the
definition of a rule. For example, the clause delay ocl col size(X) if

var(X) delays the execution of the rule ocl col size until its argument
ceases being an unassigned variable. The constraint will be automatically
woken and evaluated by the ECLiPSe solver when variable X is given a
value.

In this second group, it is very important to wake constraints as soon as
possible: if the current solution is unfeasible, discovering it early will avoid
unnecessary backtracking and greatly reduce the execution time. However, it
is possible to define suspensions which are too conservative, for example, in
collection operators. An operation like nonEmpty() can be evaluated as soon
as we know that the list has no elements or more than one, it is not necessary
to wait until the specific value of the elements of the collection is available.
Selecting the right degree of suspension for each operation has been an important
task in the design of the library.

4.3.3. OCL Collection Types

Lists are a key concept of the ECLiPSe notation. These are represented as a
sequence of elements separated by commas and enclosed between brackets, e.g.
[] or [2, 7, 25]. They admit the repetition of elements and the order among
elements matters. Formally, a list is defined recursively using the empty list ([])
and the constructor | which appends one element (head) to the beginning of an
existing list (tail), e.g. [head | tail]. For example, the previous notation for
lists is a shorthand of:
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[ 2 | [ 7 | [ 25 | [] ] ] ]

Lists will be used as the backbone for the representation of OCL collections:
all the elements of an OCL collection will be stored in a Prolog list. The Prolog
semantics of lists matches that of OCL sequences, so the implementation of
sequence operations will be straightforward. For example, the implementation
of operation “size()” of collections, which returns the number of elements in a
collection, relies on the “length” operation in Prolog lists:

ocl_col_size(Col, Size) :- length(Col, Size)

Similarly, other operations rely on Prolog operations on lists.
However, we needed to code additional predicates/constraints to manage

other OCL collection types, i.e. to correctly represent their semantics when
stored as Prolog lists, e.g. to enforce the uniqueness of elements in a set collec-
tion type. These additional predicates/constraints are the following:

Sets: Additional checks are required to ensure that the set contains no dupli-
cates after the insertion of new elements (OCL operation “including”) and
the union of two sets or a set and a bag (union). To improve the efficiency
of this representation, the elements in the Prolog list are kept ordered at
all times.

Bags: As lists allow duplicate elements, bags can be represented directly as
lists much like sequences. However, the performance of several operations
like intersection or the equality check, can be improved if the elements
of the bags are ordered. Rather than keeping the elements ordered at all
times, the elements are ordered on demand when the equality check or
intersection operations are invoked.

Ordered sets: The operations on ordered sets are equivalent to those of a se-
quence, except for the check to avoid duplicate elements. In this collection,
elements cannot be stored in an ordered list as the insertion order must
be preserved.

Operations on collections can be classified into two categories according to
the degree of suspension that they require. In the first category, there are
operations on collections which can be evaluated when the number of elements
of the collections is known, even if the specific values of the elements in the
collection is unknown, e.g. size(), isEmpty() and most operations on empty
collections. Such operations must be delayed until the size of the collection
is known. In a second category, other operations need that the values of the
elements in the collection are known a priori, e.g. includes() in a non-empty list.
In this case, it is not possible to evaluate the operation until all the elements of
the collection have been given a value.
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4.3.4. Iterators

OCL provides a set of iterator expressions over collections, e.g. existential
(exists) and universal (forAll) quantification. As OCL collections are encoded
in Prolog lists, the iterators must be translated in terms of lists.

The core operation of iterators is the ability to evaluate an OCL expression
in each element of a collection. Talking in Prolog terms, this translates to the
ability to apply a predicate (encoding the OCL expression) to each element of
a list (encoding the OCL collection). Using the library apply it is possible to
obtain a generic implementation of this operation by passing the predicate name
to be evaluated as a parameter.

For example, let us consider the following existential quantification:

Col −>exists(x|Expr(x))

It is possible to evaluate this quantifier in the following way: evaluate Expr
in each element x of the collection Col and then count the number of Expr(x)
that evaluate to true. The quantifier evaluates to true if and only if that num-
ber is greater than zero. This implementation in terms of a CSP requires the
following variables and constraints:

• Variables:

– Result, a boolean variable which stores the result of the existential
quantification.

– An auxiliary variable N , which is an integer ranging from 0 to the
number of elements in the collection.

– A variable Expr(x) in the CSP for each element x in the collection,
i.e. a boolean variable which stores the result of evaluating the ex-
pression on x.

• Constraints:

– The necessary constraints to define the value of each Expr(x).

– A new constraint: N =
∑

x∈Col Expr(x).

– A new constraint: Result = (N > 0).

Figure 8 illustrates the Prolog code required to compute the existential quan-
tification. The auxiliary predicate property sat count is also used in the im-
plementation of other operators such as forAll (universal quantification) or one
(checking if a property holds for just one element of the collection). This code
reuse is shown in Fig. 9. Notice how it is only necessary to change the number
of elements which should evaluate to true: in “one” we need only one element,
in “forAll” we need all the elements of the collection (we compute the num-
ber of elements of the collection using the predicate ocl col size from the
collections).

Using these functions in our translation results in a more compact translation
into Prolog. For example, the translation of the node nodeForAll in Fig. 7
would become the following:
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ocl_col_exists(Instances, Vars, Collection, Predicate, Result ) :-

% N = # of elements where Predicate evaluates to true

property_sat_count(Instances, Vars, Collection, Predicate, N),

#>(N, 0, Result). % Result = (N > 0)

% Count the number of Predicates that evaluate to true in the Collection

property_sat_count(Instances, Vars, Collection, Predicate, Result ) :-

% Apply Predicate to all elements of Collection

% Store the results in the list TruthValues

property_apply(Instances, Vars, Collection, Predicate, TruthValues),

Result #= sum(TruthValues). % Result is the sum of all the truth values

% Apply Predicate to each Element of Collection,

% All outputs are stored in the list Result

property_apply(Instances, Vars, Collection, Predicate, Result) :-

( foreach(Elem, Collection), % One Value per Elem in the Collection

foreach(Value, Result), % Result is a list of those Values

param(Predicate, Instances, Vars)

do

% Apply Predicate to Elem (Elem is added to the list

% of visible variables within Predicate)

apply(Predicate, [Instances, [Elem|Vars], Value]) ).

Figure 8: Code for the implementation of the existential quantification (code related to sus-
pensions has been removed for clarity).

nodeForAll(Instances, Vars, Result) :-

nodeAllInstances(Instances, Vars, L),

ocl_col_forAll(Instances, Vars, L, nodeLessThan, Result).

Finally, it should be noted that it is not necessary to manually add opti-
mizations like “the result of an existential quantifier is false when the collection
is empty” as they are already considered by the constraint propagation process.
If the collection is empty, property sat count receives an empty list. The op-
eration sum directly returns 0 for empty lists. Thus, N will be 0, so N > 0 will
be false, i.e. the result of the iterator will be false.

4.4. Limitations of the translation from UML/OCL into CSPs

UML and OCL are complex standards which include a large catalog of con-
structs. As a result, the approach described in this paper does not provide
support for all the features described in these standards. The following is a
list of unsupported features: multiple inheritance; recursive OCL queries which
are infinitely recursive in some model instance and OCL constraints on strings,
other than equality tests. In particular, infinite solutions are an inherent limita-
tion of the proposed approach, as it is restricted to bounded verification. With
respect to the other constructs, the limitations are more pragmatic: a potential
encoding in the CSP has been studied, but as it can reduce the performance of
the verification process they have not been included in the approach.
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ocl_col_one(Instances, Vars, Collection, Predicate, Result ) :-

property_sat_count(Instances, Vars, Collection, Predicate, N),

#=(N, 1, Result). % Result = ( N = 1 )

ocl_col_forAll(Instances, Vars, Collection, Predicate, Result ) :-

property_sat_count(Instances, Vars, Collection, Predicate, N),

ocl_col_size(Collection, S), % S = Number of elements in the collection

#=(N, S, Result). % All elements should evaluate to true (N = S)

Figure 9: Code for the implementation of other existential quantifications (code related to
suspensions has been removed for clarity).

Regarding other constructs that can expressed in different ways in UML/OCL,
in some cases our prototype tool has a preferred format that must be respected
by designers. For example, our implementation assumes that all attributes in
the diagram have a basic type and a multiplicity of 1: otherwise, the designer
has to reexpress these attributes of complex types or with other multiplicities
by means of an equivalent association (between the class owning the attribute
and the type) in the diagram.

Furthermore, our library provides limited support for object-like operations
on OCL basic types and collections, as a side-effect of their trivial encoding
as Prolog basic atoms and lists. For example, it is not possible to use the
operation allInstances() on class Integer or any collection like Set. Also, con-
straints regarding the type of real, integer, string or collection expressions are
not supported, i.e. oclIsTypeOf, oclIsKindOf or oclAsType cannot be applied
to these expressions. As a consequence, this affects the implementation of two
collection operations which require knowledge about the type of its operands:
flatten (replacing all collections within a given collection by the elements they
contain) and sum (adding all elements of the collection which are of a numeric
type). These two operations are only supported when all elements of the collec-
tion are themselves collections (flatten) and when they are all integers (sum),
respectively.

Finally, an important difference in the operation of our tool with respect to
the OCL standard is the treatment of undefined values. The OCL standard
mandates that expressions whose value is unknown must produce an unde-
fined value, e.g. accessing the first element of an empty Sequence. Expressions
where any operand is undefined should propagate the undefined value, with
the exception of boolean connectives that can short-circuit the evaluation, e.g.
false∧undefined = false. Contrary to the standard, the (pragmatic) behavior
taken in this approach is to provide a warning about any operation which would
result in an undefined value, stopping the analysis. This comes from the belief
that any constraint producing an undefined value deserves further inspection
(to make sure that was the intended behaviour by the designer when specifying
the constraint) and could (and, possibly, should) be rewritten into an equivalent
constraint without undefined subexpressions. Otherwise, undefined values may
mask the real result of an OCL expression or they may remain undetected due
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to the short-circuit in boolean connectives, leading to unexpected problems in
the final software implementation. Besides, there are several inconsistencies in
the standard regarding the treatment of undefined and null values which have
been pointed out in [BKW10].

5. Quality criteria for UML/OCL class diagrams

In addition to the elements of the model (classes, associations, constraints,
. . . ), it is necessary to encode in the CSP an additional element: the goal of
our analysis, i.e. the type of instance of the model that the solver should try
to construct. Depending on the selected goal, it is possible to verify or validate
different characteristics of our model. In the remainder of this section, we
introduce several goals for the analysis of UML/OCL models.

5.1. Correctness properties for verification

A model is expected to satisfy several reasonable assumptions. For instance,
it should be possible to instantiate the model in some way that does not violate
any integrity constraint. Moreover, it may be desirable to avoid unnecessary
constraints in the model. Failing to satisfy these criteria may be a symptom of
an incomplete, over-constrained or incorrect model.

In our approach, correctness properties are represented as additional con-
straints in the CSP. If the CSP still has a solution once the new constraint is
added, we may conclude that the model satisfies the property. The set of cor-
rectness properties currently under consideration (and the additional constraint
they impose on the CSP) is the following:

Strong satisfiability: The model must have a finite instantiation where the
population of all classes and associations is at least one.
Formally: ∀x ∈ (Cl ∪As) : Sizex > 0.

Weak satisfiability: The model must have a finite instantiation where the
population of at least one class is at least one.
Formally:

∑
x∈Cl Sizex > 0

Liveliness of a class c: The model must have a finite instantiation where the
population of c is non-empty.
Formally: Sizec > 0

Lack of constraint subsumptions: Given two integrity constraints C1 and
C2, the model must have a finite instantiation where C1 is satisfied and
C2 is not. Otherwise, we say that C1 subsumes C2. C2 could be removed.
Formally: C1 ∧ ¬C2

Lack of constraint redundancies: Given two integrity constraints C1 and
C2, the model must have a finite instantiation where only one constraint
is satisfied. Otherwise, constraints C1 and C2 are called redundant, e.g.
both have always the same truth value. One of them should be removed.
Formally: (C1 ∧ ¬C2) ∨ (C2 ∧ ¬C1)
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Notice that there is a relationship among some of these correctness proper-
ties, e.g. strong satisfiability implies weak satisfiability and the lack of constraint
subsumption among two constraints implies that none of them is redundant.
Checking properties with different degrees of granularity improves the feedback
provided to designers. For example, we are able to detect that two constraints
are equivalent or that one is stronger than another one: both pieces of informa-
tion can help designers in the revision of the constraints of the model.

Regarding the satisfiability properties, similar notions have been defined in
the literature. The difference among each notion depends on whether (a) it refers
to a specific class or all classes in a diagram, (b) it accepts empty instances and
(c) it accepts infinite instances. For example, in [ACIG10] weak satisfiability is
called diagram satisfiability, liveliness of a class is called satisfiability of a specific
class and strong satisfiability is called full satisfiability. Other works such as
[MB07] define the notions of consistency and finite satisfiability. A class is called
consistent if and only if it has a legal non-empty instance (possibly infinite), and
it is called finitely satisfiable if one of its legal instances is also finite. These
properties can be extended to all classes of the diagram simultaneously with
full consistency (there is an instance where the population of every class is non-
empty, but possibly infinite) and full finite satisfiability (there is an instance
where the population of every class is non-empty and finite). Notice that strong
satisfiability as defined in this paper and full finite satisfiability are completely
equivalent, as well as liveliness of a class and class finite satisfiability.

From a broader point of view, these correctness notions consider the intra-
model semantic consistency of UML class diagrams, according to the classifica-
tion of the surveys [LMT09, MDN09]. This approach is not addressing inter-
model consistencies, i.e. the relationship among the different diagrams modeling
the same system. We are also not considering other quality notions such as the
completeness of the class diagram with respect to the domain or its compre-
hensibility, among others [MDN09]. Furthermore, this paper does not consider
dynamic properties that may appear in the definition of OCL operation pre-
conditions and post-conditions, such as the executability of operations or the
reachability of a specific system state, e.g. [CCR09, QT09, Jac06].

5.2. Model Validation
Apart from verifying that the model satisfies the previous correctness prop-

erties, designers may be also interested in checking these properties over specific
(partially defined) instantiations, e.g. checking satisfiability when a class c has
an instance with a value v in an attribute a, to validate the behaviour of the
model in those situations. The declarative nature of our approach allows the
definition of additional constraints that characterise these desired states. For
example, in our running example, a designer may want to check whether it
is possible to find an instantiation where there is one paper with two student
authors. An invariant describing this property is the following:

context Paper inv PaperByTwoStudents:
Paper::allInstances−>exists( p | p.authors−>size() = 2 and
p.authors −>forAll(r | r.isStudent) )
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After adding this invariant to the list of integrity constraints of the model, all
instances generated by the solver will fulfill this partial specification. Therefore,
this method can also be used to perform validation of specific scenarios for the
model.

6. Generating the final CSP

The final CSP is obtained as a combination of the translation excerpts gen-
erated using the rules of section 4 (for the transformation of the UML/OCL
diagram) and section 5 (for the definition of the quality properties to be veri-
fied). Remember that this generated CSP has a solution if and only if we can
determine that the model satisfies the selected quality properties.

For efficiency reasons (more on this on section 8), the CSP is organized in
two subproblems:

1. The Structural subproblem. In this first subproblem we define the cardi-
nality variables for the number of instances of each class and association
(the Sizex variables), their domains and all constraints restricting them
plus the constraints corresponding to the correctness properties we want
to check. In this phase, the goal is to find a legal assignment of values
to these Sizex variables. Each legal assignment represents the size di-
mensions (i.e. number of instances of each class and association) of a
possible correct instantiation of the model. This subproblem helps to fil-
ter incorrect cardinality assignments that would always result in invalid
instantiations, regardless of the actual values given to the association and
attribute variables. Therefore, if no assignment is possible at this phase
(e.g. due to design errors in the definition of multiplicity constraints),
the CSP is directly unfeasible. Instead, if this first subproblem is indeed
satisfiable we cannot yet guarantee the correctness of the model, it could
happen that we find it impossible to construct a possible legal instanti-
ation of that size due to inconsistencies in the OCL constraints of the
model. The definition of this subproblem is similar to the previous work
from [CCGM04].

2. The Global subproblem. In this second subproblem, the valid values as-
signed to the Sizex variables are used to instantiate the corresponding
Instancesx variables. Now the goal is to find legal values for properties
(either attributes or roles) of all elements in the Instancesx lists, i.e. the
goal is trying to construct a valid instantiation with exactly Sizei elements
for each element i. Intuitively, the procedure tries to find a valid solution
for this second subproblem for each assignment satisfying the first one. If
there is no such solution, the CSP is determined as unfeasible.

Both phases follow the typical Constraint Programming outline: define the
variables and their domains, define the constraints on the variables, and finally,
find a legal assignment to these variables. In the Structural phase, we work on
cardinality variables (Sizex), while in the Global subproblem we are interested
in the set of instances (Instancesx) of classes and associations.
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Figure 10: Definition of the CSP for the running example showing the two subproblems, the
Structural subproblem (upper part) and the Global subproblem (bottom part)
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As an example, Fig. 10 depicts the CSP corresponding to a satisfiable version
of our running example8. The colored areas highlight the two subproblems of the
CSP. On the left of the figure, the organisation of several code excerpts (some of
them taken from previous figures) is described. On the right, a possible search
tree is depicted, where a dotted line shows the direction of the search. In this
tree, after an initial attempt, a solution to the Structural subproblem is found,
e.g. one paper, three researchers, one “writes” link and three “reviews” links.
However, it is not possible to complete the Global subproblem using those values
as cardinalities for the Instancesx variables. Therefore, it is necessary to find
another solution to the first subproblem, which can then be completed to find a
valid solution to the CSP, e.g. the same solution with two “writes” links instead
of one.

Although this two-step search strategy might penalise the overall efficiency
of the process in certain cases (see section 8), it has been chosen because of two
reasons. First, some CSPs, as the one corresponding to our running example,
can be immediately determined as unfeasible when considering the Structural
subproblem. Second, in the Global subproblem we limit the search to cardinal-
ity values satisfying the first one, avoiding irrelevant verifications. This means
that we can avoid instantiating classes and associations for scenarios in which
we know for sure that the cardinality constraints do not hold. However, a dis-
advantage of this approach is that some constraints in the Global subproblem
may affect the cardinality of the classes and associations. For example, let us
consider an OCL constraint of the form “T ::allInstances()−>size() = 7”, stating
that there are 7 objects of type T . This constraint would appear in the sec-
ond subproblem, even though it should be constraining the appropriate SizeT
variable. Other constraints on the size of classes and associations are not so
trivial, like “T ::allInstances()−>exists( . . . )”, which requires there must be at
least one object of type T . In these scenarios, the search will have unneces-
sary backtracks, as some solutions provided by the Structural phase may not
have any feasible solutions in the Global phase. A way to avoid these redun-
dant backtracks and therefore improve the search is to reveal these implicit size
constraints appearing in OCL expressions using static analysis [YBP07], e.g.
SizeT = 7 and SizeT ≥ 1 in the previous examples. These additional size con-
straints could be added to the first CSP to avoid getting unfeasible solutions
caused by the OCL expressions.

7. Tool Implementation

Our prototype tool UMLtoCSP [U2C] is implemented as a set of ECLiPSe con-
straint libraries (2000 LoC) and Java classes (11500 LoC) implementing the GUI,
the UML/OCL to CSP translation and glue code. The tool also uses several

8Fig.1 becomes satisfiable if the multiplicities of manuscript and submission are changed
to 0..1. This version of the model is used to illustrate a successful search. There is more
information about this example in section 7.
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Figure 11: Architecture of UMLtoCSP.

external libraries and tools: the OCL parser from the Dresden OCL toolkit
[Dem04], the MDR library for importing XMI files, the EMF (Eclipse Modeling
Framework) libraries for importing ECore files, the ECLiPSe [The07] constraint
programming system for solving the CSPs and the GraphViz [Gra] graph visu-
alization package for presenting the results graphically. Figure 11 presents the
architecture of the tool.

As shown in the Figure 11, as a first step, the tool permits to import both
the UML model and the OCL constraints from an XMI/ECore file and a text
file, respectively. More specifically, the UML class diagram can be imported
from an XMI (XML Metadata Interchange) file, such as those generated by
CASE tools like ArgoUML, or in the ECore format from the Eclipse Modeling
Framework9. The text file containing the OCL expressions is parsed using the
Dresden OCL toolkit. Next, users can choose to generate the CSP from the
UML/OCL model. As part of the translation process, users must indicate the
correctness property they want to check on the model and (optionally) the
ranges for the domains to be used for the variables in the CSP (otherwise default
values are used). Finally, the tool generates the CSP with the support of our
UML/OCL CSP library (included with the tool). The resulting CSP is executed

9EMF refers to the Eclipse IDE (http://www.eclipse.org.) not the ECLiPSe constraint
solver.
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using the ECLiPSe constraint solver API to try to find one solution for it, and
thus, to determine the correctness of the original UML/OCL model. When such
a solution exists, it is shown to the user graphically as an object diagram. If no
solution exists, the tool prompts a message explaining this fact and suggesting
a revision or the model or a change in the size of the search state space.

Figure 12 illustrates the graphical user interface used in this verification flow.
Figure 12(a) shows the initial screen once the input models have been parsed.
The classes and associations in the diagram are displayed in a tree view, and
the textual OCL constraints appear in a separate frame. Also in this window,
designers may optionally parametrize the search space by defining the domain
of each attribute, the number of objects of a class or the number of links in an
association. If the user does not feel the need to customize the search space,
the tool automatically uses the suggested default domains based on the type of
the attribute, e.g. 0 or 1 for boolean attributes and a finite range for integer
attributes. For example, Figure 12 (a) shows how the user assigns the domain
of the boolean attribute isStudent, which is 0..1 by default. To modify the
domain, the user selects the attribute and writes the new domain in the text
field “Value” below. A domain can be defined as a single value, an interval of
values or a list of values and intervals.

Then, using the menu from Fig. 12 (b), designers can select the properties of
interest for the analysis. For properties like liveliness or constraint redundancy
which affect a specific class or constraint, a drop-down list provides the list of
candidates from the model. After this step, verification is fully automated: the
tool translates the UML class diagram, OCL constraints and the correctness
properties into a CSP, which is passed to the ECLiPSe constraint solver API
to find a solution to the CSP, and thus, to determine the correctness of the
original UML/OCL model. When such a solution exists, it is shown to the user
graphically as an object diagram. Fig. 12 (c) shows an example of a result
depicted by UMLtoCSP. In particular, it considers a modified version of the
running example from Figure 1 where the multiplicities of the roles submission
and manuscript have been changed to 0..1, i.e. there can be authors that do not
review papers and reviewers that do not write papers. This modified version is
strongly satisfiable, as shown by the object diagram displayed by the tool which
satisfies all the constraints of the model: papers have one or two authors and
three referees, no author reviews his own paper, the maximum paper length is
not exceeded, student papers have at least one student author, students do not
act as reviewers and there are between 1 and 5 student papers.

An advantage of this architecture is that the translation and verification are
completely hidden from the designer. Therefore, users of UMLtoCSP do not
need any kind of knowledge of constraint programming to analyze a model and
interpret the results, since the results provided by the CSP solver are reinter-
preted in terms of the original UML/OCL models and returned to the user as a
UML object diagram that the user can directly understand. Furthermore, they
can provide the input to the tool directly as a UML class diagram in the format
being used by their CASE tool.

As future work, we are exploring the full integration of UMLtoCSP as a plug-
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(a)
(b)

(c)

Figure 12: GUI of the UMLtoCSP tool: (a) loading the model, (b) selecting the property to
be verified, (c) showing the result of the analysis on a modified version of the running example.
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in of the Eclipse IDE, in order to further improve its usability and facilitate its
use by the Eclipse community.

8. Problem Complexity and Efficiency Issues

This section discusses the complexity of the problem we are dealing with
and the strategies we have followed to improve the efficiency of our method.

8.1. Problem Size and Complexity

Reasoning on UML class diagrams is EXPTIME-complete [BCG05] and,
when general OCL constraints are allowed, it becomes undecidable. Therefore,
if this problem is addressed as a search problem, i.e. locating a correct or
incorrect instance within the space of all possible instances, a careful analysis of
this search space is required. The goal of this preliminary analysis is extracting
useful heuristics that can guide the search in order to make it more efficient.
Also, to ensure termination, search will focus on a finite subset of the potentially
infinite search space. Thus, it is necessary to precisely define the bounds for
this subset.

The search space can be organized as a search tree, where each leaf cor-
responds to a solution (either feasible or unfeasible) and each internal node
represents a decision in the search process (assigning a value to a variable from
the domain of eligible values). The difficulty of a search problem depends on
a variety of factors, such as the size of the search tree, the number of feasible
solutions it contains and the effectiveness of the search optimizations (see sec-
tion 8.2.1). Given that the last factors are problem-dependent, we will focus
our discussion on search tree size, as it can provide an intuition of the upper
bound on the number of solutions to be explored and the scalability issues for
problems with similar constraints.

In general, the size of search tree is determined as the product of all the car-
dinalities of the domains for each variable in the problem. In order to calculate
it, for the specific problem we are working in, variables and domains introduced
in section 4 are used.

• For the classes: we consider the number of possible objects per class c
(|domain(sizec)|) and, for each class, the number of possible values of
each attribute fi (|domain(fi)|).∏

c∈Cl

|domain(sizec)| ·
∏
c∈Cl

sizec · (sizec ·
∏
fi∈f

|domain(fi)|) (1)

• For the associations: we consider the number of links in each association
as (|domain(sizeas)|) and, in each association, the number of objects in
each participating class pi (|domain(pi)|).∏

as∈As

|domain(sizeas)| ·
∏

as∈As

sizeas ·
∏

pi∈PCas

|domain(pi)| (2)
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Classes Number of classes in the UML de-
sign

Assoc Number of associations in the UML
design

Obj/Class Number of objects of a given
class

Links/Assoc Number of links per associ-
ation

Attr/Class Number of attributes of a
given class

Vals/Attr Number of possible values for
a given attribute

Figure 13: Search tree leaves depending on the size of the input model (logarithmic scale).

The total number of leaves can be found multiplying Eq.’s 1 and 2. It is easy
to see that, even for small models, it is not possible to visit the whole tree in
order to get the solution. Several parameters of the input model will affect the
size of this search tree: the number of classes and attributes of the model, the
number of attributes per class, the domain of each attribute and the number of
allowed objects/links per class/association. In order to provide a rough idea of
the magnitude of this size and the effect of these parameters, Fig. 13 illustrates
some sample data. The graphic has been built fixing, for each parameter line,
the rest of parameters to three. This is an average value and permits to analyse
the evolution of the tree search size increasing a single parameter. It is easy to
notice that a unitary increase in any of these parameters implies an exponential
growth in the size of the search tree.

8.2. Search Strategy

Efficiency improvements can be implemented at run-time level (i.e. parametris-
ing the CSP solver by selecting the traversal algorithm, controlling the search,...)
or at design-level (choosing the right set of variables, constraints and domains
for the CSP in order to optimize the search).

8.2.1. Back-tracking, Search Tree Pruning and Search Control

In Constraint Programming (CP) the search space defined by variables and
their domains is visited by a depth-first search algorithm. Each step of the
traversal process assigns a value to a variable, extending the current partial
solution until a complete solution is found in a leaf. Although many other
approaches have been explored, backtracking is the most commonly used for
this traversal.

One of the drawbacks of backtracking is the late detection of inconsistencies,
i.e. the failure of the search algorithm to find out that the branch currently being
explored does not lead to a feasible solution until it reaches the end and evaluates
its feasibility. In order to avoid this, constraints among variables are used by
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CP to obviate visiting non feasible solutions. This is achieved by propagation
(see section 3). Thus, with the help of forward checking [Tsa93] and other
consistency techniques (e.g. node-consistency, arc-consistency, etc. [Tsa93]),
constraints help the search engine to detect more quickly those branches that
do not lead to feasible solutions.

Thanks to these techniques, it is possible to detect that a partial solution
cannot possibly be extended into a feasible solution. In this way, backtracks
can be performed without having to compute each complete unfeasible solution.
Thus, these techniques partially avoid the main disadvantage of backtracking
mentioned before: the search engine backtracks when a decision just taken
implies no further feasible solutions and hence no need to go on that branch of
the tree. These optimizations may greatly reduce the number of visited leaves
in the search tree.

However, the benefits of constraint propagation cannot be quantified in gen-
eral, since they are completely problem-dependent. The ECLiPSe solver already
uses both backtracking and constraint propagation techniques by default.

Besides this, and differently from other paradigms, CP allows to control the
search phase, in order to speed it up. This means that selecting the most efficient
structure and traversal of the search is fundamental, and these are determined
by (1) the order in which variables are assigned a value and (2) the order in
which potential values are selected. Several heuristics come usually, by default,
within CP languages, e.g. assign first the variable with the most constraints or
assign first the smallest value within a domain. However, users can program
other heuristics useful for their specific problems. There are neither better nor
worse heuristics: their adequacy is dependent on the problem so it is important
to check all the combinations and analyse the reasons making one better than
others.

During the tool construction, all the possible combinations of general-purpose
heuristics offered by the ECLiPSe solver for variable ordering and value selec-
tion have been evaluated in several examples. Studying the results, we have
selected suitable search heuristics for the structural and global subproblems.
For example:

• In the structural problem, in most cases it makes sense to start assigning
first the smallest values to class/association sizes. This makes the solver
check small instances first, getting smaller counterexamples and improv-
ing the likelihood of getting a faster response, as small instances can be
checked faster.

• In the global subproblem, the choice of values for attributes is completely
problem dependent, so the fastest and simplest heuristic (pick the first
value available in the domain) is used.

This choice of heuristics may not be optimal for all problems, but it is a
conservative selection which is likely to work well in general and relieves users
from the burden of having to choose an heuristic for themselves.
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Further Search Improvements. Apart from deciding the way the search tree
is visited, some specific features of a problem could lead the programmer to
make additional decisions. Typical improvements are the splitting of the set of
variables into independent subsets (or like in our case, into directly dependent
groups), the removal of both non interesting variables and structural search tree
symmetries, etc. These improvements are left for further work.

8.2.2. Search Design

In what follows, we present the optimization strategies we follow during the
generation of the CSP.

UML/OCL Search: dependent variable subsets. Given the CSP translated from
a model, it is easy to detect two kinds of directly dependent variables: on the
one hand, those indicating the number of instances of a class or association (i.e.
the objects and the links) and, on the other hand, those representing everything
contained by the objects and links themselves (i.e. oids, attributes, etc.). It
is clear that the latter depend directly on the instantiation of the former ones.
Thus, the objects of a class cannot be created until the number of objects of
that class is already known10. This approach creates two dependent subsets of
variables: when a variable in the first subset is bound, its corresponding set of
variables in the second one can be created and instantiated. Surprisingly enough,
the first subset corresponds to those variables modeling the UML schema, while
the second models the OCL constraints.

This peculiarity takes us to divide the search into two steps we call UML
and OCL steps — or structural constraints and global constraints problems (see
Fig. 10). In a first stage, variables related to the UML class diagram are bound,
and after finding a complete instantiation for this first subproblem, objects and
associations are created. From this point, a second search is performed for the
second subproblem. The two main reasons for doing this are:

• The dependence between both subsets of variables complicates the man-
agement of the corresponding variables. The splitting of the search reduces
this complexity.

• Often, the problem to solve does not contain OCL constraints and hence
only the first part of the tree is generated and after the creation of ob-
jects and associations, these are automatically instantiated — with no
backtracking at all.

The following two sections analyse the design of these two stages.

UML Search: Structural Subproblem. The first CSP — the structural subprob-
lem — is defined by:

1. Variables for the number of objects of each class, Sizec.

10There are alternative ways to model this scenario.
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Figure 14: UML search tree size for different problem sizes

2. Variables for the number of links of each association, Sizeas.

3. Constraints related to the cardinalities of associations (see section 4):
bounds on cardinalities and number of links.

4. Constraints removing symmetries (see below).

The size of the tree search for this subproblem is given by Eq.3.∏
c∈Cl

|domain(sizec)| ·
∏

as∈As

|domain(sizeas)| (3)

Fig. 14 shows the evolution of the size of the search tree for this subproblem
when changing input parameters. Although this is a small problem compared
with the complete one, it is still EXPTIME-complete.

OCL Search: Global Constraints. The second CSP — the global constraints
subproblem — is defined by:

1. Variables for the objects of each class, Instancesc.

2. Variables for the links of each association, Instancesas.

3. Constraints related to the OCL rules of the model: number of instances,
distinct oids, uniqueness of links, etc.

4. Constraints removing symmetries (see below).

The size of the tree search for this subproblem is given by Eq. 4. Notice
that all but two parameters (Instancesc and Instancesas) have been bound
to an integer value in the previous stage. Furthermore, it is important to take
into account that there is one of these search trees for every leaf of the previous
stage, i.e. the solution found for the structural subproblem.

∏
c∈Cl

sizec · (sizec ·
∏
fi∈f

|domain(fi)|) ·
∏

as∈As

sizeas ·
∏

pi∈PCas

|domain(pi)| (4)
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Figure 15: OCL search tree size for different problem sizes

Fig. 15 shows the evolution of the size of the search tree for this subproblem
when changing input parameters.

To improve the efficiency of this second problem, we have implemented the
next two strategies.

Symmetry removal. The encoding used to map a problem as a CSP should try
to avoid potential symmetries, i.e. the fact that several assignments to variables
of the CSP are equivalent because they correspond to a single solution of the
original problem. Symmetries are undesirable because they cause additional
overhead to the solver: it has to waste time checking the same solution several
times, once for every symmetric assignment.

Symmetry removal is the process of ensuring that the solver considers only
one assignment for each family of symmetric solutions. There are several tech-
niques for removing symmetries from a CSP encoding. One of the most effective
techniques is the inclusion of additional constraints in the CSP which forbid al-
ternative symmetric assignments. For instance, a typical symmetry removal
constraint is requiring part of the assignment to be sorted according to some
ordering criteria. This can be done, for instance, when the order among differ-
ent solutions does not matter: the solver will only consider the smallest solution
according to the ordering, discarding the rest.

The choice of these additional constraints depends on the specific CSP en-
coding used for the problem. Notice however that symmetry removal constraints
also cause an overhead to the solver, as they need to be evaluated during the
search. For practical reasons, symmetry removal constraints should not be
overly expensive to evaluate: the solver should execute faster with these sym-
metry removal constraints than without them. Therefore, symmetries which are
very complex to detect will not be removed.

In the context of UML/OCL diagrams, there are several degrees of symme-
try. First, each instance of the diagram can be abstracted as a labeled graph,
where objects are the vertices, associations are the edges and each object is
labeled with its type and attribute values. Intuitively, if among two instances
there is a graph isomorphism that preserves labels, it means that both instances
are equivalent. However, detecting graph isomorphism is computationally com-
plex and thus trying to avoid this symmetry would be counterproductive. In-
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Figure 16: Example of symmetries in UML/OCL diagrams.

stead, we will focus on another type of symmetries caused by our encoding of
instances into variables: the ordering of instances of a class or association. In
our encoding, variables are assigned sequentially and therefore there is an im-
plicit ordering among them. However, from the point of view of the instance,
the ordering of objects and links is irrelevant. For instance, if there are two ob-
jects of the same class, there will be two possible assignments to their attributes
which will be symmetric. That is, they all can be swapped between these two
objects without changing the solution. Figure 16 illustrates this example for
a class diagram with a single class (CPU ) and two attributes (frequency and
cacheSize). The two instances at the top are symmetric, while they are dis-
tinct from the one at the bottom. This symmetry can be removed by adding
a constraint enforcing the attributes of the objects of class CPU to be ordered
lexicographically according to the pair (frequency, cacheSize). In this way, the
instance on the top right would be discarded by the solver because the con-
straint (3000, 4096) ≤ (2000, 8192) does not hold. Similarly, it is possible to
remove symmetries among links of an association by imposing a lexicographic
ordering among links.

Ruling out irrelevant attributes and associations. Reducing the number of vari-
ables and/or simplifying the structure of the CSP has also a clear impact in
search time. Reducing the number of variables reduces the height of the search
tree (since every variable makes the search tree one level deeper). Therefore,
during the translation process we avoid translating those model elements that
do not affect the verification process. In particular:

• We discard all attributes that do not participate in any of the constraints
in the model. A correct instantiation may contain any value in those
attributes.

• We discard associations that are not referenced (i.e. navigated) in any
constraint and that do not state any multiplicity constraint (all partic-
ipants have a “0..*” multiplicity). The population of those associations
does not affect the correctness of a solution of the CSP.

The next section describes the efficiency level achieved by our tool once all
the optimizations described herein have been integrated.
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Name #Class #Assoc #Attrib #Inv #Obj #Links CPU
running-unsat 2 2 5 5 – – 0.00s
running-sat 2 2 5 5 5 4 0.00s
eShop-unsat 7 4 9 2 – – 0.01s
eShop-sat 7 4 9 2 8 7 0.16s
qvt-applic 11 5 7 8 7 6 0.02s
tgg-total 11 5 7 8 14 17 2.41s
prod-sys-cm 15 6 2 4 5 4 0.83s
prod-sys-wc 15 6 2 2 5 3 1.11s

Table 1: Experimental results using UMLtoCSP.

8.3. Experimental Results and Efficiency Assessment

Table 1 describes experimental results for the verification of strong satisfi-
ability using UMLtoCSP. The examples include the running example used in
the paper, a model of an e-commerce site, a model transformation specification
using TGG or QVT and a model of the production system in a factory. For each
example, the number of classes, associations, attributes and OCL invariants is
provided as well. This table reports the execution time of the verification pro-
cess measured on a Intel Core 2 Duo 2.53 Ghz with 2 Gb RAM. Only for those
examples that are satisfiable, we provide the number of objects and links of the
satisfying instance constructed by UMLtoCSP.

The following state space bounds have been used in the verification of these
examples: 2 objects per class, 3 values per integer attribute and 3 links per
association. Given the combinatorial explosion of the search problem, using
larger domains would result in longer execution times. For example, increasing
the search space size up to 5 objects per class, 10 integer values per attribute
and 10 links per association causes the CPU time of the eShop-sat example to
raise up to 318.1 seconds, as the solver has to consider instances with up to 35
objects and 40 links. Thus, a rule of thumb when using a bounded verification
tool like UMLtoCSP is incremental scoping : start using small bounds to get a
quick answer and, if the answer is inconclusive, progressively use larger domains.

No experimental data is provided for unsatisfiable versions of the larger
examples in the table. The rationale behind this lack of data is that the original
versions of these examples were satisfiable and, thus, the inconsistency had to be
artificially introduced. During the experimentation, we detected that the type
of unsatisfiability being inserted had a large impact in the results, producing a
large variability: from the answer being computed instantly to the search timing
out (no answer in 10 minutes). Given that this choice is purely artificial and
leads to one-sided results in one direction or the other, rather than providing
a specific example we simply state that some unsatisfiable versions of those
problems produce a time out.

As a general rule, UMLtoCSP may be most efficient when the underlying
problem is satisfiable. The reason is that, like model checkers or SAT solvers,
the search stops when the first feasible solution is found, so the rest of state
space does not need to be explored. Therefore, UMLtoCSP is best suited as
a tool for generating examples, e.g. the automatic generation of test cases,
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the computation of counterexamples for a given property or the creation of
snapshots for model validation. In any case, there can be exceptions to this rule
for diagrams where constraint optimizations is exceptionally effective in pruning
paths not leading to feasible solutions.

In order to consider the application of the tool to even larger diagrams,
we have performed additional experiments considering three scenarios based on
the class diagrams in Figs. 17 and 18. These are artificial examples, where
a “ring” of n classes are connected by n binary associations. These scenarios
are designed in order to make it scalable for arbitrary values of n, and thus, to
provide information on the scalability of the tool.

In the first scenario (Fig. 17), the goal is the analysis of the tool in the struc-
tural subproblem. Therefore, we consider that there are no integrity constraints
and we focus on the multiplicities of association ends. This class diagram would
be strongly satisfiable if all those multiplicities were 1, e.g. by creating a single
object of each class and connecting them through the corresponding associations
to the two neighbour objects. However, if one of the multiplicities were 2, the
class diagram would become unsatisfiable. In this way, it is possible to evaluate
the behavior of our tool both with a satisfiable and an unsatisfiable version of
the class diagram.

In the second and third scenarios (Fig. 18) we are interested in considering a
model with OCL constraints. Hence, we consider that all association ends have
a multiplicity of 1..1, making the structural subproblem satisfiable. For the
OCL subproblem, we define n constraints, each defining a relationship between
the value of an attribute in class i and the value of the corresponding object in
class i + 1. Depending on the relationship operator that we choose (> or ≥),
the class diagram may be strongly satisfiable or not.

The difference among the second and third scenarios is the location of the
inconsistency. The second scenario (Fig. 18 left) assumes that the inconsistency
arises due to the incompatibility of two constraints involving Class1 and Class2.
In this sense, the incompatibility is localized in a fragment of the class diagram.
In contrast, the third scenario considers a case where the incompatibility arises
from the interaction of all constraints in the model, which establish a cyclic
dependency on the values of the attributes of all classes. Precisely, the unsatis-
fiable version of this third scenario has been designed as the worst-case scenario
for our approach, as all variables of a potential solution have to be assigned in
order to detect that the solution is unfeasible.

These examples have been tested for models of different sizes, consisting of
2, 5, 10, 100 and 1000 classes on a Xeon 5050 3Ghz with 4Gb of RAM. All
these examples have been measured with the following domains: the number of
objects per class can be between 0 and 5, there are three possible values for each
attribute and the number of links in each association is between 0 and 10. The
reported execution times consider only the verification of the model, excluding
the time required to parse the input XMI and OCL files.

Table 2 details the experimental results for these examples, studying both
the satisfiable and unsatisfiable versions for each model size. From these results,
it can be inferred that depending on the structure of the diagram and the con-
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Strongly satisfiable if x=1
Not strongly satisfiable if x >1

Figure 17: Example without OCL constraints.

context Class1 inv: context Class1 inv:
self.at op self.class2.at self.at op self.class2.at

context Class2 inv: context Class2 inv:
self.at op self.class3.at self.at op self.class3.at

. . . . . .
context ClassN-1 inv: context ClassN-1 inv:

self.at op self.classN.at self.at op self.classN.at
context Class1 inv: context ClassN inv:

self.class2.at op self.at self.at op self.class1.at

Strongly satisfiable if op is ≥
Not strongly satisfiable if op is >

Figure 18: Examples with OCL constraints: inconsistency in a model fragment (left) or in
the entire model (right).

Figure 17 (no OCL) Figure 18 (with OCL invariants)
Model fragment (left) Entire model (right)

n Sat Unsat Sat Unsat Sat Unsat
2 0.00s 0.00s 0.00s 3.67s 0.00s 1.56s
5 0.01s 0.00s 0.01s 3.78s 0.01s 1.84s
10 0.01s 0.00s 0.01s 3.78s 0.01s 5146.70s
100 0.14s 0.05s 0.17s 4.50s 0.17s —
1000 3.58s 2.07s 3.81s 31.55s 4.97s —

Table 2: Execution time for n = 2, 5, 10, 100 and 1000 classes, comparing the performance in
satisfiable (Sat) and non-satisfiable (Unsat) problems.
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Tool Formalism T V Limitations

[BCG05, SMSJ03, BM08] Description Logics A A No OCL support
[CCGM04, MM06] CSP M A No OCL support,

bounded verification
[MB07] Linear Programming A A No OCL support
Alloy [Jac06] Relational Logics M/A A Bounded verification,

limited arithmetic support

[SWK+10] SAT A A Bounded verification,
limited arithmetic support

[WBBK10] Syntax patterns A A Incomplete, limited to
specific constraint patterns

HOL-OCL [BW09] Higher-Order Logics A U Undecidability

PVS [KFdB+05] Higher-Order Logics A U Undecidability

[QRT+10, QT12] Deductive DB queries A A Limited arithmetic support
USE [GBR05] ASSL M A Validation only
[AIAB11] Genetic Algorithm A A Incomplete

UMLtoCSP CSP A A Bounded verification,
Limitations in section 4.4

Legend: T Translation, V Verification, A automatic, M Manual, U user-assisted.

Table 3: Comparison of several methods for the verification of UML/OCL class diagrams.

straints it contains, it may be possible to analyze large class diagrams efficiently
using UMLtoCSP. However, some diagrams may face scalability problems with
as little as 10 classes, as illustrated by the worst-case scenario in the last column.

9. Related work

In this section, we will compare our approach with the related work in the
area of static consistency analysis of class diagrams. We will not discuss ex-
tensions of this work to deal with dynamic properties, e.g. model checking
or analysis of operations contracts e.g. [Jac06, QT09, CCR09, BHS07]. Fur-
thermore, we will restrict ourselves to the application of consistency analysis
to model verification and validation. Even though the examples and counter-
examples computed by these tools can also be applied to test-case generation
[DTGF06, WS08], research on model-based testing focuses on a more abstract
problem, the definition of suitable testing criteria, while the generation of tests
cases for a given testing criterion is solved using the tools described in this
section.

Typically, approaches devoted to the verification of UML/OCL class dia-
grams (as our own approach) transform the diagram into a formalism where
efficient solvers or theorem provers are available. However, there are complexity
and decidability issues to be considered. As it was mentioned before, reasoning
on UML class diagrams is EXPTIME-complete without OCL constraints and
undecidable when general OCL constraints are allowed. By choosing a par-
ticular formalism, each method commits to a different trade-off regarding the
verification of correctness properties of UML/OCL diagrams. Table 3 briefly
compares the tool described in this paper, UMLtoCSP, to other related tools.
For each approach, the following information is listed: the underlying formal-
ism, the translation procedure from UML/OCL to the formalism (manual or
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automated), the degree of automation in the verification (user-assisted or auto-
mated) and other limitations of the method. UMLtoCSP offers both automated
translation and verification procedures and supports a rich family of OCL con-
straints (the limitations on the UML/OCL subset supported by UMLtoCSP
are described in section 4.4). Additionally, our tool is able to provide valid
instantiations for satisfiable models.

Several previous works focus on the verification of UML class diagrams with-
out OCL constraints (or just with some specific types of basic constraints), i.e.
the decidable version of the problem. Some approaches in this category are
based, among others, on Description Logics [BCG05, SMSJ03, BM08] or Con-
straint or Linear Programming [CCGM04, MM06, MB07].

It is also possible to achieve an efficient11 analysis if only specific patterns
of OCL constraints are allowed. Some examples of these constraint patterns are
the uniqueness of an identifier or the lack of cyclic dependencies among objects.
In such cases, it is possible to derive a priori the consistency lemmas required
for the constraint pattern to hold. These lemmas can be checked efficiently by
finding syntactical patterns in the OCL constraints [WBBK10]. An advantage
of this approach is its efficiency, as it is polynomial in the size of the model
contrary to the rest of methods dealing with OCL, which have an exponential
worst-case behavior. On the other hand, the method is restricted to the analysis
of a specific set of constraint patterns and therefore it does not support general
OCL constraints. Furthermore, the method is incomplete as the analysis of
syntactical patterns may be insufficient to prove the consistency lemmas, even
if they hold.

Another related approach is the USE tool [GBR05]. However, USE is more
focused on validation than in verification, that is, it permits to construct finite
snapshots of a UML model that satisfy a set of OCL constraints but the gen-
eration of snapshots is not supposed to be exhaustive: USE does not attempt
to automatically explore a whole range of values to determine the correctness
of the model. Rather, the generation process is user-driven. Users define a
list of desired characteristics for the instances to be created and their number.
Then, the tool generates and tests the validity of such instance set. In contrast,
our approach is fully automatic. To the best of our knowledge, the approach
presented in this paper is the first method addressing the verification of UML
class diagrams with OCL constraints based on Constraint Programming.

Regarding verification of UML class diagrams with general OCL constraints,
some examples of formalisms used in this problem are Relational Logics (Alloy
[Jac06]), Higher-Order Logics (HOL-OCL [BW06, BW09, KFdB+05]) and de-
ductive database queries (AuRUS [QRT+10, QT12]). However not all these
formalisms are as expressive as the UMLtoCSP method. Some approaches sup-
port only a subset of UML or OCL constructs, e.g. Alloy has scalability prob-
lems in operations involving integers and AuRUS supports only comparisons

11Though it is difficult to discuss efficiency of UML verification methods since many ap-
proaches have not published efficiency results achieved with them.
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while UMLtoCSP supports arithmetic expressions and comparisons. Undecid-
ability also imposes several limitations on some approaches, e.g. requiring user-
interaction to complete proofs as in HOL-OCL and PVS. In some cases, it is
possible to detect that the analysis of a model will be decidable and improve
the efficiency of the verification for that particular model [QT08].

Other works like [AIAB11] consider the problem of model-based testing : gen-
erating test cases for a software system from its UML/OCL model. Computing
test cases, i.e. satisfying instances, is considered a search problem which is
solved using a genetic algorithm backed by specially crafted heuristics to mea-
sure how far an instance is from satisfying an OCL invariant. Heuristic search
can lead to very efficient computations. However, a limitation of this approach
is that it is unable to diagnose inconsistent constraints: as the search is not
complete, it is not possible to draw conclusions from empty responses.

Among all these approaches, the most similar in terms of features are UML2Alloy
[ABGR07] and [SWK+10]. In both approaches, the underlying reasoning engine
is a SAT solver: the problem and the correctness property are translated into
a boolean formula whose satisfiability needs to be determined. In the case of
UML2Alloy, there is an intermediate step, the transformation of the UML/OCL
model into the Alloy notation, which the Alloy Analyzer internally translates
into a SAT instance. Meanwhile, [SWK+10] proceeds by directly generating
the SAT instance and passing it to the SAT solver MiniSAT. UMLtoCSP of-
fers an advantage with respect to these two bounded verification approaches.
In SAT-based methods, constraints involving numbers must also be expressed
in terms of boolean variables, meaning that (1) users must specify the number
of bits being used to encode each value and (2) operations on numbers (e.g.
addition, difference, multiplication, less-than, . . . ) must be encoded as boolean
formulas operating at the bit-level. All these factors lead to a combinatorial
explosion in the size of the formula when the bit-width of integers increases. In
a CSP, increasing the range of a numeric value also increases the search space,
but encoding complex arithmetic expressions on integers is straightforward. As
an example of this problem, let us consider the running example from Fig. 1.
When this model is written in the Alloy notation, we realize that one of the
constraints (PaperLength) contains the integer constant 10000. Encoding this
constant at the boolean level requires 15 bits per integer which requires a large
amount of CPU time just to generate the SAT instance (the generation of the
SAT instance did not finish after 1 hour of CPU time in an Intel Core Duo T2400
1.83Ghz with 1 Gb RAM), while UMLtoCSP computes the result in less than
one second. Therefore, any model where arithmetic constraints are necessary
and they may involve large values would be a good candidate to be analyzed
with UMLtoCSP.

Another benefit of UMLtoCSP with respect to Alloy is an advantage in
terms of usability. UML2Alloy and Alloy are separate tools, meaning that a
user has to launch UML2Alloy, load the model and translate it, then launch
Alloy, load the translation and verify it. Meanwhile, UMLtoCSP offers an inte-
grated environment for verification which also supports the Ecore format, and
therefore, the range of Eclipse EMF tools. On the other hand, it should be noted
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that Alloy is a mature tool, with a consolidated implementation. For example,
some interesting features of Alloy which are not supported by UMLtoCSP are
bounded model checking capabilities and the computation of unsatisfiable cores
[TCJ08], i.e. minimal sets of conflicting constraints within the model.

Furthermore, our approach does not impose theoretical limitations that
restrict any UML or OCL constructs besides those identified in section 4.4.
Though a formal proof is outside the scope of this paper, we argue that our
approach terminates for any input but it is not complete: results are only con-
clusive if a feasible solution to the CSP is found. In that sense, our method only
guarantees that if a solution to the CSP exists within the parameters provided
by the user, it will be discovered. Nevertheless, the absence of solutions within
a finite search space cannot be used as a proof: a solution may still exist outside
the search space defined by the parameters. An observation which alleviates
this limitation is the small scope hypothesis [Jac06], i.e. it is possible to identify
a large percentage of errors in a system by considering all possible instances
within small domain. This limitation is shared by Alloy, while HOL-COL and
the AuRUS method provide complete proof procedures.

Nonetheless, an efficient decidable procedure may provide useful information
even if the answer is not conclusive. For example, models which do not have
any correct instances with a small population may require a closer inspection.

10. Conclusions and Further Work

We have presented a fully automatic, decidable and expressive method for
the formal verification of UML/OCL class diagrams. Our method is based
on the translation of the class diagram into a CSP. This approach has been
implemented in the prototype tool UMLtoCSP.

As a trade-off the verification procedure is not complete: the user must pro-
vide a set of parameters to limit the search space. Our procedure guarantees
that this search space will be explored exhaustively. We believe this is a reason-
able trade-off given the advantages of our method with respect to alternative
approaches. However, if desired, it is also possible to use the transformation of
UML/OCL models into CSPs on infinite domains: constraint solvers also allow
an incomplete search [AW07] although termination is not guaranteed and de-
pends on heuristics to guide the search process. In that way, our method would
become semidecidable but complete (for properties that can be satisfied by finite
instances). Moreover, the instance generation nature of this approach (i.e. the
fact that properties are proven by creating legal instances of the model), makes
it amenable for model validation or test generation purposes.

As a further work we would like to refine our translation process to improve
the efficiency of the obtained CSP. In particular we would like to advance in the
automatic definition of appropriate ranges for attribute domains (based on the
semantics of the OCL constraints that reference them), in the selection of the
best constraint programming search strategies for this particular class of gen-
erated CSPs and in the extraction of basic (implicit) constraints from complex
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OCL constraints that can be used by the solver to improve constraint propaga-
tion [YBP07]. We consider that the paradigm of abstract interpretation [CC77]
would be well-suited for performing this static analysis of OCL invariants.

Regarding the application of this technique to related problems, prelimi-
nary results on the verification of correctness properties of UML/OCL models
annotated with declarative operation contracts (pre-condition/post-condition)
have been described in [CCR09]. Our goal is to extend these results, e.g. to
support reasoning on sequences of operations. Furthermore, we plan to apply
this tool for the analysis of models and meta-models of Domain-Specific Lan-
guages (DSLs), in order to detect potential inconsistencies in the definition of
new DSLs.
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