
Noname manuscript No.
(will be inserted by the editor)

Corpus-based Analysis of Domain-Specific Languages

Robert Tairas, Jordi Cabot

AtlanMod, École des Mines de Nantes – INRIA / LINA, Nantes, France

Abstract As more domain-specific languages (DSLs)
are designed and developed, the need to evaluate these
languages becomes an essential part of the overall DSL
life cycle. Corpus-based analysis can serve as an evalu-
ation mechanism to identify characteristics of the lan-
guage after it has been deployed by looking at how end-
users employ it in practice. This analysis that is based
on actual usage of the language brings a new perspective
which can be considered by a language engineer when
working towards improving the language. In this paper,
we describe our utilization of corpus-based analysis tech-
niques and exemplify them on the evaluation of the Pup-
pet and ATL DSLs. We also outline an Eclipse plug-in,
which is a generic corpus-based DSL analysis tool that
can accommodate the evaluation of different DSLs.

Key words Domain-specific languages, DSL, corpus,
analysis, ATL, Puppet

1 Introduction

Domain-specific languages (DSLs) provide their users
with a more expressive and easier to use language that
is targeted for a particular domain than what general-
purpose languages (GPLs) can offer [23]. These DSLs are
built by language engineers who are tasked with devel-
oping languages that represent domain-specific concepts
in an effective way. The growing popularity of language
workbenches (e.g., Xtext1) has provided assistance for
language engineers to develop DSLs and their support-
ing infrastructure in a more automated way. Hence, such
language workbenches support the potential for more
DSLs to be developed in the near future.

After the initial development of a DSL, the language
engineer should monitor several characteristics of the
DSL in order to detect possible evolution opportunities

1 http://www.eclipse.org/Xtext

that can further improve the language in future versions.
The identification of such characteristics can be done
through a post-deployment analysis of the DSL. How-
ever, it has been observed that this type of evaluation
on DSLs has received less focus compared to the actual
development of DSLs [9].

In this paper, we focus on analysis techniques based
on the evaluation of the corpus of a DSL. A DSL corpus
in this case consists of instances of a DSL reflecting its
actual usage by end-users. By evaluating how a DSL was
used by its users, we seek to determine characteristics
that can help the language engineer to evolve his or her
language. We believe corpus-based analysis can provide
information regarding a DSL that can complement other
analysis techniques focusing on other aspects of the DSL.
The analysis techniques described in this paper can be
applied to DSLs that offer a textual notation, which can
also include DSLs that have a primary concrete syntax
that is not textual, but offer a secondary or intermediate
textual representation.

The remainder of this paper is structured as follows:
the next section describes the motivation and contribu-
tions of our work in more detail. Section 3 introduces the
DSL corpora that are used with the analysis techniques
that are described in Section 4. Section 5 summarizes
observations from the use of the analysis techniques and
section 6 describes threats to validity related to our eval-
uations. Section 7 describes our Eclipse plug-in that gen-
eralizes these analysis techniques. Section 8 offers related
work and Section 9 concludes the paper and summarizes
future work.

2 Motivation

DSL analysis can be performed at various stages of the
language’s life cycle as can be seen in Figure 1. Pre-
deployment analysis activities can include domain anal-
ysis during the initial design of the language [23] and the
utilization of formal methods to verify, for example, the

2 Robert Tairas, Jordi Cabot

satisfiability of the language [5]. After the DSL has been
deployed, analysis can be performed on the metamodel
representing the DSL [26], on individual models of the
DSL [24] and on the results of the DSL (i.e., its run-
time execution [12] or its final generated artifact [1]).
In addition, analysis of the language can be performed
by considering user feedback on the usage of the DSL
[7, 14, 16].

This paper follows a different approach that focuses
on DSL corpus analysis (highlighted in Figure 1) after
the language has been deployed and once a reasonable
corpus of DSL instances from users becomes available.
Evaluating a language based on how it is actually used
can yield interesting characteristics about the language.
For example, van Amstel et al. identified some tedious
coding related to variable initialization in the DSL that
they evaluated, which prompted the need to modify the
language to eliminate the tedious task [31]. The identi-
fication came from the authors manually looking at the
instances or corpus of the DSL. Such a scenario moti-
vates the need to provide a mechanism in which language
engineers can obtain characteristics of the language by
performing analysis on the available corpus of their DSL.

It should be noted that corpus analysis in GPLs has
received much focus from the research community. While
corpus analysis activities for DSLs resemble those for
GPLs, we describe the following characteristics that high-
light differences between GPL and DSL corpus analysis
in terms of importance and coverage and justify the de-
velopment of specific techniques for the case of DSLs.

Non-programmer – As many DSLs are to be used by
individuals with no computer programming experience,
these individuals may not be well-suited to express what
type of change or evolution is needed to improve a DSL.
In contrast, GPLs are typically used by programmers
or software engineers who in many cases have adequate
knowledge about programming languages. Therefore, while
for GPLs we can rely on user feedback to get informative
suggestions regarding the improvement of the language,
in general we cannot expect the same from DSL users.
For DSLs, finding other means of evaluating the lan-
guage in addition to user feedback can further assist in
the evolution of a language. In this case, the role of cor-
pus analysis becomes more important to identify implicit
characteristics of the language.

Smaller user base – Typically, because of the specificity
of a DSL, its user base will be small compared to that
of a GPL. This also reduces the opportunities of a reac-
tive user feedback and reinforces the need for proactive
techniques that anonymously analyze the properties of
the DSL.

Differing goals and scope of analysis – The analysis of
GPLs as compared to DSLs can be based on differing
goals. For example, the elimination of code clones (i.e.,

duplicated sections of code) in GPLs can be done by
modularizing the code, whereas for DSLs, a new lan-
guage construct or metamodel element could be consid-
ered. The scope of analysis can also differ. For example,
analyzing every metamodel element of a DSL can be
beneficial because of what each element represents in the
domain. In contrast, analyzing every language construct
in a GPL can potentially be overkill as some constructs
are less important and need to be grouped with other
constructs first to provide better analysis targets.

The need for generalized techniques – Due to the specific
nature of a DSL, the number of DSLs in existence can
be potentially much larger compared to that of GPLs.
Again, because of the growing popularity of language
workbenches, the effort it takes to develop a DSL is re-
duced and hence provides the potential for more DSLs
to be generated. GPL corpus analysis has mainly been
focused on popular languages such as C, C++ and Java.
The complexity and sheer size of these languages allow
for many opportunities to analyze the languages from
different angles and justify the development of specific
techniques only useful for a single GPL. By comparison,
DSLs can be smaller in size and thus developing anal-
ysis tools for a specific language becomes less efficient
as acknowledged by Monperrus et al. [24]. Hence, when
developing analysis tools including those that analyze
the corpus of a DSL, a generalized mechanism is needed
to allow for a large coverage of languages that can be
supported by the tools.

In this paper, we seek to utilize corpus-based analysis
techniques to determine characteristics of DSLs based
on the actual usage of the languages. The following are
the main contributions of this paper:

– The proposal of a set of corpus-based analysis tech-
niques for DSLs and their utilization for the eval-
uation of two DSLs. The techniques were selected,
because of their potential to identify properties of
DSLs for the language engineer and because they are
generic in a sense that they can be applied to many
DSLs.

– The description of an Eclipse plug-in offering corpus-
based analysis techniques that is applicable for mul-
tiple DSLs. This generic method works on the EMF-
based representation of DSL instances and their cor-
responding metamodels.

3 Corpus Information

Before describing the analysis techniques we investigated,
we first introduce the DSL corpora used as illustrative
examples in the remainder of the paper. The chosen
DSLs were Puppet2 and ATL [18]. The Puppet DSL is

2 http://docs.puppetlabs.com/learning

Corpus-based Analysis of Domain-Specific Languages 3

Fig. 1 DSL analysis activities

Domain Analysis

Formal Methods Results Analysis User Feedback

Corpus Analysis Model Analysis Metamodel Analysis

Pre-deployment Deployment

part of a server automation tool that is used for ex-
pressing system configurations. The ATL DSL is used in
the context of Model-Driven Engineering (MDE) to ex-
press transformations of models that conform to a source
metamodel to models that conform to a target meta-
model. These DSLs were selected mainly because of the
public availability of a corpus for each language consist-
ing of a considerable number of models that could be
used to provide significant results and interpretations of
the characteristics of both DSLs when applying on them
the analysis techniques described in the next section.

The corpus for the analysis of Puppet comes from
PuppetForge,3 a publicly accessible web site that al-
lows Puppet users to share and download modules. Mod-
ules represent projects containing multiple Puppet mod-
els related to the configuration of certain aspects of a
server. The corpus was downloaded through Geppetto,4

an Xtext-based IDE for Puppet. At the time of down-
load, 176 modules consisting of 728 Puppet models were
retrieved. During the initial runs of clone detection re-
lated to the clone analysis technique that is described
in Section 4.3, it was noticed that an exact copy of
one module called “lab42-activemq” existed in a sub-
directory of another module called “puppetlabs-activemq”.
We removed the duplicate copy of the “lab42-activemq”
module in the “puppetlabs-activemq” module. This omis-
sion reduced the total model count from 728 to 706 mod-
els.

The corpus for the analysis of ATL was taken from
the ATL transformation zoo,5 a publicly accessible web
site that lists transformation scenarios that have been
contributed by ATL users. The site consists of about
100 transformation scenarios, where each scenario can
contain multiple ATL transformation models, as some
scenarios require intermediary steps in their processes.
Hence, more than 200 ATL transformation models were
available among these scenarios. However, only 189 mod-
els were used in our analysis, because upon manual ob-
servation, several of the models in the zoo were near
exact duplicates of each other similar to the case of the
duplicate Puppet module.

3 http://forge.puppetlabs.com
4 http://cloudsmith.github.com/geppetto
5 http://www.eclipse.org/atl/atlTransformations

The corpora of Puppet and ATL differ in terms of
model sizes. Out of the 706 models from the Puppet
corpus, the largest model contains 2466 model elements
and the average size of the models is 79. In compari-
son, out of the models from the ATL corpus, the largest
model contains 12500 model elements and the average
size of the models is 772.

4 Corpus-based Analysis Techniques

In the following subsections, we will propose the uti-
lization of several corpus-based DSL analysis techniques.
Although the evaluation is performed on a corpus con-
sisting of instances represented in the concrete syntax of
the language, the evaluation is performed at the abstract
syntax level, i.e., our analysis is geared toward the un-
derstanding of characteristics of the DSL’s metamodel
elements.

The techniques that will be applied are: instance
analysis, which seeks to identify the usage characteris-
tics of metamodel elements, relationship analysis, which
seeks to identify relationship characteristics among meta-
model elements, and clone analysis, which seeks to iden-
tify duplicate usage of a collection or sequence of meta-
model elements in the language. We consider these tech-
niques to form an important group of techniques to assist
the language engineer of a DSL to identify useful char-
acteristics of the language. These techniques are generic
enough to be applied to many DSLs.

In all three analysis techniques, we evaluated the
EMF model representations of the DSL instances in their
respective corpora to associate metamodel elements with
their usages in each model. For Puppet, the EMF mod-
els were obtained from the in-memory representation of
Puppet files in Geppetto. This is possible as Xtext, which
Geppetto is based on, represents a DSL instance or file as
an EMF model. For ATL, we obtained the EMF models
by injecting ATL files as models using the ATL IDE.6

4.1 Instance Analysis

Instance analysis considers the extent of the usage of a
metamodel element as evidenced in the corpus of a DSL.

6 http://www.eclipse.org/atl/

4 Robert Tairas, Jordi Cabot

This basically implies counting the number of times an
element is used in the corpus. Adapting the evaluation
of instances to all metamodel elements in a DSL is feasi-
ble, because in contrast with GPLs, the number of DSL
primitives tends to be much smaller. In addition, these
elements in many cases represent a specific concept in
the domain, hence this counting for all elements is mean-
ingful and the identification of instances of the use of all
elements can potentially show how frequent a domain
concept is being represented in the DSL.

The simple statistic of counting the number of times
a metamodel element is used in the corpus can sug-
gest the popularity or lack there of for the actual use
of the element by DSL users. From a language improve-
ment perspective, the existence of several rarely used
elements could potentially signal a language that was
over-developed and that could be pruned by removing
the unused elements. In contrast, the high usage of an
element can potentially signal the need to focus future
language improvements around that element.

More specifically, we consider two metrics for instance
analysis. The first is the number of times a metamodel
element is used throughout the corpus of a DSL. This
provides a general count of the usage of metamodel ele-
ments in the corpus. A second metric is to count in how
many models a metamodel element is used at least once.
In this case, we can see how distributed the usage of the
a metamodel element is among the models in the corpus.

The remainder of this subsection reports on the in-
stance analysis of Puppet and ATL and shows how the
metrics computed were useful to uncover interesting data
as confirmed by the feedback provided by individuals
who work closely with these languages. For Puppet, the
instance analysis revealed characteristics related to the
use of a newly supported feature and the varied use of
interpolated strings. For ATL, the analysis revealed the
extent of the use of imperative features in the mainly
declarative ATL language.

4.1.1 Puppet Tables 1 and 2 document usage of Pup-
pet metamodel7 elements. Table 1 documents each us-
age of a metamodel element, whereas Table 2 documents
in how many Puppet models a metamodel element was
used at least once and subsequently the percentage of
models in the corpus that the element is used in. The
elements followed by a (*) denote abstract elements in
the metamodel.

As can be seen in both tables, most elements were
used in the corpus. Abstract elements were correctly un-
used, but still a few elements were not used at all. It
could be the case that these elements represent a specific
concept that is very rarely used in the Puppet language.
In the extreme case, they could signal the non-use of such

7 https://code.google.com/a/eclipselabs.org/p/dsl-
analysis/wiki/Metamodels

elements and the need to decide whether they should be
supported in future versions of the language.

A separate observation considers the use of the IfEx-
pression element. In Table 2, out of 706 Puppet mod-
els, 89 contained IfExpression. Half of the models (i.e.,
42) contained ElseExpression. However, only two mod-
els contained ElseIfExpression. ElseIfExpression was not
initially implemented even though it was part of the lan-
guage definition.8 The feature was eventually supported,
but as of our download of the modules from Puppet-
Forge, the usage of ElseIfExpression is still very limited.
This observation could signal that in fact adding this
construct was not really necessary and, if the situation
does not change, could be removed if later on it is de-
cided to simplify the language.

The results of our Puppet instance analysis were for-
warded to the developer of Geppetto. The developer
suggested a customized query to determine the pattern
of usage of text and interpolated variables. In Puppet,
variable names can be interpolated within strings. This
introduces several options of interpolating variables in
strings, which in some cases can be inefficient. For ex-
ample, using curly brackets with variables reduces am-
biguities of identifying variables. In order to determine
the dominant practice of variable interpolation, more de-
tailed instance analysis on the metamodel elements as-
sociated with strings values and variables can be per-
formed. In this case, the initial instance analysis results
became a stepping stone for identifying more specialized
queries on a DSL that can provide further details on the
use of the language.

4.1.2 ATL Table 3 documents the total usage of each
ATL metamodel7 element, whereas Table 4 documents
in how many and the percentage of ATL models a meta-
model element was used at least once. Again, the el-
ements followed by a (*) denote abstract elements in
the metamodel. As our research group is the developer
of ATL, we were able to ask team members who are
experts in ATL to evaluate the metamodel element in-
stance data. ATL is primarily a declarative language,
but in certain situations allows for imperative coding. Al-
though supported, imperative style coding is discouraged
in ATL. Because of this, the developer was encouraged
to see that the metamodel elements associated with the
imperative part of ATL was not used much (i.e., Calle-
dRule and its associated ActionBlock were used only 78
and 135 times as seen in Table 3). Furthermore, it can
be seen that only 25 out of 189 models evaluated used
these elements as seen in Table 4, which also shows only
a limited number of transformations that used these el-
ements. This data can be taken into consideration in
future changes to ATL in terms how much support for
imperative style coding should be continued.

8 http://projects.puppetlabs.com/issues/2713

Corpus-based Analysis of Domain-Specific Languages 5

Table 1 Puppet metamodel element usage (all instances)

Name Total

VerbatimTE 10278
LiteralNameOrReference 8378
DoubleQuotedString 7280
AttributeDefinition 6169
VariableExpression 3106
ResourceBody 2132
AttributeOperations 1964
ResourceExpression 1785
VariableTE 1676
AtExpression 1476
SingleQuotedString 1368
ExpressionTE 1304
SelectorEntry 1116
AssignmentExpression 948
DefinitionArgument 795
LiteralBoolean 733
PuppetManifest 706
LiteralDefault 639
SelectorExpression 557
FunctionCall 538
HostClassDefinition 507
LiteralList 373
Case 367
IfExpression 261

Name Total

DefinitionArgumentList 230
Definition 210
CaseExpression 186
EqualityExpression 185
ElseExpression 96
ParenthesisedExpression 89
LiteralUndef 65
VirtualNameOrReference 57
ImportExpression 44
LiteralRegex 39
CollectExpression 34
RelationshipExpression 33
VirtualCollectQuery 21
OrExpression 20
UnaryNotExpression 16
AndExpression 14
AttributeAddition 13
ExportedCollectQuery 13
HashEntry 13
NodeDefinition 11
LiteralHash 8
AdditiveExpression 4
InExpression 4
RelationalExpression 4

Name Total

MatchingExpression 3
ElseIfExpression 2
ExprList 1
UnquotedString 1
AppendExpression 0
AttributeOperation* 0
BinaryExpression* 0
BinaryOpExpression* 0
Expression 0
ExpressionBlock* 0
ICollectQuery* 0
InterpolatedVariable 0
IQuotedString* 0
LiteralExpression* 0
LiteralName 0
MultiplicativeExpression 0
ParameterizedExpression* 0
ShiftExpression 0
StringExpression* 0
TextExpression* 0
UnaryExpression* 0
UnaryMinusExpression 0

Table 2 Puppet metamodel element usage (model count)

Name Total (%)

PuppetManifest 706 (100%)
LiteralNameOrReference 657 (93%)
DoubleQuotedString 481 (68%)
VerbatimTE 481 (68%)
ResourceBody 477 (68%)
ResourceExpression 477 (68%)
AttributeDefinition 465 (66%)
AttributeOperations 465 (66%)
HostClassDefinition 409 (58%)
AtExpression 295 (42%)
VariableExpression 290 (41%)
FunctionCall 204 (29%)
AssignmentExpression 181 (26%)
LiteralBoolean 178 (25%)
SingleQuotedString 175 (25%)
LiteralList 173 (25%)
ExpressionTE 171 (24%)
DefinitionArgumentList 159 (23%)
DefinitionArgument 153 (22%)
VariableTE 151 (21%)
LiteralDefault 148 (21%)
Definition 135 (19%)
Case 116 (16%)
CaseExpression 116 (16%)

Name Total (%)

SelectorEntry 96 (14%)
SelectorExpression 96 (14%)
IfExpression 89 (13%)
EqualityExpression 59 (8%)
ElseExpression 42 (6%)
ParenthesisedExpression 28 (4%)
ImportExpression 22 (3%)
LiteralUndef 22 (3%)
OrExpression 15 (2%)
VirtualNameOrReference 15 (2%)
CollectExpression 14 (2%)
LiteralRegex 14 (2%)
NodeDefinition 11 (2%)
ExportedCollectQuery 10 (1%)
RelationshipExpression 10 (1%)
UnaryNotExpression 8 (1%)
AndExpression 5 (1%)
AttributeAddition 5 (1%)
InExpression 4 (1%)
VirtualCollectQuery 4 (1%)
AdditiveExpression 3 (<1%)
ElseIfExpression 2 (<1%)
HashEntry 2 (<1%)
LiteralHash 2 (<1%)

Name Total (%)

MatchingExpression 2 (<1%)
RelationalExpression 2 (<1%)
ExprList 1 (<1%)
UnquotedString 1 (<1%)
AppendExpression 0 (0%)
AttributeOperation* 0 (0%)
BinaryExpression* 0 (0%)
BinaryOpExpression* 0 (0%)
Expression 0 (0%)
ExpressionBlock* 0 (0%)
ICollectQuery* 0 (0%)
InterpolatedVariable 0 (0%)
IQuotedString* 0 (0%)
LiteralExpression* 0 (0%)
LiteralName 0 (0%)
MultiplicativeExpression 0 (0%)
ParameterizedExpression* 0 (0%)
ShiftExpression 0 (0%)
StringExpression* 0 (0%)
TextExpression* 0 (0%)
UnaryExpression* 0 (0%)
UnaryMinusExpression 0 (0%)

6 Robert Tairas, Jordi Cabot

Table 3 ATL metamodel element usage (all instances)

Name Total

VariableExp 25251
OclModelElement 18021
NavigationOrAttributeCallExp 16231
Binding 14105
OclModel 10932
OperationCallExp 7792
StringExp 7697
OperatorCallExp 5613
VariableDeclaration 4940
SimpleOutPatternElement 4785
CollectionOperationCallExp 3287
Iterator 2257
OutPattern 2006
SimpleInPatternElement 1960
IteratorExp 1956
InPattern 1940
MatchedRule 1797
IfExp 1484
StringType 1132
SequenceExp 1106
Helper 1021
OclFeatureDefinition 1021
IntegerExp 974
BooleanExp 717
Operation 702
OclContextDefinition 687
BindingStat 681
SequenceType 670
EnumLiteralExp 535

Name Total

IfStat 503
Parameter 403
LetExp 379
Attribute 316
IntegerType 273
RealType 257
BooleanType 217
SetType 209
ExpressionStat 202
OclUndefinedExp 199
IterateExp 169
Module 168
LazyMatchedRule 143
RuleVariableDeclaration 142
TupleTypeAttribute 141
ActionBlock 135
ForEachOutPatternElement 115
SetExp 109
CalledRule 78
TuplePart 77
TupleType 74
RealExp 68
MapElement 55
OclAnyType 55
MapType 50
LibraryRef 36
TupleExp 29
MapExp 28
ForStat 17

Name Total

Library 13
OrderedSetType 8
Query 8
OrderedSetExp 3
BagExp 0
BagType 0
CollectionExp* 0
CollectionType* 0
DerivedInPatternElement 0
Element 0
InPatternElement* 0
IterateInPatternElement 0
LoopExp 0
ModuleElement* 0
NumericExp* 0
NumericType* 0
OclExpression* 0
OclFeature* 0
OclType* 0
OutPatternElement* 0
PatternElement* 0
Primitive* 0
PrimitiveExp* 0
PropertyCallExp* 0
Rule* 0
Statement* 0
Unit 0

4.2 Relationship Analysis

Instance analysis is mainly concerned with the usage of
individual elements within the corpus. In contrast, in re-
lationship analysis, we consider how certain elements are
present together or are grouped together based on a par-
ticular criterion to determine interesting relations among
two or more elements. It should be noted that in many
cases two or more metamodel elements will always be re-
lated, because together they form a complete construct
in the language. For example, an ElseExpression will al-
ways be associated with an IfExpression. We would like
to identify more non-common relationships among the
metamodel elements. Such relationships could suggest,
for example, a sub-language within the DSL, because of
the strong relationships among a group of metamodel el-
ements. This could help us realize that our DSL needs to
be further decomposed in order to make sure it is really
domain-specific.

Clustering is a technique originating from the field of
data mining that can be used to associate two or more
elements [13]. One type of clustering evaluates distance
values between elements to determine a grouping or clus-
ter of elements that are considered “related.” Elements
that have a closer distance value could be considered to
be more related with each other. In our case, we adapt

the clustering technique such that the distance values
between metamodel elements is determined by counting
the number of times a pair of metamodel elements is
used in the same “instance.” We consider an instance as
a model, hence when a pair of metamodel elements is
used in the same model, then we increment the count
for that element pair. For example, consider metamodel
elements A, B, and C and models X, Y, and Z. If mod-
els X and Y both contain metamodel elements B and
C, and model Z contains metamodel elements A and
B, then Table 5 shows a matrix that represents the co-
occurrences among the metamodel elements. In the ma-
trix in Table 5, each metamodel element is represented
by a row and column. The cells contain the number of
times one metamodel element was associated to another
metamodel element. This value is what we consider as
the “distance” between two metamodel elements (i.e.,
the larger the number, the closer the distance between
the elements).

We record all pair-wise instances of metamodel ele-
ments in each model of the corpus. For example, tables 6
and 7 display the top pair-wise relationships for Puppet
and ATL metamodel elements, respectively. In the tables
and in the clustering processes of the DSLs that we eval-
uated, the pair-wise relationships involving the Puppet-
Manifest element for Puppet and the OclModel, OclMod-

Corpus-based Analysis of Domain-Specific Languages 7

Table 4 ATL metamodel element usage (model count)

Name Total (%)

OclModel 188 (99%)
OclModelElement 188 (99%)
VariableExp 188 (99%)
NavigationOrAttributeCallExp 187 (99%)
OperationCallExp* 176 (93%)
Module 168 (89%)
Binding 167 (88%)
OutPattern 167 (88%)
SimpleOutPatternElement 167 (88%)
InPattern 165 (87%)
SimpleInPatternElement 165 (87%)
MatchedRule 162 (86%)
OperatorCallExp 160 (85%)
CollectionOperationCallExp 159 (84%)
VariableDeclaration 159 (84%)
Iterator 158 (84%)
StringExp 155 (82%)
IteratorExp 146 (77%)
Helper 144 (76%)
OclFeatureDefinition 144 (76%)
IfExp 129 (68%)
OclContextDefinition 116 (61%)
Operation 115 (61%)
SequenceExp 103 (54%)
IntegerExp 101 (53%)
StringType 101 (53%)
SequenceType 95 (50%)
Parameter 82 (43%)
Attribute 80 (42%)

Name Total (%)

BooleanExp 78 (41%)
LetExp 75 (40%)
IterateExp 65 (34%)
BooleanType 59 (31%)
EnumLiteralExp 44 (23%)
IntegerType 41 (22%)
LazyMatchedRule 39 (21%)
RuleVariableDeclaration 38 (20%)
OclUndefinedExp 37 (20%)
SetType 30 (16%)
LibraryRef 28 (15%)
ActionBlock 25 (13%)
CalledRule 25 (13%)
ForEachOutPatternElement 24 (13%)
SetExp 22 (12%)
BindingStat 19 (10%)
ExpressionStat 18 (10%)
MapExp 17 (9%)
MapType 17 (9%)
IfStat 15 (8%)
RealType 15 (8%)
Library 13 (7%)
OclAnyType 10 (5%)
RealExp 10 (5%)
ForStat 9 (5%)
TupleExp 9 (5%)
TuplePart 9 (5%)
TupleType 9 (5%)
TupleTypeAttribute 9 (5%)

Name Total (%)

Query 8 (4%)
MapElement 6 (3%)
OrderedSetExp 3 (2%)
OrderedSetType 2 (1%)
BagExp 0 (0%)
BagType 0 (0%)
CollectionExp* 0 (0%)
CollectionType* 0 (0%)
DerivedInPatternElement 0 (0%)
Element 0 (0%)
InPatternElement* 0 (0%)
IterateInPatternElement 0 (0%)
LoopExp 0 (0%)
ModuleElement* 0 (0%)
NumericExp* 0 (0%)
NumericType* 0 (0%)
OclExpression* 0 (0%)
OclFeature* 0 (0%)
OclType* 0 (0%)
OutPatternElement* 0 (0%)
PatternElement* 0 (0%)
Primitive* 0 (0%)
PrimitiveExp* 0 (0%)
PropertyCallExp* 0 (0%)
Rule* 0 (0%)
Statement* 0 (0%)
Unit* 0 (0%)

Table 5 Sample co-occurrence matrix

A B C

A – 1 0

B 1 – 2

C 0 2 –

elElement, VariableExp, and NavigationOrAttributeCall-
Exp elements for ATL were excluded, because these el-
ements appeared in all models (i.e., as seen in Tables 2
and 4, respectively). This was the only consideration of
element relationships that was performed based on man-
ual observation. No semantic-based relationships were
specifically considered at this point.

We use a stand-alone clustering tool called gCluto9

to perform agglomerative clustering in which elements
are clustered until a predefined number of clusters has
been reached. The input of the clustering mechanism is
the pair-wise relationship counts as the distance values
between a pair of elements. Since the clustering process
considers pairs with smaller distance values to be more
related, we need to calculate the inverse of each value.

The evaluation of some clusters revealed relation-
ships of metamodel elements of interest, such as the

9 http://glaros.dtc.umn.edu/gkhome/cluto/gcluto/overview

Table 6 Top Puppet metamodel element relationships

Elements Count

LiteralNameOrReference - ResourceBody 467
ResourceExpression - LiteralNameOrReference 467
ResourceExpression - ResourceBody 467
AttributeOperations - AttributeDefinition 463
LiteralNameOrReference - AttributeDefinition 463
LiteralNameOrReference - AttributeOperations 463
ResourceBody - AttributeDefinition 463
ResourceBody - AttributeOperations 463
ResourceExpression - AttributeDefinition 463
ResourceExpression - AttributeOperations 463

Table 7 Top ATL metamodel element relationships

Elements Count

Module - Binding 167
Module - OutPattern 167
Module - SimpleOutPatternElement 167
OutPattern - Binding 167
OutPattern - SimpleOutPatternElement 167
SimpleOutPatternElement - Binding 167
Binding - InPattern 165
Binding - SimpleInPatternElement 165
InPattern - SimpleInPatternElement 165
Module - InPattern 165

8 Robert Tairas, Jordi Cabot

related use of two types of switch statements in Pup-
pet. Other clusters revealed no relationship of interest
even after further manual analysis. Both types of obser-
vations are described in the remainder of this subsection.
The elements in the described clusters are not fully inde-
pendent elements, in that in some cases they are closely
located within the metamodel structure. However, their
relationships are not forced due to structural constraints
of the metamodel. It should be noted that large mod-
els could potentially influence the results of this anal-
ysis, because these models represent a large number of
recorded co-occurrences. However, these models repre-
sent a way of using the language that should be included
in the results.

4.2.1 Puppet Figure 2 shows a dendrogram of 10 clus-
ters of Puppet metamodel elements. In cluster no. 3, Se-
lectorEntry, SelectorExpression, Case, and CaseExpres-
sion are clustered together. SelectorExpression and Case-
Expression function similar to the Switch-statement in
Java. The difference between SelectorExpression and Case-
Expression is that the former returns a value, while the
latter does not. Based on Table 2, CaseExpression occurs
in 116 models and SelectorExpression in 96 models. If a
large number of models contained both elements or one
of them was by far most common than the other, it could
suggest the need to consolidate their functionalities. A
deeper analysis revealed that only 36 models contained
both elements, and hence not many models contained
both metamodel elements. From a different angle, in Ta-
ble 1, SelectorExpression was used 557 times compared
to 186 for CaseExpression. This could support consoli-
dating the elements as one is used much more than the
other in all models.

4.2.2 ATL Figure 3 shows a dendrogram of 10 clus-
ters of ATL metamodel elements. Metamodel elements
representing the different types used in ATL are clus-
tered together (i.e., ordered sets in cluster no. 2, tuples
in cluster no. 4, and maps in cluster no. 8). In addition,
a grouping of elements used together can also be seen.
The elements representing the core functionality of ATL
can be seen in the grouping in the last part of cluster no.
10. Module elements consist of InPattern elements rep-
resenting the source models and OutPattern elements
representing the target models. Binding elements define
the transformation between the source and target mod-
els. In addition, elements related to the imperative part
of ATL can also be seen in cluster 3, where CalledRule
and ActionBlock elements are associated to the impera-
tive expression BindingStat, ExpressionStat, and IfStat.

It should be noted that not all clusters are meaning-
ful. Cluster no. 5 displays a potential relationship be-
tween ForEachOutPatternElement and IterateExp, but
upon manual examination of the ATL models involved,
only one of the models contained IterateExp within a
ForEachOutPatternElement element. In the remaining

Fig. 2 Puppet metamodel element clustering

Definition

DefinitionArgument

DefinitionArgumentList

AttributeOperations

AttributeDefinition

ResourceExpression

ResourceBody

DoubleQuotedString

VerbatimTE

LiteralNameOrReference

AtExpression

AssignmentExpression

SingleQuotedString

VariableExpression

FunctionCall

EqualityExpression

IfExpression

ElseExpression

LiteralBoolean

VariableTE

SelectorExpression

SelectorEntry

LiteralDefault

CaseExpression

Case

LiteralList

ExpressionTE

ParenthesisedExpression

UnaryNotExpression

LiteralUndef

VirtualNameOrReference

AttributeAddition

LiteralRegex

OrExpression

RelationshipExpression

ImportExpression

AndExpression

VirtualCollectQuery

AdditiveExpression

InExpression

MatchingExpression

ElseIfExpression

RelationalExpression

UnquotedString

LiteralHash

HashEntry

ExprList

NodeDefinition

ExportCollectQuery

CollectExpression

1

2

3

4

5

6

7

8

9

10

Corpus-based Analysis of Domain-Specific Languages 9

models, the two elements were found in differing loca-
tions in the models in which case did not suggest a rela-
tionship of interest.

4.3 Clone Analysis

Clone analysis is concerned with the detection and eval-
uation of duplications in the usage of a language. This
analysis technique was first considered in GPLs. The
term code clones refers to duplicated sections of code.
The similarity among these clones can vary from be-
ing exact duplicates of each other to being near dupli-
cates of each other based on looser matching properties
that, for example, allows for differing names or the ad-
dition/deletion of a few statements.

One reason for the need of clone analysis on DSLs
is that such activity has not received as much attention
compared to the evaluation of cloning in popular GPLs.
Figure 4 shows a tag cloud that is based on the number
of times a language was evaluated for cloning in papers
listed in a bibliography of clone-related papers.10 It can
be seen that most research on software clones has mainly
focused on GPLs, such C, C++, and Java.

The evaluation of clones can be performed for various
reasons. For example, detected clones can be evaluated
for elimination of the associated duplication. Higo et al.
proposes a metric-based approach to identify clones for
refactoring activities to modularize the code associated
with the clones [15]. Modularization by abstracting a
section of code into a function is a common activity in
GPLs. For DSLs, such modularization is also possible, if
the language supports it. In contrast, a separate solution
for DSLs would be to create a new metamodel element
that represents the commonly cloned constructs. In this
case, cloning is removed by the addition or modification
of the language itself.

In GPLs, clone detection is typically performed on
syntactically meaningful sections of code. For example,
all methods in an object-oriented language are compared.
At a higher granularity level, all statements in the lan-
guage are compared. For DSLs, the question posed is
what are “meaningful” sections in the language? This
must be determined during the adaption of clone de-
tection for a particular DSL. In the case of Puppet, a
statement metamodel element is conveniently part of the
language. Hence, we adapt clone detection for Puppet by
evaluating all statement metamodel elements and their
underlying sequence of elements for cloning. We consider
this element as representing a meaning collection of con-
structs of the language. Determining the proper group-
ing of elements to evaluate may not be as straightforward
in other DSLs. In Section 7, we consider a more gen-
eral mechanism that detects elements that are fully con-
tained within another element in an EMF model without

10 http://students.cis.uab.edu/tairasr/clones/literature

Fig. 3 ATL metamodel element clustering

MapElement

MapExp

ActionBlock

MapType

CalledRule

IfStat

BindingStat

ExpressionStat

ForStat

OutPattern

Iterator

Helper

MatchedRule

Binding

SimpleInPatternElement

SimpleOutPatternElement

CollectionOperationCallExp

VariableDeclaration

InPattern

OperationCallExp

BooleanExp

LazyMatchedRule

SetExp

SequenceExp

Operation

IteratorExp

StringExp

OclFeatureDefinition

ForEachOutPatternElement

OperatorCallExp

IfExp

SequenceType

IntegerExp

SetType

StringType

BooleanType

OclUndefinedExp

LibraryRef

EnumLiteralExp

RuleVariableDeclaration

Attribute

IntegerType

OclAnyType

IterateExp

Parameter

OclContextDefinition

1

2

3

4

5

7

8

9

10

LetExp

TupleType

TupleExp

TupleTypeAttribute

TuplePart

RealExp

RealType

OrderedSetExp

OrderedSetType

Library

Query

Module

6

10 Robert Tairas, Jordi Cabot

Fig. 4 Tag cloud of languages focused in clone research

specifically focusing on one top-level metamodel element
during the detection.

We detect clones using the suffix tree technique [11],
because of its popularity as a clone detection technique
[2, 8, 19, 29]. In some usages of this technique (i.e.,
[8, 29]), the abstract syntax tree representation of the
language is used to generate a suffix tree, which is then
subsequently searched for duplicate sequences. In our
case, we use the EMF-based representation of Puppet
instances to generate the tree. The results of the detec-
tion process must be associated with the actual concrete
syntax of Puppet to allow the display of actual code snip-
pets that are identified as clones. We use features from
the Xtext infrastructure to re-associate the abstract syn-
tax to the concrete syntax. Because currently ATL does
not have an Xtext-based solution, an evaluation of ATL
is not included in this subsection. However, we refer the
reader to our previous work on the clone analysis of the
Object Constraint Language (OCL) part of ATL in [28].

The evaluation of the results of the clone detection is
given in the remainder of this subsection. The analysis
revealed that cloning in Puppet occurs throughout the
corpus that was evaluated. Hence, it is not restricted to
a specific module or specific authors of the modules.

4.3.1 Puppet For the case of Puppet, we perform detec-
tion in the statement level of the Puppet models. The
detection identifies statements that are Type I and II
clones [3]. Type I clones are clones that are exactly the
same where whitespace and comments are ignored. Type
II clones are clones that may have the same sequence or
structure of metamodel elements, but can differ in terms
of the values associated to the elements.

Tables 8 and 9 provides a general summary of cloning
in Puppet showing the amount of Type I (exact) and
Type II (parameterized) clones, respectively. Different
sizes of statements were considered during the detection
process, which was intended to remove any small clones
that may be superfluous because of its size. It can be
seen that considerable cloning occurs in the statement
level in Puppet (i.e., around 20% of all SLOC in Table
9).

Table 8 Exact clones in Puppet

Statement filter Clone groups SLOC

All 96 756 (4%)
Three or more nodes 42 434 (3%)
Six or more nodes 33 391 (2%)
10 or more nodes 16 250 (1%)

Table 9 Parameterized clones in Puppet

Statement filter Clone groups SLOC

All 197 4492 (26%)
Three or more nodes 195 4443 (26%)
Six or more nodes 182 4238 (25%)
10 or more nodes 151 3673 (21%)

As stated previously, modules are a collection of Pup-
pet models related to the configuration of certain aspects
of a server. In PuppetForge, modules written by the same
author can also be identified. We next consider the dis-
tribution of clones among the Puppet modules. This is
related to where each clone in a clone group is located.
A clone group in this case contains clones that repre-
sent the same duplication. Four types of distributions
are considered:

– Single: the clones in a clone group reside in the same
model

– Module: the clones in a clone group reside in the same
module

– Author : the clones in a clone group reside in two or
more modules having the same author

– Multiple: the clones in a clone group reside in two or
more modules having different authors

Table 10 depicts the distribution of Type II clones
within their respective clone groups. If we combine the
Module and Author distributions, we can see three distri-
butions that each comprise one-third of the clone groups
in Puppet:

– Clone groups with clones all residing in a single model
– Clone groups with clones residing in one or more

modules written by the same author
– Clone groups with clones residing in multiple mod-

ules of different authors

This observation suggests that the occurrence of cloning
is evident throughout the Puppet modules that were
evaluated. In other words, cloning is not restricted to
specific models or modules written by specific authors.
Hence, the extent of cloning that is commonplace through-
out the Puppet corpus suggests that any effort to deal
with the clones through, for example, introducing a new
metamodel element, can be considered as a general lan-
guage solution.

Corpus-based Analysis of Domain-Specific Languages 11

Table 10 Parameterized clone distribution

Statement filter
Distribution All 3 or more nodes 6 or more nodes 10 or more nodes

Single 65 (33%) 64 (33%) 61 (34%) 56 (37%)
Module 18 (9%) 18 (9%) 18 (10%) 11 (7%)
Author 52 (26%) 52 (27%) 49 (27%) 46 (30%)
Multiple 62 (31%) 61 (31%) 54 (30%) 38 (25%)

5 Discussion

The main implication of this work is that the three anal-
ysis techniques and their associated results that are ap-
plied to DSLs has yielded information about each lan-
guage based on their respective corpora, which are high-
lighted below. We have focused on analysis techniques
that can be applied to multiple DSLs and thus become
beneficial for the analysis of more than one language. Re-
lated to this, an Eclipse-based plug-in that is described
in Section 7 offers potential for the analysis techniques
to be performed on other Xtext-based DSLs.

A common knowledge gained from the results is the
popularity of usage of certain metamodel elements. For
example, in Puppet the ElseIfExpression was not used
as much as the related if and else expressions. Simi-
larly, between the two types of select statements, one
is more prominently used than the other. This infor-
mation can be used as the basis for deciding to drop
the unused constructs from future versions of the lan-
guage. The popularity of metamodel element usage can
also provide insight on whether a DSL is being used as
it is intended. For example, for ATL, the corpus analysis
revealed a promising trend of the use of the declarative
constructs of the language compared to the usage of im-
perative constructs that were included in the language.
In this case, the DSL developer is reassured regarding the
declarative usage of the language. These observations in
both Puppet and ATL were not necessarily based on the
most numerous elements listed in tables 1 through 4.
Instead, based on the knowledge of the language, cer-
tain elements in the table were focused on after observ-
ing their instance rate. Hence, knowledge and experience
with the DSL are essential in interpreting numbers put
forth by

The corpus analysis also revealed a common trend in
the DSL, in which case it can provide initial evidence of
the need to manage the particular trend in the language
usage. For example, in Puppet, clone analysis revealed a
common trend of cloning occurring throughout the lan-
guage usage. The developer can determine whether these
clones need to be eliminated through modularization fea-
tures in future language versions.

The initial analysis results can also be a stepping
stone to more detailed analysis on a DSL. For example,
in Puppet, further analysis of how DSL users interpo-
late string was suggested by the Puppet IDE developer
after evaluating the results from our initial analysis. Fur-

ther analysis of instances can include statistical distri-
butions to find trends of occurrences of the metamodel
elements. Related to the co-occurrence matrix described
in Section 4.2, a heat map can be superimposed on the
matrix to visualize high co-occurrence instances. In ad-
dition, more detailed analysis can be obtained through
the use of other related analysis techniques. For example,
Latent Semantic Analysis (LSA) [6] could be considered
as part of relationship analysis to determine more latent
relationships embedded in the corpus of a DSL. These
relationships can be based on LSA of naming usage in
the corpus of the DSL if such a feature is available in
the language.

Despite the observations outlined above related to
the ATL and Puppet DSLs, a major challenge for corpus-
based analysis on DSLs in general is the availability of a
corpus for these DSLs. The evaluation of GPLs is aided
by source code that is widely available from public repos-
itories such as SourceForge and in individual open source
project repositories. We have observed that this is not
the case for DSLs. This situation has also been noted by
other researchers [17, 27]. Public repositories containing
a DSL corpus are not as widely available as GPLs. This
may be due to the fact of the domain specific nature of
the languages, which limits their number of users. An-
other possibility is the sometimes proprietary nature of
a DSL, which restricts the exposure of an associated cor-
pus to the public.

6 Threats to Validity

Despite our analysis techniques being generic in the sense
that they can be applied to any DSL, the fact is that
they have been validated using only two specific DSLs
is a clear threat to validity of this study. More DSLs
need to be examined in order to confirm the usefulness of
corpus-based analysis techniques. As commented before,
a major hurdle for this extended analysis is the limited
availability of repositories of DSL models. However, the
sizes of the corpora used in our analysis is comparable
in size to the corpora used in other related DSL corpus
analysis research. The corpora used in related work that
will be described in Section 8 consisted of between un-
der 100 to over 1000 items / models. The corpora sizes
of ATL (i.e., 189 models) and Puppet (i.e., 706 models)
are comparable to other corpora evaluated.

12 Robert Tairas, Jordi Cabot

The quality of the corpus can also be a bias in the
analysis. A corpus must be representative of the DSL
instances created by end-users. For instance, one of the
ATL developers we consulted with suggested that the
ATL corpus we were using mainly consisted of good (i.e.,
well-written) ATL transformations, which could explain
why the presence of (undesired) imperative constructs
was very limited. This could inevitably threaten the va-
lidity of the analysis results. To alleviate this, the corpus
of a DSL must be evaluated to determine if it is repre-
sentative of the users of the DSL and not only of, for
instance, expert users.

Related to clone analysis, the concrete syntax of a
DSL can be very different from that of popular GPLs
such as C and Java. In some cases, such as in Puppet,
the ordering in specific constructs is not important. For
example, in the following snippet of Puppet code, the list
of attributes and their respective values can be written
in a different order, but will mean the same in Puppet.

file {’testfile’:

path => ’/tmp/testfile’,

ensure => present,

mode => 0640,

content => "I’m a test file.",

}

Our suffix tree-based clone detection technique cannot
identify clones where elements that have the same mean-
ing are ordered differently. Hence, special consideration
must be included for DSLs that exhibit similar charac-
teristics.

7 Tool Support

In this section, we describe an Eclipse plug-in11 that of-
fers the corpus-based analysis techniques from Section 4
for Xtext-generated DSLs. We selected Xtext not only
due to its current popularity as a language workbench,
but also because the DSL instances in the Xtext DSL
infrastructure are represented in-memory as an EMF
model [32]. EMF models in their own right are widely
used within the MDE paradigm.

Given that we process the DSL corpus through their
EMF models representations, DSLs written outside Xtext
but that are represented as EMF models can also uti-
lize at least the instance and relationship analysis tech-
niques. This is because these two techniques extract their
information directly from the models. In contrast, the
clone analysis technique requires additional information,
because we must associate the concrete syntax of the
clone segments to allow the language engineer to actu-
ally see what parts of the corpus are cloned. This forces
to have available the Xtext infrastructure in order to

11 http://code.google.com/a/eclipselabs.org/p/dsl-
analysis/

associate cloned segments of the model with the actual
DSL code.

Figure 5 outlines the DSL analysis process. The Eclipse
plug-in performs its analysis on the EMF model rep-
resentation of DSL instances. For DSLs written with
Xtext, APIs are available that allow for the extraction
and manipulation of EMF models representing DSL in-
stances by external sources such as our plug-in. In addi-
tion, the plug-in can also obtain the models from sources
other than Xtext (i.e., other sources) for the instance and
relationship analyses, but not for clone analysis.

It should be noted that the clone analysis for Pup-
pet described in Section 4.3 performed clone detection on
all statements under the Definition metamodel element
in the Puppet corpus. This allowed us to focus detec-
tion on a structurally meaningful metamodel element.
However, for the generic clone detection version, the de-
pendence on a specific metamodel element of a specific
DSL must be removed. In this case, we perform suffix
tree-based clone detection without identifying a struc-
turally meaningful metamodel element or group. This
makes the detection process require an additional step,
as it must identify whole clones from the results. In the
plug-in, we only display clones that represent an entire
metamodel element and its contained objects or a se-
quence of metamodel elements and their corresponding
contained objects. This is similar to the process of find-
ing clones representing meaningful syntactic blocks as
described in [8].

The analysis report generated by the plug-in is dis-
played in views and an HTML file. The top view in Fig-
ure 6 displays the number of times a metamodel element
is used overall (i.e., “All count” column) and the num-
ber of models an element is used in (i.e., “Model count”
column). It should be noted that an Eclipse plug-in that
incorporates instance analysis on individual models of
Xtext-based DSLs has been proposed.12 In contrast, we
seek to perform instance analysis on an entire corpus of
a DSL rather than just a single instance.

The bottom view in Figure 6 displays the generated
clusters. For the plug-in, we replaced the gCluto stand-
alone clustering tool that was used in Section 4.2 with
Java-based libraries from Weka13 to allow the clustering
results to be directly available in Eclipse. This is the rea-
son for the different clustering results in Figure 6 com-
pared to that in Figure 2. A Newick tree format14 can
be obtained from the plug-in and exported to a graph-
ical renderer to display a cluster dendrogram similar to
Figures 2 and 3.

Currently the results of the clone detection process
are displayed as an HTML file, a snippet of which can be
seen in Figure 7. For each clone group reported by the

12 http://www.sigasi.com/content/view-complexity-your-
xtext-ecore-model
13 http://www.cs.waikato.ac.nz/ml/weka
14 http://evolution.genetics.washington.edu/phylip/newicktree.html

Corpus-based Analysis of Domain-Specific Languages 13

Fig. 6 Eclipse plug-in views

detection process, the number of clones in the group, the
number and names of the files that contain the clones
are given. The actual code associated with each clone
is also displayed. A more streamlined mechanism where
the clones are highlighted directly in the source editor is
being considered.

8 Related Work

In the following we describe and compare several re-
lated work that have considered the evaluation of DSL(s)
based on an available corpus.

Muehlen and Recker performed analysis on a cor-
pus consisting of Business Process Modeling Notation
(BPMN) models [25]. Instance and relationship analyses
were considered, but clone analysis was not. Muehlen
and Recker wanted to determine what parts of BPMN
were used more than others based on the corpus. They
proposed the results as a way to educate future BPMN
users on how to reduce the complexity of BPMN models.
In this sense, the target of the results are the users of
the DSL rather than the DSL language engineer, which
is who we focus on in our work.

Lämmel and Pek evaluated a corpus of the P3P web
policy language using various techniques including clone
and instance analysis [21]. The analysis provided general

characteristics of the P3P language such as the preva-
lence of cloning among P3P files and extensions of the
language that exceeded the complexity of the base lan-
guage. Although the paper considered the abstract syn-
tax of P3P, much of the evaluation is on actual values
of the configuration, such as data constants and exten-
sions. In contrast, we deal with the evaluation of the use
of the metamodel elements of the language.

Jeanneret et al. proposed techniques to determine the
footprints of pre-defined operations on models to deter-
mine to what extent were the elements in the models
touched or used in certain operations [17]. The target of
the results are for the users or developers of the models
to assist them in generating models with proper levels of
detail as they relate to the operations that will be per-
formed on them. Such information could also be bene-
ficial for the language engineer to consider whether the
language used to create the models is too detailed for
the operations performed on them.

Monperrus et al. defined a generative approach of
measuring domain-specific models [24]. A model mea-
surement tool can be generated by specifying the desired
metrics as a model that conforms to a metric specifica-
tion metamodel. Our Eclipse plug-in differs in that it is
generic in the sense that it does not rely on any specific
information from a DSL’s metamodel.

The observation of cloning in UML models was con-
sidered by Störrle [27]. UML models were translated into
Prolog where the detection process was performed. As we
focus on DSLs developed in Xtext, the textual nature of
these languages allowed us to adapt a cloning technique
from GPLs. We will consider incorporating a clone de-
tection technique that is based more on the graphical
representation of DSLs.

Still related to UML, several works have performed
evaluation on a UML corpus [4, 10]. However, many
of the metrics that are reported are specific to UML
(e.g., number of associations, generalizations, and use
cases). Our goal of evaluation is to be applicable to differ-
ent DSLs, hence we selected properties that are generic
enough to be applied to different languages. Neverthe-
less, evaluations that are specific to a particular language
is worth identifying if they can be of benefit. In addition
to these works, Kim and Boldyreff [20] and Lange et al.
[22] propose tools that can report several types of met-
rics on UML corpus. However, no actual evaluation was
performed on a particular UML artifact.

These works and ours have a commonality in that
all perform or facilitate the evaluation of DSLs based on
the actual usage of the language (i.e., based on a cor-
pus). Although the purpose of the analyses vary and the
languages evaluated differ, these works provide a grow-
ing collection of research on DSL analysis, which can
potentially contribute positively to the overall DSL de-
velopmental process and to the DSL community.

14 Robert Tairas, Jordi Cabot

Fig. 5 DSL analysis process

Xtext Language

Workbench

EMF Models

DSL IDE

DSL Analysis

Plug-in

Report

Other Sources

Fig. 7 Snippet of clone detection report

Group 1

Total clones: 3

Total files: 3

File names: /lab42-dashboard/manifests/backup.pp, /lab42-postfix/manifests/classes/backup.pp, /lab42-puppet/manifests/backup.pp

Class: dashboard::backup

#

Backups dashboard data directory and, optionally, logs (must be enabled)

It's automatically included if $backup=yes

#

Usage:

include dashboard::backup

#

class dashboard::backup {

If you want set the mailbox directory (here /home) and enable it

 backup { "dashboard_data":

 frequency => daily,

 path => $operatingsystem ?{

 default => "/home",

 },

 enabled => false,

 host => $fqdn,

 }

}

backup { "postfix_data":

 frequency => daily,

 path => $operatingsystem ?{

 default => "/var/spool/postfix",

 },

 enabled => true,

 host => $fqdn,

}

backup { "puppet_data":

 frequency => daily,

 path => $operatingsystem ?{

 default => "/var/lib/puppet",

 },

 enabled => true,

 host => $fqdn,

}

/lab42-dashboard/manifests/backup.pp (1 - 22) /lab42-postfix/manifests/classes/backup.pp (9 - 18) /lab42-puppet/manifests/backup.pp (9 - 18)

9 Conclusion and Future Work

In this paper, we have shown the extraction of DSL char-
acteristics that are based on the evaluation of the actual
usage of the language. The utilization of instance, re-
lationship, and clone analyses on the Puppet and ATL
DSLs has revealed useful characteristics about these lan-
guages for the respective language engineer to take into
consideration in identifying future improvements of the
language. Corpus-based analysis can complement other
DSL analysis techniques in an overall effort to evaluate
a DSL.

For future work, we will consider evaluating other
DSLs that have an associated corpus. We will also con-
sider additional analysis techniques based on discussions
with DSL authors. For example, we have previously in-
vestigated the use of LSA on C programs [30], which
could also be considered for DSLs. We would also like to
consider shared characteristics in DSLs that can point
to certain useful “design patterns” (or on the contrary,

anti-patterns) of DSLs. In addition, we would also like
to integrate our tool with other popular language work-
benches. In a separate direction, the comparisons of anal-
ysis results of GPLs and DSLs will also be investigated
to see if both share common characteristics or there are
actually different language structures that are common
to DSLs but not in GPLs.

References

1. Silvia Abrahão, Emilio Iborra, and Jean Vander-
donckt. Usability evaluation of user interfaces
generated with a model-driven architecture tool.
In Effie Lai-Chong Law, Ebba Thora Hvannberg,
and Gilbert Cockton, editors, Maturing Usability,
Human-Computer Interaction Series, pages 3–32.
Springer London, 2008.

2. Brenda Baker. On finding duplication and near-
duplication in large software systems. In Working
Conference on Reverse Engineering, pages 86–95,

Corpus-based Analysis of Domain-Specific Languages 15

Washington, DC, USA, 1995. IEEE Computer So-
ciety.

3. Stefan Bellon, Rainer Koschke, Giuliano Antoniol,
Jens Krinke, and Ettore Merlo. Comparison and
evaluation of clone detection tools. IEEE Transac-
tions on Software Engineering, 33(9):577–591, 2007.

4. Brian Berenbach. The evaluation of large, complex
UML analysis and design models. In International
Conference on Software Engineering, pages 232–241,
2004.

5. Jordi Cabot, Robert Clarisó, and Daniel Riera.
UMLtoCSP: A tool for the formal verification of
UML/OCL models using constraint programming.
In International Conference on Automated Software
Engineering, pages 547–548, New York, NY, USA,
2007. ACM.

6. Scott Deerwester, Susan Dumais, George Furnas,
Thomas Landauer, and Richard Harshman. Index-
ing by latent semantic analysis. Journal of the
American Society for Information Science, 41:391–
407, 1990.

7. Brian Dobing and Jeffrey Parsons. Dimensions of
UML diagram use: A survey of practitioners. Jour-
nal of Database Management, 19:1–18, 2008.

8. Raimar Falke, Pierre Frenzel, and Rainer Koschke.
Empirical evaluation of clone detection using syntax
suffix trees. Empirical Software Engineering, 13:601–
643, 2008.

9. Pedro Gabriel, Miguel Afonso Goulão, and Vasco
Amaral. Do software languages engineers evaluate
their languages? In Congreso Iberoamericano en
”Software Engineering”, pages 149–162, 2010.

10. Marcela Genero, Esperanza Manso, Aaron Visag-
gio, Gerardo Canfora, and Mario Piattini. Build-
ing measure-based prediction models for UML class
diagram maintainability. Empirical Software Engi-
neering, 12:517–549, 2007.

11. Dan Gusfield. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, Cambridge,
United Kingdom, 1997.

12. Jurriaan Hage and Peter Keeken. Neon: A library
for language usage analysis. In Dragan Gašević, Ralf
Lämmel, and Eric Wyk, editors, International Con-
ference on Software Language Engineering, volume
5452 of Lecture Notes in Computer Science, pages
35–53. Springer-Verlag, Berlin, Heidelberg, 2008.

13. Jiawei Han, Micheline Kamber, and Jian Pei. Data
Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers, San Francisco, CA, USA, 2005.

14. Felienne Hermans, Martin Pinzger, and Arie van
Deursen. Domain-specific languages in practice: A
user study on the success factors. In Andy Schürr
and Bran Selic, editors, International Conference on
Model Driven Engineering Languages and Systems,
volume 5795 of Lecture Notes in Computer Science,
pages 423–437. Springer-Verlag, Berlin, Heidelberg,

2009.
15. Yoshiki Higo, Shinji Kusumoto, and Katsuro Inoue.

A metric-based approach to identifying refactor-
ing opportunities for merging code clones in a java
software system. Journal of Software Maintenance
and Evolution: Research and Practice, 20(6):435–
461, 2008.

16. Arnaud Hubaux, Quentin Boucher, Herman Hart-
mann, Raphaël Michel, and Patrick Heymans. Eval-
uating a textual feature modelling language: Four
industrial case studies. In Brian Malloy, Steffen
Staab, and Mark van den Brand, editors, Interna-
tional Conference on Software Language Engineer-
ing, volume 6563 of Lecture Notes in Computer Sci-
ence, pages 337–356. Springer-Verlag, Berlin, Hei-
delberg, 2010.

17. Cédric Jeanneret, Martin Glinz, and Benoit Baudry.
Estimating footprints of model operations. In Inter-
national Conference on Software Engineering, pages
601–610, New York, NY, USA, 2011. ACM.

18. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and
Ivan Kurtev. ATL: A model transformation tool.
Science of Computer Programming, 72(1–2):31–39,
2008.

19. Toshihiro Kamiya, Shinji Kusumoto, and Katsuro
Inoue. CCFinder: A multilinguistic token-based
code clone detection system for large scale source
code. IEEE Transactions on Software Engineering,
28(7):654–670, 2002.

20. Hyoseob Kim and Cornelia Boldyreff. Developing
software metrics applicable to UML models. In
Workshop on Quantitative Approaches in Object-
Oriented Software Engineering, 2002.

21. Ralf Lämmel and Ekaterina Pek. Vivisection of a
non-executable, domain-specific language - under-
standing (the usage of) the P3P language. In In-
ternational Conference on Program Comprehension,
pages 104–113, 2010.

22. Christian Lange, Martijn Wijns, and Michel Chau-
dron. Metricviewevolution: UML-based views for
monitoring model evolution and quality. In Eu-
ropean Conference on Software Maintenance and
Reengineering, pages 327–328, 2007.

23. Marjan Mernik, Jan Heering, and Anthony Sloane.
When and how to develop domain-specific lan-
guages. ACM Computing Surveys, 37:316–344, De-
cember 2005.

24. Martin Monperrus, Jean-Marc Jézéquel, Benoit
Baudry, Joël Champeau, and Brigitte Hoeltzener.
Model-driven generative development of measure-
ment software. Software and Systems Modeling,
10:537–552, 2011.

25. Michael Muehlen and Jan Recker. How much lan-
guage is enough? Theoretical and practical use of
the business process modeling notation. In Zohra
Bellahsène and Michel Léonard, editors, Interna-
tional Conference on Advanced Information Sys-

16 Robert Tairas, Jordi Cabot

tems Engineering, volume 5074 of Lecture Notes in
Computer Science, pages 465–479. Springer-Verlag,
Berlin, Heidelberg, 2008.

26. Jan Recker, Michael Muehlen, Keng Siau, John Er-
ickson, and Marta Indulska. Measuring method com-
plexity: UML versus BPMN. In Americas Confer-
ence on Information Systems, 2009.

27. Harald Störrle. Towards clone detection in UML do-
main models. Software and Systems Modeling, pages
1–23, 2012.

28. Robert Tairas and Jordi Cabot. Cloning in DSLs:
Experiments with OCL. In Uwe Assman and An-
thony Sloane, editors, International Conference on
Software Language Engineering, volume 6940 of
Lecture Notes in Computer Science, pages 60–76,
Berlin, Heidelberg, 2011. Springer-Verlag.

29. Robert Tairas and Jeff Gray. Phoenix-based clone
detection using suffix trees. In ACM Southeast Re-
gional Conference, pages 679–684, New York, NY,
USA, 2006. ACM.

30. Robert Tairas and Jeff Gray. An information re-
trieval process to aid in the analysis of code clones.
Empirical Software Engineering, 14:33–56, 2009.

31. Marcel van Amstel, Mark van den Brand, and
Luc Engelen. An exercise in iterative domain-
specific language design. In Joint ERCIM Work-
shop on Software Evolution (EVOL) and Interna-
tional Workshop on Principles of Software Evolution
(IWPSE), pages 48–57, New York, NY, USA, 2010.
ACM.

32. Xtext. Xtext documentation, 2012.

