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Abstract Models play a key role in assuring software qual-
ity in the model-driven approach. Precise models usually
require the definition of well-formedness rules to specify
constraints that cannot be expressed graphically. The Object
Constraint Language (OCL) is a de-facto standard to define
such rules. Techniques that check the satisfiability of such
models and find corresponding instances of them are impor-
tant in various activities, such as model-based testing and
validation. Several tools for these activities have been devel-
oped, but to our knowledge, none of them supports OCL
string operations on scale that is sufficient for, e.g., model-
based testing. As, in contrast, many industrial models do
contain such operations, there is evidently a gap. We present
a lightweight solver that is specifically tailored to generate
large solutions for tractable string constraints in model find-
ing, and that is suited to directly express the main opera-
tions of the OCL datatype String. It is based on constraint
logic programming (CLP) and constraint handling rules, and
can be seamlessly combined with other constraint solvers
in CLP. We have integrated our solver into the EMFtoCSP
model finder, and we show that our implementation effi-
ciently solves several common string constraints on large
instances.
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Constraint logic programming · Constraint handling rules
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1 Introduction

Model-driven Engineering (MDE) is a popular approach to
the development of software based on the use of models as
primary artifacts. To precisely describe the conceptual struc-
ture of a model, the Object Constraint Language (OCL) [23]
has been widely accepted as a de-facto standard. In a nutshell,
OCL allows expressing model constraints using a first-order
logic-like language for objects.

Naturally, the increased precision comes along with an
increased complexity of the models. This raises the need for
systematic approaches to model validation, model verifica-
tion, and model-based testing. Model finding (also called
model instantiation) is an important problem in this context.
It considers the question if a given model (including con-
straints) is satisfiable, and if it is satisfiable to identify one
instance of the model. While in model verification, model
finders are typically used to show unsatisfiability when rea-
soning about implications between different constraints, the
focus in model-based testing is typically on finding satisfy-
ing instances, which can be used to test a system which is
based on the model.

The community has developed several model finding
approaches and tools for OCL-annotated models. To deal
with the computational complexity of this problem (which
is undecidable in general), most of them are based on some
underlying formalism for which sophisticated decision pro-
cedures and tools exist, such as SAT, satisfiability modulo
theory (SMT), relational logic, propositional logic, and con-
straint satisfaction problems (CSP).

While the results currently available cover an exten-
sive subset of OCL, to our knowledge, only the work
of Kuhlmann and Gogolla [19] supports the String data
type and its OCL operations, using Kodkod [29], the SAT-
based relational logic solver of Alloy, representing strings
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as sequence relations. This way of encoding strings is well
suited to verify computationally hard constraints on strings,
and can thus be applied in verification activities. How-
ever, these approaches scale up only to a limited num-
ber of string variables, even when the string constraints
are tractable. This poses a problem when model find-
ing is to be employed to generate model instances on a
larger scale, e.g., for model-based testing. Given that sev-
eral ‘real life’ models actually do contain such constraints,
and that model-based testing does actually require models
of non-trivial size, there is evidently a gap that needs to be
addressed.

In this study, we present a lightweight solver for string
constraints using constraint logic programming (CLP). Our
solver is suited to directly implement the main operations
of the OCL datatype String, and it can be seamlessly inte-
grated into CLP-based model finders. Our approach can
solve several kinds of OCL string constraints by propaga-
tion, showing significantly better performance and scalability
than Alloy/SAT-based approaches. Thus, it provides an alter-
native when we want to generate larger instances of models
that have string constraints in their well-formedness rules.
It is inferior to SAT on constraints that cannot handle by
propagation.

In a nutshell, we associate two meta-variables to each
string variable in our approach: the potential length of
the string and, optionally, its domain (a dictionary of
possible string values). We use constraint handling rules
(CHR) to define the reasoning rules for the constraint store.
Those string constraints that cannot be resolved using the
CHR rules are finally unfolded into finite domain con-
straints. Both CHR and finite domain solvers are available
in many CLP environments, so our approach is not tool
specific.

We have implemented our solver as a library for the
ECLiPSe CLP environment [26] and integrated it into the
EMFtoCSP1 model finder [12], the successor of UMLtoCSP
[5]. A first version of our solver has been presented in [4].
Our current article extends that version by adding reason-
ing rules about domain and by providing a comparison with
Alloy-based approaches.

Paper Organization In Sect. 2, we first introduce the nec-
essary background on CLP and CHR. We then present our
solver in Sect. 3. In Sect. 4, we show how it integrates into
EMFtoCSP. In Sect. 5, we discuss the performance and scal-
ability of our approach and compare it to Alloy using several
examples. Section 6 discusses threats to validity and Sect. 7
puts our contribution in the context of related works. We
conclude in Sect. 8.

1 Available at http://code.google.com/a/eclipselabs.org/p/emftocsp/.

2 Background

In this section, we provide the necessary background on CLP
and CHR. For a more comprehensive introduction, we refer
to, e.g., Rossi et al. [25].

2.1 Constraint logic programming

Constraint logic programming (CLP) combines logic pro-
gramming (LP, in our context: Prolog) and dedicated con-
straint solvers to handle complex CSP. In pure LP, all literals
of a goal are predicates that are defined by Horn clauses,
and the goal is evaluated by resolution (backtracking). In
CLP, additional constraint predicates may be used as literals.
Constraint predicates encountered in the evaluation of a pro-
gram are not resolved using resolution; instead, they are put
in a constraint store. Constraint-specific reasoning rules are
applied to the store. In particular, if the store is found to be
unfeasible, the evaluation of the program backtracks imme-
diately. Furthermore, propagation of constraints might lead
to unification of variables and values in the logic program.

Typical constraint predicates that are available in virtually
all CLP systems are finite domain constraints. The difference
between LP to CLP can be illustrated by the following two
programs.

member(X, [1, 2, 3, 4, 5]), member(Y, [1, 2, 3, 4, 5]),
Z is X + Y, Z ≥ 9.

X ::fd[1, 2, 3, 4, 5], Y ::fd[1, 2, 3, 4, 5], Z =fd (X + Y ),

Z ≥fd 9, labelingfd([X, Y ]).
In the first (logic) program, the first two goals each introduce
5 choice points in the evaluation (the standard Prolog predi-
cate member will bind X and Y to each value of the provided
list while backtracking). Thus, the goal Z ≥ 9 is visited 18
times before it succeeds (on X = 4 and Y = 5).

In the second (constraint logic) program, we assume a
finite domain (fd) solver library to be available. Such solvers
are available in most CLP systems, such as ECLiPSe SWI-
Prolog, and SICStus Prolog. In a nutshell, the finite solver
provides a set of constraint predicates and a labeling pro-
cedure to solve them. To easily distinguish them, we attach
the subscript fd to all predicates of the finite domain solver.
Using the ::fd predicate, we constrain the ranges of X and
Y as before, but without introducing choice points. Instead,
these predicates add constraints on X and Y to the constraint
store. Similarly, the goals Z =fd (X + Y ) and Z ≥ fd 9
add further constraints on X, Y, and Z , which leads to inter-
nal propagations in the store. Notice that, unlike in the LP
version, X and Y are still variables at this point. Instead of
being visited many times on backtracking, they are evaluated
just once, recording the constraints in the store. It is only the
last goal, labelingfd, that finally assigns X and Y with values
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according to their domains, to resolve all constraints in the
store. In our example CLP program, the domain of X will
be restricted to 4..5 at this point, and selecting the first value
4 for X will immediately propagate Y = 5 in the store. In
general, the processing of labelingfd (i.e., the solving of the
constraint store) can also lead to backtracking in the logic
program when the store is unfeasible. This cannot happen in
the above example, though, since none of the goals before
labelingfd introduces a choice point in the logic program.

2.2 Constraint handling rules

Constraint handling rules (CHR) are an abstract, high-level
technique to describe inference rules for the constraints in
the constraint store. Implementations of CHR are available
in many CLP environments. For a thorough presentation of
the formalism, we refer to [9] and [27].

In a CLP environment that supports CHR, predicates can
be declared to be CHR constraints. Unlike for the normal LP
predicates, no deriving logic clauses are defined for them.
When they are encountered in the evaluation of a goal, they
are placed on the CHR constraint store. CHR rules define
how to process the constraints in the store.

Unlike logic programming rules, which have only a sin-
gle head (Horn clauses), CHR rules can have multiple heads.
They are well suited to express inference and rewrite rules as
well as axioms for the store. There are two concepts for rules
in CHR, simplification and propagation. Simplification rules
are used to replace constraints by simpler, equivalent repre-
sentations. Propagation rules are used to add new, redundant
constraints which may cause earlier failure or further sim-
plifications. CHR rules are applied repeatedly until no more
rules are applicable.

Below we show the three syntactic forms of CHR rules:
simplification, propagation, and simpagation (which is a mix-
ture of the two former forms).

rulename @ c1, . . . , cm ⇐⇒ g1, . . . , gk | d1, . . . dn .

rulename @ c1, . . . , cm �⇒ g1, . . . , gk | d1, . . . dn .

rulename @ c1, . . . , ck \ ck+1, . . . , cm �⇒ g1, . . . , gk | d1, . . . dn .

In the rules, ci are CHR constraint predicates over logic
variables, gi are LP predicates, and di are either CHR con-
straint or logic predicates. The first part, to the left of the ‘@’
sign, is the (optional) rule name. The next part is the rule
head. The part left of the | is called the guard of the rule, and
the last part is called the body of the rule. When a rule head

consists of more than one constraint, they typically share at
least one variable.

The common semantics of these rules is that they match
a pattern, given by the head, in the constraint store. The
constraints in the pattern are related by their common vari-
ables, for example, as in the pattern c1(S, I ), c2(S, J ). When
a match for a rule is found in the store, the guard of the
rule, which is an LP goal, is tested. When the guard suc-
ceeds, the rule executes, depending on its kind: The first
kind, the simplification rule, removes the matched constraints
c1, . . . , cm from the store and replaces them by new con-
straints d1, . . . , dn . When di is a CHR constraint, it is put
on the store, when it is a LP goal, it is immediately evalu-
ated. The second kind, the propagation rule, does essentially
the same, but keeps the matched constraints of the head in
the store. The third kind, the simpagation rule, is actually
a mixture of the former two: It keeps the first part of the
head c1, . . . , ck , but removes the second part ck+1, . . . , cm .
CHR rules are executed until no more rules can be applied.
For propagation rules and simpagation rules, the CHR envi-
ronment insures that such rules are executed only once per
constraint. The execution of CHR rules and the execution of
the logic program that poses constraint are interwoven into
several aspects:

1. The variables in the store are subject to unification in
Prolog. That is, a rule can become applicable to con-
straints in the store as a result of a unification in the logic
program.

2. When the CHR rules infer an inconsistency (e.g., the LP
goal fail), the LP program backtracks.

3. Conversely, as the CHR rules can infer LP goals, the
execution of CHR rules can lead to unification of logic
variables, too.

The following example, taken from [10], illustrates CHR.
It shows an excerpt of a simple solver (lets name him ‘b’)
for Booleans, using a unary constraint predicate boolb and
a ternary constraint predicate andb. We define the follow-
ing handling rules for them. Notice that andb has the so-
called ‘reified’ form [25]: Its last argument is the result of
the conjunction—andb(X, Y, Z) constrains the three vari-
ables such that Z = 1 iff X = 1 and Y = 1. This form
allows us to construct Boolean expressions from Boolean
sub-expressions.

boolb(0) ⇐⇒ true. boolb(1) ⇐⇒ true.
andb(0, X, Y ) ⇐⇒ Y = 0. andb(X, 0, Y ) ⇐⇒ Y = 0.

andb(1, X, Y ) ⇐⇒ Y = X. andb(X, 1, Y ) ⇐⇒ Y = X.

andb(X, Y, 1) ⇐⇒ X = 1, Y = 1. andb(X, X, Z) ⇐⇒ X = Z .

andb(X, Y, A)\ andb(X, Y, B) ⇐⇒ A = B. andb(X, Y, A)\ andb(Y, X, B) ⇐⇒ A = B.
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With these rules defined for the store, the goal

boolb(X), boolb(Y ), boolb(Z), boolb(U ), andb(X, Y, Z),

andb(Z , U, 1)

will resolve andb(Z , U, 1) to Z = 1, U = 1, (by applying the
fifth rule) and consequently X = 1 and Y = 1 (by applying
the same rule again). The next goal, however, will fail as a
result of the third and fifth rule:

boolb(X), boolb(Y ), andb(X, Y, 0), andb(Y, X, 1),

In general, when a solver is not able to fully reduce all
constraints, the remaining predicates have to be explored by
search and backtracking (i.e., by labeling the remaining vari-
ables with possible values). A simple labeling predicate for
the Boolean solver looks as follows:

labeling :−chr_get_constraint(boolb(X)), !, (X =1; X =0),

labeling.

labeling.

The standard predicate chr_get_constraint will remove a
constraint from the store. Our labeling procedure then tries
to assign either 1 or 0 to that variable. Notice that as a
result of labeling one variable, further rules might fire.
For example,

boolb(X), boolb(Y ), andb(X, Y, 0), labeling

will first try X = 1, which in turn directly propagates Y = 0,
without further labeling.

3 A lightweight string constraint solver

We now introduce our CLP-based solver for string con-
straints. We define several constraint predicates for strings,
and we define reasoning rules on them using CHR. We will
show later how to integrate this solver into the EMFtoCSP
model finder (Sect. 4).

Our approach addresses constraints on strings in a sim-
ilar fashion as a finite domain solver addresses numeric
variables. Essentially, we consider two attributes for each
string variable: its potential length and its potential val-
ues. We reason about the constraints in the store and prop-
agate domain and length information. At several points,
we lift sub-problems of solving strings to finite domain
solving.

This section first shortly explains how we represent the
string sort in CLP (Sect. 3.1). Then, we introduce the reason-
ing rules (Sects. 3.2–3.4).

3.1 Representations of strings and string constraints in CLP

In our constraint system, string values are represented as
flat lists of ordinal numbers of a given alphabet A . For
example, given A = {a, b, . . . , z}, the string “hello” will
be represented as the list [8, 5, 12, 12, 15]. During its life-
time, a string can appear in three stages: (1) as a logic vari-
able X , (2) unified with a list of elements [X1, . . . , Xn]
of which one or more are variables (each restricted to
the ordinal numbers of A ), or (3) unified with a list of
ordinal numbers. In the following, we refer to strings in
these three stages as string variables, instantiated strings,
and ground strings.

Two constraints associate fundamental meta-data to a
string variable X : lengthstr(X, N ) restricts the finite domain
variable N to be the length of X and domainstr(X, D) restricts
X to be an element of the list of ground strings D. We require
that a length constraint is posed for every string variable,
because we need an upper length bound for each string in
the search. Usually this will happen using a length variable,
unless we want to work with fixed-length strings. The length
variable allows us to express and reason about length con-
straints, even before the string is instantiated to a list. The
domain constraint is optional. We can express further con-
straints over strings:

– Equality of two strings X and Y is expressed by
eqstr(X, Y, R). The result variable R is constrained to
be 1 when X and Y are equal, and 0 when X and Y are
not equal.

– The predicate concatstr(X, Y, Z) constrains Z to be the
concatenation of X and Y .

– The predicate substrstr(X, I, J, Y ) constrains Y to occur
as a substring in X from positions I to J (starting
at 1).

– The predicate indexofstr(X, Y, I ) constrains I to be the
first index (starting at 1) of occurrence of Y in X
or 0, if Y does not occur in X . The constraint mir-
rors the special requirement of OCL that no string—
not even the empty string—is contained in the empty
string [23, p. 152].2

Notice that the semantics of these predicates matches exactly
the semantics of the corresponding OCL string operations
[23]. The string constraints can be seamlessly combined
with other predicates from other solvers, in particular with
those of a finite domain solver. For example, the OCL
invariant

inv : X = Y implies X = Z

2 There is an open issue regarding this aspect of indexOf in the OMG
issue tracker for the OCL spec. (http://www.omg.org/issues/ocl2-rtf.
open.html#Issue17220).
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can be expressed by the following CLP goal, assuming that
X, Y , and Z are some string variables (e.g., attribute values
of an object). Recall that we use the index fd to denote con-
straints that we require from an underlying finite domain
solver.

eqstr(X, Y, R1), eqstr(X, Z , R2), (R1) →fd (R2).

Similarly,

inv : not(X.indexOf(“Hello”) > 0andY. indexOf(X) = 0)

can be expressed as

indexofstr(X, [8, 5, 12, 12, 15], I1), gtfd(I1, 0, R1),

indexofstr(Y, X, I2), eqfd(I2, 0, R2),

andfd(R1, R2, 0).

3.2 Handling rules for string constraints

The handling rules for string constraints are divided into three
parts: rules that reason about them based on their associated
length variable (Definition 1); rules that reason about them
based on their domain (Definition 2); and rules that eventu-
ally unfold them into finite domain constraints for instanti-
ated strings (Definition 3).

In Definition 1, all rules reason about a string for which a
length attribute has been added to the store. In the length
handling rules, the first rule l_range propagates a finite
domain constraint insuring that all string lengths are between
0 and a constant maximum3 MaxLength. The rule l_unify
absorbs all length constraints on a string into one, unify-
ing the length variables (a string can have only one length).
The rule l_ground unifies the length variable and the list
length whenever a string becomes instantiated. For example,
lengthstr(X, N1), lengthstr(X, N2), X = [4, 5] will unify
N1 and N2 with 2, and lengthstr(X, N ), N = 3, X =
[X1, X2] will fail.

The remaining rules infer finite domain constraints on
the length variables for the different string operations.
For equality, rule l_eq insures that equal strings have an
equal length and that two empty strings are equal. For
indexof, concat, and substr, the rules l_indexof, l_concat,
and l_substr insure that a (positive) index must be consis-
tent with the respective string lengths. For the indexOf pred-
icate, we furthermore insure the OCL-specific rule that no
string is contained in the empty string (not even the empty
string).

3 The maximum length can be arbitrarily large, in our implementation,
we use 1000 as the default value.

Definition 1 (Length handling rules)

l_range@ lengthstr(X, N ) �⇒ N ::fd0..Max Length.

l_uni f y@ lengthstr(X, N1) \ lengthstr(X, N2) ⇐⇒ N1 = N2.

l_ground@ lengthstr(X, N ) �⇒ is_list(X) | length(X, N ).

l_eq@ eqstr(X, Y, R), lengthstr(X, NX ), lengthstr(Y, NY ) �⇒
R::fd0..1,

(R=fd1) →fd (NX =fd NY ), (NX =fd 0 ∧fd NY =fd 0) →fd (R=fd1)

l_concat@ concatstr(X, Y, Z), lengthstr(X, NX ), lengthstr(Y, NY ),

lengthstr(Z , NZ ) �⇒
NZ =fd(NX + NY ), NX ≥fd 0, NY ≥fd 0.

l_substr@ substrstr(X, I, J, Y ), lengthstr(X, NX ), lengthstr(Y, NY ) �⇒
I ::fd0..Max Length, J ::fd0..Max Length,

NY =fd(J − I + 1), NX ≥fd J, I ≥fd 1, J ≥fd I, NX >fd 0

l_indexof @ indexofstr(X, Y, I ), lengthstr(X, NX ), lengthstr(Y, NY ) �⇒
I ::fd0..Max Length,

(I ≥fd 1) →fd (I + NY − 1 ≤fd NX ),

(I ≥fd 1) →fd (NX ≥fd 1).

In the domain handling rules (Definition 2), the first
rule d_empty insures that a string cannot have an empty
domain. When the domain of a string variable has exactly
one value, the variable can be unified with this string (rule
d_singleton). Conversely, when a domain-constrained string
variable becomes ground, the domain constraint can be
replaced by a check that the ground value is in the domain
(rule d_ground). When there are two domain constraints on
one string variable (which can happen, e.g., as a result of
unification), the two previous domains are replaced by their
intersections by rule d_unify. For example,

domainstr(X, [[1, 1], [1, 2, 3]]),
domainstr(Y, [[1, 2, 3], [2, 3, 4]]), X = Y

will trigger first d_unify and then d_singleton, resulting to a
ground assignment X = Y = [1, 2, 3]. We assume that the
domain of a string variable is sorted, and use the standard
Prolog predicates on ordered lists for checking list member-
ship (ord_memberchk), element removal (ord_del_element)
and intersection (ord_intersect).

The remaining domain handling considers the string oper-
ation constraints. When the result variable of an equality
constraint is 0 and one of the two operands is ground, the
rules d_neq_X and d_neq_Y shrink the domain of the other
operand accordingly to the intersection of both domains. For
example,

domainstr(X, [[1, 2], [2, 3], [3, 4]]), eqstr(X, [1, 2], R),

R =0

will resolve to domainstr(X, [[2, 3], [3, 4]]). Notice that both
rules, as all other rules that restrict the domain of a string,
contain a comparison of the old and the new domain in their
guards, to avoid replacing a domain constraint by an equiv-
alent version.
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In a similar fashion as the d_neq_X and d_neq_Y, the two
rules d_substr_YIJ and d_substr_YI reduce the domain of the
superstring when the substring becomes ground (the first ver-
sion takes furthermore a ground index into account, the sec-
ond version considers substrings at any position). We assume
two helper predicates keep_substr and keep_substr_idx (not
shown here), to filter the domain accordingly.

For indexof, we employ a little trick to early reduce the
domain of the superstring: When both the substring and the
index become ground and greater than 0, we can reduce
the domain by rule d_indexofYI similarly to d_substr_YIJ.
However, the index value 0 plays an important role, as
it expresses ‘does not contain’, and we want to react on
the index even before it becomes ground. Therefore, the
rule d_indexof1 derives a new helper constraint (specific to
indexof) that captures containment using a Boolean result
variable, constrained to be 0 whenever the index is 0 and
1 otherwise. When this result variable becomes ground, the
two rules d_indexof1_f and d_indexof1_t filter the domain
accordingly. The trick here is that the result variable can
become ground even when the index variable is not. For
example,

domainstr(X, [[1, 2], [1, 3], [2, 3]]),
indexofstr(X, [3], I ), I >fd 1

will infer domainstr(X, [[1, 3], [2, 3]]), assuming that the
underlying finite domain solver infers indexof1str(X, [[1, 2],
[1, 3], [2, 3]], 0) from I >fd 1. For the filtering of the domain,
we assume a third helper predicate remove_substring (not
shown).

Definition 2 Domain handling rules

d_empty@ domainstr(X, []) ⇐⇒ fail.

d_singleton@ domainstr(X, [V ]) ⇐⇒ X = V .

d_ground@ domainstr(X, D) ⇐⇒ ground(X) | ord_memberchk(X, D).

d_uni f y@ domainstr(X, D1), domainstr(X, D2) ⇐⇒
ord_intersect(D1, D2, D), domainstr(X, D2).

d_neq_X@ eqstr(X, Y, 0)\domainstr(Y, D) ⇐⇒
ground(X), ord_del_element(D, X, D1),

D 	= D1 | domainstr(Y, D1).

d_neq_Y @ eqstr(X, Y, 0)\domainstr(X, D) ⇐⇒
ground(Y ), ord_del_element(D, Y, D1),

D 	= D1 |domainstr(X, D1).

d_substr_Y I J@ substrstr(X, I, J, Y ) \ domainstr(X, D1) ⇐⇒
ground([Y, I, J ]), keep_substr_idx(D1, I, Y, D2),

D1 	= D2 | domainstr(X, D2).

d_substr_Y @ substrstr(X, I, J, Y ) \ domainstr(X, D1) ⇐⇒
ground(Y ), keep_substr(D1, I, Y, D2),

D1 	= D2 | domainstr(X, D2).

d_indexof _Y I @ indexofstr(X, Y, I ) \ domainstr(X, D1) ⇐⇒
ground([Y, I ]), I 	= 0, keep_substr_idx(D1, I, Y, D2),

D1 	= D2 | domainstr(X, D2).

d_indexof 1@ indexofstr(X, Y, I ) �⇒

(I=fd0) →fd (R=fd0), (I 	=fd 0) →fd (R=fd1),

indexof1str(X, Y, R).

d_indexof 1_ f @ indexof1str(X, Y, 0), domainstr(X, D) ⇐⇒
ground(Y ), remove_substring(D, Y, D2), D	=D2 | domainstr(X, D2).

d_indexof 1_t@ indexof1str(X, Y, 1), domainstr(X, D) ⇐⇒
ground(Y ), keep_substr(D, Y, D2), D 	= D2 | domainstr(X, D2).

The last package of CHR rules (Definition 3) covers
the instantiation of strings by unfolding the constraints on
the level of the individual element variables. However, as
a shortcut, the first two rules i_eq_f and i_eq_t reduce
ground equalities and ground inequalities directly to their
prolog term pendants for performance reasons. For the other
cases, unfold_eq(X, Y, R) unfolds the equality of strings
into a big conjunction of element-wise equalities using
the helper predicate given in Definition 4. For example,
eqstr([X1, X2, X3], [Y1, Y2, Y3], R), X1 = 1, Y1 = 2 infers
R = 0.

Definition 4 assumes that the lengths of the strings are
consistent, as enforced by the rules in Definition 1. The con-
cat operation is unfolded directly by appending the lists.
The substring constraint is unfolded into a set of impli-
cations: For each potential value of I , the corresponding
conjunction of element-wise equality is posed. For exam-
ple, substrstr([X1, X2, X3], I, [Y1, Y2],) unfolds to (I =fd 1)

→fd (X1 =fd Y1 ∧fd X2 =fd Y2), (I =fd 2) →fd (X2 =fd

Y1 ∧fd X3 =fd Y2). When the superstring is instantiated and
the index parameters are ground, the substring can be directly
unified with the elements in the superstring.

Notice that the unfolding of the indexOf constraint is more
complex than the one for substrings, since we want to capture
(a) the deterministic ‘first match’ semantics that OCL gives
to the indexOf operation and (b) the meaning of 0 as ‘does
not contain’. Hence, the unfolding captures all the potential
matching indexes as variables in the list P (using a value
of MaxLength + 1 to capture a no-match for the respective
position in X ). The result R is then constrained to be the
minimum of P , if it is less or equal than MaxLength, and to
be 0, otherwise.

Definition 3 Instantiation rules

i_eq_cut_ f @ eqstr(X, Y, 0) ⇐⇒ ground([X, Y ]) | X 	= Y.

i_eq_cut_t@ eqstr(X, Y, 1) ⇐⇒ ground([X, Y ]) | X = Y.

i_eq_var@ eqstr(X, Y, R) ⇐⇒ is_list(X), is_list(Y ) | unfold_eq(X, Y, R).

i_concat XY @ concatstr(X, Y, Z) ⇐⇒ is_list(X), is_list(Y ) | append(X, Y, Z).

i_concat X Z@ concatstr(X, Y, Z) ⇐⇒ is_list(X), is_list(Z) | append(X, Y, Z).

i_concatY Z@ concatstr(X, Y, Z) ⇐⇒ is_list(Y ), is_list(Z) | append(X, Y, Z).

i_substr X I J@ substrstr(X, I, J, Y ) ⇐⇒
is_list(X), ground(I ), ground(J ) | N isJ − I + 1, sublist(X, I, N , Y ).

i_substr XY @ substrstr(X, I, J, Y ) ⇐⇒
is_list(X), is_list(Y ) | unfold_substr(X, I, J, Y ).

i_indexof @ indexofstr(X, Y, I ) ⇐⇒
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is_list(X), is_list(Y ) | unfold_indexof(X, Y, I ).

i_indexof 1@ indexof1str(X, Y, R) ⇐⇒ is_list(X), is_list(Y ) | true.

Definition 4 (Unfolding of constraints) We assume X and
Y be instantiated strings of element variables that are
constrained by domainfd to the range of the alphabet
A . We assume I to be constrained to be a number by
I ::fd1..Max Length and R to be constrained to be a truth
value by R::fd0..1. The predicates unfold_eq(X, Y, R),
unfold_substr(X, I, Y ) and unfold_indexof(X, Y, I ) unfold
the semantics of the corresponding CHR predicates using
finite domain solver constraints.

unfold_eq(X, Y, R) :−
(foreach(X0, X), foreach(Y0, Y ), fromto(1, R1, R2, R) do

andfd(X0=fdY0, R1, R2) ).

unfold_substr(X, I, Y ) :−
length(X, NX ), length(Y, NY ), DisNX − NY ,

(count(F, 0, D), param(I, X, Y, NY ) do

(count(K , 1, NY ), fromto(1, R1, R2, R3), param(F, X, Y ) do

LisK + F, nth1(L , X, X0), nth1(K , Y, Y0),

andfd(R1, X0=fdY0, R2) ),

(I=fd F + 1) →fd (R3=fd1)).

unfold_indexof(X, Y, I ) :−
length(X, NX ), length(Y, NY ), DisNX − NY ,

(count(F, 0, D), param(I, Y, X, NY ), fromto(0, R1, R5, R6) do

(count(J, 1, NY ), fromto(1, R2, R3, R4), param(Y, X, F) do

K isJ + F, nth1(J, Y, X0), nth1(K , X, Y0),

andfd(R2, X0=fdY0, R3) ),

((R1=fd0) ∧fd (R4=fd1))=fd(I=fd F + 1),

orfd(R1, R4, R5))

(I=fd0)=fd(R6=fd0).

3.3 Labeling

In some cases, processing the presented rules can directly
yield a solution (i.e., ground values for all string variables).
In general, however, we have to explore the search space
using backtracking at some point. In Definition 5 below, we
provide a standard labeling predicate labelingstr that consists
of three steps. First, all strings that have a domain constraint
attached are labeled. Then, all remaining length variables
are labeled and the string variables are instantiated to lists
accordingly. Finally, the remaining elements are labeled.

To label a variable that has a domain constraint, the con-
straint is taken out of the store and the variable is bound to
an element of the domain. On backtracking, all values are
tried. Similarly, to label a length constraint, all values of the
domain are tried on backtracking. The actual labeling of the
length variable is done by the finite domain solver. During
backtracking through the labeling goal, constraints are put

back on the store. When a ground integer value is assigned
to a length variable, the string variable is instantiated to a list
of that length, and all element variables are restricted to the
domain of the alphabet A .

Notice that unifying string variables with ground strings
or instantiated strings can fire further handling rules. For
example, in

D = [[1, 2], [2, 3]], domainstr(X, D),

domainstr(Y, D), eqstr(X, Y, 0), labelingstr

the labeling procedure will first remove domainstr(X, D) and
assign [1, 2] to X . This in turn triggers the rule d_neg_X,
which reduces the domain of Y to a singleton which in turn
replaces the domain constraint for Y into Y = [2, 3]. Anal-
ogously, for the length labeling phase, instantiating string
variables fires in particular the rules from Definition 3.

Definition 5 Standard labeling predicate

labelingstr :− label_domainsstr, label_lengthsstr(Cs), labelingfd(Cs).

label_domainsstr :−
chr_get_constraint(domainstr(X, D)), !,
member(X, D),

label_domainsstr .

label_domainsstr .

label_lengthsstr(C) :−
chr_get_constraint(lengthstr(X, N )), !,
N ::fd1..maxOrdinal(A ), labelingfd([N ]), length(X, N ),

label_lengthsstr(C1),

append(X, C1, C).

label_lengthsstr([]).

3.4 Extension: an alldifferent constraint for strings

A common constraint in CSP is alldifferent([X1, . . . , Xn]),
which states that all variables Xi are mutually different.
Several models contain such invariants for strings, more
specifically, for names and identifiers (e.g., of types within
a namespace, of attributes within a class). While the alld-
ifferent constraint can be blasted into several inequalities,
eqstr(Xi , X j , 0) for i 	= j in our case, it can be implemented
more efficiently using n outof constraints for strings that have
domains. We adopt this standard technique by introducing
two additional CHR constraints: outofstr(X, A, B) expresses
that the string X does not occur in any element of the two
sets of strings A and B, and domainholestr(X, Y ) expresses
that the domain of X does not contain the ground string Y .
We can unroll alldifferentstr(L) on a list of domain-restricted
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strings as follows. For each string variable, A and B are the
variables before and after that variable.

alldifferentstr(L) :− alldifferentstr(L , [])
alldifferentstr([X |B], A) :− outofstr(X, A, B), alldifferentstr(B, [X |A]).
alldifferentstr([], A).

The handling rules for outof are given in Definition 6. When-
ever one of the strings in an alldifferent constraint becomes
ground, the rule outof_ground excludes this string from all
other variables by posing n − 1 domainholestr predicates
(using the helper operations given in Definition 7). When the
string of this constraint has a domain, the domain is reduced
accordingly by rule outof_hole_domain. When the string is
ground, outof is simplified to an inequality check by rule
outof_hole_ground.

Given that the domain contains enough values, alldifferent
can be successfully processed without backtracking.

Definition 6 Rules for alldifferent constraint

outo f _ground@ outofstr(X, L , R) ⇐⇒
ground(X) | exclude_value(L , X),

exclude_value(R, X)

outo f _hole_domain@ domainholestr(X, V ), domainstr(X, D1) ⇐⇒
ord_del_element(D1, V, D2),

D1 	= D2 | domainstr(X, D2)

outo f _hole_ground@ domainholestr(X, V ) ⇐⇒ ground(X) | X 	= V

Definition 7 Helper predicates for all different

exclude_value([], Y ).

exclude_value([X |Y ], N ) :− domainholestr(X, N ),

exclude_value(Y, N ).

4 Integration into the EMFtoCSP model finder

We now show how our string constraint solver integrates
a CLP-based model finder. We discuss this for our tool
EMFtoCSP [5,13], but our string solver is not specific to it.
EMFtoCSP is available as an open source plugin for Eclipse.
It provides an API as well as a graphical user interface (avail-
able as a context action on .ecore and .uml files). Figure 1
shows the main configuration dialogs and a search result for
the Entity-Relationship example bundled with the installa-
tion. EMFtoCSP internally uses the open source ECLiPSe

CLP environment, which provides the required solvers for
finite domain constraints and CHR.

Finding instances of a model can be considered as a spe-
cial kind of CSP, with the sets of objects and properties in the
model as values and the well-formedness rules as the con-
straints over them. A satisfying assignment of such a CSP
is a valid instance of the model. Like our string constraints,
model finding CSPs can be solved using CLP, too. Cabot

et al. [5] describe such a translation. Given a model and a set
of OCL well-formedness rules, their approach defines how to
infer a CLP P that succeeds exactly if the constrained model
is satisfiable. The solutions that are returned by P on success
correspond to valid instances of the model.

Technically, the derived CLP P solves two sub-problems,
the cardinality problem and the instance problem. The vari-
ables of the first sub-problem are sizes for the extent of
objects and associations. For each solution of the cardinality
problem, a potential instance (representing a partially instan-
tiated object diagram) can be constructed, in which the var-
ious links and attribute values of the objects are the vari-
ables. These variables are considered in the second, depen-
dent sub-problem. Figure 2 illustrates the search process
of EMFtoCSP (including the strings part explained below),
showing how an instance I gradually gets more and more
instantiated. The generated CLP program may be shown
abstractly as follows:

solution(I ) :− validCardinalities(I, C), labeling(C),

initInstanceVariables(I, V ),

validInstance(I ), labeling(V ).

In the first step, the solution I consists of uninstantiated lists
of objects and links. The cardinality sub-problem is unfolded
into finite domain solver constraints over the length variables
C of these lists. The predicate validCardinalities particu-
larly reflects all multiplicity, inheritance, and composition
constraints of the model. The solutions of the sub-problem
are iterated by labeling. For each valid cardinality assign-
ment, a structure for a potential model is instantiated as lists
of numeric variables V , and the constraints of the second
sub-problem are posed on the potential model (again, tak-
ing advantage of the underlying finite domain solver). Thus,
the predicate validInstance(I ) encodes all remaining OCL
constraints. The variables encode both the links between the
objects and their attribute values.

The string constraints that we presented in previous sec-
tion can be seamlessly ‘plugged’ into validInstance(I ). In the
extended EMFtoCSP version, the CLP program becomes:

solution(I ) :− validCardinalities(I, C), labeling(C),

initInstanceVariables(I, Vnumeric),

validInstance(I ), labeling(Vnumeric),

labelingstr.

The predicate validInstance(I ) now also encodes all OCL
string operations, although we decide to label them after
labeling the links and numeric attributes. However, CHR
rules may fire before the explicit labeling of the strings, due
to propagations on length variables. Note that EMFtoCSP
keeps all integer variables explicitly (in Vnumeric), whereas
our string solver extracts them from the constraint store.
Hence there is no list of variables passed to labelingstr.
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Fig. 1 EMFtoCSP: Search bound selection, configuration, and result

Fig. 2 EMFtoCSP’s search
process, showing the different
instantiation levels of the
solution I : (1) cardinalities; (2)
partial object diagram with
potential links; (3) with ground
links and numeric attributes; (4)
with strings instantiated as lists;
and (5) fully ground (i.e.,
satisfiable)

5 Performance and scalability

We are aware that the computational complexity of satisfia-
bility solving for string constraints is high even for apparently
simple fragments—for example, the satisfiability problem
over the theory of strings with equality, containment, nega-
tion, and conjunction, is already NP-hard [17]. Thus, there
cannot be a perfect solution for all problems. Our hypothesis

is that many string problems in MDE model instantiation
are tractable and solvable by propagation, although they are
often larger in the number of variables. Our approach explic-
itly addresses those problems.

We have evaluated the performance and scalability of our
library using several problems that our solver can handle by
propagation, and compared the results with the popular rela-
tional model finder Alloy [16], which is based on Boolean
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satisfiability solvers (SAT solvers) internally [29], and which
has the reputation to be efficient on many combinatorial prob-
lems.

Using the presented generic labeling predicate (Defini-
tion 5), string CSPs can be categorized into two scalabil-
ity classes for our approach. The class on which it scales
very well comprises those problems that can be solved com-
pletely by propagation, without backtracking. In this class,
our approach can, in general, handle thousands of string vari-
ables, a number that is impossible to reach with Alloy.

The second class comprises those problems that require
backtracking in at least one of the labeling phases. When
backtracking occurs only in length or domain labeling, the
search space can still be traversed exhaustively when the
number of string variables, the size of their domains, and
the allowed ranges for string lengths are small enough. How-
ever, labeling all elements of all instantiated strings is usually
unfeasible (although a little modification of the labeling pro-
cedure can help skip a specific ‘local labeling traps’, as we
explain below).

The remaining section illustrates both classes and pro-
vides performance results for several test cases. For the CLP
version, we have translated the OCL invariants into our string
constraint version using our extended version of EMFtoCSP.
For simple syntactic patterns, alldifferent constraints are gen-
erated when all strings are declared with a domain. For Alloy,
we have represented the strings using the built-in sequence
datatype.

We tested our implementation on all test cases in two
modes:

1. Using string variables with a range for their lengths
between l and u, but without giving them domains of
ground values. We use a to denote the size of the alpha-
bet.

2. Using a domain of w different ground strings as the
domain for all string variables.

We have conducted all performance tests using ECLiPSe 6.0
(for the CLP version) and Java 1.7 and Alloy 4.2 (for the
Alloy version). All tests were run on an Intel Dual Core 2.2
Ghz processor with 4GB RAM.

The first test case MIN_LENGTH is trivially satisfiable
and gives an impression of the capabilities to handle many
string variables. The only restriction, posed on all string vari-
ables, is that their length is at least 2. In OCL:

context Str inv: self.chars.size() >= 2

In our CLP approach, this means posing n constraints of the
form lengthstr(Xi , Ni ), Ni ≥ fd 2. The listing (a) in Fig. 3
shows the Alloy version of this problem. We have added
listing (b) as a reference, too, although it uses an opaque rep-
resentation of strings, and we cannot express the length con-

(a)

(b)

Fig. 3 Alloy specifications for the MIN_LENGTH test case

straint this way. It will show, however, the maximum number
of variables that we can reasonably handle with Alloy. Fig-
ure 4 shows the runtimes of the CLP and the Alloy versions
for varying values of u (5 and 10) and a (26 and 127). The
runtime for the CLP version is only a few milliseconds. We
can see that, even for short sequences and a small alphabet,
Alloy does not scale for using a translation of strings into
sequences of characters, and even using an opaque repre-
sentation of strings will not allow handling more than a few
hundred strings. The missing numbers for Alloy are due to
OutOfMemoryExceptions (given 4 GB).

A second, more complicated, but still tractable prob-
lem, MUTUALLY_DIFFERENT, that we study is mutual
inequality on a set of n string variables. This is a common
invariant, e.g., on name attributes in many models. Using the
class diagram from Fig. 5, this constraint can be formulated
in OCL as follows:

context Context inv: self.elements−>forAll(e1,e2 |
e1 <> e2 implies e1.chars <> e2.chars)

For the CLP version, this invariant is unrolled by EMFtoCSP
into n(n − 1) constraints of the form eqstr(X, Y, 0) (one for
each pair of variables X and Y ). Optionally, simple syntactic
forms as the given OCL invariant can be recognized and trans-
lated into an alldifferent constraint (when string domains are
used). Figure 6 shows the Alloy versions. We have omitted,
again, the length constraint for the case with string domains
in Alloy.

As before, we have tested our implementation on this
case in two modes, with and without domains. When using
domains, we have used w = 1.5n as the size of the domain
dictionary. The entries in the dictionary of the CLP version
were randomly generated (but all different from each other)
with random lengths between 1 and 15.

The first plot in Fig. 7 shows the results for the domain-free
case. For the tests, we have varied the size of the alphabet (26
and 127) and the allowed range for lengths (2..5, 2..10, 2..30).
We can see that the runtime of Alloy becomes very large even
for small string lengths and a small alphabet size. In contrast,
our approach handles 100 mutually different strings in less
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(a) (b)

Fig. 4 Performance results for the MIN_LENGTH test case

Fig. 5 Example model. The value for n is varied in the following tests

than a second for small string sizes and alphabets. It performs
still in less than 10 s on the extreme case that all strings have
a length of 50, which does not allow for any shortcuts in
the propagation due to different string lengths, and which
imposes a large number of finite domain constraints on the
elements of the strings.

The second plot in Fig. 7 shows the results for the domain
dictionary case. Again, the Alloy version scales worst, fol-
lowed by the unrolled equalities CLP version. The alldif-
ferent version scales best, and can generate several hundred
strings in a few seconds.

We have to say clearly that this test case is only tractable
for our approach when it is satisfiable. When, the dictio-
nary contains less than n elements (thus, the strings cannot
be mutually different), the search space has to be exhaus-
tively traversed. In this case, even for small values for n, our
approach becomes unfeasible (for n = 10, detecting unsat
takes about 30 s).

Similarly, when n is larger than the alphabet size a, a
labeling procedure that first labels all string length to 1,
the element labeling (by the finite domain solver) will try
to label the elements in n! combinations (i.e., backtracking
steps). In practice, we have modified our labeling procedure
to be slightly more elaborated than the one in Definition 5. In
our implementation, we perform two labeling passes: In the
first pass, we only give the element labeling a backtracking
credit of 1 for small values of n (exactly to skip such local
labeling). Only when we cannot find a solution in this first
pass, we backtrack and perform the element labeling with-
out restrictions. In general, however, the problem remains for

(a)

(b)

Fig. 6 Alloy specifications for the MUTUALLY_DIFFERENT test
case

unsatisfiable problems, that our approach does not have sym-
metry breaking, as SAT solvers have. Thus, when the string
constraints are unsatisfiable, it will search a (potentially very
large) number of symmetric constellations.

Our third test case, DEPENDENT, poses several string
constraints to make their content dependent on each other:
Given n different strings, at least one string must contain
the substring ‘@’ (think of an email address), at least one
substring must start with ‘http:’ (think of a website), and
every string that starts with ‘http:’ must not contain ‘@’. In
OCL:

context Context inv: elements−>exists(e | e.chars.indexOf(’@’) <> 0)
context Context inv: elements−>exists(e | e.chars.substring(1,5) = ’http:’)
context Context inv: elements−>forAll(e |

e.chars.substring(1,5) = ’http:’ implies e.chars.indexOf(’@’) = 0)

As a fourth case, DEPENDENT_MUTUALLY_
DIFFERENT, we furthermore request that all strings are
pairwise different, as in the first test case. We have again
translated the OCL invariants into our constraint system
using EMFtoCSP, and into Alloy using the default oper-
ations on sequence (not shown here). Figure 8 shows the
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(a) (b)

Fig. 7 Performance results for the MUTUALLY_DIFFERENT test case

(a) (b)

Fig. 8 Performance results for the DEPENDENT and DEPENDENT_MUTUALLY_DIFFERENT test cases

result using strings without domains (left) and using a dictio-
nary containing w = 1.5n random entries, including entries
to satisfy the problem (right). We have set a = 26 and
l = 2. For the test case DEPENDENT, both the free label-
ing and the dictionary version scale very well. The trans-
lation into sequences for Alloy, in contrast, becomes again
unfeasible for even small numbers of strings, small alphabets,
and short lengths. Notice that an Alloy dictionary version
without using strings, as for MUTUALLY_DIFFERENT
is not possible here, as we consider the individual ele-
ments in the second and third test cases. For the DEPEN-
DENT_MUTUALLY_DIFFERENT, both the free labeling
and the dictionary version scale still much better than the
Alloy version, but, as expected, becomes impractical sooner
than in the second test case.

As for the previous example, if we consider an unsatisfi-
able version DEPENDENT_UNSAT of the previous test case
as shown below, our approach times out for small values of

n, u, and a, whereas Alloy can still handle (and detect the
unsatisfiability of) those cases, since the unsatisfiability is
not detected in the constraint store before actually labeling
all individual string elements.
context Context inv: elements−>forAll(e | e.chars.indexOf(’@’) <> 0)
context Context inv: elements−>forAll(e |

e.chars.substring(1,5) = ’http:’ implies e.chars.indexOf(’@’) = 0)
context Context inv: elements−>exists(e | e.chars.substring(1,5) = ’http:’)

6 Threats to validity

We see two threats to the validity for the scalability results
for our approach. First, our approach scales well on prob-
lems that can be solved by propagation, while it degrades
massively on problems that require exhaustive search. How-
ever, the set of problems that are tractable in this sense
is not explicitly defined. In particular, we do not provide
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a procedure that could statically determine this a priori
for a given set of OCL constraints. Even if such a pro-
cedure could be designed in a computational cheap way
(which we doubt, given the NP-hard nature of even sim-
ple string constraints), it would be dependent on the char-
acteristics of the underlying finite domain solver. Thus, we
cannot exclude that there might be ‘obviously easy’ string
constraints that still cannot be handled by our approach.
Future work, therefore, requires to conduct more extensive
case studies and might require the incorporation of further
rules or heuristics to optimize the backtracking for such
cases.

Second, EMFtoCSP might perform bad even for models
with tractable string constraints, when the non-string-related
constraints cannot be efficiently handled. Our scalability tests
intentionally focused on models that are structurally tractable
for EMFtoCSP, to measure and analyze the performance of
the string solver.

7 Related work

The community has developed several approaches and tools
for automated solving for OCL-annotated models. To deal
with the computational complexity of the problem (which
is undecidable for OCL in general), most of them are based
on some underlying formalism for which sophisticated deci-
sion procedures and tools exist, such as, first-order logic and
SMT [7], relational logic [2,19,20], Boolean satisfiability
[28], genetic algorithms [1], graph grammars [8,31], logic
programming [24] and CLP [5].

All of these works support a more or less extensive subset
of OCL (e.g., including quantifiers and collections), but, to
our knowledge, only Kuhlmann et al. [19] provide real sup-
port for string operations. Their work is based on Kodkod
(the relational solver behind Alloy). Since their implemen-
tation of the string operations has not been available at the
time of writing, we could not evaluate the performance of
their encoding on large instances. However, since it uses an
(index, character) relation to encode strings, it very closely
resembles the representation of sequences in Alloy, with the
exception that they furthermore include support for the unde-
fined string, which we do not consider. From the perspec-
tive of performance and scalability, their approach should
thus behave either similarly or worse (because of the unfold-
ing of OCL’s multi-valued logic) as Alloy on our exam-
ples. The work of Ali et al. [1] considers strings, too, but
the approach, which is based on genetic algorithms, is not
exhaustive.

Outside of MDE, reasoning on strings has been performed
in various formalisms, both for bounded and unbounded
strings. Several solvers for Satisfiability Modulo Theo-
ries (SMT) support theories that can be used to represent

strings, such as arrays and bit-vectors. For example, Bjorner
et al. [3] perform path analysis for String-manipulating pro-
grams using SMT. In addition to the theory-based works,
several approaches reason about string constraints using
finite automata, e.g., [11,14,15,18,30]. These approaches are
much stronger than our solver in exhaustively checking even
NP-hard string constraints (e.g., using symbolic reasoning).
But, to our knowledge, they have not been applied to model
instantiation, where string constraints are only one, simple,
part of the overall problem (but with a potentially large num-
ber of string variables).

We expect that our string solver can be ported in a straight-
forward manner to other CLP environments that support
CHR and finite domain constraints, too, such as SWI-Prolog
and SICStus Prolog do. In general, our handling rules could
be implemented using lower level CLP concepts, such as sus-
pended goals and meta-attributes, too, using the CHR rules
as specification. We expect that our constraint handler can
also be integrated into other CLP-based model finders such
as [6,21,22].

8 Conclusion

In the context of OCL-annotated models, systematic
approaches (‘model finders’) are required to check their sat-
isfiability (in verification activities) and to generate instances
of them (in, e.g., testing and validation activities). As both
checking satisfiability and generating instances are very sim-
ilar to each other from a theoretical perspective, the practi-
cal requirements are different. In general, model verification
calls for exhaustive exploration of the search space, and for
support to check even intractable constraints in a reasonable
time (given the computational complexity of the problem).
On the other hand, model-based testing and validation often
do not pose intractable string constraints but call for suffi-
ciently large instances.

When adding support for OCL well-formedness rules
to model finding, the tension between both requirements
becomes even more pronounced: On the one hand, even sim-
ple theories of strings are already NP-hard, and on the other
hand, strings of reasonable length introduce a very large num-
ber of variables (when viewed on the element level).

We have presented a CLP-based solver, defined using
CHR, that is suited to efficiently handle large, lightweight
string problems. It can be combined seamlessly with other
constraint solvers. Our constraints are suited to directly
encode the operations of the main OCL string operations.
Using our solver, we have implemented an extension of the
EMFtoCSP model finder that now supports OCL string oper-
ations.

Our implementation scales better than our reference, the
popular relational model finder Alloy, on tractable constraints
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that our approach can handle by propagation. It provides a
way to automatically instantiate such models (e.g., as test
cases) on a scale that cannot be handled by a simple rela-
tional/SAT encoding. On intractable constraints, it performs
worse. Thus, it complements these approaches for model
finding and closes a gap in model finding.

References

1. Ali, S., Iqbal, M.Z.Z., Arcuri, A., Briand, L.C.: A search-based
OCL constraint solver for model-based test data generation. In:
QSIC, pp. 41–50 (2011)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges
of model transformation from UML to Alloy. Softw. Syst. Model.
9(1), 69–86 (2010)

3. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis
for string-manipulating programs. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 307–321. Springer,
Berlin (2009)

4. Büttner, F., Cabot, J.: Lightweight string reasoning for OCL. In:
Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos,
D.S. (eds.) Modelling Foundations and Applications-Proceedings
of the 8th European Conference, ECMFA 2012. LNCS, vol. 7349,
pp. 244–258. Springer, Berlin (2012)

5. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal
verification of UML/OCL models using constraint programming.
In: Stirewalt, R.E.K., Egyed, A., Fischer, B. (eds.) Proceedings of
the Automated Software Engineering, ASE 2007. ACM (2007)

6. Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite
satisfiability of UML class diagrams by constraint programming.
In: Proceedings of the CP 2004 Workshop on CSP Techniques with
Immediate Application (2004)

7. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability
for OCL constraints. Electron. Commun. EASST 24, 1–13 (2009)

8. Ehrig, K., Küster, J., Taentzer, G.: Generating instance models from
meta models. Softw. Syst. Model. 8, 479–500 (2009)

9. Frühwirth, T.W.: Constraint handling rules. In: Podelski, A. (ed)
Constraint Programming. LNCS, vol. 910, pp. 90–107 (1994)

10. Frühwirth, T.W.: Constraint handling rules: the story so far. In:
Bossi, A., Maher, M.J. (eds.) Proceedings of the 8th International
ACM SIGPLAN Conference on Principles and Practice of Declar-
ative Programming (PPDP), 10–12 July 2006, Venice, Italy, pp.
13–14. ACM (2006)

11. Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi,
F. (ed) Principles and Practice of Constraint Programming-CP
2003. LNCS, vol. 2833 (2003)

12. González Pérez, C.A., Buettner, F., Clarisó, R., Cabot, J.:
EMFtoCSP: a tool for the lightweight verification of EMF models.
In: Formal Methods in Software Engineering: Rigorous and Agile
Approaches (FormSERA), Zurich, Switzerland (2012)

13. González, C.A., Büttner, F., Clarisó, R., Cabot, J.: EMFtoCSP:
a tool for the lightweight verification of EMF models. In: Formal
Methods in Software Engineering: Rigorous and Agile Approaches
(FormSERA), Workshop at ICSE, Proceedings (2012)

14. Hooimeijer, P., Veanes, M.: An evaluation of automata algorithms
for string analysis. In: Jhala, R., Schmidt, D.A. (eds) VMCAI.
LNCS, vol. 6538, pp. 248–262 (2011)

15. Hooimeijer, P., Weimer, W.: StrSolve: solving string constraints
lazily. Autom. Softw. Eng. 19(4), 531–559 (2012)

16. Jackson, D.: Alloy: a lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol. 11(2), 256–290 (2002)

17. Jha, S., Seshia, S.A., Limaye, R.: On the Computational Com-
plexity of Satisfiability Solving for String Theories. CoRR,
abs/0903.2825:1–11 (2009)

18. Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst,
M. D.: HAMPI: a solver for word equations over strings, regular
expressions and context-free grammars. ACM Trans. Softw. Eng.
Methodol. (TOSEM) 21(4):25 (2012)

19. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational
logic and back. In: France, R.B., Kazmeier, J., Breu, R., Atkin-
son, C. (eds) Model Driven Engineering Languages and Systems-
15th International Conference, MODELS 2012, Innsbruck, Aus-
tria, September 30-October 5, 2012. Proceedings. Lecture Notes in
Computer Science, vol. 7590, pp. 415–431. Springer, Berlin (2012)

20. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of
OCL models by integrating SAT solving into USE. In: Bishop, J.,
Vallecillo, A. (eds.) TOOLS 201. LNCS, vol. 6705, pp. 290–306.
Springer, Berlin (2011)

21. Malgouyres, H., Motet, G.: A UML model consistency verification
approach based on meta-modeling formalization. In: Proceedings
of the 2006 ACM Symposium on Applied Computing, SAC ’06,
pp. 1804–1809, New York, NY, USA, ACM (2006)

22. Maraee, A., Balaban, M.: Efficient reasoning about finite satisfia-
bility of UML class diagrams with constrained generalization sets.
In: Proceedings of the 3rd European conference on Model Driven
Architecture-Foundations and Applications, ECMDA-FA’07, pp.
17–31, Berlin, Heidelberg. Springer, Berlin (2007)

23. OMG. Object Constraint Language Specification, version 2.3.1
(Document formal/2012-01-01) (2012)

24. Queralt, A., Teniente, E.: Verification and validation of UML con-
ceptual schemas with OCL constraints. ACM Trans. Softw. Eng.
Methodol. 21(2), 13 (2012)

25. Rossi, F., Van Beek, P., Walsh, T.: Handbook of constraint pro-
gramming. Elsevier Science, Amsterdam (2006)

26. Schimpf, J., Shen, K.: ECLiPSe: from LP to CLP. Theory Pract
Log Program 12, 127–156 (2012)

27. Sneyers, J., Weert, P.V., Schrijvers, T., Koninck, L.D.: As time goes
by: constraint handling rules. TPLP 10(1), 1–47 (2010)

28. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL data types
for SAT-based verification of UML/OCL models. In: Gogolla,
M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 152–170.
Springer, Berlin (2011)

29. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In:
Grumberg, O., Huth, M. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems, 13th International Conference,
TACAS 2007, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2007 Braga, Portugal,
March 24–April 1, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4424, pp. 632–647. Springer, Berlin (2007)

30. Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic Regu-
lar Expression Explorer. In: ICST, pp. 498–507. IEEE Computer
Society (2010)

31. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation
of restricted OCL constraints into graph constraints for generating
meta model instances by graph grammars. Electr. Notes Theor.
Comput. Sci. 211, 159–170 (2008)

123



Lightweight string reasoning in model finding 427

Author Biographies

Fabian Büttner received his
diploma and Ph.D. degrees in
computer science from the Uni-
versity of Bremen. He is a
researcher and practitioner in
modeling and model-driven engi-
neering and has been consult-
ing several companies and pub-
lic administrations. Since 2010,
he is a postdoctoral fellow at the
AtlanMod team of INRIA and
the École des Mines de Nantes
in France, where is research-
ing automated testing and verifi-
cation approaches for modeling

and model transformations.

Jordi Cabot is currently leading
the AtlanMod team, an INRIA
research group at École des
Mines de Nantes (France). Pre-
viously, he has been a post-
doctoral fellow at the University
of Toronto, a senior lecturer at
the UOC (Open University of
Catalonia) and a visiting scholar
at the Politecnico di Milano.
He received the BSc and PhD
degrees in Computer Science
from the Technical University
of Catalonia. His research inter-
ests include conceptual model-

ing, model-driven and web engineering, formal verification and social
aspects of software engineering. He has written more than 70 publica-
tions in international journals and conferences in the area. Apart from
his scientific publications, he writes and blogs about all these topics in
his Modeling Languages portal (http://modeling-languages.com).

123

http://modeling-languages.com

	Lightweight string reasoning in model finding
	Abstract 
	1 Introduction
	2 Background
	2.1 Constraint logic programming
	2.2 Constraint handling rules

	3 A lightweight string constraint solver
	3.1 Representations of strings and string constraints in CLP
	3.2 Handling rules for string constraints
	3.3 Labeling
	3.4 Extension: an alldifferent constraint for strings

	4 Integration into the EMFtoCSP model finder
	5 Performance and scalability
	6 Threats to validity
	7 Related work
	8 Conclusion
	References


