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Abstract. In Model-Driven Engineering (MDE), Higher-Order Trans-
formations (HOTs) are model transformations that analyze, produce or
manipulate other model transformations. In a previous survey we clas-
sified them, and showed their usefulness in different MDE scenarios.
However, writing HOTs is generally considered a time-consuming and
error-prone task, and often results in verbose code.
In this paper we present several proposals to facilitate the definition of
HOTs in ATL. Each proposal focuses on a specific kind of scenario. We
validate our proposals by assessing their impact over the full list of HOTs
described in the survey.

1 Introduction

With the continuous growing in the popularity of the transformational approach
in Model Driven Engineering (MDE), a vast number of model transformations is
being developed and organized in complex patterns. Model transformations are
becoming a common technological means to handle models both at development
time and at runtime.

In complex environments, where transformations are a central artifact of the
software production and structure, the idea of transformation manipulation nat-
urally arises to automatically generate, adapt or analyze transformation rules.
While transformation manipulation can already be performed by means of an in-
dependent methodology (e.g., program transformation, aspect orientation), the
elegance of the model-driven paradigm allows again the reuse of the same trans-
formation infrastructure, by defining model transformations as models [4]. The
transformation is represented by a transformation model that has to conform
to a transformation metamodel. Just as a normal model can be created, mod-
ified, augmented through a transformation, a transformation model can itself
be instantiated, modified and so on, by a so-called Higher Order Transforma-
tion (HOT). This uniformity is beneficial in several ways: especially it allows
reusing tools and methods, and it creates a framework that can in theory be ap-
plied recursively (since transformations of transformations can be transformed
themselves).

In previous work [17], we investigated how developers have used HOTs to
build applications. We detected four wide usage classes, Transformation Anal-
ysis, Synthesis, Modification and Composition, and for each class we described
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how HOTs were integrated in the application structure. To perform this analysis
we gathered a set of 41 HOTs in different transformation languages, comprising
all the ATL HOT applications published at that date, to our knowledge.

A preliminary analysis of this dataset confirmed an intuitive perception about
HOT programming: while HOTs are becoming more and more necessary for
complex transformational scenarios, HOT programming tends to be perceived
as a tedious activity. HOTs are generally very verbose, even in simple cases.
This seemingly unnecessary verbosity could strongly hamper the diffusion of
the HOT paradigm. It makes HOTs less readable and the whole development
activity more time-consuming and error-prone.

It is important to remark that the reasons for the verbosity of HOTs are
not to ascribe to a fault in the transformation language design. The manipu-
lation of transformation models is made complex by the fact that metamodels
of programming languages (such as ATL) are inherently complex. For the sake
of uniformity, model transformations deal with these complex metamodels in
the same way as they deal with any other metamodel, without providing any
specific facility. This paper represents a first step in the direction of improving
the definition of this special kind of transformation.

In this sense, the contribution of the paper is a set of proposals for increasing
the productivity of HOT programming in ATL, by providing both a support
library and directly extending the ATL language syntax and semantics. The
paper provides an assessment of the impact of these proposals on the length
of real-world HOTs. While we focus our discussion on ATL, the results of this
paper can be easily generalized to other transformation environments.

The rest of the paper is organized as follows: Section 2 introduces the basic
concept of HOT; Section 3 suggests a set of practical enhancements to improve
HOT programming in ATL; Section 4 evaluates the outcome of applying the
previous proposals to a set of real-world HOTs; Section 5 compares our approach
to HOTs with related work; Section 6 draws the conclusions.

2 Higher-Order Transformations

An essential prerequisite for fully exploiting the power of transformations is the
ability to treat them as subjects of other transformations. In an MDE context,
this demands the representation of the transformation as a model conforming to
a transformation metamodel.

Not all transformation frameworks provide a transformation metamodel. In
this work we will refer to the AmmA framework [13] that contains a mature
implementation of the ATL transformation language. Within AmmA an ATL
transformation is itself a model, conforming to the ATL metamodel. Besides the
central classes of Rule, Helper, InPattern, and OutPattern the ATL metamodel
also incorporates the whole OCL metamodel to write expressions to filter and
manipulate models.

Once the representation of a transformation as a transformation model is
available, a HOT can be defined as follows:
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Definition 1 (Higher-order transformation). A higher-order transforma-
tion is a model transformation such that its input and/or output models are
themselves transformation models.

According to this definition HOTs either take a transformation model as
input, produce a transformation model as output, or both.

The typical schema of a HOT, particularized for the AmmA framework, is
shown in Figure 1. This example reads and writes a transformation, e.g. with
the purpose of performing a refactoring. The three operations shown as large
arrows at level M1 (Models) are:

– Transformation injection. The textual representation of the transformation
rules is read and translated into a model representation. This translation in
AmmA is performed using TCS [11]. The generated model is an instance of
the ATL metamodel.

– Higher-order transformation. The transformation model is the input of a
model transformation that produces another transformation model. The in-
put, output and HOT transformation models are all conforming to the same
ATL metamodel.

– Transformation extraction. Finally an extraction is performed to serialize
back the output transformation model into a textual transformation specifi-
cation.

Note that the injection an extraction operations are not always involved in a
HOT. For instance, the source transformation model may come from a previous
transformation, and already be in the form of a model. Similarly, the target
transformation model is sometimes reused as a model without need to serialize
it.

Fig. 1. A typical Higher-Order Transformation.
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3 Facilitating HOT Development

To approach the problem of facilitating HOT development we started, in [17],
by identifying four groups of similar HOT applications and gathering real-word
examples for each one of them. The transformation classes can be characterized
by their input and output models, in a schema that we briefly summarize here:

Transformation analysis: HOTs that process other transformations to ex-
tract meaningful data. They have at least one transformation as input model,
no transformations as output models.

Transformation synthesis: HOTs that create new transformations from data
modeled in other forms. They have no transformations as input models, at
least one transformation as output model.

Transformation modification: HOTs that manipulate the logic of an input
transformation. They have one transformation as input model, one transfor-
mation as output model.

Transformation (de)composition: HOTs that merge or split other transfor-
mations, according to a (de)composition criterion. They have at least one
transformation as input model, at least one as output model, and the input
and/or the output models contain more than one transformation.

Inspection of previous work on HOTs and our experience with HOT develop-
ment in ATL, has highlighted that the development of transformations in each
one of these classes shows peculiar and recurrent problems. In this section we
describe the problems and, for every class, we present a proposal to allow simpler
and more concise HOTs in ATL.

We believe our results can be generalized to other transformation frame-
works. In this sense we also believe that this paper could be an useful working
example of transformation language extension for higher-order applications in
every framework.

The choice to focus the analysis on ATL is justified by the fact that previous
work in [17] has shown that ATL is the preferred language for HOTs development
to date. The ideas of this paper are based on the analysis of a set of 42 freely
available transformations in ATL, that constitute an up-to-date sample of HOT
applications in industry and research. Moreover, this significant set of examples
are leveraged for validating our proposals in Section 4.

When possible we base our proposals on the built-in extension mechanisms
of ATL. ATL provides three ways to reuse transformation modules.

Libraries. Collections of helpers, i.e. query operations whose body is defined
by OCL expressions.

Module superimposition. A Module A can be superimposed to a Module B,
obtaining a Module C, by a simple kind of internal composition such that:
1) C contains the union of the sets of transformation rules and helpers of A
and B ; 2) C does not contain any rule or helper of B, for which A contains
a rule or helper with the same name and the same context.
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Transformation composition. ATL Modules can be composed by executing
them sequentially or in articulated patterns, usually using ANT scripts (this
kind of composition is usually called external composition).

In this paper we will make use of libraries and transformation composition.
Especially the second technique is particularly powerful, thanks to the uniformity
of the transformational paradigm. For instance, HOT composition allows us to
extend the ATL language without even touching the language implementation.
In fact, it is possible in principle to add a higher-order preprocessing phase
before the transformation execution, to have it translated in an equivalent version
compatible with the standard environment.

When the extension mechanisms are not sufficient for our purposes we suggest
extensions to the ATL language implementation and show the outcome of these
extensions. Depending on the case, it will be more convenient to extend the ATL
virtual machine or the compiler.

3.1 Transformation Analysis

HOTs in the transformation analysis class share a single aspect, i.e. being ap-
plied to transformation models conforming to the ATL metamodel. They need
to navigate the ATL metamodel and return its instances, by defining filtering
conditions on it.

In ATL, the logic for input navigation and filtering is scattered in several
places: filters inside input patterns, variable definitions in the using part of
rules, imperative sections. The navigation and filtering logic contained in these
parts is composed by OclExpressions that can be very complex. ATL provides
an ad-hoc means to modularize this logic, i.e. libraries of Helpers.

To facilitate the development of analysis HOTs we propose a HOT library,
composed by those helpers that we found to be recurrently used within our set
of HOTs. The helpers that we propose can be roughly divided in the following
categories.

– Helpers that executes a query over all instances of a metaclass in the input
metamodel. Our proposal includes:
• helpers to retrieve ATL rules depending on the type of their matched or

generated elements (generatingRules, matchingRules, copyRules),
• a HOT helper to retrieve the calls to operations and helpers by providing

their name (callsByName()),
• an helper to check if the contextual element belongs to one of the input

transformations (belongsTo()).
– Helpers that implement a recursive logic, when some associations between

metaclasses can be navigated recursively. We provide the following helpers.
• Within the OCL Package a PropertyCallExpression in the OCL meta-

model has a source association with another OclExpression. This ex-
pression can have a source too, and so on. A navigationRootExpression()
helper can navigate recursively the source relations to return the root of
the chain.
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• Another important example is given by the refImmediateComposite()
operation, that returns the immediate container of the contextual ele-
ment. We provide several recursive versions: firstContainerOfType() to
get a container of a given generic type, rootExpression() to get the root
of a complex OclExpression, knownVariables() and containedVariables()
to get the variables defined within or before the contextual element.

Distributing the previous helpers in a standard HOT-specific library for ATL
allows HOT developers to simply import them in any HOT. This would allow
for shorter HOTs but also, in our opinion, it would foster a general improvement
of the transformation design and reusability.

Table 1 lists all the helpers showing for each one the context type, the result
type and a short description. This library of helpers is publicly available at [16].

Name Context Returns
Description.

belongsTo(modelName: String) ATL!OclAny Boolean
return true if the element belongs to the specified model.

firstContainerOfType(ATL!OclType) ATL!OclAny ATL!OclAny
compute the ATL element of the specified type in which the contextual element is declared

rootExpression ATL!OclExpression ATL!OclExpression
navigationRootExpression ATL!PropertyCallExp ATL!OclExpression
return the root OCL element of the containment or navigation tree that includes the contextual
element.

knownVariables ATL!OclAny OrderedSet(ATL!VariableDeclaration)
containedVariables ATL!OclAny OrderedSet(ATL!VariableDeclaration)
computes an ordered set containing the VariableDeclarations that are defined higher or lower than
the contextual ATL element in its namespace tree.

generatingRules ATL!OclModelElement OrderedSet(ATL!Rule)
matchingRules ATL!OclModelElement OrderedSet(ATL!Rule)
copyRules ATL!OclModelElement OrderedSet(ATL!Rule)
computes an ordered set containing all the rules that can generate, match or copy the contextual
element type.

callsByName(name: String) thisModule OrderedSet(ATL!NavigationExp)
computes an ordered set containing the calls to operations with the given name.

Table 1. A library for HOTs

3.2 Transformation Synthesis

HOTs in the transformation synthesis group are characterized by the task of
producing new ATL code, as an output model conforming to the ATL meta-
model. The production of ATL code is usually parametrized using one or more
input models, but no assumption can be done on the structure of the input
metamodels.

In ATL, new output elements are created by specifying them inside the Out-
putPatterns of transformation rules. An OutputPattern has to fully describe all
the elements to create, with their attributes and associations. Usually “normal”
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transformation rules have simple output patterns and interact with each other to
create complex models. In synthesis HOTs, instead, a single transformation rule
is often in charge of creating several elements at once, leading to the development
of complex OutputPatterns.

In our HOT dataset, typical examples of complex output patterns are related
to the creation of:

– the root of a new transformation module, including references to its input
and output metamodels;

– a new transformation rule or helper, together with its complete input and
output patterns;

– complex OCL expressions.

These output patterns are generally very verbose. For example the second
one, depending on the complexity of the generated transformation rule, can
contain a large number of output elements and feature assignments. This results
in a high percentage of LOC spent for building the output part of HOT rules.

Our experience has shown that the impact of output patterns in HOT ver-
bosity is remarkable. For instance, Listing 1.1 shows the example of a HOT rule
that synthetizes a new ATL rule. The example is taken from the KM32ATLCopier
HOT [9] that, given a metamodel as input (in the KM3 format), generates a
copier for that metamodel, i.e. a transformation that makes a copy of any input
model conforming to that metamodel. The rule shown in Listing 1.1, generates
a copier for each KM3 class.

As it can be seen in the example, the output pattern has to create an element
for each metaclass of the abstract syntax, and fill the features of these elements
with 1) constant values, 2) references among the elements, 3) variables calculated
from the input model.

We propose to extend ATL, by allowing the production of ATL rules directly
using an adapted version of the ATL concrete syntax when defining output
patterns. Since ATL has an unambiguous concrete syntax, it is possible to parse
it and derive which model elements have to be created and which constant values
and inter-element references are needed.

Listing 1.2 shows the same rule as Listing 1.1, using the proposed syntax.
Output pattens can be directly specified with an embedded concrete syntax
by delimiting it using special sequences of characters, i.e. ‘|[’ and ‘]|’. In the
example the output pattern contains the whole rule that has to be generated
(i.e. a simple copier). The embedded concrete syntax substitutes the long list
of model elements and bindings in Listing 1.1. Inside of the concrete-syntax
output patterns, it is possible to include strings obtained dynamically from the
input models. As it is shown in Listing 1.2, a special notation is introduced for
variables in the concrete syntax, denoted by the ‘%’ character. The variables
can be declared and defined in the using part of the transforamation rule, as
any other variable. They are ideally computed and expanded inside the output
pattern at runtime, after the rule has being matched.

This extension to ATL can be easily implemented using the above-mentioned
technique of HOT composition: a HOT pre-processor can take as input the trans-
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formation in Listing 1.2 and rewrite it as in Listing 1.1, to make it executable
on the default ATL environment. In this way, we can simplify the specification
of synthesis HOTs, without changing the ATL compiler.

Listing 1.1. Original ATL rule
rule Class {

from s : KM3 ! Class [ . . . ]
to

t : ATL ! MatchedRule (
isAbstract <− false ,
isRefining <− false ,
name <− ’ Copy ’ + s . name ,
inPattern <− ip ,
outPattern <− op

) ,
ip : ATL ! InPattern (

elements <− Sequence{ ipe } ,
filter <− f

) ,
ipe :

ATL ! SimpleInPatternElement (
varName <− ’s ’ ,
type <− ipet

) ,
ipet : ATL ! OclModelElement (

name <− s . name ,
model <− thisModule . metamodel

) ,
f : ATL ! OperationCallExp (

operationName <− ’ oclIsTypeOf ’ ,
source <− fv ,
arguments <− Sequence{ft}

) ,
fv : ATL ! VariableExp (

name <− ’s ’ ,
referredVariable <− ipe

) ,
ft : ATL ! OclModelElement (

name <− s . name ,
model <− thisModule . metamodel

) ,
op : ATL ! OutPattern (

elements <− Sequence{ ope}
) ,

ope :
ATL ! SimpleOutPatternElement (
varName <− ’t ’ ,
type <− opet ,
bindings <− b

) ,
opet : ATL ! OclModelElement (

name <− s . name ,
model <− thisModule . metamodel

)
}

Listing 1.2. Equivalent ATL rule
rule Class {

from s : KM3 ! Class [ . . . ]
using {

name : S t r ing = ’ Copy ’ + s . name ;
metamodel : S t r ing = thisModule . metamodel ;
meName : S t r ing = s . name ;

}
to
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t : ATL ! MatchedRule | [
rule %name {

from
s : %metamodel !% meName (

s . oclIsTypeOf (%metamodel !% meName )
)

to
t : %metamodel !% meName

}
] |

}

Our proposal can be generalized outside HOTs, to the concrete-syntax of
any output model. In this case, the ATL launch configuration should allow the
developer to specify any concrete syntax for output models, as a TCS file. The
pre-processor we propose would parse the provided TCS file and use it into the
pre-processing phase.

3.3 Transformation Modification and (De)Composition

Applications that modify ATL transformations and compose (or decompose)
them, generally need to parse one or more input transformations and generate
one or more output transformations. Hence, they contain both the aspects of
input filtering and output creation that characterize transformation analysis
and transformation synthesis. For this reason their development can benefit from
both the proposals in Sections 3.1 and 3.2.

Moreover, while the transformation logic for modification and composition is
generally strongly dependent on the applicative task, all the transformations of
this class share a further important aspect, i.e. the need to select and transport
chuncks of unchanged transformation code from the input to the output.

The ATL language provides an ad-hoc execution mode for transformations
that perform little changes on the input model, i.e. ATL refining mode. In this
mode, model elements that are not matched by an explicit transformation rule
are copied, with all their features, to the output model.

However, HOT developers in previous work have sometimes preferred alter-
natives to the built-in ATL refining mode:

– in some cases developers use superimposition to base their transformation
on ATLModuleCopier, a verbose HOT that simply performs a copy of the
whole input transformation, and they override only a small set of rules;

– other cases make use of several element copier rules, i.e. transformation rules
that copy a single ATL element from the input transformation to the output
transformation, with all its features and sometimes only slight modifications;

The choice to rely on these alternatives was probably related to limitations
in the implementation of refining mode in ATL2004 (e.g., the copying was per-
formed implicitely only for contained elements of copied elements and it was
mandatory to specify all bindings). The effort of copying some elements of a
transformation, while modifying others, have been reduced by the latest ver-
sion of the ATL language (ATL2006), that introduces in-place refining mode. In
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this mode every element stays unchanged if it is not explicitely matched by a
transformation rule.

Our experience has shown that migrating to ATL2006 refining mode has
already a big impact on the length of several HOTs, and we recommend the de-
velopers to consider in-place refining mode for every transformation modification
and (de)composition.

However, a few HOTs that do not present a general semantics of refinement,
need simply to copy a set of elements from the input to the output. In these
cases a fine-graned refining mode could be beneficial, allowing the user to choose
exactly which subset of the input model is subject to refinement. Refining rules
are our proposal to give the developer the possibility to specify with minimal
effort that a single element have to be copied to the output, together with all its
contained and associated elements.

To describe our proposal, we show an excerpt from the MergeHOT transfor-
mation, that creates a new transformation by the simple union of transformation
rules given in input. In this case, even the ATL2006 version of the refining mode
is not optimal, because it is able to refine only a single input module. Listing
1.3 is a solution in normal execution mode, where the developer is forced to in-
clude a long list of copying rules for all the elements of the two models to merge
(e.g., Binding, NavigationOrAttributeCallExp, VariableExp). Refining rules al-
low the substitution of all this code (more than 100 LOCs) with the excerpt in
Listing 1.4. The refining rule states that the MatchingRule have to be copied
to the output with a different name, and implicitly triggers the recursive copy
of all the elements contained in the MatchingRule, making the other HOT rules
superfluous.

Listing 1.3. Original ATL excerpt
rule matchedRule {

from
lr : ATL ! MatchedRule (

lr . isLeft or lr . isRight
)

to
m : ATL ! MatchedRule (

name <− lr . fromLeftOrRight + ’_ ’ + lr . name ,
children <− lr . children ,
superRule <− lr . superRule ,
isAbstract <− lr . isAbstract ,
isRefining <− lr . isRefining ,

inPattern <− lr . inPattern ,
outPattern <− lr . outPattern

)
}
rule inPattern {

from
lr : ATL ! InPattern (

lr . isLeft or lr . isRight
)

to
m : ATL ! InPattern (

elements <− lr . elements
)

}
. . . [ 1 0 0 lines ]
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Listing 1.4. Equivalent ATL excerpt
refining rule matchedRule {

from
lr : ATL ! MatchedRule (

lr . isLeft or lr . isRight
)

to
m : ATL ! MatchedRule (

name <− lr . fromLeftOrRight + ’_ ’ + lr . name
)

}

Similarly to the previous proposal, refining rules could provide a noticeable
gain in HOT conciseness, but also a general impact on ATL productivity outside
HOT development.

4 Experimentation

To assess the impact of our proposals on real-world transformations we eval-
uate a set of HOTs taken from industry and research publications. The set,
shown in Table 2, comprises all publicly available HOTs written in ATL, to our
knowledge. Most of the transformations in the dataset are already included in
the survey from [17] (or they are updated versions of those transformations). We
have chosen to remove from the dataset HOTs that are not hand-written but au-
tomatically generated, such as ATLCopier[17] because they can’t be considered
representative of HOT development. The set has also a few additions compris-
ing HOTs for: detecting constraints for chaining transformations [5], generating
transformations from matching models [7] or reconstructing matching models
from transformations [12]. Moreover Table 2 comprises the HOT we have built
in this paper, for the purpose of deriving structural data about our transfor-
mation dataset shown in the table. This HOT is executed iteratively over the
experimentation set using an ANT script [8]. The Analysis HOT is a second-
order HOT, since it expects another HOT as the input model. It generates an
Analysis Model, conforming to an Analysis metamodel, whose content is then
shown in tabular format. The complete code of the analysis tool can be found
in [16].

For each HOT in the dataset Table 2 shows:

– the classification of the HOT inside one of the four classes proposed in [17]
– the execution mode of the transformation, i.e. normal or refining;
– the input and output metamodels of the HOT;
– size metrics for the transformations (number of rules, number of helpers,

lines of code);
– experimentation results after individually applying each proposal: HOT-

library (1), concrete syntax in output patterns (2) and improved refining
mode (3); for each proposal we show:
• the number of times the specific proposal can be applied on the HOT,
• the new number of LOCs after applying the proposal,
• the percentage of improvement;
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– global experimentation results from the application of the three proposals at
once, comprising:
• the final number of LOCs,
• the percentage of improvement with respect to the original code.

The experimentation results were obtained by manually rewriting the HOTs
in Table 2 by means of: 1) substituting OCL expressions with calls to our HOT
Library, 2) substituting complex output patterns with their resulting concrete
syntax, 3) substituting copying rules with in-place rules (in ATL2006) or refining
rules. Each one of the substitutions has the effect of decreasing the global length
of the HOT.

Results in Table 2 show the optimizations have a clear impact on the sim-
plification of HOTs specification. On average, we can observe a decrease of the
LOCs by 35% (up to a 42% when considering the size of the transformations
in the computation). Note that LOC as a software size metric counts as well
comments and blank lines. Therefore, the real percentage of improvement on
the transformation code length is in fact higher.

As expected, the impact of a optimization type on a specific HOT depends
on the class the HOT belongs to. Therefore, to get the most of our optimizations
with the minimal effort, HOT designers should first classify the HOT in one of
the four categories and focus on applying the optimization described for that
category.

Even if difficult to numerically quantify, this reduction in the HOT length
brings some additional benefits: improves the modularity and reusability of
HOTs, reduces the possibility of errors and facilitates their extensibility and
maintanibility. We will conduct more experiments in the future to try to vali-
date these assumptions as well.

5 Related Work

This paper can be placed among proposals to speed-up transformation develop-
ment with pre-existing transformation languages. The main works in this area
focus on transformations by example [3],[15], model transformation patterns [10],
transformation generation [18]. Our work is the first to introduce specific exten-
sions for HOTs.

In the MDE community there is no previous work in evaluating the extension
of a model transformation language for specific transformation classes. This is
also due to the fact that, apart from the HOT class, a widely recognized catego-
rization of model transformations, independent of the transformation language,
is not available. Some transformation languages, such as RubyTL [6], are de-
signed with extensibility as one of the main requirements, but the potential of
this extensibility has yet to be investigated.

Extension mechanisms are instead deeply leveraged in more mature languages
in other technical spaces. For example, user communities develop around XSLT
extensions [1]. Using the XSLT extension mechanism, [14] propose a library for
Higher Order Functions (HOFs). The authors implement in XSLT a set of HOFs,
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Table 2. Semantic features of HOTs.
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classical in the functional programming paradigm (e.g. map, fold), accepting
XSLT templates as arguments. Our work is instead focused on facilitating the
development of new, user-defined HOTs in the transformational paradigm.

6 Conclusions and Future Work

HOTs are a relatively novel topic in MDE and specialized tools are not yet
available for them. In this paper we show how some modifications to a well-known
transformation language could facilitate HOT development by allowing more
concise transformations. We support experimentally our proposals, by measuring
their impact on a set of real-world HOTs.

Some of the proposals we introduce, namely Concrete Syntax in Output
Patterns and Refining Rules, have also a wider contribution scope, since they
could have a positive outcome also outside HOT classes.

There are several possible directions for future work. We plan to further ex-
ploit the homogeneity of HOT classes by defining transformation patterns and
introducing a pattern-based design methodology for them. We want to embed a
deeper support of HOTs in the AmmA environment, allowing the user to easily
define composite HOT patterns and to execute them seamlessly at compilation
time. Finally we plan to generalize our results to the other transformation lan-
guages, and create cross-environment tools for HOTs.
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