
A Research Agenda for Conceptual Schema-
Centric Development

Antoni Olivé1, Jordi Cabot2

1Universitat Politècnica de Catalunya, Spain
2Universitat Oberta de Catalunya, Spain

Abstract. Conceptual schema-centric development (CSCD) is a research goal that re-
formulates the historical aim of automating information systems development. In
CSCD, conceptual schemas would be explicit, executable in the production environ-
ment and the basis for the system’s evolution. To achieve the CSCD goal, several re-
search problems must be solved. In this paper we identify and comment on sixteen
problems that should be included in a research agenda for CSCD.

1 Introduction

The goal of automating information systems (ISs) building was established
in the 1960s [51]. Since then, the goal has been reformulated many times,
but the essential idea has remained the same: to automatically execute the
specification of an information system in its production environment.

Forty years later, it is clear that this goal has not been achieved to a sat-
isfactory degree. The main reason is that a number of major problems re-
main to be solved [41]. Most of these problems are technical, but others
are related to the lack of maturity in the information systems field, such as
the lack of standards. The insufficient standardization of languages and
platforms has hampered advances in the automation of systems building.
Fortunately, however, the last decade has seen the emergence of new stan-
dards related to information systems development. The progress made in
standardization provides an opportunity to revive the goal of automation
[50].

320 Antoni Olivé, Jordi Cabot

In [37] we proposed to call the goal “conceptual schema-centric devel-
opment” (CSCD) in order to emphasize that the conceptual schema should
be the focus of information systems development.

To achieve the CSCD goal, numerous research problems must be
solved. In this paper we propose a research agenda with sixteen main re-
search problems that we believe it is necessary to solve in order to achieve
that goal. This agenda extends, refines and updates the one proposed in
[37].

The paper is organized as follows. In the next section we briefly review
the role and contents of conceptual schemas. In Section 3 we characterize
the CSCD goal. We then present the proposed research agenda in Section
4. Finally, in Section 5 we summarize the conclusions of this paper.

2 Conceptual Schemas

In this section, we first review the main functions of ISs and then analyze
the knowledge required by a particular IS to perform these functions.
Through this analysis we will be able to define and establish the role of
conceptual schemas.

2.1 Functions of an Information System

Information systems can be defined from several perspectives. For the
purposes of conceptual modeling, the most useful is that of the functions
they perform. According to this perspective, an IS has three main functions
[3, p.74]:

Memory: To maintain a consistent representation of the state of a do-
main.
Informative: To provide information about the state of a domain.
Active: To perform actions that change the state of a domain.

The memory function is passive, in the sense that it does not perform ac-
tions that directly affect users or the domain, but it is required by the other
functions and it constrains what these functions can perform.

In the informative function, the system communicates some information
or commands to one or more actors. Such communication may be explic-
itly requested or implicitly generated when a given generating condition is
satisfied.

A Research Agenda for Conceptual Schema-Centric Development 321

With the active function, the system performs actions that change the
state of the domain. Such actions may be explicitly requested or implicitly
generated when a given generating condition is satisfied.

2.2 Knowledge Required by an Information System

In order to perform the above functions, an IS requires general knowledge
about its domain and knowledge about the functions it must perform. In
the following sections, we summarize the main pieces of knowledge re-
quired by each function.

If the memory function of an IS has to maintain a representation of the
state of the domain, the IS must know the entity and relationship types to
be represented and their current population. The entity and relationship
types that are of interest are general knowledge about the domain, while
their (time-varying) population is particular knowledge.

In conceptual modeling, an Information Base (IB) is the representation
of the state of the domain in the IS. The representation of the state in the
IB must be consistent. This is achieved by defining a set of conditions
(called integrity constraints) that the IS is required to satisfy at any time.
Such integrity constraints are general knowledge about the domain.

The domain state is not static. Most domains change over time, so their
state must also change. When the state of a domain changes, the IB must
change accordingly. There are several kinds of state changes. If they are
caused by actions performed in the domain, they are called external do-
main events. If they are caused by actions performed by the IS itself, they
are called generated domain events. The IS must know the types of possi-
ble domain event and the effect of each event instance on the IB. This is
also general knowledge about the domain.

If the informative function has to provide information or commands on
request, the IS must know the possible request types and the output it must
communicate. On the other hand, if there are generated communications
then the IS must know the generating condition and the output it has to re-
turn when the condition is satisfied.

In general, in order to perform the informative function, the IS needs an
inference capability that allows it to infer new knowledge. The inference
capability requires two main elements: derivation rules and an inference
mechanism. A derivation rule is general knowledge about a domain that
defines a derived entity or relationship type in terms of others. The infer-
ence mechanism uses derivation rules to infer new information.

If, in the active function, the IS has to perform a certain action on re-
quest, then the IS must know the possible request types and the action it

322 Antoni Olivé, Jordi Cabot

has to perform in each case. On the other hand, if a certain action must be
performed when a generating condition is satisfied, the IS must know this
condition and the action it has to perform.

2.3 Conceptual Schemas

The first conclusion from the above analysis is that in order to perform its
required functions, an IS must have general knowledge about its domain
and about the functions it has to perform. In the field of information sys-
tems, such knowledge is referred to as the Conceptual Schema (CS).

Every IS embodies a CS [29, 34, 48, p.417+]. Without a CS, an IS could
not perform any useful functions. Therefore, developers need to know the
CS in order to develop an IS.

The main purpose of conceptual modeling is to elicit the CS of the cor-
responding IS. As we have seen, given that all useful ISs need a CS, we
can easily reach the conclusion that conceptual modeling is an essential ac-
tivity in information systems development.

3 Conceptual Schema-Centric Development

In this section we reformulate the vision of the conceptual schema-centric
development (CSCD) of information systems. To achieve this vision, we
must be able to specify the initial conceptual schema, to execute it in the
production environment and to evolve it in order to support the new func-
tions of the IS. We call these three main distinguishing characteristics ex-
plicit, executable and evolving schema.

Explicit schema. Once the functions of the IS have been determined, there
must be an explicit, complete, correct and permanently up-to-date concep-
tual schema written in a formal language. We need a development envi-
ronment with tools that facilitate the validation, testing, reuse and man-
agement of (potentially large) schemas.

Executable schema. The schema is executable in the production environ-
ment. This can be achieved by the automatic transformation of the concep-
tual schema into software components (including the database schema)
written in the languages required by the production environment, or by the
use of a virtual machine that runs over this environment. In either case, the
conceptual schema is the only description that needs to be defined. All the
others are internal to the system and need not be externally visible.

A Research Agenda for Conceptual Schema-Centric Development 323

According to the conceptualization principle [27], conceptual schemas
exclude all aspects related to information presentation. Therefore, the
software responsible for handling user interactions (the presentation layer)
is outside the scope of CSCD.

Evolving schema. Changes to the functions of the IS require only the
manual change of its conceptual schema. The changes to this schema are
automatically propagated to all system components (including the database
schema and data) if needed.

4 Towards a Research Agenda for CSCD

CSCD is still an open research goal. There are many research problems
that must be solved before CSCD can become a widely used approach in
the development of industrial information systems. In this section, we
identify some of the research problems found related to the three CSCD
features presented above. Our starting point is the agenda presented in
[37], which we extend, refine and update here. We highlight the problems
related to CSCD; see [9, 14, 55] for other relevant research agendas in
conceptual modeling.

4.1 Explicit Schemas

Very large conceptual schemas. The conceptual schema of a large or-
ganization may contain thousands of entity types, relationship types, con-
straints, and so on. The development and management of (very) large con-
ceptual schemas poses specific problems that are not encountered when
dealing with small conceptual schemas. Conceptual modeling in the large
is not the same as conceptual modeling in the small. The differences are
similar to those observed between programming in the large and pro-
gramming in the small [16]. We need methods, techniques and tools to
support conceptual modellers and users in the development, reuse, evolu-
tion and understanding of large schemas.

So far, work on this topic has focused mainly on conceptual schemas for
databases [1, 11, 46]. In CSCD we have to deal with ISs and take into ac-
count both the structural (including constraints and derivation rules) and
behavioral schemas.

Business rules integration. A business rule is a statement that defines or
constrains certain aspects of a business. From the information systems per-

324 Antoni Olivé, Jordi Cabot

spective, business rules are elementary pieces of knowledge that define or
constrain the contents of and the changes to the information base. Business
rules are the main focus of a community that advocates a development ap-
proach in which the rules are explicitly defined, directly executed (for ex-
ample in a rules engine) and managed [8, 42]. Given that business rules are
part of conceptual schemas, we can state that the community already fol-
lows the CSCD approach as far business rules are concerned.

It is both useful and necessary to integrate the business rules and CSCD
approaches. It should be possible to extract the rules embedded in a
schema and to present them to users and conceptual modellers in a variety
of ways and languages, including natural language. Automated support for
this extraction and presentation is necessary. It should also be easy to pick
up on a particular rule and to integrate it into the schema. Automated sup-
port for this integration is desirable.

Similarly, the workflow community fosters the use of workflow specifi-
cations as the primary artefact in the software development process. Work-
flow specifications define a set of activity ordering rules that control the
workflow execution. These rules are usually executed and managed with
the help of dedicated workflow management systems. Workflow specifica-
tions should be also integrated with the CSCD approach.

Schema integration. A conceptual schema is very rarely developed by a
single conceptual modeller [47]. Instead, several sub-schemas are (sepa-
rately) developed by different modellers, each of whom addresses a spe-
cific part of the IS. To apply the CSCD approach, these sub-schemas must
subsequently be integrated in a single schema that represents the overall
view of the IS.

A first step in integrating the schemas is to identify and characterize the
relationships between the different sub-schemas (schema matching [40]).
Once these have been identified, matching elements can be linked in a co-
herent schema (schema merge [39]).

Previous research on this topic focuses on the integration of database
schemas [6, 38]. More recently, the problem has been studied at a more
abstract level (for example, [4] presents general operators for model
matching and merging). Nevertheless, much work remains to be done on
schema integration in the presence of general integrity constraints and de-
rived elements. Moreover, research on the integration of behavioural sche-
mas is still in a preliminary stage [49].

Complete and correct conceptual schemas. Several factors affect the
quality of a conceptual schema, as stated in the framework presented in the
seminal paper [28] and validated in [32, 33]. Completeness and correctness

A Research Agenda for Conceptual Schema-Centric Development 325

are two of the quality factors of conceptual schemas. A complete concep-
tual schema includes all knowledge relevant to the IS. A correct concep-
tual schema contains only correct and relevant knowledge. Correctness is
also referred to as validity. Consistency is subsumed by validity and com-
pleteness. In CSCD, completeness and correctness are the principal quality
factors. They can be achieved by using a very broad spectrum of ap-
proaches, including testing and verification. It should be possible to test
and verify conceptual schemas to at least the same degree that has been
achieved with software.

Several studies have focused on testing conceptual schemas [25, 30, 20,
57]. There are automatic procedures for the verification of some properties
of conceptual schemas in description logics [10]. Model checking is being
explored as an alternative verification technique [18]. Nevertheless, in all
these topics, a lot of work remains to be done [35].

Refactoring of conceptual schemas. In general, several complete and cor-
rect conceptual schemas may exist for the same IS. However, some are
better than others in terms of quality. Therefore, in some cases an initial
conceptual schema may be improved if it is first transformed into a better
(semantically-equivalent) alternative schema.

For this purpose, the application of refactorings at the model level has
been proposed. Refactoring was initially proposed at the code level [19] as
a disciplined technique for improving the structure of existing code (using
simple transformations) without changing the external observable behav-
iour. More recently, work has been done to apply this technique to design
models instead of to the source code [31]. In CSCD, we need specific
refactoring operations that take into account all the components in a con-
ceptual schema. General guidelines have not yet been developed to deter-
mine when and where to apply refactorings in order to improve the quality
of the conceptual schema.

Reverse engineering. Most legacy applications do not have an explicit
conceptual schema. To benefit from the CSCD approach, we must elicit
the explicit conceptual schema from the internal schema embodied in the
software components that form the legacy application. This process is
known as reverse engineering.

Reverse engineering applied to entity and relationship types and to the
taxonomies of conceptual schemas has been extensively studied for rela-
tional databases [15] and object-oriented languages [53]. However, much
work remains to be done regarding the reverse engineering of general in-
tegrity constraints and derived elements of schemas. Moreover, a complete
understanding of the application code in order to elicit the behavioural part

326 Antoni Olivé, Jordi Cabot

of the schema is also needed. Ideally, the interactions between the applica-
tion’s various software components should also be considered during the
reverse engineering process.

4.2 Executable Schemas

Materialization of derived types. In general, conceptual schemas contain
many derived entity and relationship types, with their corresponding deri-
vation rules [36]. For reasons of efficiency, some of these types must be
materialized. The process to determine the derived types that need to be
materialized should be as automatic as possible. Moreover, changes in the
population of base types may require changes in that of one or more mate-
rialized types. The propagation of these changes should be completely
automatic.

The work done on the selection of database views that need to be mate-
rialized in data warehouses [23] is highly relevant to the determination of
the derived types to materialize in ISs. Similarly, the large body of work
on the incremental maintenance of materialized database views [22] is
highly relevant to the more general problem of change propagation in ISs.

Enforcement of integrity constraints. Most conceptual schemas contain
a large number of integrity constraints. The IS must enforce these con-
straints efficiently. This can be achieved in several ways [52]. The main
approaches are integrity checking, maintenance and enforcement. In integ-
rity checking and maintenance, each constraint is analyzed in order to (1)
determine which changes to the IB may violate the constraint; (2) generate
a simplified form of the constraint, to be checked when a particular change
occurs; and, (3) (in maintenance) generate a repair action. In integrity en-
forcement, each event (transaction) is analyzed in order to (1) determine
which constraints could be violated by the effect of the event; and, (2)
generate a new version of the event effect that ensures that none of the
constraints will be violated.

In CSCD, the analysis—regardless of the approach taken—should be
fully automatic and able to deal with any kind of constraint. A general
method for this analysis does not yet exist. However, a great deal of re-
search and development work has been carried out on the enforcement of
constraints in the database field for relational, deductive and object-
oriented databases [12, 44]. The general method is likely to be an exten-
sion of this work. A recent step in this direction (for the integrity checking
strategy) is [13].

A Research Agenda for Conceptual Schema-Centric Development 327

From declarative to imperative behaviour specifications. There are two
different approaches for specifying the effect of the domain events of an
IS: the imperative and the declarative approaches [56]. In an imperative
specification, the conceptual modeller explicitly defines the set of changes
(insertions of entities and relationships, updates of attribute values, etc.) to
be applied over the IB. In a declarative specification, a contract for each
domain event must be provided. The contract consists of a set of pre and
postconditions. A precondition defines a set of conditions on the event in-
put and the IB that must hold when the domain event is issued, while post-
conditions state the set of conditions that must be satisfied by the IB at the
end of the domain event.

In conceptual modeling, the declarative approach is preferable since it
allows a more abstract and concise definition of the event effect and con-
ceals all implementation issues [56]. Nevertheless, in order to execute the
conceptual schema, these declarative specifications must be automatically
transformed into their equivalent imperative specifications. The main prob-
lem of declarative specifications is that they may be non-deterministic, i.e.
there may be several possible states of the IB that verify the postcondition
of a contract. This implies that a declarative specification may have several
equivalent imperative versions, which hampers the transformation process.

Up to know, there is no general method that automatically provides this
translation. Current solutions are mainly limited to deal with the frame
problem [7], which discusses the possible IB states for types that are not
referred to in the event contract. The automatic transformation for types
that do appear in the contract needs further investigation.

Reusability. The possibility of reusing previously developed software
pieces in the implementation of a new IS is one of the long-standing goals
in the software community. In CSCD, reusability could help to reduce the
effort required to transform the conceptual schema into an appropriate set
of software components by means of studying the commonalities between
the schema and a given set of existing software elements [2].

The main obstacle to a broader adoption of the reusability goal is the
problem of selecting the right software component/s to reuse. Currently,
the selection process is not completely automatic and requires a formal
definition of the software components and a semantic comparison between
the components and the conceptual schema [43]. This kind of analysis is
still under development, particularly for two specific types of software
components: commercial-off-the-shelf (COTS) components and web ser-
vices. Ideally, the selection process should also consider possible non-
functional requirements of the IS and the cost of integrating the selected
component into the rest of the system.

328 Antoni Olivé, Jordi Cabot

4.3 Evolving Schemas

Concept evolution. The most fundamental changes to a conceptual
schema are the addition or removal of concepts (entity, relationship or
event types or states in state machines) and the addition or removal of
edges in the concept generalization hierarchy. In CSCD, evolution must be
automatically propagated to the logical level [26]. Therefore, these
changes must be propagated to the logical schema(s) of the database(s)
(and/or to other software components generated for the execution of the
CS) and to its (their) instances. Changes to the generalization hierarchy
may induce a change (increase or decrease) in the population of some con-
cepts such that certain integrity constraints are violated. The IS should (ef-
ficiently) detect these violations and produce an appropriate response. Fur-
ther work on these topics must take into account the considerable amount
of existing work on database schema evolution, which focuses mainly on
concept evolution [5].

Furthermore, concept evolution may also affect other elements in the
conceptual schema. For instance, changes to a generalization hierarchy
may affect the general integrity constraints defined in the schema (some
constraints may become unnecessary while others may now be required).
Additionally, the formal definition of constraints, derivation rules and do-
main events may need to be adjusted after a concept evolution since they
may refer to elements that no longer exist in the schema or whose specifi-
cation (cardinality, data type, changeability, etc.) has been changed during
the evolution process.

Constraints evolution. Adding a constraint may turn the IB inconsistent.
Changing a constraint may be considered as a removal (which cannot lead
to any inconsistencies) plus an addition. When a constraint is added, the IS
has to check whether or not the current IB satisfies it. For very large IBs,
the checking procedure may need to be efficient. If one or more fragments
of the IB violate the constraint, the IS has to produce a response (to reject
the constraint, to ignore the inconsistency, to repair the fragment or to
handle the fragment as an exception).

In the database field, the problem of adding constraints has been studied
for particular constraints and database models [54]. In CSCD, we need to
be able to deal with particular constraints (like cardinalities) but also with
general constraints expressed in a conceptual modeling language, includ-
ing base and/or derived types.

Derivability evolution. The derivability of entity and relationship types
may change. A base type may become a derived type or vice versa. Fur-

A Research Agenda for Conceptual Schema-Centric Development 329

thermore, a derivation rule may also change. Changing the derivability of a
type may produce a change in its population and, indirectly, in that of other
types. If the change affects a materialized type it must be recomputed. For
large IBs, recomputation may need to be efficient. Changing the popula-
tion of a type may also induce the violation of certain integrity constraints.
The IS should (efficiently) detect these violations and produce an appro-
priate response.

Some work has been carried out on this topic [21], but much more needs
to be done. A partially similar problem in the database field is that of
“view adaptation” after view redefinition [24].

Completeness and correctness of the evolved schema. After evolving
the CS, it is necessary to check that the conceptual schema is still complete
and correct. This verification should be done efficiently. In particular, it is
only necessary to consider the evolved subset of the schema (together with
other schema elements that may have been affected by the evolution-
induced effects).

Approaches for the efficient verification of evolved schemas focus on
the detection of consistency (see, for example, [17]). These approaches
state that a conceptual schema is consistent if it satisfies a set of integrity
constraints (usually referred to as well-formedness rules) predefined by the
conceptual modeling language used in the specification of the schema.
These constraints restrict the possible structure of schemas defined with
that modeling language. Efficiency is achieved by checking the relevant
constraints on the evolved part of the schema. A constraint is relevant to an
evolved schema if changes in the schema could induce a violation of this
constraint.

Much work is required to efficiently verify other quality factors of the
evolved schema.

4.4 Other Research Problems

Benchmarks for CSCD. In most areas of computer science (databases,
computer architectures, programming and so on), an extensive set of
benchmarks have been developed to test the performance (or the covering
or any other property) of a method that addresses a research goal in that
area. Benchmarks are also useful for comparing different proposals tack-
ling the same goal.

In CSCD, benchmarks could help to measure the progress of the com-
munity regarding the different research goals presented in this study. Addi-
tionally, conceptual modellers could benefit from benchmarks when select-

330 Antoni Olivé, Jordi Cabot

ing a tool to specify the conceptual schemas. Several benchmarks are
needed, depending on the research goal concerned.

Education for CSCD. When the conceptual schema is placed at the centre
of the development process, the focus of software engineering education
needs to be shifted from code-centric to model-centric. As expressed in
[45], each role in the software development process requires appropriate
education. In CSCD, the main role is that of the conceptual modeller.
Therefore, we must develop appropriate teaching/learning techniques to
leverage the modeling abilities of software engineering students and practi-
tioners. This is a critical factor in the success of the CSCD approach.

We are currently witnessing an increase in the number of available
modeling courses (both virtual and traditional face-to-face courses), par-
ticularly for the popular Unified Modeling Language. However, most of
these courses focus on the notational aspects of modeling languages. In-
stead, in CSCD education, we must concentrate on clearly explaining the
semantics of the different modeling constructs and how they can be com-
bined to construct complete and correct conceptual schemas. A body of
examples of “good” and “bad” schemas for well-known domains would
therefore be very useful.

5 Conclusions

Conceptual schema-centric development (CSCD) is a reformulation of the
goal of automating information systems building that highlights the central
role of conceptual schemas in the automatic development of information
systems. In CSCD, conceptual schemas would be explicit, executable in
the production environment and the basis for the system evolution.

 To achieve the CSCD goal, numerous research problems must be
solved. The main purpose of this paper was to identify and comment on a
list of sixteen open problems that should be included in a research agenda
for CSCD.

We believe that this research agenda must be carried out before the
CSCD approach can become widely used in practice.

Acknowledgements

We wish to thank the GMC group (Jordi Conesa, Dolors Costal, Cristina
Gómez, Enric Mayol, Joan Antoni Pastor, Anna Queralt, Maria-Ribera

A Research Agenda for Conceptual Schema-Centric Development 331

Sancho, Ruth Raventós and Ernest Teniente) for many useful comments on
previous drafts of this paper. This work was partially supported by the
Ministerio de Ciencia y Tecnologia and FEDER under project TIN2005-
06053.

References

[1] Akoka, J., Comyn-Wattiau, I.: Entity-relationship and object-oriented model
automatic clustering. Data & Knowledge Engineering, 20, 1996, pp. 87-117

[2] Basili, V., Briand, L.C., Melo, W.: How reuse influences productivity in ob-
ject-oriented systems. Communications of the ACM 39 (10), 1996, pp. 104-
116

[3] Boman, M., Bubenko, J.A. jr., Johannesson, P., Wangler, B.: Conceptual Mod-
elling. Prentice Hall, 1997, p. 269

[4] Bernstein, P.A.: Applying Model Management to Classical Meta Data Prob-
lems. In Proc. CIDR 2003, pp. 209-220

[5] Banerjee, J., Kim, W., Kim, H-J., Korth, H.F.: Semantics and Implementation
of Schema Evolution in Object-Oriented Databases. In Proc. ACM SIGMOD
1987, pp. 311-322

[6] Batini, C., Lenzerini, M., Navathe S.B.: A Comparative Analysis of Method-
ologies for Database Schema Integration. ACM Comput. Surv. 18 (4), 1986,
pp. 323-364

[7] Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure
specifications. IEEE Transactions on Software Engineering 21, 1995, pp. 785-
798

[8] BRCommunity.com (Eds.): A Brief History of the Business Rule Approach.
Business Rules Journal, 6 (1), January 2005

[9] Brinkkemper, S., Lindencrona, E., Sølvberg, A. (Eds.): Information Systems
Engineering. State of the Art and Research Themes, Springer, 2000

[10] Calvanese, D., Lenzerini, M., Nardi, D.: Description Logics for Conceptual
Data Modeling. In Chomicki, J., Saake, G. (Eds.): Logics for Databases and
Information Systems. Kluwer, 1998, pp. 229-263

[11] Castano, S., de Antonellis, V., Fugini, M.G., Pernici, B.: Conceptual Schema
Analysis: Techniques and Applications. ACM TODS, 23 (3), 1998, pp. 286-
333

[12] Ceri, S.; Fraternalli, P.; Paraboschi, S.; Tanca, L. “Automatic Generation of
Production Rules for Integrity Maintenance”. ACM TODS, 19 (3), 1994, pp.
367-422

[13] Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In Proc.
CAiSE 2006, LNCS 4001, pp. 81-95

[14] Chen, P., Thalheim, B., Wong, L.Y.: Future Directions of Conceptual Model-
ing. In Proc. ER 1997, LNCS 1565, pp. 287-301

[15] Davis, K.H., Aiken, P.H.: Data Reverse Engineering: A Historical Survey. In
Proc. Working Conference on Reverse Engineering, 2000, pp. 70-78

332 Antoni Olivé, Jordi Cabot

[16] DeRemer, F., Kron, H.: Programming-in-the-Large Versus Programming-in-
the-Small. IEEE Trans. Software Eng. 2 (2), 1976, pp. 80-86

[17] Egyed, A. Instant consistency checking for the UML. In Proc. ICSE 2006, pp.
381-390

[18] Eshuis, R., Jansen, D.N., Wieringa, R.: Requirements-Level Semantics and
Model Checking of Object-Oriented Statecharts. Requirements Engineering 7
(4), 2002, pp. 243-263

[19] Fowler, M.: Refactoring: Improving the design of existing code. Addison-
Wesley, 1998, p. 464

[20] Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL Models
by Automatic Snapshot Generation. In Proc. UML 2003, LNCS 2863, pp.
265-279

[21] Gómez, C., Olivé, A.: Evolving Derived Entity Types in Conceptual Schemas
in the UML. In Proc. OOIS 2003, LNCS 2817, pp. 33-45

[22] Gupta, A., Mumick, I. S.: Materialized Views. Techniques, Implementations
and Applications. The MIT Press, 1999

[23] Gupta, H., Mumick, I.S.: Selection of Views to Materialize in a Data Ware-
house. IEEE Trans on Knowledge and data engineering, 17 (1), 2005, pp. 24-
43

[24] Gupta, A., Mumick, I.S., Ross, K.A.: Adapting Materialized Views after Re-
definitions. In Proc. ACM SIGMOD 1995, pp. 211-222

[25] Harel, D.: Biting the Silver Bullet. Toward a Brighter Future for System De-
velopment. Computer, January 1992, pp. 8-20

[26] Hick, J-M., Hainaut, J-L.: Strategy for Database Application Evolution: The
DB-MAIN Approach. In Proc. ER 2003, LNCS 2813, pp. 291-306

[27] ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema
and the Information Base, J.J. Van Griethuysen (Ed.), March 1982

[28] Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Concep-
tual Modeling. IEEE Software, March 1994, pp. 42-49

[29] Mays, R.G. “Forging a silver bullet from the essence of software”. IBM Sys-
tems Journal, 33 (1), 1994, pp. 20-45

[30] Mellor, S.J., Balcer, M.J.: Executable UML. A Foundation for Model-Driven
Architecture. Addison-Wesley, 2002, p. 368

[31] Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Soft-
ware Eng. 30 (2), 2004, pp. 126-139

[32] Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the Quality
of Process Models: Empirical Testing of a Quality Framework. In Proc. ER
2002, LNCS 2503, pp. 214-231

[33] Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the quality
of information models: empirical testing of a conceptual model quality
framework. In Proc. ICSE 2003, pp. 295-307

 [34] Mylopoulos, J.: The Role of Knowledge Representation in the Development
of Specifications. In Proc IFIP 1986, pp. 317-319

[35] Mylopoulos, J.: Information Modeling in the Time of the Revolution. Infor-
mation Systems 23(3/4), 1998, pp. 127-155

A Research Agenda for Conceptual Schema-Centric Development 333

[36] Olivé, A.: Derivation Rules in Object-Oriented Conceptual Modeling
Languages. In Proc. CAiSE 2003, LNCS 2681, pp. 404-420

[37] Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for
Information Systems Research. In Proc. CAiSE 2005. LNCS 3520, pp. 1-15

[38] Parent, C., Spaccapietra, S.: Issues and approaches of database integration.
Communications of the ACM 41 (5), 1998, pp. 166-178

[39] Pottinger, R., Bernstein, P.A.: Merging Models Based on Given Correspon-
dences. In Proc VLDB 2003, pp. 826-873

[40] Rahm, E., Bernstein P.A.: A survey of approaches to automatic schema
matching. VLDB Journal 10 (4), 2001, pp. 334-350

[41] Rich, C., Waters, R.C.: Automatic Programming: Myths and Prospects.
Computer, August 1988, pp. 40-51

[42] Ross, R.G. (Ed.): The Business Rules Manifesto. Business Rules Group. Ver-
sion 2.0, November 2003

[43] Schumann, J. M.: Automated Theorem Proving in Software Engineering,
Springer, 2001, p. 228

[44] Schewe, K-D., Thalheim, B.: Towards a theory of consistency enforcement.
Acta Informática 36, 1999, pp. 97-141

[45] Shaw, M.: Software Engineering Education: A Roadmap. In Future of Soft-
ware Engineering, Proc ICSE 2000, pp. 371-380

[46] Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship dia-
grams: the model, method of creation and experimental evaluation. Require-
ments Eng., 2004, 9, pp. 217-228

[47] Sølvberg, A.: Co-operative Concept Modeling. In [9], pp. 305-326
[48] Sowa, J.F.: Knowledge Representation. Logical, Philosophical and Computa-

tional Foundations. Brooks/Cole, 2000, p. 594
[49] Stumptner, M., Schrefl, M., Grossmann, G.: On the road to behavior-based

integration. In Proc. APCCM 2004, pp. 15-22
[50] Steimann, F., Kühne, T.: Coding for the Code. ACM Queue, 3 (10), 2006, pp.

45-51
[51] Teichroew, D., Sayani, H.: Automation of System Building. Datamation, 17

(16), 1971, pp. 25-30
[52] Teniente, E., Urpí, T.: On the abductive or deductive nature of database

schema validation and update processing problems. Theory and Practice of
Logic Programming 3 (3), 2003, pp. 287-327

[53] Tonella, P., Potrich, A.: Reverse Engineering of Object Oriented Code.
Springer, 2005, p. 210

[54] Türker, C., Gertz, M.: Semantic integrity support in SQL: 1999 and commer-
cial (object-)relational database management systems. VLDB Journal, 10,
2001, pp. 241-269

[55] Wand, Y., Weber, R.: Research Commentary: Information Systems and Con-
ceptual Modeling – A Research Agenda. Information Systems Research, 13
(4), 2002, pp. 363-376

[56] Wieringa, R.: A survey of structured and object-oriented software specifica-
tion methods and techniques. ACM Computing Surveys 30, 1998, pp. 459-
527

334 Antoni Olivé, Jordi Cabot

[57] Zhang, Y.: Test-Driven Modeling for Model-Driven Development. IEEE
Software, September/October 2004, pp. 80-86

