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Abstract. Conceptual schema-centric development (CSCD) is a research goal that re-
formulates the historical aim of automating information systems development. In 
CSCD, conceptual schemas would be explicit, executable in the production environ-
ment and the basis for the system’s evolution. To achieve the CSCD goal, several re-
search problems must be solved. In this paper we identify and comment on sixteen 
problems that should be included in a research agenda for CSCD.  

1 Introduction 

The goal of automating information systems (ISs) building was established 
in the 1960s [51]. Since then, the goal has been reformulated many times, 
but the essential idea has remained the same: to automatically execute the 
specification of an information system in its production environment. 

Forty years later, it is clear that this goal has not been achieved to a sat-
isfactory degree. The main reason is that a number of major problems re-
main to be solved [41]. Most of these problems are technical, but others 
are related to the lack of maturity in the information systems field, such as 
the lack of standards. The insufficient standardization of languages and 
platforms has hampered advances in the automation of systems building. 
Fortunately, however, the last decade has seen the emergence of new stan-
dards related to information systems development. The progress made in 
standardization provides an opportunity to revive the goal of automation 
[50]. 



320       Antoni Olivé, Jordi Cabot 

In [37] we proposed to call the goal “conceptual schema-centric devel-
opment” (CSCD) in order to emphasize that the conceptual schema should 
be the focus of information systems development.  

To achieve the CSCD goal, numerous research problems must be 
solved. In this paper we propose a research agenda with sixteen main re-
search problems that we believe it is necessary to solve in order to achieve 
that goal. This agenda extends, refines and updates the one proposed in 
[37]. 

The paper is organized as follows. In the next section we briefly review 
the role and contents of conceptual schemas. In Section 3 we characterize 
the CSCD goal. We then present the proposed research agenda in Section 
4. Finally, in Section 5 we summarize the conclusions of this paper. 

2 Conceptual Schemas 

In this section, we first review the main functions of ISs and then analyze 
the knowledge required by a particular IS to perform these functions. 
Through this analysis we will be able to define and establish the role of 
conceptual schemas. 

2.1 Functions of an Information System 

Information systems can be defined from several perspectives. For the 
purposes of conceptual modeling, the most useful is that of the functions 
they perform. According to this perspective, an IS has three main functions 
[3, p.74]: 

Memory: To maintain a consistent representation of the state of a do-
main.
Informative: To provide information about the state of a domain. 
Active: To perform actions that change the state of a domain. 

The memory function is passive, in the sense that it does not perform ac-
tions that directly affect users or the domain, but it is required by the other 
functions and it constrains what these functions can perform.  

In the informative function, the system communicates some information 
or commands to one or more actors. Such communication may be explic-
itly requested or implicitly generated when a given generating condition is 
satisfied.
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With the active function, the system performs actions that change the 
state of the domain. Such actions may be explicitly requested or implicitly 
generated when a given generating condition is satisfied. 

2.2 Knowledge Required by an Information System 

In order to perform the above functions, an IS requires general knowledge 
about its domain and knowledge about the functions it must perform. In 
the following sections, we summarize the main pieces of knowledge re-
quired by each function. 

If the memory function of an IS has to maintain a representation of the 
state of the domain, the IS must know the entity and relationship types to 
be represented and their current population. The entity and relationship 
types that are of interest are general knowledge about the domain, while 
their (time-varying) population is particular knowledge.  

In conceptual modeling, an Information Base (IB) is the representation 
of the state of the domain in the IS. The representation of the state in the 
IB must be consistent. This is achieved by defining a set of conditions 
(called integrity constraints) that the IS is required to satisfy at any time. 
Such integrity constraints are general knowledge about the domain.  

The domain state is not static. Most domains change over time, so their 
state must also change. When the state of a domain changes, the IB must 
change accordingly. There are several kinds of state changes. If they are 
caused by actions performed in the domain, they are called external do-
main events. If they are caused by actions performed by the IS itself, they 
are called generated domain events. The IS must know the types of possi-
ble domain event and the effect of each event instance on the IB. This is 
also general knowledge about the domain. 

If the informative function has to provide information or commands on 
request, the IS must know the possible request types and the output it must 
communicate. On the other hand, if there are generated communications 
then the IS must know the generating condition and the output it has to re-
turn when the condition is satisfied.  

In general, in order to perform the informative function, the IS needs an 
inference capability that allows it to infer new knowledge. The inference 
capability requires two main elements: derivation rules and an inference 
mechanism. A derivation rule is general knowledge about a domain that 
defines a derived entity or relationship type in terms of others. The infer-
ence mechanism uses derivation rules to infer new information. 

If, in the active function, the IS has to perform a certain action on re-
quest, then the IS must know the possible request types and the action it 
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has to perform in each case. On the other hand, if a certain action must be 
performed when a generating condition is satisfied, the IS must know this 
condition and the action it has to perform.  

2.3 Conceptual Schemas 

The first conclusion from the above analysis is that in order to perform its 
required functions, an IS must have general knowledge about its domain 
and about the functions it has to perform. In the field of information sys-
tems, such knowledge is referred to as the Conceptual Schema (CS).  

Every IS embodies a CS [29, 34, 48, p.417+]. Without a CS, an IS could 
not perform any useful functions. Therefore, developers need to know the 
CS in order to develop an IS.  

The main purpose of conceptual modeling is to elicit the CS of the cor-
responding IS. As we have seen, given that all useful ISs need a CS, we 
can easily reach the conclusion that conceptual modeling is an essential ac-
tivity in information systems development.  

3 Conceptual Schema-Centric Development 

In this section we reformulate the vision of the conceptual schema-centric 
development (CSCD) of information systems. To achieve this vision, we 
must be able to specify the initial conceptual schema, to execute it in the 
production environment and to evolve it in order to support the new func-
tions of the IS. We call these three main distinguishing characteristics ex-
plicit, executable and evolving schema.

Explicit schema. Once the functions of the IS have been determined, there 
must be an explicit, complete, correct and permanently up-to-date concep-
tual schema written in a formal language. We need a development envi-
ronment with tools that facilitate the validation, testing, reuse and man-
agement of (potentially large) schemas. 

Executable schema. The schema is executable in the production environ-
ment. This can be achieved by the automatic transformation of the concep-
tual schema into software components (including the database schema) 
written in the languages required by the production environment, or by the 
use of a virtual machine that runs over this environment. In either case, the 
conceptual schema is the only description that needs to be defined. All the 
others are internal to the system and need not be externally visible.  
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According to the conceptualization principle [27], conceptual schemas 
exclude all aspects related to information presentation. Therefore, the 
software responsible for handling user interactions (the presentation layer) 
is outside the scope of CSCD.  

Evolving schema. Changes to the functions of the IS require only the 
manual change of its conceptual schema. The changes to this schema are 
automatically propagated to all system components (including the database 
schema and data) if needed. 

4 Towards a Research Agenda for CSCD 

CSCD is still an open research goal. There are many research problems 
that must be solved before CSCD can become a widely used approach in 
the development of industrial information systems. In this section, we 
identify some of the research problems found related to the three CSCD 
features presented above. Our starting point is the agenda presented in 
[37], which we extend, refine and update here. We highlight the problems 
related to CSCD; see [9, 14, 55] for other relevant research agendas in 
conceptual modeling.

4.1 Explicit Schemas 

Very large conceptual schemas. The conceptual schema of a large or-
ganization may contain thousands of entity types, relationship types, con-
straints, and so on. The development and management of (very) large con-
ceptual schemas poses specific problems that are not encountered when 
dealing with small conceptual schemas. Conceptual modeling in the large 
is not the same as conceptual modeling in the small. The differences are 
similar to those observed between programming in the large and pro-
gramming in the small [16]. We need methods, techniques and tools to 
support conceptual modellers and users in the development, reuse, evolu-
tion and understanding of large schemas. 

So far, work on this topic has focused mainly on conceptual schemas for 
databases [1, 11, 46]. In CSCD we have to deal with ISs and take into ac-
count both the structural (including constraints and derivation rules) and 
behavioral schemas.  

Business rules integration. A business rule is a statement that defines or 
constrains certain aspects of a business. From the information systems per-
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spective, business rules are elementary pieces of knowledge that define or 
constrain the contents of and the changes to the information base. Business 
rules are the main focus of a community that advocates a development ap-
proach in which the rules are explicitly defined, directly executed (for ex-
ample in a rules engine) and managed [8, 42]. Given that business rules are 
part of conceptual schemas, we can state that the community already fol-
lows the CSCD approach as far business rules are concerned.  

It is both useful and necessary to integrate the business rules and CSCD 
approaches. It should be possible to extract the rules embedded in a 
schema and to present them to users and conceptual modellers in a variety 
of ways and languages, including natural language. Automated support for 
this extraction and presentation is necessary. It should also be easy to pick 
up on a particular rule and to integrate it into the schema. Automated sup-
port for this integration is desirable. 

Similarly, the workflow community fosters the use of workflow specifi-
cations as the primary artefact in the software development process. Work-
flow specifications define a set of activity ordering rules that control the 
workflow execution. These rules are usually executed and managed with 
the help of dedicated workflow management systems. Workflow specifica-
tions should be also integrated with the CSCD approach.  

Schema integration. A conceptual schema is very rarely developed by a 
single conceptual modeller [47]. Instead, several sub-schemas are (sepa-
rately) developed by different modellers, each of whom addresses a spe-
cific part of the IS. To apply the CSCD approach, these sub-schemas must 
subsequently be integrated in a single schema that represents the overall 
view of the IS.

A first step in integrating the schemas is to identify and characterize the 
relationships between the different sub-schemas (schema matching [40]). 
Once these have been identified, matching elements can be linked in a co-
herent schema (schema merge [39]).  

Previous research on this topic focuses on the integration of database 
schemas [6, 38]. More recently, the problem has been studied at a more 
abstract level (for example, [4] presents general operators for model 
matching and merging). Nevertheless, much work remains to be done on 
schema integration in the presence of general integrity constraints and de-
rived elements. Moreover, research on the integration of behavioural sche-
mas is still in a preliminary stage [49]. 

Complete and correct conceptual schemas. Several factors affect the 
quality of a conceptual schema, as stated in the framework presented in the 
seminal paper [28] and validated in [32, 33]. Completeness and correctness 



A Research Agenda for Conceptual Schema-Centric Development      325 

are two of the quality factors of conceptual schemas. A complete concep-
tual schema includes all knowledge relevant to the IS. A correct concep-
tual schema contains only correct and relevant knowledge. Correctness is 
also referred to as validity. Consistency is subsumed by validity and com-
pleteness. In CSCD, completeness and correctness are the principal quality 
factors. They can be achieved by using a very broad spectrum of ap-
proaches, including testing and verification. It should be possible to test 
and verify conceptual schemas to at least the same degree that has been 
achieved with software. 

Several studies have focused on testing conceptual schemas [25, 30, 20, 
57]. There are automatic procedures for the verification of some properties 
of conceptual schemas in description logics [10]. Model checking is being 
explored as an alternative verification technique [18]. Nevertheless, in all 
these topics, a lot of work remains to be done [35]. 

Refactoring of conceptual schemas. In general, several complete and cor-
rect conceptual schemas may exist for the same IS. However, some are 
better than others in terms of quality. Therefore, in some cases an initial 
conceptual schema may be improved if it is first transformed into a better 
(semantically-equivalent) alternative schema. 

For this purpose, the application of refactorings at the model level has 
been proposed. Refactoring was initially proposed at the code level [19] as 
a disciplined technique for improving the structure of existing code (using 
simple transformations) without changing the external observable behav-
iour. More recently, work has been done to apply this technique to design 
models instead of to the source code [31]. In CSCD, we need specific 
refactoring operations that take into account all the components in a con-
ceptual schema. General guidelines have not yet been developed to deter-
mine when and where to apply refactorings in order to improve the quality 
of the conceptual schema. 

Reverse engineering. Most legacy applications do not have an explicit 
conceptual schema. To benefit from the CSCD approach, we must elicit 
the explicit conceptual schema from the internal schema embodied in the 
software components that form the legacy application. This process is 
known as reverse engineering.

Reverse engineering applied to entity and relationship types and to the 
taxonomies of conceptual schemas has been extensively studied for rela-
tional databases [15] and object-oriented languages [53]. However, much 
work remains to be done regarding the reverse engineering of general in-
tegrity constraints and derived elements of schemas. Moreover, a complete 
understanding of the application code in order to elicit the behavioural part 
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of the schema is also needed. Ideally, the interactions between the applica-
tion’s various software components should also be considered during the 
reverse engineering process. 

4.2 Executable Schemas 

Materialization of derived types. In general, conceptual schemas contain 
many derived entity and relationship types, with their corresponding deri-
vation rules [36]. For reasons of efficiency, some of these types must be 
materialized. The process to determine the derived types that need to be 
materialized should be as automatic as possible. Moreover, changes in the 
population of base types may require changes in that of one or more mate-
rialized types. The propagation of these changes should be completely 
automatic.

The work done on the selection of database views that need to be mate-
rialized in data warehouses [23] is highly relevant to the determination of 
the derived types to materialize in ISs. Similarly, the large body of work 
on the incremental maintenance of materialized database views [22] is 
highly relevant to the more general problem of change propagation in ISs. 

Enforcement of integrity constraints. Most conceptual schemas contain 
a large number of integrity constraints. The IS must enforce these con-
straints efficiently. This can be achieved in several ways [52]. The main 
approaches are integrity checking, maintenance and enforcement. In integ-
rity checking and maintenance, each constraint is analyzed in order to (1) 
determine which changes to the IB may violate the constraint; (2) generate 
a simplified form of the constraint, to be checked when a particular change 
occurs; and, (3) (in maintenance) generate a repair action. In integrity en-
forcement, each event (transaction) is analyzed in order to (1) determine 
which constraints could be violated by the effect of the event; and, (2) 
generate a new version of the event effect that ensures that none of the 
constraints will be violated.

In CSCD, the analysis—regardless of the approach taken—should be 
fully automatic and able to deal with any kind of constraint. A general 
method for this analysis does not yet exist. However, a great deal of re-
search and development work has been carried out on the enforcement of 
constraints in the database field for relational, deductive and object-
oriented databases [12, 44]. The general method is likely to be an exten-
sion of this work. A recent step in this direction (for the integrity checking 
strategy) is [13].  
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From declarative to imperative behaviour specifications. There are two 
different approaches for specifying the effect of the domain events of an 
IS: the imperative and the declarative approaches [56]. In an imperative 
specification, the conceptual modeller explicitly defines the set of changes 
(insertions of entities and relationships, updates of attribute values, etc.) to 
be applied over the IB. In a declarative specification, a contract for each 
domain event must be provided. The contract consists of a set of pre and 
postconditions. A precondition defines a set of conditions on the event in-
put and the IB that must hold when the domain event is issued, while post-
conditions state the set of conditions that must be satisfied by the IB at the 
end of the domain event. 

In conceptual modeling, the declarative approach is preferable since it 
allows a more abstract and concise definition of the event effect and con-
ceals all implementation issues [56]. Nevertheless, in order to execute the 
conceptual schema, these declarative specifications must be automatically 
transformed into their equivalent imperative specifications. The main prob-
lem of declarative specifications is that they may be non-deterministic, i.e. 
there may be several possible states of the IB that verify the postcondition 
of a contract. This implies that a declarative specification may have several 
equivalent imperative versions, which hampers the transformation process.  

Up to know, there is no general method that automatically provides this 
translation. Current solutions are mainly limited to deal with the frame 
problem [7], which discusses the possible IB states for types that are not 
referred to in the event contract. The automatic transformation for types 
that do appear in the contract needs further investigation. 

Reusability. The possibility of reusing previously developed software 
pieces in the implementation of a new IS is one of the long-standing goals 
in the software community. In CSCD, reusability could help to reduce the 
effort required to transform the conceptual schema into an appropriate set 
of software components by means of studying the commonalities between 
the schema and a given set of existing software elements [2]. 

The main obstacle to a broader adoption of the reusability goal is the 
problem of selecting the right software component/s to reuse. Currently, 
the selection process is not completely automatic and requires a formal 
definition of the software components and a semantic comparison between 
the components and the conceptual schema [43]. This kind of analysis is 
still under development, particularly for two specific types of software 
components: commercial-off-the-shelf (COTS) components and web ser-
vices. Ideally, the selection process should also consider possible non-
functional requirements of the IS and the cost of integrating the selected 
component into the rest of the system. 
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4.3 Evolving Schemas 

Concept evolution. The most fundamental changes to a conceptual 
schema are the addition or removal of concepts (entity, relationship or 
event types or states in state machines) and the addition or removal of 
edges in the concept generalization hierarchy. In CSCD, evolution must be 
automatically propagated to the logical level [26]. Therefore, these 
changes must be propagated to the logical schema(s) of the database(s) 
(and/or to other software components generated for the execution of the 
CS) and to its (their) instances. Changes to the generalization hierarchy 
may induce a change (increase or decrease) in the population of some con-
cepts such that certain integrity constraints are violated. The IS should (ef-
ficiently) detect these violations and produce an appropriate response. Fur-
ther work on these topics must take into account the considerable amount 
of existing work on database schema evolution, which focuses mainly on 
concept evolution [5]. 

Furthermore, concept evolution may also affect other elements in the 
conceptual schema. For instance, changes to a generalization hierarchy 
may affect the general integrity constraints defined in the schema (some 
constraints may become unnecessary while others may now be required). 
Additionally, the formal definition of constraints, derivation rules and do-
main events may need to be adjusted after a concept evolution since they 
may refer to elements that no longer exist in the schema or whose specifi-
cation (cardinality, data type, changeability, etc.) has been changed during 
the evolution process. 

Constraints evolution. Adding a constraint may turn the IB inconsistent. 
Changing a constraint may be considered as a removal (which cannot lead 
to any inconsistencies) plus an addition. When a constraint is added, the IS 
has to check whether or not the current IB satisfies it. For very large IBs, 
the checking procedure may need to be efficient. If one or more fragments 
of the IB violate the constraint, the IS has to produce a response (to reject 
the constraint, to ignore the inconsistency, to repair the fragment or to 
handle the fragment as an exception). 

In the database field, the problem of adding constraints has been studied 
for particular constraints and database models [54]. In CSCD, we need to 
be able to deal with particular constraints (like cardinalities) but also with 
general constraints expressed in a conceptual modeling language, includ-
ing base and/or derived types. 

Derivability evolution. The derivability of entity and relationship types 
may change. A base type may become a derived type or vice versa. Fur-
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thermore, a derivation rule may also change. Changing the derivability of a 
type may produce a change in its population and, indirectly, in that of other 
types. If the change affects a materialized type it must be recomputed. For 
large IBs, recomputation may need to be efficient. Changing the popula-
tion of a type may also induce the violation of certain integrity constraints. 
The IS should (efficiently) detect these violations and produce an appro-
priate response. 

Some work has been carried out on this topic [21], but much more needs 
to be done. A partially similar problem in the database field is that of 
“view adaptation” after view redefinition [24].  

Completeness and correctness of the evolved schema. After evolving 
the CS, it is necessary to check that the conceptual schema is still complete 
and correct. This verification should be done efficiently. In particular, it is 
only necessary to consider the evolved subset of the schema (together with 
other schema elements that may have been affected by the evolution-
induced effects).

Approaches for the efficient verification of evolved schemas focus on 
the detection of consistency (see, for example, [17]). These approaches 
state that a conceptual schema is consistent if it satisfies a set of integrity 
constraints (usually referred to as well-formedness rules) predefined by the 
conceptual modeling language used in the specification of the schema. 
These constraints restrict the possible structure of schemas defined with 
that modeling language. Efficiency is achieved by checking the relevant 
constraints on the evolved part of the schema. A constraint is relevant to an 
evolved schema if changes in the schema could induce a violation of this 
constraint.

Much work is required to efficiently verify other quality factors of the 
evolved schema. 

4.4 Other Research Problems 

Benchmarks for CSCD. In most areas of computer science (databases, 
computer architectures, programming and so on), an extensive set of 
benchmarks have been developed to test the performance (or the covering 
or any other property) of a method that addresses a research goal in that 
area. Benchmarks are also useful for comparing different proposals tack-
ling the same goal. 

In CSCD, benchmarks could help to measure the progress of the com-
munity regarding the different research goals presented in this study. Addi-
tionally, conceptual modellers could benefit from benchmarks when select-
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ing a tool to specify the conceptual schemas. Several benchmarks are 
needed, depending on the research goal concerned. 

Education for CSCD. When the conceptual schema is placed at the centre 
of the development process, the focus of software engineering education 
needs to be shifted from code-centric to model-centric. As expressed in 
[45], each role in the software development process requires appropriate 
education. In CSCD, the main role is that of the conceptual modeller. 
Therefore, we must develop appropriate teaching/learning techniques to 
leverage the modeling abilities of software engineering students and practi-
tioners. This is a critical factor in the success of the CSCD approach. 

We are currently witnessing an increase in the number of available 
modeling courses (both virtual and traditional face-to-face courses), par-
ticularly for the popular Unified Modeling Language. However, most of 
these courses focus on the notational aspects of modeling languages. In-
stead, in CSCD education, we must concentrate on clearly explaining the 
semantics of the different modeling constructs and how they can be com-
bined to construct complete and correct conceptual schemas. A body of 
examples of “good” and “bad” schemas for well-known domains would 
therefore be very useful. 

5 Conclusions 

Conceptual schema-centric development (CSCD) is a reformulation of the 
goal of automating information systems building that highlights the central 
role of conceptual schemas in the automatic development of information 
systems. In CSCD, conceptual schemas would be explicit, executable in 
the production environment and the basis for the system evolution.  

 To achieve the CSCD goal, numerous research problems must be 
solved. The main purpose of this paper was to identify and comment on a 
list of sixteen open problems that should be included in a research agenda 
for CSCD.

We believe that this research agenda must be carried out before the 
CSCD approach can become widely used in practice.  
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