
An Empirical Study on Simplification of
Business Process Modeling Languages

Eric Umuhoza, Marco Brambilla,
Davide Ripamonti

Politecnico di Milano. Dipartimento di Elettronica,
Informazione e Bioingegneria

Piazza L. Da Vinci 32. I-20133 Milan, Italy
[�rstname].[lastname]@polimi.it

Jordi Cabot
ICREA - UOC. Internet Interdisciplinary Institute.

Av. Carl Friedrich Gauss, 5. Ed. B3. E08860
Castelldefels, Spain
jordi.cabot@icrea.cat

Abstract
The adaptation, specially by means of a simplification pro-
cess, of modeling languages is a common practice due to
the overwhelming complexity of most standard languages
(like UML or BPMN), not needed for typical usage scenar-
ios while at the same time companies don’t want to go to the
extremes of defining a brand new domain specific language.
Unfortunately, there is a lack of examples of such simplifi-
cation experiences that can be used as a reference for future
projects. In this paper we report on a field study aimed at
the simplification of a business process modeling language
(namely, BPMN) for making it suitable to end users. Our
simplification process relies on a set of steps that encompass
the selection of the language elements to simplify, genera-
tion of a set of language variants for them, measurement of
effectiveness of the variants through user modeling sessions
and extraction of quantitative and qualitative data for guiding
the selection of the best language refinement. We describe
the experimental setting, the output of the various steps of
the analysis, and the results we obtained from users. Finally,
we conclude with an outlook towards the generalization of
the approach and consolidation of a language simplification
method.

Categories and Subject Descriptors D.2.1 [Software En-
gineering]: Requirements/Specifications—Methodologies;
D.2.2 [Software Engineering]: Design Tools and Techniques—
Computer-aided software engineering (CASE); D.2.6 [Soft-
ware Engineering]: Programming Environments—Graphical
environments

General Terms Languages, Design, End-users

Keywords Language simplification, Domain-specific mod-
eling languages, Business process modeling languages, Per-
sonal process modeling

1. Introduction
In recent years, the increased adoption of domain specific
languages (DSLs) and of general purpose modeling lan-
guages by practitioners with different role and expertise has
paved the way to the need of providing ways to simplify such
languages to adapt to the expectations of practitioners.

Indeed, in many cases adopters complain about complex-
ity or impreciseness of notations, when facing the challenge
of starting using new languages. In some cases, the language
they are asked to use is not exactly matching the domain
or need, while in other cases the language complexity in
terms of notation (number of symbols and syntax rules) or
semantics, is overwhelming with respect to what is actually
needed.

Therefore adaptation of modeling languages, especially
in terms of simplification, has become a common need in
companies. This avoids creating of completely new do-
main specific languages [20] or further increasing the size
of existing language to match the specific needs (e.g.,
through profile-like mechanisms), without dropping use-
less parts [14]. Unfortunately, neither precise processes nor
practices for addressing this problem are studied, and very
few examples of language simplification experiences are
reported[9]. In existing experiences users are often involved
in the initial phases of the process [10], are asked to pro-
vide examples of models [5, 19], or to setup discussion ses-
sions [3], but users rarely take an active role along the whole
language definition process [10, 15].

In this paper we report on a field study aimed at the
simplification of a domain-specific modeling language by
means of direct involvement of users through quantitative
and qualitative analysis of their modeling experience.



En
d

-u
se

r
La

n
gu

ag
e

d
es

ig
n

er

User
Questionnaire

Language 
Evaluation

Definition of 
Language 
Variants

Modeling of 
Use Cases

Simplified 
BPMN

Selection of 
BPMN
Elements

BPMN

Figure 1: Empirical study on simplification of BPMN: At the beginning of the process, we select (the language designers) the
BPMN elements to simplify; we then generate the language variants allowing us to assess the effectiveness of the language
through the modeling sessions performed by end-users, in the third phase. In the fourth phase, we collect users’ feedback
through a Questionnaire while in the last phase we evaluate the language variants based on the data gathered in previous
phases. The outcome is a simplified BPMN, suitable for end-users.

In our specific case, we consider the problem of simplify-
ing a standard business process modeling language for mak-
ing it suitable to end users. General purpose business process
modeling languages are widely known and adopted. Despite
their expressive power and notations vary a lot, they share
some criticisms about their overwhelming complexity with
respect to the typical usage scenarios and intended adopters.
The most prominent example is the Business Process Mod-
eling Notation (BPMN). It offers a vast range of model-
ing constructs which turns it in an overly complex language
[18] [13], which makes it an under-used language in most
situations and by most practitioners. Indeed, business ana-
lysts frequently use arbitrary subsets of BPMN. Michael zur
Muehlen and Jan Recker [16] raised the question "How much
language is enough?" and evaluated quantitatively which of
the modeling constructs provided by BPMN are used reg-
ularly. Their findings showed that less than 20% of BPMN
constructs are used regularly. However the usability study
alone is not enough to determine which fraction of the lan-
guage should be preserved or removed, since this depends a
lot on the intended use and therefore it might not be enough
to rely on the most used elements only.

Thus, simplification is not an easy process, and needs
to be applied carefully, considering the concrete objectives
of the simplification. We studied the case of personal pro-
cess management. Personal process management refers to
the application of BPM techniques and tools to personal task
management, to-do lists, and small work plans shared with
friends and personal contacts. The introduction of the con-
cept of process and execution flow in personal, everyday life
tasks could allow users to manage their activities in a more
structured, coherent and consistent way. We call this Per-

sonal Process Management (PPM) [1]. The language for
modeling such processes should be complete enough for de-
scribing basic processes but also simple enough to let people
understand, accept and use them in their everyday life [22].

Our simplification process relies on a set of steps that en-
compass: (i) the selection of the language elements to sim-
plify; (ii) definition of a set of language variants for those
elements; (iii) measurement of effectiveness of the variants
through modeling sessions performed by end-users and ex-
plicit questionnaires; and (iv) Extraction of quantitative and
qualitative data for guiding the selection of the best language
refinement. Notice that in this work we do not focus on the
graphical notation to be used (aka., concrete syntax, that is
the graphical symbols to be adopted), but only on the expres-
sive power of the language.

The paper is organized as follows: in Section 2 we present
the overview of our experience, by describing the steps of
the simplification process; and then in Sections 3-7 we go
through each step and describe the experience and the results
obtained in each of them; in Section 8 we provide an outlook
on the outlook towards the generalization of the approach
and consolidation of a language simplification method; in
Section 9 we discuss the related work and in Section 10 we
conclude.

2. Overview
In this section, we describe our study on simplification of
BPMN with the aim to make a suitable language for per-
sonal, every life tasks modeling. In this work, we use Per-
sonal Process Modeling Language or equivalently, a Nota-
tion for Business Process Modeling to refer to that simplified



version of BPMN. Our simplification process relies on the
following phases (Figure1):

1. Selection of BPMN elements to be simplified. In this
phase, we identify the elements of the BPMN that are
suitable for the modeling of personal processes. Dur-
ing the elements identification we consider both the na-
ture of personal tasks and the users’ needs, which dif-
fer from the needs of organizations for which the BPMN
was designed. In fact, an investigation conducted in[1] re-
vealed that the users don’t want to deal with complex de-
cision points, involving definition of conditional expres-
sions, complex event management, or exceedingly com-
plex process structures. The output of this phase is a set
of language elements with their full description in terms
of relevance and relationships (Table 1);

2. Generation of the language variants. In this phase, we
take in input the elements defined in the previous phase
and we produce a set of alternative syntaxes, the language
variants. Language variants are generated from a sub set
of the language elements.
To measure the effectiveness of the designed syntax we
need it to be tested by intended users. The challenge is
how to submit the elements to the users so that they can
evaluate them in the best way. A unique syntax with all
elements, for all users, is not possible. In fact, some el-
ements (like alternative elements) cannot be used at the
same time. Moreover, considering that we are modeling
the experiment for end users, all elements maybe too con-
fusing. A possible solution is to fix a number of elements
for each variant and then take all possible combinations,
but this creates a problem of finding people available to
test a such high number of alternatives.

3. Modeling of use cases by end-users. In this phase, the
users test the language by modeling the assigned use case
(a pair of a personal process with the language variant to
be used to model it). During this phase, a logging system
logs the users’ actions (such as the creation, modification,
and deletion of an element) useful to derive quantitative
data allowing to compare and evaluate the language vari-
ants. We also monitor the users by taking the notes on
how they model the assigned processes, by direct obser-
vation. Those qualitative information complete the data
gathered through a logging system for our analysis.

4. User Questionnaire. For users profiling and segmenta-
tion, the users are asked to answer a questionnaire about
their personal information: knowledge in the computer
science field and about the ease of understanding the sce-
narios and modeling them with the assigned syntaxes.
The questionnaire contains a free form field allowing the
users to report their general feedback like the lack of ele-
ments or functionality in the syntaxes.

5. Language evaluation. In this phase, we analyze the data
collected in previous phases (the execution data stored
in the logs and the notes taken during the use cases
modeling phase, and the users’ evaluations given in the
Questionnaire) to make an informed decision of the best
variant based on those quantitative and qualitative data.

3. Selection of Language Elements
In this section we describe the selection of the elements
which compose a notation for personal process modeling.
The elements of this notation are a small subset of BPMN
allowing to model the personal processes.

Considering the characteristics of such processes and the
needs of end-users, we came up with the following elements:
Task, Sequence, Parallel Execution, Conditional Execution,
Events, Loop Execution, and Parameters. To understand how
those elements can be used together to model a personal
process, we have characterized each elements by specifying:

• the relevance (expressed as mandatory or not). The
mandatory elements must be included in all the language
variants otherwise the variant is invalid;

• the alternatives elements. For each element we enumerate
the different options of a such element. For example the
element Parameter can be a global parameter, a one
local parameter or a multiple local parameter; and

• the dependencies. For each element we identify the ele-
ments on which it depends on, if any. For example, when
modeling a personal process the conditional execution
uses the value of the parameter. Thus, conditional exe-
cution depends on parameter.

Table 1: Characterization of the elements of personal process
modeling notation

Element Mandatory Alternative Dependencies
Task Yes N/A N/A

Event Yes Start N/AEnd

Event No Wait For N/AWait Till
Sequence Yes N/A Source and Target
Parallel Execution No N/A N/A
Conditional Execution No N/A Parameters

Parameter No
Global

N/AOne Local
Multiple Local

Loop Execution No N/A Conditional Execution

Task Is an atomic activity included within a Process flow.
A task is used when the work in the process cannot be broken
down to a finer level of detail and it must be assigned to one
or more actors.

Sequence Sequence flow of execution is represented by
arrows. An arrow connecting two tasks means that the task
at the start of the arrow must be completed before starting
the execution of the task at the end.



Parallel Execution Parallel Gateways create parallel flows
for a simultaneous execution of tasks.

Parameters The parameters are used to store values sub-
mitted by actors. These values can be used in conditional
gateways, printed in tasks bodies or just stored. We have
identified three possible ways to use parameters:

• Global Parameters, available in all the processes directly
or indirectly connected after the creating task;

• One-Local Parameters, available only in the tasks to
which they have been propagated; and

• Multiple-Local Parameters. Similarly to one-local pa-
rameters, the multiple-local parameters are only avail-
able in the tasks to which they have been propagated. But,
in this case, more than one parameter can be propagated.

Conditional Execution The only way to make conditional
execution is to create conditional parallel flows using con-
ditional gateway. This notation allows using only the simple
conditions. Therefore, the arithmetic operations and compar-
isons between parameters are not supported. The conditional
gateway uses parameters to evaluate the condition.

Loop The loop is a specific tool to create backward flows.
It requires the conditional gateway to examine the loop con-
ditions. The expressed conditions are mutually exclusive.

Events An event is something that happens during the
course of a process. The events are grouped in the following
three categories:

• Start Event. It indicates where a process will start;
• Intermediate Event. An intermediate event indicates

where something happens, an event, somewhere between
the start and end of a process. In BPMN, those events
are used to model events such as message-based commu-
nication among actors, flow control through exception
handling, and delays expected within the business pro-
cess. While those events are important to model business
processes, some of them (e.g message-based communi-
cation) are not relevant in personal processes.
The timer is the only relevant intermediate event in per-
sonal process. In fact, it could be useful to impose time
constraints on the execution flow. We have introduced
two time events: Wait For and Wait Till which express,
respectively, the waiting for a generic time and the wait-
ing of a specific date or time;and

• End Event. It indicates where a process will end.

The start and end event are considered mandatory elements,
because processes need to have a start and end point. Con-
versely, intermediate events (Wait For and Wait Till) are not
mandatory (Table 1).

Table 2: The language variants

Element Alternative Variant 1 Variant 2 Variant 3 Variant 4

Event
Start × × × ×
End × × × ×

Task × × × ×

Parameter
Global × ×
One Local ×
Multiple Local ×

Intermediate Event × × ×
Sequence × × × ×
Parallel Execution × × ×
Conditional Execution × × ×
Loop ×

4. Definition of Language Variants
To measure the effectiveness of the notation we need it to
be tested by end-users through the modeling sessions. The
challenge is how to submit the elements of the language to
the users so that they can evaluate them in an efficient way. In
our approach, this done through a set of language variants:
alternative syntaxes generated considering only a subset of
the language elements. In the next paragraphs, we describe
how we generate those variants.

We use the language variants, which use a reduced set of
language elements, because it is easier (for end-users) learn
and use a language composed by few elements rather than
a complex one. Furthermore, it not always possible to test
all the elements of a language together. For example, the
alternative elements cannot be included in the same syntax
at the same time.

However, testing all valid combinations of the elements
becomes unfeasible due to the high number of the variants
and consequently, the required high number of users to test
them. Therefore, the dimension of the language variants (the
number of the elements to include in each variant and the
number of variants) is a compromise between the possible
combinations of the elements and the number of users avail-
able to test them1.

In our case, a good compromise between the number of
elements and the number of the users available for the test
was the following four variants (Table 2):

• Variant One: it makes use of sequence and parallel flows,
events, global parameters, but no loops and no condi-
tional flows.

• Variant Two: it makes use of sequence, parallel and con-
ditional flows, global parameters, loops but no events.

• Variant Three: it makes use of sequence, parallel and
conditional flows, events, one local parameter, but no
loops.

1 Indeed, we face similar trade-offs as those heavily studied in software
testing. As such, a good strategy when defining the variants should be to
maximize the coverage both in terms of combination of elements to tests
and in terms of coverage of relevant usage scenarios for the language



• Variant Four: it makes use of sequence and conditional
flows, events, multiple local parameters, but no loops and
no parallel flows.

All the four language variants have the basic elements in
common: the start and the end events, the task and the se-
quence routing. Those are mandatory elements for the per-
sonal process modeling language. We built a linear variant
with global parameters, events, parallel routing but not con-
ditional and loop gateways. We also built a more complex
variant with multiple local parameters, conditional routing
but no parallel gateway. The other two variants were instead
more balanced.

5. Modeling of Use Cases by End-Users
In previous section, we have defined the elements of a no-
tation for personal process modeling and we have identified
its four variants. The next step of our approach is to submit
these variants to the end-users and conduct the experiment in
which users model the assigned use cases. A use case repre-
sents a couple of a personal process with the language vari-
ant to be used to model it.

5.1 Scenarios
We have designed three scenarios based on the real life situa-
tions. Every scenario describes a process with the suggested
activities and the general constraints.

Scenario A - Holiday with friends You are organizing holi-
day with friends. You need to decide the transport, choose
the hotel and plan possible tours. Then you have to draw up
the budget and if it is included in the planned costs, you can
proceed with reservations. The week before the departure,
you will meet together to define the last details.

Scenario B - Association party You are organizing a free-
entrance party of your association. You need to publicize
the event, and ask the authorization to the municipality if
you registered at least 50 reservations. Then you can contact
the catering service and engage the band. The event will
start with the dinner at 8:00 pm followed by the concert at
9:30 pm if the dinner has finished.

Scenario C - Warehouse management Your goal is to opti-
mize the buying and selling of the raw materials, maintain-
ing always 1000 units constant.Every week, the quantity of
material in warehouse must be checked and then, accord-
ing to the amount, you need to buy new material or sell it.
The order must be approved by the accounting department.
Once arrived, new stock must be placed and cataloged.

In addition, we have developed a test scenario, used at the
beginning of the modeling sessions to explain to the users
how the tool works and to let them get confidence with it.
Scenario Test - Basket tournament You are organizing a
basket tournament. You need to collect the registrations,
schedule the matches, rent the playgrounds and find the
sponsors.

Table 3: Use cases

Use case Language variant Scenario
1 1 A
2 2 A
3 3 A
4 4 A
5 1 B
6 2 B
7 3 B
8 4 B
9 1 C

10 2 C
11 3 C
12 4 C

Figure 2: Graeco-Latin square of use case pairs

5.2 Use Cases Definition
A use case represents a pair of a scenario with a language
variant to be used to model it. The use cases are based on the
relevant scenarios of the domain. Having 4 language variants
and 3 scenarios, overall there are 12 possible pairs, use cases
(Table 3).

5.3 Assigning Use Cases to Users
We have decided to submit two use cases to each user. The
submission order of the two use cases is important because
in the modeling of the second use case, the user will apply
the knowledge acquired in the first one. In order to overcome
unintended effects and to have balanced experiments, all the
possible use cases pairs have to be studied considering both
the order and the scenario-variant coupling. For that pur-
pose, we use the Graeco-Latin square theory[11]. Applying
the Graeco-Latin square theory to the use cases, we obtained
the result shown in Figure 2.



Figure 3: Valid experiments

Figure 4: Valid experiments without duplicates

Each cell of the table, depicted in Figure 2, represents a
single experiment made by two use cases to be assigned to a
single user. In each row of the table, every variant and every
scenario appears the same number of times, and every use
case appears one time in the first position and one time in
second position. The invalid experiments are highlighted in
red. We consider invalid an experiment which has the same
scenario and/or the same variant in both tests. For example,
the experiment [2,3] is invalid because of the repetition of
scenario A, while the experiment [5,9] is invalid because of
the repetition of the first variant. Excluding the red cells, the
remaining green cells can be grouped as shown in Figure 3.

The second and the fifth rows have six cells each that are
mirrored repetitions of the other six cells ([3,5] and [5,3],
[4,6] and [6,4], etc). Let’s call the remaining rows A, A’, B,
B’, C and C’ (Figure 4). We can see that A’ has the same
couplings of A but with use cases in the inverse order. The
same holds for B’-B and for C’-C.

5.4 Modeling Sessions
Each modeling session of the use cases by end-users has
been conducted following this exact procedure in five steps:

1. Introduction. First, we have introduced the modeling tool
to the users and we have presented them its purpose. Then
we have explained them the objective of the experiment:
to test the effectiveness and ease of use of the adopted
language variant to model the small processes, in daily
life or in small and medium-sized enterprises.

2. Registration. The users logged in to the tool using one of
their social accounts.

3. Instruction. The users read the main manual of the ed-
itor which describes how to make the basic actions of
creation, modification and deletion of elements. Then, a
short test of 3 minutes took place under our supervision
in order to take confidence with the basic functionality of
the tool. This was done using a test scenario, equal for all
the users.

4. Experiment. Each user had to model two use cases. In this
step the user could read the manual of the first assigned
variant followed by the description of the coupled sce-
nario. At this point he could start modeling the process.
Once the first process was modeled, the user could pro-
ceed with the second use case in the same way described
before.

5. Closure. At the end of the test, after the user had sub-
mitted both models, he was asked to answer a question-
naire about his personal information, his knowledge in
the computer science field, the ease of understanding the
scenarios and modeling them with the assigned variants.
He was also asked to report the lack of elements or func-
tionality in the assigned language variant.

5.5 Monitoring
During the experiments, we monitored users’ actions in or-
der to collect the data indispensable to assess language vari-
ants. The monitoring was done through: direct observation,
noting every user’s activity and comments made while mod-
eling the assigned processes; and through a logging system.
The logging system was limited to the graphical editor and
each log rows contains a code name for the tracked action, a
field used for additional info, and the target of the action. The
logs have been stored in a structured database from which
the desired data are extracted by means of SQL queries. We
have prepared a set of basic queries that retrieve the:

• time required to create each process,
• number of times an element has been edited,
• number of elements created,
• number of times an element has been moved,
• number of delete,
• number of process savings,
• number of validation requests, and
• number of invalid connections. Although the tool checked

for correctness of the model and did not allow to create
wrong models, it recorded the number of invalid con-
nections as the number of times the users attempted at
drawing wrong connections between elements.

Starting from these basic queries, we have built the compos-
ite queries extracting derived data used to compare and to



Figure 5: Experiments duration per single user

evaluate the language variants. All these data, together with
the opinions and feedback collected from the questionnaire,
must be analyzed to understand each variant pros and cons
and determine a good compromise.

5.6 Execution Data Analysis
The experiment involved 24 users. 21 are men, while only
3 are women. 19 users are in the 18-30 years range, 2 users
in the 31-50 range and 3 users in the 51-70 range. Half of
the users are students, 7 have high skills in computer science
while 9 users define themselves as basic PC users. Overall,
the users are not experts in BPMN. In fact, only 2 users claim
to use it regularly, 8 know it but they do not use it while the
remaining 14 have never heard about it.

5.6.1 Durations
From the analysis of the times of the single experiments
(Figure 5) we notice that processes modeled with the first
variant are those done faster, with an average duration of
16’27”. On the contrary the fourth variant is the slower, with
an average time of 22’02”, about 34% slower than the first
(5’35” more). The second and the third variants are instead
quite similar between them, about 16% and 15% slower than
the first. Looking at the standard deviations, the fourth and
first variants have higher values. All the delivered processes
are correctly validated except one made with the second
variant. It is interesting to notice that 19 times over 24, the
second test has been modeled in less time than the first one,
with an average of 7’30” less. This is probably due to the
fact that during the first test users need more time to take
confidence with the editor. In the remaining 5 times, users
took an average of 3’20” more. Also the variants play a role
in the difference of time between the two tests. In fact, users
who play first with the fourth variant, and then with the first
variant, take on average 12’43” less, while users who first
used the first variant and then used the second variant, take
on average 1’27” less. It seems that the fourth variant is
more powerful then the first but is also heavier to use, so
it takes more time. The first variant is simpler, offers minor
possibilities and is faster to use.

Language variant

vo
te

s

Figure 7: Variants difficulty

5.6.2 Number of Elements Creations and Deletions
The processes modeled with Variant One have few elements,
thus they are smaller and simpler. Instead, Variant Four has
the most number of creations and is the richer one. Variant
Two and Variant Four seem to have same number of ele-
ments used (Figure 6.a). The number of deletions is quite
constant for all the variants, a little less in the first and a lit-
tle more in the second.

The most used elements are of course tasks and connec-
tions. Those most used elements are omitted in (Figure 6.b)
to better highlight other elements variations. The Wait For
events are rarely used and have a high percentage of dele-
tions in all the variants in which they appear, respectively
60%, 80% and 67%, while the Wait Till events are preferred
and more used. The Parallel Gateway is less used than the
Conditional Gateway. In the first variant there is only the
Parallel Gateway, in the fourth there is only the Conditional
Gateway, while in the other two they appear both. In the
second variant the Parallel Gateway is used twice as often
as the Conditional. In relation to these data we also need to
point out that variants three and four are those with a greater
number of created elements overall. The Loop, with an aver-
age use of 1.33 per process, is the most used element in the
processes where it is available, namely those modeled with
variant two.

5.6.3 Validation Requests
During all the tests, users have used the validation button
to check the processes correctness. Generally, the processes
were correct but sometimes errors were found and users
had to validate again the process. Globally, all the variants
have almost the same number of validations. The highest
percentage of validations with errors is the one related to
the Variant One, immediately followed by Variant Three.
Variants One and Variant Four are those with the lowest
percentages of false validations.

5.6.4 Editing Elements
The average time per process spent by users editing elements
is approximately the same for all the variants except for the
Variant One that is significantly smaller. On average, the
time spent modifying single elements is more in the Variant
One, though with higher standard deviation, while less time
was spent on Variant Four. On the other hand, the number of



Language variant

q
u

a
n

ti
ty

q
u

a
n

ti
ty

(a) (b)

Figure 6: (a) Shows the average number of creations and deletions per process while (b) shows the average number of elements
per process

element changes is greater in Variant Four, while it is smaller
for the Variant One. The high number of changes for vari-
ants with local parameters characterized however by short
editing times. These characteristics should be caused by the
need to manually propagate local parameters. The data re-
lated to the events showed that they were edited practically
in the same way. Conditions required on average, more time
to be configured with Variant Four.

6. User Questionnaire
This section resumes the answers gathered from the 24 users
involved in the experiments. The users’ feedback comple-
ment quantitative measures presented in Section 5.6 Execu-
tion Data Analysis.

Scenarios difficulty Each scenario was tested sixteen times.
Both scenarios A and B were judged mainly easy with 13
and 12 votes each and the remaining votes on medium level.
Scenario C resulted to be the hardest with only 8 votes on
easy level, 7 on medium level and 1 on hard level.

Language variants difficulty Each variant was tested
twelve times. Variants One, Two and Three were equally
judged with 7 votes on easy, 4 on medium and 1 on hard
difficulty. Instead, Variant Four is perceived harder since
users gave only 2 votes on easy, 8 on medium and 2 on hard
(Figure 7).

Cases difficulty The easiest combination of variants and
scenarios resulted to be Variant Three and Variant Four with
scenario A, and Variant One with scenario B. The worst was
Variant Three with scenario C.

Variants deficiencies The most noticed deficiency was the
lack of the Loop element. In fact, in 15 tests, users claimed
the necessity to have the loop to correctly model the process
they had in mind. Particularly, its absence was felt more in

the third variant.
The Conditional Execution is included in all the variants ex-
cept for the first, and right in this, in 8 tests over 12, users
wanted it.
The Parallel Execution does not exist only in the fourth vari-
ant end its absence was notice only in 3 tests over 12 tests.
The lack of the events has not gone unnoticed in Variant
Two.
Users noticed also deficiencies on parameters types: some-
one claimed Boolean parameters but then he resolved using
the textual type; other users would have preferred to create
lists of parameters and treat them as arrays. In some cases it
would have been useful to compare two parameters inside a
condition, or sum them or compare them with a value. Us-
ing the third variant, in two cases users would have needed
to propagate more than one local parameter, while in other
two cases they would have preferred to have global param-
eters that are more comfortable to use. In the fourth variant
instead, in three tests the propagation of multiple local pa-
rameters was found too heavy.

After all, even if every variant has its pro and cons, all
the users have succeeded to model the assigned processes,
sometimes using alternative, weird but functional methods
to bypass the restrictions.

7. Language Evaluation
By analyzing the data related to the different aspects of
the modeled processes during the experiments (the users
evaluations given in the questionnaire, the notes taken during
the experiments, and the execution data), we can state that
there is no language variant which is clearly better than
the others in absolute terms. This is quite common in any
realistic setting, and it’s the reason why the problem of
selecting the best language is not a trivial task at all (notably,



Table 4: Comparing the elements number of the initial lan-
guage, BPMN, with its simplified version, the language vari-
ants. BPMN provides 52 modeling elements while the four
variants use 7, 8, 8, 7 elements respectively.

Language BPMN Variant One Variant Two Variant Three Variant Four
Number of element 52 7 8 8 7

it cannot be reduced to simply choosing the variant with
the most used concepts), also because different relevance or
priority may need to be put on one aspect or the other when
finalizing the choice for the given vertical scenario.

However, the information collected and combined to-
gether through the various means proposed in our approach,
provide evidence and quantitative data allowing the decision
the be made more objectively and in an informed way.

The main methodological guideline consists in defining
two dimensions in the decision making process: (i) Lan-
guage evaluation. Besides evaluating independently each
single language element, it’s also important to consider how
they actually integrate with each other in a comprehensive
tool, i.e., the language variant. (ii) Element evaluation. This
dimensions suggests to evaluate each element in the lan-
guage independently, so as to compare the different available
options for its implementation and get oriented towards the
potentially best selection of elements.

There is no prescribed order or ranking of importance
between these two aspects, as the final decision may very
well require some looping over the two, until a satisfactory
selection is reached for both. We report here the evaluations
and analysis done in our case study, so as to provide hints on
the possible aspects to be taken into account in the decision.

7.1 Language Variants Evaluation
Each language variant exhibits a set of pros and cons, which
again can be distilled by analyzing both the quantitative mea-
sures taken during the experiments, and the feedback of the
users through the questionnaire. Probably the best variant
would be the one achievable choosing the best options of
each element based on the previous analysis. However, over-
all language characteristics must be considered too.

All the four language variants designed in this work are
simpler, in terms of the number of used elements, with re-
spect to BPMN. In fact, Variant One and Variant Four use
only 13.5% of BPMN elements while Variant Two and Vari-
ant Three use 15.4% of BPMN elements. In our specific
case, the number of used elements is not a strong discrim-
inating factor since all variants use more or less the same
number of elements (Table 4). Here follow the resuming
considerations about the variants, along with a pros and cons
list of each one.

7.1.1 Variant One
It is the quickest and leanest in the processes creation, but in
many cases it has turned out to be too poor and ineffective.

It is more suitable to describe very easy and linear processes
and it is too limited if there is the need to increase the
modeling detail. Its pros and cons are reported in Table 5.

Table 5: Language Variants Evaluation: Pros and Cons of
Variant One

Pros Cons
- Small number of elements to
learn and a few rules to use
them.

- Lack of specific tools to ex-
press the conditional execu-
tion.

- Processes are modeled
faster with a smaller number
of elements and deletions.

- Harder in medium complex
and complex processes mod-
eling.

- Shorter process design time. - Longer task editing time.
- No connection errors were
done during the experiments.

- Poor expressive power.

- A few validation errors were
done during the experiments.
- Smaller number of valida-
tion requests and lower per-
centage of wrong models sub-
mitted for validation.

7.1.2 Variant Two
It is the only variant which presents all the gateway types:
particularly the Loop Gateway has proved to be really useful
in the modeling of the more complex passages of the pro-
cesses. Its pros and cons are reported in Table 6.

Table 6: Language Variants Evaluation: Pros and Cons of
Variant Two

Pros Cons
- The loop gateway makes
possible to model iterative ex-
ecution

- Lack of specific tools to ex-
press time events.

- Average modeling time - Higher percentage of valida-
tion errors.

- Number of used elements
below the average.

- Higher number of validation
requests.

- Small number of connection
errors

7.1.3 Variant Three
This variant represents a good compromise between ease
of use and descriptive power but the simplicity of a single
parameter is, in practice, a great limit. Its pros and cons are
reported in Table 7.

7.1.4 Variant Four
This variant turned out to be the worse one, and was the one
more criticized by users. Its pros and cons are reported in
Table 8.



Table 7: Language Variants Evaluation: Pros and Cons of
Variant Three

Pros Cons
- Lower Wait Till and Condi-
tions editing times.

- Number of connection er-
rors over the average.

- Small number of Wait Till
and Conditions changes.

- Each time a parameter is
added it must be manually
propagated, if needed.

- Lower number of users sug-
gestions in the questionnaire.

Table 8: Language Variants Evaluation: Pros and Cons of
Variant Four

Pros Cons
- Small number of validation
errors

- Connection errors above the
average.

- Lower number of validation
request with lower percentage
of invalidity.

- Each time a parameter is
added it must be manually
propagated, if needed.
- Bigger number of elements
used.
- Longer processes creation
times.
- Longer elements editing
times.
- Higher number of editing on
elements.
- The hardest to use according
to questionnaire results.
- Greater number of sugges-
tions in the questionnaire.

7.2 Elements Evaluation
Single element evaluation should take into account quantita-
tive performance of the element in the experiment, as well as
hints collected explicitly from users. Indeed, data collected
through the logging of the experimental modeling phase may
have little meaning if not complemented by the users opin-
ions and descriptions of the problems. Therefore, also the
users evaluations given in the questionnaire and the notes
taken during the experiments must be taken in consideration.
Keeping in mind all these aspects, we can give a resuming
evaluation of the single elements of the four variants in our
scenario.

Wait For Event It has been by far the least used element
and the most deleted. Sometimes, instead of using it, users
preferred to use the time constraints inside the tasks, misin-
terpreting their meaning.

Wait Till Event Compared to the Wait For event, the Wait
Till event has been used and appreciated by the users, and it
has been useful to resolve the proposed scenarios.

Parallel Gateway It is a basic element that has been fre-
quently used when it was available and missed in the variant
where it was not. Sometimes it has been replaced by the Con-
ditional Gateway using equal conditions on the branches.

Conditional Gateway It has turned out to be fundamental
for its great descriptive power. Users have felt the lack of it
when it was not available.

Loop Gateway Looking at the collected data, the Loop has
been the most relatively used element, proving to be very
useful to resolve the critical aspects of the modeling. When
available, it has been really appreciated, while, when miss-
ing, users claimed its need and have found harder the pro-
cess modeling. Conversely, the Loop element has introduced
some more errors, so it requires a little more attention in its
use.

Global Parameters Overall, global parameters were easy
to understand and much appreciated, despite an initial diffi-
culty of some users that were not confident with the concept
of variable and parameter in computer environment (this
consideration applies also to local parameters).

One Local Parameter It has shown its limit when there
was the need to receive more than a parameter in a task.
Users found not intuitive to propagate and receive the pa-
rameter.

Multiple Local Parameters They have been judged more
useful than the one local parameter because they increased
the modeling efficiency, but on the other hand, they were
criticized because of the heaviness they introduce in the
notation.

7.3 Language Variant Selection
The selection of the best language variant depends highly on
the domain needs. However, the winning variant should be
the one having the following properties:

• Simplicity. The language variant should be simple to un-
derstand and easy to use. We assess this property through
the analysis of the quantitative data (such as required
time to create the process, number of connection errors
and validation requests) gathered during modeling ses-
sions and qualitative information collected through user
questionnaire and notes.

• Completeness with respect to domain requirements. The
winning variant should allow the modeling of all relevant
aspects of the domain. We assess this property through
analysis pros and cons of each variant and the evaluation
of single elements.

The language Variant One fits the most the above-mentioned
properties.
Simplicity. The analysis of pros and cons showed that pro-
cesses modeled with Variant One were done faster, using



small number of elements and they do not presented any
connection error. Furthermore, the validation ratio (number
of validation errors/number of validation requests) was low.
Completeness. Single elements evaluation showed that all
the elements of Variant One are well understood and users
required them when missing. The pros and cons analysis
showed that variant One has poor expressive power. How-
ever, this is not a problem in personal process. As said so far,
the selection of the best variant depends on the domain. In
next paragraph, we illustrate how the winning variant could
have been another one given the same settings but changing
only the domain.

Let us consider that (i) we are simplifying BPMN for
an organization which needs to model its structured business
processes; and (ii) the variants and the single elements eval-
uation still the same. The suitable variant in this context is
variant Two since is the most complete with respect to do-
main. Its high complexity compared to variant One is not
a big problem for a company since companies usually hire
modelers with required knowledge to model their processes.

8. Generalization of the Approach
In this section, and based on the experience reported so far,
we provide some hints on how the described simplification
process can be generalized to be useful in the simplifica-
tion/personalization of other modeling languages.

The generalization involves mainly the initial parts of the
process where we need to reduce the scope of the problem
by first choosing a base language to simplify and the set of
relevant elements to evaluate. Once this is done, the rest of
process follows the same schema of Figure 1.

While in the case study described in this paper, the choice
of BPMN as the starting point was an obvious choice as the
standard and widely adopted language in the process mod-
eling area, but things may not the same in other domains.
If there are several candidate languages (to be found, for in-
stance, by looking at systematic reviews available for the do-
main), the selection of the base language to simplify must be
done objectively based on some predefined criteria, the se-
lection dimensions. While these dimensions may be decided
by each company, clearly, aspects like the popularity of the
language, its tool support or the availability of predefined ex-
tension mechanisms should be taken into account since they
will for sure facilitate the simplification process.

Then, you should proceed with the identification of the
language elements to evaluate in the language variants step.
In general, the key to do well this phase is to have a deep
understanding of the needs of the end-users: what are their
requirements? what language elements are more likely to
fit those requirements? Those elements would constitute the
starting set of candidate elements to focus on. Next we
should explore how they are related in the original language
metamodel among themselves and with other (auxiliary)

elements to enrich that set. Once this identification phase is
completed we can proceed with the definition of the variants.

Once this is done, the rest of the process described in the
paper can be easily adapted to any language. For instance, to
define the language variants, the only language-specific part
consists in the identification of the dependencies between
the language elements to evaluate (captured by looking at the
metamodel definition as indicated in the previous step). Sim-
ilarly, the process to design the use cases should follow the
same recommendations as for the BPMN scenario (mainly to
make sure that the use cases cover the variety of situations
we want to evaluate). The data analysis part is not language-
dependent so its application is straightforward.

9. Related Work
The active participation of end-users in the early phases of
the software development life-cycle is key when develop-
ing software [6, 7, 17]. Among other benefits, the collabo-
ration promotes a continual validation of the software to be
build [8], thus guaranteeing that the final software will sat-
isfy the users’ needs.

This is also true when the goal of the development pro-
cess is to produce a (modeling) language to suit the needs of
a user community. So far, this has been typically addressed
by either creating a brand new language for that commu-
nity (what it is known as a Domain-Specific Modeling Lan-
guages (DSML), a modeling language specifically designed
to perform a task in a certain domain [20]) or by extending
an existing base language (usually by applying some kind of
profile-like mechanism [2, 14]). Our approach differs from
both scenarios since we want to start from a base language
(much less time consuming and error prone than trying to
build a DSL from scratch) but we do not want to extend that
language but rather simplify it.

All approaches recognize the need to involve domain ex-
perts in the language design process [10, 15, 21] but un-
fortunately this is not yet a common practice. Participation
of end-users is still mostly restricted to the initial set of in-
terviews which hinders the process performance [10] since
end-users must wait until the end to see if designers cor-
rectly understood all the intricacies of the domain. Several
works have tried to facilitate this participation by propos-
ing to derive a first language definition from user exam-
ples [5, 12, 19]. An alternative approach promotes quick iter-
ation and discussion cycles between domain experts and lan-
guage developers from the beginning within a collaborative
environment [3] which could also include the use of example
models [4]. While all these are valid practices, we propose a
more hands-on approach where end-users not only provide a
few examples or give opinions on how the language is built
but actually test its variations while being monitored and the
collected data is then used to make more informed decisions
based on real data.



10. Conclusions
In this paper, we reported on a field study aimed at the sim-
plification of a business process model language for making
it suitable to end-users.

Our simplification process relies on: (i) the selection of
the language elements to simplify, (ii) generation of a set
of language variants for those elements, (iii) measurement
of effectiveness of the variants through modeling sessions
performed by end-users, and (iv) extraction of quantitative
and qualitative data for guiding the selection of the best
language refinement. We described the experimental setting,
the output of the various phases of the analysis, and the
results we obtained from users.

The results of our study, showed that the followed ap-
proach provides evidence and qualitative and quantitative
data enabling the selection of the best language variant to be
taken more objectively and in an informed way.
Future works will include the analysis of the concrete syntax
(e.g., the graphical symbols to be used) as part of the sim-
plification process, the application of the proposed approach
when the modeling needs evolve (e.g., language mainte-
nance and evolution) and, more importantly, the replication
of this study in other domains to advance in the generaliza-
tion of our language simplification process.

Acknowledgements. We thank Pierfilippo Bianchi for helping us
to prepare the experiments. This work was partially funded by the
AutoMobile EU 7th FP SME Research project.

References
[1] Marco Brambilla. Application and simplification of bpm tech-

niques for personal process management. In BPM Workshops,
pages 227–233. 2013.

[2] Marco Brambilla, Andrea Mauri, and Eric Umuhoza. Ex-
tending the Interaction Flow Modeling Language (IFML) for
Model Driven Development of Mobile Applications Front
End. In MobiWIS, pages 176–191, 2014.

[3] Javier L. Cánovas Izquierdo and Jordi Cabot. Enabling the
Collaborative Definition of DSMLs. In CAiSE conf., pages
272–287, 2013.

[4] Javier L. Cánovas Izquierdo, Jordi Cabot, Jesús J. López-
Fernández, Jesús Sánchez Cuadrado, Esther Guerra, and Juan
de Lara. Engaging End-Users in the Collaborative Develop-
ment of Domain-Specific Modelling Languages. In CDVE
conf., pages 101–110, 2013.

[5] Hyun Cho, Jeff Gray, and Eugene Syriani. Creating Vi-
sual Domain-Specific Modeling Languages from End-User
Demonstration. In MiSE workshop, pages 29–35, 2012.

[6] Kevin Dullemond, Ben van Gameren, and Rini van Solin-
gen. Collaboration Spaces for Virtual Software Teams. IEEE

Softw., 31(6):47–53, 2014.

[7] Les Hatton and Michiel van Genuchten. Early Design Deci-
sions. IEEE Softw., 29(1):87–89, 2012.

[8] Tobias Hildenbrand, Franz Rothlauf, Michael Geisser, Armin
Heinzl, and Thomas Kude. Approaches to Collaborative Soft-
ware Development. In FOSE conf., pages 523–528, 2008.

[9] Swiss e-government standards: Modelling Businesses
using BPMN. http://www.ech.ch/vechweb/page?p=
dossier&documentNumber=eCH-0074&documentVersion=
2.00. Accessed: 2015-08-01.

[10] Steven Kelly and Risto Pohjonen. Worst practices for domain-
specific modeling. IEEE Softw., 26(4):22 –29, 2009.

[11] Dominic Klyve and Lee Stemkoski. Graeco-Latin Squares
and a Mistaken Conjecture of Euler. The College Mathematics
Journal, 37(1), 2006.

[12] Marco Kuhrmann. User Assistance during Domain-specific
Language Design. In FlexiTools workshop, 2011.

[13] Matthias Kunze, Alexander Luebbe, Matthias Weidlich, and
Mathias Weske. Towards understanding process modeling -
the case of the BPM academic initiative. In BPMN 2011,
pages 44–58, 2011.

[14] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi
Cabot. EMF profiles: A lightweight extension approach for
EMF models. Journal of Object Technology, 11(1):1–29,
2012.

[15] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When
and How to Develop Domain-specific Languages. ACM Com-
put. Surv., 37(4):316–344, 2005.

[16] Michael Zur Muehlen and Jan Recker. How much language is
enough? theoretical and practical use of the business process
modeling notation. In CAiSE ’08, pages 465–479, 2008.

[17] John Rooksby and Nozomi Ikeya. Collaboration in Formative
Design: Working Together. IEEE Softw., 29(1):56–60, 2012.

[18] Michael Rosemann, Jan Recker, Marta Indulska, and Peter F.
Green. A study of the evolution of the representational capa-
bilities of process modeling grammars. In CAiSE 2006, pages
447–461, 2006.

[19] Jesús Sánchez Cuadrado, Juan de Lara, and Esther Guerra.
Bottom-up Meta-Modelling: an Interactive Approach. In
MODELS conf., pages 1–17, 2012.

[20] Jesús Sánchez Cuadrado and Jesús García Molina. Building
Domain-specific Languages for Model-driven Development.
IEEE softw., 24(5):48–55, 2007.

[21] Markus Völter. MD*/DSL Best Practices, 2011.

[22] Ingo Weber, Hye-Young Paik, Boualem Benatallah, Corren
Vorwerk, Zifei Gong, Liangliang Zheng, and Sung Wook
Kim. Personal process management: Design and execution
for end-users. Technical Report UNSW-CSE-TR-1018, 2010.


